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Abstract. We investigate Lp stability issues of small viscoelastic Poiseuille-

type flows in two dimensions stemming from a model considered in Fang-Hua
Lin, Chun Liu, and Ping Zhang (2005). We show local existence of perturbed

flows of locally-in-time existing Poiseuille-type flows and global existence of

the peturbed flows whenever the initial perturbation is small enough. In this
case the perturbed flow decays exponentially. In all cases, the perturbations

immediately regularize.

1. Introduction

Viscoelasticity describes a property of materials exhibiting both viscous and elas-
tic characteristics under deformation. Such a material may exhibit elastic behavior
like memory effects as well as fluid properties. In two space dimensions in a layer,
a Poiseuille-type flow has a horizontal flow-profile that is completely determined by
the vertical component.

We are interested in stability of the viscoelastic Poiseuille flow. There is an
earlier work by Dario Götz, Chun Liu and the first auther [11], where they proved
L2-type stability results for small Poiseuille flow by an energy argument. This
paper considers a similar problem in an Lp-setting.

Given a fixed viscosity ν > 0 and a small original viscoelastic Poiseuille-type
flow we consider Lp-dynamics of perturbations of this original flow. By a change
of variables introduced in [16], we can transform the equation into a parabolic
quasilinear evolution equation. Its linear part is a diagonal operator matrix with
the Stokes operator and the Dirichlet-Laplacian on the diagonal with lower order
perturbations. We can then show unique local-in-time existence of the perturbed
flow for small initial perturbations. We furthermore establish unique existence on
R+ of the perturbed flow given small initial perturbations as well. This is possible
due to the invertibility and maximal regularity of the Dirichlet-Laplacian and the
Stokes operator on the layer. This global-in-time perturbation decays exponentially
to the initial flow. All obtained solutions immediately regularize due to Angenent’s
trick.

The considered viscoelastic model is due to considerations in [16]. The authors
use weak theory to obtain local-in-time smooth solutions in bounded domains in
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R2 and R3 with smooth boundary, the whole space R2 and R3 or a periodic box.
They show global-in-time existence of solutions with small initial data in the case
of R2 and the periodic box.

Strong theory of quasilinear evolution equation is based on a local-in-time exis-
tence result of Clément and Li [5] in 1992. Prüss et al. [20, 15, 23] have subsequently
developed a broad quasilinear theory including methods to analyze asymptotic be-
havior using the theory of dynamical systems and exploiting spectral properties of a
linearization around equilibria with the so called generalized principle of linearized
stability.

The main ingredient is maximal Lp-regularity of the linear part of the quasilinear
problem. This property is known for a large class of linear equations and the
associated linear operators on various domains, including elliptic operators ([6])
and the Stokes operator on layer domains. These techniques have been applied
to several Navier-Stokes related models, such as nematic liquid crystals to obtain
strong local dynamics and asymptotic behavior close to equilibria [13]. In our case
of a layer domain, both the Dirichlet-Laplacian and the Stokes operator do not only
admit maximal Lp-regularity, but are also invertible. This fact makes it possible
to control also the long-time asymptotic behavior for small perturbations of lower
order.

Stability of a flow parallel to the boundary like the Poiseuille flow or the Couette
flow is a very important topic in fluid mechanics. In fact it is known that the
Couette flow for the incompressible Navier-Stokes equations in a layer domain is
stable under a small perturbation, irrespective of how large its velocity is [12]; see
[24] for a pioneering work.

In the remaining part of the introduction we first introduce the model for vis-
coelastic fluids. Then we establish a model for a perturbation of a Poiseuille-type
flow in 2D. In the third part we apply a transformation to the stream-function
equation which reveals the hidden diffusive characteristic of the equation. In Sec-
tion 2 we give a short overview over the tools of quasilinear evolution equations.
In Section 3, we (equivalently) reformulate our model for our Poiseuille-type flow
in the language of quasilinear evolution equations. Section 4 is concerned with is-
sues of maximal Lp-Lq regularity of the lineariation of the model. In Section 5 we
conclude with our main results.

1.1. Viscoelastic Fluids. We consider a general system describing the flow of
viscoelastic fluids, which has been considered in [16]. ∂tF + u · ∇F = F∇u,

div u = 0,
∂tu− ν∆u+ u · ∇u+∇π = divFTF,

(1)

where F denotes the deformation tensor, u the velocity, π the pressure and ν the
viscosity.

In two space dimensions, one can obtain an R2-valued stream function ζ0 such
that

F0 = ∇⊥ζ0 =

(
−∂2ζ01

∂1ζ01

−∂2ζ02
∂1ζ02

)
.
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Moreover, if, for a divergence-free function u, this quantity is propagated in time
subject to the transport equation

(2)
∂tζ + u · ∇ζ = 0,

ζ(0) = ζ0,

then one can easily show that for F = ∇⊥ζ, the first equation of (1), i.e. Ft + u ·
∇F = F∇u, is fulfilled. This system is much more friendly to analyse and hence we
will in the following consider the function ζ instead of F . With this new variable,
one calculates

divFTF =
1

2
∇|∇ζ|2 −∆ζ1∇ζ1 −∆ζ2∇ζ2.

Note here, that the first term is a gradient that can be absorbed into the pressure
function in the momentum balance equation in (1). So let us introduce a new
pressure function π̃ = π − 1

2 |∇ζ|
2, which is again denoted by π in the following.

With this, we end up with an equivalent system that is valid in two space-dimensions
for (u, F, π) = (u,∇⊥ζ, π), when we apply Einstein’s sum convention adding terms
with the same indices k = 1, 2:

(3)


∂tζ + u · ∇ζ = 0,

div u = 0,

∂tu− ν∆u+ u · ∇u+∇π = −∆ζk∇ζk.

In this paper, we want to consider a flow through a two-dimensional layer
Ω = R × (0, 1). In particular, we study the stability of a one-dimensional flow
of Poiseuille-type (ū,∇⊥η, π̄) subject to Dirichlet boundary conditions.

We now want to construct a suitable Poiseuille-type flow solution ū to (1) or
equivalently (3), i.e. a solution with horizontal flow-profile that is completely de-
termined by the vertical component. Hence, we assume that ū takes the form

ū(t, x) =

(
ψ(t, x2)

0

)
,

with homogeneous Dirichlet boundary conditions. Then the divergence condition
in (1) is trivially fulfilled.

In order to adequately determine the corresponding deformation tensor F̄ or
equivalently the corresponding stream function η, we introduce the flow map xi(t,X),
0 ≤ t < T , corresponding to Lagrangian coordinates X. These flow maps are given
by the system of ordinary differential equations

d

dt
x1(t,X) = ū1(t, x1(t,X), x2(t,X)) = ψ(t, x2(t,X)), x1(0) = X1,

d

dt
x2(t,X) = ū2(t, x1(t,X), x2(t,X)) = 0, x2(0) = X2,

which can easily be solved by

x1(t,X) = X1 +

∫ t

0

ψ(s, x2(s,X)) ds = X1 +

∫ t

0

ψ(s,X2) ds,

x2(t,X) = X2,
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as long as ψ admits sufficient regularity. Let us abbreviate

φ(t, x2) =

∫ t

0

ψ(s, x2) ds.(4)

Then, we can calculate the deformation tensor and the resulting elastic force

F̄ =

(
1 0
∂2φ 1

)
, F̄T F̄ =

(
1 + (∂2φ)2 ∂2φ

∂2φ 1

)
and div F̄T F̄ =

(
∂2

2φ
0

)
.

Note here, that with x2(t,X) = X2 it is also ∂
∂X2

= ∂
∂x2

= ∂2. Let us also remark

at this point, that div F̄ = 0.
The stream function η corresponding to F̄ may be chosen as

η(t, x) =

(
−x2

x1 − φ(t, x2)

)
(5)

solving the system{
∂tη + ū · ∇η = 0, in (0, T )× Ω,

η(0, x) = (−x2, x1)T , for x ∈ Ω.

1.2. Perturbation of the flow through the layer. It is our aim to examine the
stability of system (3) (or equivalently (1)) with respect to the Poiseuille-type flow
(ū, η, π̄) constructed in the previous section. For this, we introduce the perturbation

(v, α, p) = (u, ζ, π)− (ū, η, π̄)

of the solution (u, ζ, π) (with corresponding deformation tensor G) of (3) around
the Poiseuille-type flow (ū, η, π̄) with deformation tensor F .

We are interested in solutions (u, ζ, π) that satisfy homogeneous Dirichlet bound-
ary conditions u|∂Ω = 0 and have initial values ζ0 and u0. Let u0 satisfy the
compatibility condition

div u0 = 0.

Let us moreover assume that the initial stream function satisfies

ζ0|∂Ω =

(
−x2

x1

)
and ∂1ζ01

∂2ζ02
− ∂1ζ02

∂2ζ01
= 1.

The first assumption together with the homogeneous Dirichlet boundary conditions
for u guarantees ζ|∂Ω = (−x2, x1)T for all times. The second assumption is a
reformulation of the incompressibility condition detF0 = 1, which ensures detF = 1
for all times and hence ∂1ζ1∂2ζ2 − ∂1ζ2∂2ζ1 = 1.
Then (v, α, p) solves

∂tα+v ·∇α+ ū ·∇α = −v ·∇η in (0, T )×Ω,

div v = 0 in (0, T )×Ω,

∂tv−ν∆v+v ·∇v+v ·∇ū+ ū ·∇v+∇p
= −∆αk∇αk−∆ηk∇αk−∆αk∇ηk in (0, T )×Ω,

v|∂Ω = 0, in (0, T ),

α|∂Ω = 0, in (0, T ),

α(0, x) = ζ0(x)− (−x2, x1)T for x ∈ Ω,

v(0) = u0− (ψ0, 0)T in Ω.
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1.3. Change of variables and dissipation. Using the definition of η in (5), we
obtain

∇η =

(
0 1
−1 −∂2φ(t, x2)

)
, ∆η =

(
0

−∂2
2φ(t, x2)

)
, ∂1∂

2
2φ(t, x2) = 0.

Hence

−∆αk∇ηk −∆ηk∇αk = −∆α1

(
0
−1

)
−∆α2

(
1
−∂2φ

)
−∆(−x2)∇α1

−∆(x1 − φ)∇α2

= ∆

(
−α2

α1

)
+∇φ∆α2 + ∂2

2φ∇α2.

Inserting this into the momentum equation, we see

∂tv − ν∆
(
v +

1

ν

(
−α2

α1

))
+ v · ∇v + v · ∇ū+ ū · ∇v +∇p

= −∆αk∇αk +∇φ∆α2 + ∂2
2φ∇α2.

(6)

To obtain additional dissipative structure to use for α we introduce the new
variable

w = v +
1

ν

(
−α2

α1

)
such that α = ν

(
0 1
−1 0

)
(w − v).

1.4. Equation for the new variable. The next step is to determine the right
system that defines w. It is easy to see with

−v · ∇η = −(∇η)T v = −
(

0 −1
1 −∂2φ

)
v =

(
v2

−v1 + ∂2φv
2

)
,

that 1
να1 satisfies

∂t

(1

ν
α1

)
+ v · ∇

(1

ν
α1

)
+ ū · ∇

(1

ν
α1

)
=

1

ν
v2.

and for − 1
να2 we have

∂t

(
− 1

ν
α2

)
+ v · ∇

(
− 1

ν
α2

)
+ ū · ∇

(
− 1

ν
α2

)
=

1

ν
(v1 − ∂2φv2)

Adding these equations to the system for v, we receive

∂tw − ν∆w + v · ∇w + v · ∇ū+ ū · ∇w +∇p

= −∆αk∇αk +
1

ν
v − 1

ν

(
∂2φv2

0

)
+ ∂2

2φ∇α2 +∇φ∆α2.
(7)

Now our system takes the form

∂tv−ν∆v+v ·∇v+v ·∇ū+ ū ·∇v+∇p

= −∆αk∇αk−∆ηk∇αk−∆αk∇ηk

∂tw−ν∆w+v ·∇w+v ·∇ū+ ū ·∇w+∇p

= −∆αk∇αk+
1

ν

(
v1−∂2φv2

v2

)
+∂2

2φ∇α2 +∇φ∆α2

div v = 0

(P)
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in (0, T )× Ω, with boundary and initial conditions
v|∂Ω = 0, on (0, T )× ∂Ω,

α|∂Ω = 0, on (0, T )× ∂Ω,

α(0) = α0 := ζ0 − (−x2, x1)T , in Ω,

v(0) = v0 := u0 − (ψ0, 0)T , in Ω.

2. Quasilinear Evolution Equations

Let X0 and X1 be Banach spaces such that X1
d
↪→ X0, i.e. X1 is continuously and

densely embedded in X0. Assume T > 0 or T = ∞. By a quasilinear autonomous
parabolic evolution equation we understand an equation of the form

ż(t) +A(z(t))z(t) = F (z(t)), t ∈ (0, T ), z(0) = z0,(QL)

where A is a mapping from a real interpolation space Xγ,µ with suitable weights
between X0 and X1 into L(X0, X1). An equilibrium of (QL) is a stationary solution
z ∈ X1, i.e., A(z)z = F (z).

Our approach relies on the maximal Lp-regularity of A(v) for v ∈ Xγ,µ. For
details we refer e.g. to [6].

The equation (QL) is investigated in spaces of the form Lp(0, T ;X0) with tem-
poral weights. More precisely, for p ∈ (1,∞) and µ ∈ (1/p, 1], the spaces Lp,µ and
H1
p,µ are defined by

Lp,µ(0, T ;X1) := {z : [0, T )→ X1 : t1−µz ∈ Lp(0, T ;X1)},
H1
p,µ(0, T ;X0) := {z ∈ Lp,µ(0, T ;X0) ∩W 1

1 (0, T ;X0) : ż ∈ Lp,µ(0, T ;X0)}.

It is clear, that

Lp(0, T ;X) ↪→ Lp,µ(0, T ;X) and Lp,µ([0, a];X) ↪→ Lp([τ, a];X),

for all Banach spaces X and τ ∈ (0, a) for all a > 0. It has been shown in [21,
Theorem 2.4] that Lp-maximal regularity implies also Lp,µ-maximal regularity, pro-
vided p ∈ (1,∞) and µ ∈ (1/p, 1]. The trace space of the maximal regularity class
containing temporal weights,

z ∈ H1
p,µ(0, T ;X0) ∩ Lp,µ(0, T ;X1)

has been characterized in [21, Theorem 2.4] as

Xγ,µ = (X0, X1)µ−1/p,p,

provided p ∈ (1,∞) and µ ∈ (1/p, 1]; see also [19, Theorem 4.2].
We now impose precise regularity assumptions on A and F .

(A−1) A : Xγ,µ → L(X1, X0)) locally Lipschitz,
(F−1) F : Xγ,µ → X0 locally Lipschitz.

Local in time existence of (QL) for a more general non-autonomous case was shown
by Clément-Li [5] in the case µ = 1 and by Köhne-Prüss-Wilke [15, Theorem 2.1,
Corollary 2.2] for the case µ ∈ (1/p, 1].

Proposition 1. Let 1 < p < ∞, µ ∈ (1/p, 1], z0 ∈ Xγ,µ, and suppose that the
assumptions (A−1) and (F−1) are satisfied. Furthermore assume that A(z0) has
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the property of maximal Lp-regularity. Then, there exists a > 0, such that (QL)
admits a unique solution z on J = [0, a] in the regularity class

z ∈ H1
p,µ(J ;X0) ∩ Lp,µ(J ;X1) ↪→ C(J ;Xγ,µ) ∩ C((0, a];Xγ).

The solution depends continuously on z0, and can be extended to a maximal interval
of existence J(z0) = [0, t+(z0)).

The following result on global existence and stability of was proved in [20, The-
orem 6.1] in the case µ = 1 and see [15, Theorem 4.1] for µ ∈ (1/p, 1].

For this we need slightly stronger conditions on A and F . We now impose
regularity assumptions regarding the Fréchet differentiability of A and F .

(A) A ∈ C1(Xγ,µ;L(X1, X0)).
(F) F ∈ C1(Xγ,µ;X0).

Proposition 2. Let 1 < p < ∞, µ ∈ (1/p, 1] and z∗ ∈ Xγ be an equilibrium of
(QL), such that A(z∗) has maximal Lp-regularity on R+ and the assumptions (A)
and (F) are satisfied. Let A0 be the linearization of (QL), i.e., let

A0w = A(z∗)w + (A′(z∗)w)z∗ − F ′(z∗)w, w ∈ X1.

Suppose that σ(A0) is contained in the open right half plane C+ = Σπ/2. Then,
there is ε > 0 such that for each z0 ∈ Bε(z∗) ⊂ Xγ,µ there exists a unique global
solution z ∈ H1

p,µ,loc(R+;X0) ∩ Lp,µ,loc(R+;X1) of (QL). Furthermore, there is a
β > 0 such that

eβtz ∈ H1
p,µ(R+;X0) ∩ Lp,µ(R+;X1) ∩ C0(R+;Xγ,µ).

In particular, the equilibrium z∗ is exponentially stable in Xγ,µ.

We remark that the constant ε > 0 depends only on the maximal regularity
constant of A0 and the local Lipschitz constants of A and F .

Parabolic problems allow for additional smoothing effects. In this respect, a
method due to Angenent [3] is well known. We will state a variant of it which is
adapted to (QL); see [20, Theorem 5.1] for the case µ = 1. We remark, that in
the context of spatial regularity of Navier-Stokes equations, a similar technique has
already been used before by Kyûya Masuda [17, 18]. We give a slight adjustment
to the situation of temporal weights together with the adaption to space regularity
in domains as discussed in [8], which can easily be transfered to the case of layer
domains. To this end, we need to strengthen our assumptions (A) and (F) with an
order of differentiability k ∈ N∪{∞, ω}, where the index ω refers to real analyticity.

(Ak) A ∈ Ck(Xγ,µ;L(X1, X0)).
(Fk) F ∈ Ck(Xγ,µ;X0).

Proposition 3. Let 1 < p < ∞, k ∈ N ∪ {∞, ω} and µ ∈ (1/p, 1], J = [0, a) for
some a > 0 and assume that (Ak) and (Fk) hold. Let z ∈ H1

p,µ(J ;X0)∩Lp,µ(J ;X1)
be a solution of (QL) on J and assume A(z(t)) has maximal Lp-regularity for all
t ∈ J . Then

tj [
d

dt
]jz ∈ Hj+1

p,µ (J ;X0) ∩Hj
p,µ(J ;X1), j ≤ k.

Furthermore, if k = ∞, then z ∈ C∞(J ;X1) and if k = ω, then z is real analytic
with values in X1 on J .
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3. Quasilinear Formulation of the Perturbation

For layer domains Ω, the Helmholtz decomposition exists on Lq(Ω), see [9]. We
denote by Pq : Lq(Ω)→ Lq,σ(Ω) the Helmholtz projection, where

Lq,σ(Ω) := {u ∈ Lq(Ω) : divu = 0, u ·N = 0 on ∂Ω};
here, N denotes the unit exterior vector field of ∂Ω. The Poiseuille problem (P) is
equivalent to the problem{

∂tz + νP̃q(L+ S(z))z = F (z)

z(0) = z0,
(PQL)

where z = (v, w), P̃q(v, w) := (Pqv, w), and z0 = (v0, w0) with

v0 = u0 − (ψ0, 0)T ,

w0 = v0 +
1

ν
(−ζ02

+ x1, ζ01
+ x2)T .

Moreover,

L =

(
−∆ 0
− 1
ν2 −∆

)
, F (v, w) = −

(
Pq(v · ∇v)

v · ∇w + (I − Pq)(v · ∇v)

)
,

S(z) = S1 + S2 + S3(z),

and with the notation z = (v1, v2, w1, w2),

S1 = S1(ν, ū,∇ū,∇φ,∇2φ)

=

(
S11

1 S12
1

S21
1 S22

1

)
,

where

S11
1 =

(
1
ν ∂1ū1 + ∆η2∂1

1
ν ∂2ū1 −∆η1∂1

1
ν ∂1ū2 + ∆η2∂2

1
ν ∂2ū2 −∆η1∂2

)
,

S12
1 =

(
1
ν ū1∂1 + 1

ν ū2∂2 −∆η2∂1 ∆η1∂1

−∆η2∂2
1
ν ū1∂1 + 1

ν ū2∂2 + ∆η1∂2

)
,

S21
1 =

(
1
ν ∂1ū1 − ∂2

2φ∂1
1
ν2 ∂2φ+ 1

ν ∂2ū1
1
ν ∂1ū2 − ∂2

2φ∂2
1
ν ∂2ū2

)
,

S22
1 =

(
1
ν ū1∂1 + 1

ν ū2∂2 + ∂2
2φ∂1 0

∂2
2φ∂2

1
ν ū1∂1 + 1

ν ū2∂2

)
,

S2 = S2(∇η,∇φ) =


∂1η2∆ −∂1η1∆ −∂1η2∆ ∂1η1∆
∂2η2∆ −∂2η1∆ −∂2η2∆ ∂2η1∆
−∂1φ∆ 0 ∂1φ∆ 0
−∂2φ∆ 0 ∂2φ∆ 0

 ,

S3(z) = S3(ν,∇v,∇w)

= ν


∂1(v1 − w1)∆ ∂1(v2 − w2)∆ ∂1(w1 − v1)∆ ∂1(w2 − v2)∆
∂2(v1 − w1)∆ ∂2(v2 − w2)∆ ∂2(w1 − v1)∆ ∂2(w2 − v2)∆
∂1(v1 − w1)∆ ∂1(v2 − w2)∆ ∂1(w1 − v1)∆ ∂1(w2 − v2)∆
∂2(v1 − w1)∆ ∂2(v2 − w2)∆ ∂2(w1 − v1)∆ ∂2(w2 − v2)∆

 .

Note that S3(0) = 0 and that S3(z) acts on z as

νS3(z)z = ∆αk(z)∇αk(z).
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4. The Linear Problem

Fix 1 < p, q <∞ and µ ∈ (1/p, 1]. We denote by

D(Aq) := H2
q (Ω) ∩H1

q,0(Ω) ∩ Lq,σ(Ω),

Aqu := Pq∆u

the Stokes operator on Ω and by

D(∆q) := H2
q (Ω) ∩H1

q,0(Ω),

∆qu := ∆u

the Dirichlet Laplacian on Ω. Then we write

X0 := Lq,σ(Ω)× Lq(Ω), X1 := D(Aq)×D(∆q),

and

Xγ := (X0, X1)1−1/p,p, Xγ,µ := (X0, X1)µ−1/p,p.

Note that for sufficiently large p and q,

Xγ,µ ={v ∈ B2µ−2/p
qp (Ω) : v = 0 on ∂Ω} ∩ Lq,σ(Ω)

× {w ∈ B2µ−2/p
qp (Ω) : w = 0 on ∂Ω}

(8)

and an analogue definition for Xγ . Fix z0 ∈ Xγ,µ, z∗ ∈ Xγ and f ∈ Lp,µ(R+;X0).
Then we call the system {

∂tz + νP̃q(L+ S(z∗))z = f,

z(0) = z0,
(PL)

the linear Poiseuille perturbation problem.

Lemma 4. P̃qL has maximal Lp,µ-regularity on X0. More precisely, the problem{
∂tz + νP̃qLz = f,

z(0) = z0,

has a unique solution z = (v, w) in the maximal regularity class

(v, w) ∈ H1
p,µ(R+;X0) ∩ Lp,µ(R+;X1)

if and only if z0 ∈ Xγ,µ and f ∈ Lp,µ(R+;X0) and the solution depends continuously
on the data. Moreover, 0 ∈ ρ(L).

Proof. The Dirichlet-Laplacian has maximal Lp-regularity on the layer. This fol-
lows by an argument from 1997 by Hieber and Prüss [14] in Rn which can be
adapted to the layer case as described in [4, Remark 3.7].

The Stokes operator enjoys the property of maximal regularity on the layer, since
the Helmholtz decomposition exists, and maximal regularity follows by [10]. The
off-diagonal entries can be dealt with by first solving for v and then substituting
this solution in the equation for w.

The invertibility of the Stokes operator has been proven in [1], while the case
of the Dirichlet Laplacian can be verified using standard arguments using Fourier
transformation and a reflection principle. �

Proposition 5. There are ε = ε(1/ν) > 0 and δ = δ(ν) > 0 such that if z∗ ∈
BUC1(Ω) with ‖z∗‖BUC1(Ω) < δ and ‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) +‖∇2η,∇2φ‖∞ <

ε, then problem (PL) has maximal Lp,µ-regularity on R+.
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Proof. In virtue of Lemma 4, P̃qL is invertible and possesses maximal Lp,µ-regularity.

Thus, also P̃qL − ω possesses maximal Lp,µ-regularity for some small ω > 0 de-
pending on L. We use a standard argument of maximal regularity using relative
perturbation, see e.g. [20, Proposition 1.5]. We need to establish the estimate

‖P̃qS(z∗)z‖X0 ≤ a‖z‖X0 + b‖(P̃qL− ω)z‖X0(9)

such that

bC0(L) < 1 and ω ≥ aM0(L)

1− bC0(L)
,(10)

where M0(L) and C0(L) are positive constants depending on the L. The entries of
the lower order perturbation S1 are controlled by

cν

(
‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) + ‖∇2η,∇2φ‖∞

)
< cνε,

where cν = max{1/ν, 1/ν2}. Thus, with the interpolation estimate, cf. [7, Example
III.2.2],

‖∇z‖X0 ≤ C‖z‖X0 + ‖P̃qLz‖X0 ,

we can estimate the norm of S1z by

‖P̃qS1z‖X0 ≤ cνε‖z,∇z‖X0 ≤ cνε
(

(1 + C)‖z‖X0 + ‖P̃qLz‖X0

)
≤ cνε

(
(1 + C + ω)‖z‖X0 + ‖(P̃qL− ω)z‖X0

)
.

For the highest order perturbations S2 and S3(z∗) we calculate

‖P̃qS2z‖X0
≤ ε‖P̃qLz‖X0

≤ ε
(
ω‖z‖X0

+ ‖(P̃qL− ω)z‖X0

)
,

‖P̃qS3(z∗)z‖X0
≤ ν‖∇z∗‖∞‖P̃qLz‖X0

≤ νδ
(
ω‖z‖X0

+ ‖(P̃qL− ω)z‖X0

)
.

In total, we choose

a := ε(cν(1 + C + ω) + ω) + νδω,

b := ε(cν + 1) + νδ.
(11)

Hence, for ε, δ > 0 sufficiently small we obtain (10) and the maximal Lp,µ-regularity

follows for (P̃qL− ω) + P̃qS(z∗) + ω = P̃q(L+ S(z∗)). �

Remark 6. The smallness assumption on z∗ is indeed essential for maximal regu-
larity even in the case of the shifted operator P̃q(L+S(z∗)) +ω: For fixed viscosity
ν > 0, a bounded perturbation argument requires b as defined in (11) to be suff-
ciently small to preserve sectoriality. Hence, it is necessary for both ε and δ to be
sufficiently small.

Lemma 7. There is an ε > 0 such that if

‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) + ‖∇2η,∇2φ‖∞ < ε,

then there holds σ(P̃q(L+ S1 + S2)) ⊂ C+ := Σπ/2.

Proof. Observe that S3(0) = 0. Thus, by Proposition 5 applied to z∗ = 0, P̃q(L+

S1 + S2) is sectorial. Therefore the invertibility of P̃qL implies the assertion. �
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5. Main result

We need to clarify what we mean by local and global stability of a given Poiseuille
flow.

Definition 8. We call a Poiseuille flow (ū, η, π̄) stable on [0, T0) of level δ > 0 if

‖(v0, α0)‖Xγ,µ < δ

implies that the problem (3) has a unique strong solution (v, α, p) on [0, T0) with

(v, α) ∈ H1
p (0, T0;X0) ∩ Lp(0, T0;X1) ∩ C0(0, T0;Xγ,µ)

∇p ∈ Lp(0, T0;Lq(Ω)),

depending continuously on (v0, α0).

Secondly, we need a notion for global-in-time stability which quantifies its as-
ymptotic behavior for t→∞.

Definition 9. A Poiseuille flow (ū, η, π̄) is called exponentially stable of level δ > 0
with rate β > 0, if

‖(v0, α0)‖Xγ,µ < δ

implies that Problem (3) has a unique strong solution (v, α, p) such that

etβ(v, α) ∈ H1
p (R+;X0) ∩ Lp(R+;X1) ∩ C0(R+;Xγ,µ),

etβ∇p ∈ Lp(R+;Lq(Ω)),

depending continuously on the initial data (v0, α0).

Permissible initial data. We impose the following condition on the exponents
1 < p, q <∞ and the temporal weight µ ∈ (1/p, 1].

1

p
+

1

q
< µ− 1

2
(I)

Then the identity (8) holds by [19, Theorem 4.2] for the half-space case which can
then be transfered to the layer via reflection.

Then Xγ,µ ↪→ BUC1(Ω̄), see [2, Theorem 4.12], and

H1
p (R+;Lq,σ(Ω)) ∩ Lp(R+;D(Aq)) ↪→ BUC(R+;BUC1(Ω̄)).

Hence we may state our main theorems. We begin with local stability for finite-
time Poiseuille flows.

Main Theorem 1 (Local Stability). Assume the condition (I), let ν > 0 and T > 0
be given. There are ε, δ > 0 and a T0 ∈ (0, T ) such that whenever (ū, η, π̄) solves the
Poiseuille problem (3) on [0, T ) with ‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) + ‖∇2η,∇2φ‖∞ <

ε, then (ū, η, π̄) is stable of level δ on [0, T0).

Proof. Maximal regularity on finite times of the linearization of (PQL) is a direct
consequence of Proposition 5. Let us now verify the regularity conditions (A) and
(F). For z ∈ X1 and z∗ ∈ Xγ,µ, we estimate similarly as in (9),

‖P̃q(L+ S(z∗))z‖X0
≤ c‖z‖X1

<∞,
where c = c(z∗) > 0. For the right-hand side F we note that Lp(R+;Lq(Ω)) ∩
BUC(R+;BUC1(Ω̄)) is an algebra if equipped with the pointwise multiplication.
Therefore F (z) ∈ X0. The local Lipschitz assertions in (A) and (F) are trivially
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fulfilled, since F and L+ S(z) are polynomial in z. Then Proposition 1 yields the
unique existence of a solution to the perturbed Poiseuille problem (PQL) on an
interval [0, T0) for some T0 ∈ (0, T ) and hence stability of (ū, η, π̄) on [0, T0) follows
by definition. �

We remark that T0 depends only on the chosen perturbation and is independent
of the choice of the original flow.

Main Theorem 2 (Global Stability). Assume the condition (I) and ν > 0 be given.
Then, there are constants ε, δ, β > 0 such that every global strong solution (ū, η, π̄)
to the Poiseuille problem (3) with ‖(ū, η, π̄)‖BUC(R+;BUC1(Ω̄)) + ‖∇2η,∇2φ‖∞ < ε

is exponentially stable of level δ and rate β. Here, φ is defined as in (4).

Proof. We want to apply Proposition 2. Maximal regularity of the shifted linear
problem with z∗ = 0 has already been proven in Proposition 5. Let us now verify
the regularity conditions (A) and (F). Observe that (A) and (F) are fulfilled by the
same argumentation as in Main Theorem 1. Since F and L+ S(z) are polynomial
in z, Fréchet differentiability follows as well.

By Lemma 7, the spectrum of the linearization

A0 = νP̃q(L+ S1 + S2)

is contained in the right half plane. Hence, Proposition 2 yields the existence of a
level δ > 0 such that the perturbed flow in (PQL) has a unique global solution for
initial data ‖(v0, α0)‖Xγ,µ < δ which decays exponentially with rate β > 0. �

By the smoothing effects of parabolic equations, further regularity follows di-
rectly from Angenent’s Trick, Proposition 3.

Main Theorem 3 (Regularity). Let T > 0 or T = ∞ and let (v, α,∇p) be a
solution to the perturbed Poseuille problem as obtained by either Main Theorem 1
or 2. Then (v, α,∇p) is real analytic with values in X1 on [0, T ) and for k ∈ N it
holds

tk[
d

dt
]k(v, α,∇p) ∈ Hk+1

p,µ (0, T ;X0) ∩Hk
p,µ(0, T ;X1)×Hk

p,µ(0, T ;Lq(Ω)).

Employing scaling techniques jointly in time and space, it is possible to show
via maximal regularity and the implicit function theorem that (v, α,∇p) are real
analytic in (0, T ) × Ω; see [20, Section 5] for parabolic problems, and specifically
for a Navier-Stokes problem [22].
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