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1 Truncated Toeplitz operators

Let H2 denote the standard Hardy space on the unit disk D, i.e. the Hilbert
space of all holomorphic functions on D which have square-summable Taylor
coefficients. As usual, we identify H2 with its space of non-tangential boundary
functions, which is a closed subspace of the Lebesgue space L2(T) with normalized
Lebesgue measure m on the unit circle T. The orthogonal projection from L2(T)
onto H2 is denoted by P .

Every function a ∈ L∞(T) defines an operator of multiplication on L2(T),
which we denote by aI. The Toeplitz operator induced by a is the operator
T (a) := PaI|H2 , acting from H2 to H2. The Toeplitz operator with generating
function a(z) = z is the operator S of forward shift, (Sf)(z) = zf(z). Its adjoint
S∗, the backward shift operator, is given by (S∗f)(z) = z−1(f(z)− f(0)).

Let u be a non-constant inner function, i.e., u is holomorphic on D and |u(t)| =
1 for t ∈ T (the following becomes trivial when u is constant). The subspace
K2
u := H2 	 uH2 is a proper nontrivial invariant subspace of S∗. Conversely,

every proper nontrivial invariant subspace of S∗ is of this form by a celebrated
theorem of Beurling. The spaces K2

u are also known as model spaces. We denote
the orthogonal projection from L2(T) onto K2

u by Pu. If Mu and Mū denote the
operators of multiplication by u and ū on L2(T), then Pu = P −MuPMū.

For a ∈ L∞(T), the truncated Toeplitz operator (TTO for short) generated by
a is the operator Tu(a) := PuaI|K2

u
acting from K2

u to K2
u. Truncated Toeplitz op-

erators share many of their properties with their relatives, the Toeplitz operators
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on H2, to which we here sometimes refer as classical Toeplitz operators, but there
are also some striking differences. For example, the function a is in general not
uniquely determined by the operator Tu(a) it generates, and the truncated shift
Su, i.e., the TTO with generating function a(z) = z, is the sum of a unitary and
a compact operator (hence a Fredholm operator with index 0), whereas its clas-
sical counterpart S is a proper isometry (and a Fredholm operator of index −1).
Moreover, whereas the spectrum of the classical shift S is the closed unit disk D,
the spectrum of the truncated shift Su coincides with the so-called spectrum

σ(u) := {λ ∈ D : lim inf
z→λ

|u(z)| = 0}

of the inner function u ([7, Lemma 2.5]).
The following collection of positive results is taken from and proved in [2].

We denote by Tu(C) the smallest closed C∗-subalgebra of L(K2
u) which contains

the truncated shift Su and the identity operator (the notation will be justified
by assertion (d) in the theorem below). Further, we write CommA for the com-
mutator ideal of a C∗-algebra A, i.e., for the smallest closed ideal of A which
contains all commutators ab − ba with a, b ∈ A. The essential spectrum of an
operator A is denoted by σess (A), and its essential norm by ‖A‖ess .

Theorem 1 Let u be a non-constant inner function. Then

(a) for a, b ∈ C(T), Tu(a)Tu(b)− Tu(ab) is compact.

(b) Comm (Tu(C)) = K(K2
u).

(c) Tu(C)/K(K2
u) is ∗-isomorphic to C(σ(u) ∩ T).

(d) for a ∈ C(T), the TTO Tu(a) is compact if and only if a(σ(u) ∩ T) = {0}.
(e) Tu(C) = {Tu(a) +K : a ∈ C(T), K ∈ K(K2

u)}.
(f) for a ∈ C(T), σess (Tu(a)) = a(σess (Su)).

(g) for a ∈ C(T), ‖Tu(a)‖ess = sup{|a(t)| : t ∈ σ(u) ∩ T}.
(h) Every operator in Tu(C) is the sum of a normal and a compact operator.

Moreover,

{0} −→ K(K2
u)

id−→ Tu(C)
π−→ C(σ(u) ∩ T) −→ {0}

is a short exact sequence, with the mapping π given by Tu(a) +K 7→ a|σ(u)∩T.

Here is an outline of the contents of the paper. In Section 2 we will single out a
sequence (Pun) of finite rank projections which converge strongly to the identity
operator on K2

u. The operator PunTu(a)Pun is considered as a finite section of the
truncated Toeplitz operator Tu(a). In Section 4, Theorem 10, we describe the
C∗-algebra S(Tu(C)) generated by all sequences of the form (PunTu(a)Pun)n≥1

with a a continuous function. This description is based of a formula of Widom-
type that we will derive in Section 3. As consequences of Theorem 10, we get a
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stability criterion and results on spectral approximation. The stability criterion
(Theorem 11) says that a sequence (An) in S(Tu(C)) is stable if and only if its
strong limit A is invertible. In the case when the An are the finite sections of
a truncated Toeplitz operator, this result is due to Treil [8]. One advantage of
Theorem 11 is that it implies (without any additional effort) results on spectral
and pseudospectral approximation as well as on the asymptotic behavior of the
small singular values of An; see the end of Section 4.

2 A filtration and Widom’s identity

Recall that a filtration on a Hilbert space H is a sequence P = (Pn) of orthogonal
projections of finite rank on H which converges strongly to the identity operator
on H. To define a filtration on the model space K2

u we specify u to be a Blaschke
product, as follows. A single Blaschke factor is a function on the unit disk of the
form

bλ(z) :=

{
z if λ = 0,

λ−z
1−λ̄z

|λ|
λ

if λ ∈ D \ {0}. (1)

A Blaschke product is then a function

u =
∏

λ∈D : k(λ)>0

b
k(λ)
λ (2)

which satisfies the Blaschke condition∑
λ∈D

k(λ)(1− |λ|) <∞. (3)

If u is a finite Blaschke product, i.e., if u is of the form (2) with k(λ) = 0 for
all but finitely many λ ∈ D, then (3) is satisfied. Conversely, if (3) holds, then
every disk {z ∈ D : |z| ≤ r} with 0 < r < 1 contains only finitely many λ with
k(λ) 6= 0. Thus, if u in (2) is an (infinite) Blaschke product, the number of its
non-one factors is countable. We order the λ with k(λ) 6= 0 in a sequence (λk)k≥1

in such a way that |λk| ≤ |λk+1| for all k. Then (2) and (3) can be written as

u =
∞∏
k=1

bλk with
∞∑
k=1

(1− |λk|) <∞. (4)

Blaschke products are inner functions. If u is an infinite Blaschke product, we use
its product representation (4) to define a filtration on the associated model space
K2
u. For n ≥ 1, set un :=

∏n
k=1 bλk and let Pun denote the orthogonal projection

from L2(T) onto K2
un . The projections Pun own the following properties.

Proposition 2 (a) The projections Pun have a finite spatial rank.
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(b) Pun → Pu on L2(T) strongly as n→∞.

(c) PumPun = PunPum = Pumin{m,n} for m, n ≥ 1.

(d) PunPu = PuPun = Pun and PunP = PPun = Pun for n ≥ 1.

Hints to the proof. Assertion (a) is the ”Lemma on Finite Dimensional Sub-
spaces” in [4, p. 33]. For assertion (b) observe that the un converge to u uniformly
on compact subsets of D by the ”Lemma on Blaschke Products” in [4, p. 280].
Thus, the model spaces K2

un converge to K2
u by the ”Theorem on Lower Limits”

in [4, p. 34] (note that the limit of the un exists; so the set of its limit points
contains only one element, which clearly coincides with the greatest common di-
visor in the formulation of that theorem). Thus, Pun → Pu on L2(T) strongly by
the definition in [4, p. 34].

Finally, un is a divisor of u and of um for m ≥ n. Corollary 8 in [4, p. 19]
then implies that K2

un ⊆ K2
um ⊆ K2

u ⊆ H2, whence assertions (c) and (d).

Thus, the restrictions of the projections Pun to the model space K2
u form a fil-

tration on K2
u by the preceding proposition. We denote this filtration by Pu and

write Pu = (Pun)n≥1, not distinguishing between a projection Pun on L2(T) and
its restriction to K2

u.
The study of the finite sections discretization (FSD for short) for (classical)

Toeplitz operators is dominated by Widom’s identity

PnT (ab)Pn = PnT (a)PnT (b)Pn + PnH(a)H(b̃)Pn +RnH(ã)H(b)Rn. (5)

To explain this identity, we need some notation. Let J : L2(T) → L2(T) denote
the operator (Jf)(t) = t−1f(t−1). One easily checks that, for every function
a ∈ L∞(T), JaJ is the operator of multiplication by the function ã(t) := a(t−1).
Then H(a) := PaIJ |H2 is the (classical) Hankel operator, Rn := H(tn), and
Pn := R2

n. Note that Pn is just the orthogonal projection onto the linear span of
the functions tn with n ∈ {0, 1, . . . , n− 1} and that Rn = R∗n.

Our goal is to achieve a comparable identity for the finite sections of TTO,
where the role of the Rn in Widom’s identity is played by the operators

Run := PunMunJ and R∗un = JMunPun . (6)

Theorem 3 (Widom’s identity for TTO) Let a, b ∈ L∞(T). Then

PunTu(ab)Pun
= PunTu(a)PunTu(b)Pun + PunH(a)H(b̃)Pun +RunH(ã)H(b)R∗un .

Proof. By Proposition 2 (d) and since Pun = P −MunPMun , we find

PunTu(a)PunTu(b)Pun
= PunPaPunbPPun
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= PunPaPbPPun − PunaMunPMunbPun
= PunPabPPun − PunPaQbPPun − PunMunaPbMunPun with Q := I − P
= PunabPun − PunPaQJ2QbPPun
− PunMunPaPbMunPun − PunMunQaPbMunPun

= PunTu(ab)Pun − PunH(a)H(b̃)Pun − PunMunQaPbMunPun .

In the last line we used that PunMunPf ∈ Pun(unH
2) = 0 for f ∈ L2(T), whence

PunMunP = 0. Then PMunPun = (PunMunP )∗ = 0, too, and we can proceed
with

PunTu(a)PunTu(b)Pun
= PunTu(ab)Pun − PunH(a)H(b̃)Pun
− PunMunQaPbPMunPun − PunMunQaPbQMunPun

= PunTu(ab)Pun − PunH(a)H(b̃)Pun − PunMunQaPbQMunPun
= PunTu(ab)Pun − PunH(a)H(b̃)Pun − PunMunJ

2QaPbQJ2MunPun
= PunTu(ab)Pun − PunH(a)H(b̃)Pun −RunJQaPbQJR

∗
un .

Since JQaPbQJ = H(ã)H(b), this is the assertion

3 Hankel operators by Blaschke products

The operators Rn in Widom’s identity (5) can be identified with the (classical)
Hankel operators H(tn). Similarly,

Run = PunMunJ

= (P −MunPMun)MunJ

= (PMun −MunP )J

= (PMun − PMunP )J (since MunPf ∈ H2 for f ∈ H2)

= PMunQJ,

which can be identified with the (classical) Hankel operator H(Mun) on H2.

Analogously, R∗un can be identified with H(Mun)∗ = H(M̃un). We will see that the
operators Run in Widom’s identity for TTO play a quite different role compered
with the Rn in (5). We start with some general properties of Hankel operators
generated by inner functions.

Proposition 4 Let u ∈ H∞ and |u(t)| = 1 for t ∈ T. Then the Hankel operator
H(u) = PuQJ is a partial isometry, the range and initial projection of which are
given by H(u)H(u)∗ = P − uP ūI and H(u)∗H(u) = P − ¯̃uP ũI.
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Proof. Since uū = 1 and PuP = uP ,

H(u)H(u)∗ = PuQJJQūP

= PuQūP = PuūP − PuP ūP = P − uP ūI. (7)

Using this identity and PūQ = 0 we obtain

H(u)H(u)∗H(u) = PuQJ − uP ūPuQJ
= PuQJ − uP ūuQJ + uP ūQPuQJ = PuQJ = H(u),

i.e., H(u) is an isometry. Replacing u in (7) by ¯̃u (which is also in H∞) and
taking into account that H(¯̃u) = H(u)∗, the identity for H(u)∗H(u) follows.

Corollary 5 RunR
∗
un = Pun, R∗unRun = Pũn, PunRun = Run, R∗unPun = R∗un.

The following convergence result for the Run is in sharp contrast with the Rn in
Widom’s identity (5), which converge weakly to zero.

Theorem 6 Run = H(Mun)→ H(Mu)
∗-strongly.

In the proof of this result, we will make use of the following well known assertion.

Lemma 7 Let An, A be bounded linear operators on a Hilbert space H. If An →
A weakly and ‖Anx‖ → ‖Ax‖ for all x ∈ H, then An → A strongly.

Proof. It is clearly sufficient to prove the following fact for elements xn, x of H:
if xn → x weakly and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0. This follows from

‖xn − x‖2 = 〈xn − x, xn − x〉
= 〈xn, xn〉 − 〈xn, x〉 − 〈x, xn〉+ 〈x, x〉
= ‖xn‖2 + ‖x‖2 − 〈xn, x〉 − 〈x, xn〉

which goes to 0 by hypothesis.

Proof of Theorem 6. We first show that Run = H(Mun) → H(Mu) weakly.
Indeed, the uniform convergence of un to u on compact subsets of D implies the
convergence of the kth Taylor coefficient of un to the kth Taylor coefficient of u
for every k ∈ Z+. Together with the uniform boundedness of the operators Hun ,
this fact implies the weak convergence of H(Mun) to H(Mu).

Next we show that ‖H(Mun)x‖ → ‖H(Mu)x‖ for every x ∈ H2. Once this is
done, the strong convergence of H(Mun) to H(Mu) follows from Lemma 7.

We start with showing that

Pũn → P¯̃u strongly as n→∞. (8)
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Indeed, let bλ be a single Blaschke factor as in (1). For t ∈ T and λ 6= 0 we then
have

b̃λ(t) =
λ− t−1

1− λ̄t−1

|λ|
λ

=
λ̄− t
1− λt

|λ|
λ̄

= bλ̄(t).

For λ = 0, the equality b̃λ = bλ̄ on T is evident. Moreover, if (λn) is a sequence
in D satisfying the Blaschke condition, then the sequence (λn) also satisfies this
condition. So we can apply the assertion of Proposition 2 (b) to the functions∏∞

k=1 bλk and
∏n

k=1 bλk in place of u and un to get the assertion (8). From (8)
and Corollary 5 we then conclude that

H(Mun)∗H(Mun)→ H(Mu)
∗H(Mu) strongly,

from which we obtain

〈H(Mun)∗H(Mun)x, x〉−〈H(Mu)
∗H(Mu)x, x〉 = ‖H(Mun)x‖2−‖H(Mu)x‖2 → 0

for every x ∈ H2. This proves the strong convergence of Run = H(Mun) to
H(Mu). The strong convergence of the adjoint operators follows as above, by
working with the Blaschke product ¯̃u in place of u.

Corollary 8 Let L be a compact operator on H2. Then

‖RunLR
∗
un − PunH(Mu)LH(Mu)

∗Pun‖ → 0 as n→∞.

Indeed, since L and H(Mu)LH(Mu)
∗ are compact, we derive from Proposition 2

(b) and Theorem 6 that both sequences (RunLR
∗
un) and (PunH(Mu)LH(Mu)

∗Pun)
converge to H(Mu)LH(Mu)

∗ in the norm.

4 The algebra of the FSD for TTO

With every filtration P = (Pn) on a Hilbert space H, there are naturally associ-
ated some algebraic objects. By FP we denote the set of all sequences A = (An) of
operators An : imPn → imPn for which the sequence (AnPn) converges ∗-strongly
to some operator W (A) on H. Provided with element-wise defined operations
and the supremum norm, FP becomes a C∗-algebra, the set GP of all sequences
in FP which converge to 0 in the norm is a closed ideal of FP , and the mapping
W , also called the consistency map of the filtration P , is a ∗-homomorphism from
FP to the algebra L(H) of the bounded linear operators on H.

We prepare the proof of Theorem 10 below by an assertion of independent
interest.

Proposition 9 Let P = (Pn) be a filtration on a Hilbert space H. Then the
ideal GP is contained in the smallest closed subalgebra J of FP which contains
all sequences (PnKPn) with K compact if and only if P is injective.
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Proof. The ”only if”-part of the assertion is evident. For the ”if”-part we are
going to show that, for each n0 ∈ N, there is a sequence (Gn) in J with Gn0 6= 0
and Gn = 0 for all n 6= n0. Since the matrix algebras Ck×k are simple, this
fact already implies that each sequence (Gn) with arbitrarily prescribed Gn0 ∈
L(imPn0) and Gn = 0 for n 6= n0 belongs to J . Since GP is generated by
sequences of this special form, the assertion follows.

For n0 ∈ N, put

N< := {n ∈ N : imPn ∩ imPn0 is a proper subspace of imPn0},

and set N> := N \ ({n0} ∪ N<). The set N< is at most countable, and none of
the closed linear spaces imPn ∩ imPn0 has interior points relative to imPn0 . By
the Baire category theorem, ∪n∈N<(imPn ∩ imPn0) is a proper subset of imPn0 .
Choose a unit vector

f ∈ imPn0 \ ∪n∈N<(imPn ∩ imPn0).

Then ‖Pnf‖ < 1 for all n ∈ N< by the Pythagoras theorem. (Indeed, otherwise
‖Pnf‖ = 1, and the equality 1 = ‖f‖2 = ‖Pnf‖2 + ‖f − Pnf‖2 implies f = Pnf ,
whence f ∈ imPn.)

Let Qn := I−Pn. If n ∈ N>, then imPn∩ imPn0 = imPn0 by the definition of
N>. Thus, imPn0 ⊆ imPn, and since no two of the projections Pn coincide, this
implies that imPn0 is a proper subspace of imPn and imQn is a proper subspace
of imQn0 for n ∈ N>. Again by the Baire category theorem, ∪n∈N> imQn is a
proper subset of imQn0 . Choose a unit vector

g ∈ imQn0 \ ∪n∈N> imQn.

As above, ‖Qng‖ < 1 for all n ∈ N>. Consider the operator K : x 7→ 〈x, g〉f on
H. Its adjoint is the operator x 7→ 〈x, f〉g, and

PnKQnK
∗Pnx = 〈Pnx, f〉 〈Qng, g〉Pnf = 〈x, Pnf〉 ‖Qng‖2Pnf.

If n ∈ N< then ‖Pnf‖ < 1, and if n ∈ N> then ‖Qng‖ < 1 by construction. In
both cases, ‖PnKQnK

∗Pn‖ < 1. In case n = n0, the operator PnKQnK
∗Pnx =

〈x, f〉f is an orthogonal projection of norm 1, which we call P . The sequence
K := (PnKQnK

∗Pn) belongs to the algebra J since

(PnKQnK
∗Pn) = (PnKK

∗Pn)− (PnKPn) (PnK
∗Pn).

As r → ∞, the powers Kr converge in the norm of FP to the sequence (Gn)
with Gn0 = P 6= 0 and Gn = 0 if n 6= n0. Indeed, since Pn → I strongly, one
has ‖Qng‖ < 1/2 for n large enough, whence ‖PnKQnK

∗Pn‖ < 1/2 for these n,
whereas ‖PnKQnK

∗Pn‖ < 1 for the remaining (finitely many) n as seen above.
Since Kr ∈ J and J is closed, the sequence (Gn) has the claimed properties.
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The goal in this section is to study the FSD of TTO with respect to the filtration
Pu. In accordance with Theorem 1 (e), we define the corresponding (full) algebra
of the FSD as the smallest closed subalgebra S(Tu(C)) of FPu which contains all
sequences (Pun(Tu(a) +K)Pun)n≥1 with a ∈ C(T) and K ∈ K(K2

u).

Theorem 10 S(Tu(C)) consists of all sequences (Pun(Tu(a)+K)Pun +Gn) with
a ∈ C(T), K ∈ K(K2

u) and (Gn) ∈ GPu.

Proof. The proof runs parallel to that of Theorem [3, 1.53]; so we address to
some main steps only.

For a moment, let S1 denote the set of all sequences of the mentioned form.
The sequences (Pun(Tu(a)+K)Pun) are contained in S(Tu(C)) by definition, and
since the filtration Pu is injective, we conclude from Proposition 9 that the ideal
GPu of the zero sequences is also contained in S(Tu(C)). Thus, S1 ⊆ S(Tu(C)).

For the reverse inclusion, we prove that S1 is a closed subalgebra of S(Tu(C)).
If a, b ∈ C(T) then, by Theorem 3 (Widom’s identity) and Corollary 8,

PunTu(a)Pun · PunTu(b)Pun
= PunTu(ab)Pun − PunH(a)H(b̃)Pun −RunH(ã)H(b)R∗un

= PunTu(ab)Pun − Pun(H(a)H(b̃) +H(Mu)H(ã)H(b)H(Mu)
∗)Pun +Gn

= PunTu(ab)Pun − PunKPun +Gn

with a compact operator K and a sequence (Gn) ∈ GPu . Thus,

(PunTu(a)Pun) (PunTu(b)Pun) ∈ S1.

It follows now in a standard way that S1 is an algebra. To prove that S1 is closed,
let ((Pun(Tu(am) + Km)Pun + Gm

n )n≥1)m≥1 be a sequence in S1 which converges
in the norm of FPu . Let W denote the consistency map of the filtration Pu, i.e.,
W ((An)) = s-limAnPun . Then

(W ((Pun(Tu(am) +Km)Pun +Gm
n )n≥1))m≥1 = (Tu(am) +Km)m≥1

is a Cauchy sequence in Tu(C). Since Tu(C) is a closed algebra, this sequence
converges in Tu(C). The limit of this sequence is of the form Tu(a) + K with
a ∈ C(T) and K compact by Theorem 1 (e). (But note that the representation
of the limit in that form is not unique by Theorem 1 (d).) It is now easy to see
that

(Pun(Tu(am) +Km)Pun)n≥1 → (Pun(Tu(a) +K)Pun)n≥1

in the norm of FPu as m → ∞. Then, finally, the sequence ((Gm
n )n≥1)m≥1 con-

verges; its limit is in GPu .

Theorem 11 A sequence A = (An) ∈ S(Tu(C)) is stable if and only if the
operator W (A) = s-limAnPun is invertible.
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Proof. By Theorem 10, we have to show that the sequence A := (Pun(Tu(a) +
K)Pun) (with a ∈ C(T) and K ∈ K(K2

u)) is stable if and only if the operator
A := Tu(a) +K is invertible. Since the stability of A implies the invertibility of
A by Polski’s theorem, we are left with the reverse implication.

So let A be invertible. By inverse closedness of C∗-algebras, A−1 ∈ Tu(C);
hence, A−1 = Tu(b)+L with a certain function b ∈ C(T) and a compact operator
L by Theorem 1 (e). Using Widom’s identity as in the proof of the previous
theorem and employing assertion (a) of Theorem 1, we conclude that there are
compact operators R1, R2 and a sequence (Gn) ∈ GPu such that

PunTu(a)Pun · PunTu(b)Pun − Pun
= Pun(Tu(ab)− I)Pun − PunR1Pun +Gn

= PunR2Pun − PunR1Pun +Gn.

Thus, the sequence (PunTu(b)Pun) is a right inverse of the sequence (PunTu(a)Pun)
modulo the ideal

J := {(PunKPun +Gn) : K ∈ K(K2
u), (Gn) ∈ GPu}

of S(Tu(C)). A similar computation shows that it is a left inverse modulo J ,
too. Then (PunTu(b)Pun) is also an inverse of (PunAPun) modulo J . Now the
assertion follows from the Lifting Theorem [3, 5.37] in its simplest form, i.e., with
J /GPu consisting of one elementary ideal only.

The following is certainly the most important consequence of Theorem 11. The
definition of a fractal algebra is in [3].

Corollary 12 The algebra S(Tu(C)) is fractal.

Note that the consistency map of Pu is fractal; so the assertion of the corollary
follows from Theorems [3, 1.69] and 11.

Sequences in fractal algebras are distinguished by their excellent convergence
properties. To mention only a few of them, let σ(a) denote the spectrum of
an element a of a C∗-algebra with identity element e, write σ2(a) for the set of
the singular values of a, i.e., σ2(a) is the set of all non-negative square roots of
elements in the spectrum of a∗a and finally, for ε > 0, let σ(ε)(a) refer to the ε-
pseudospectrum of a, i.e. to the set of all λ ∈ C for which a−λe is not invertible
or ‖(a− λe)−1‖ ≥ 1/ε. Let further

dH(M, N) := max {max
m∈M

min
n∈N
|m− n|, max

n∈N
min
m∈M

|m− n|}

denote the Hausdorff distance between the non-empty compact subsets M and
N of the complex plane.
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Theorem 13 Let (An) be a sequence in S(Tu(C)) with strong limit A. Then the
following set-sequences converge with respect to the Hausdorff distance as n→∞ :

(a) σ(An)→ σ(A) if (An) is self-adjoint;

(b) σ2(An)→ σ2(A);

(c) σ(ε)(An)→ σ(ε)(A).

The proof follows immediately from the stability criterion in Theorem 11 and from
Theorems 3.20, 3.23 and 3.33 in [3]. Note that in general one cannot remove
the assumption (An) = (An)∗ in assertion (a), whereas (c) holds without this
assumption.

The notion of a Fredholm sequence was introduced in [6]; see also [3, Chapter
6]. In the present setting, the Fredholm property of a sequence (An) ∈ S(Tu(C))
means nothing but the invertibility of the coset (An) +J in the quotient algebra
S(Tu(C))/J , and the results of [6] specify as follows. Let σ1(a) ≤ . . . ≤ σn(A) =
‖A‖ denote the singular values of the n× n-matrix A.

Theorem 14 Let (An) be a sequence in S(Tu(C)) with strong limit A. Then

(a) (An) is a Fredholm sequence if and only if A is a Fredholm operator.

(b) If A is a Fredholm operator and dim kerA = k, then

lim
n→∞

σk(An) = 0 and lim inf
n→∞

σk+1(An) > 0.

Assertion (b) allows the numerical determination of the kernel dimension of a
Fredholm operator A ∈ Tu(C).
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