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Abstract

Consider a bounded domain 
 � R
3 with smooth boundary @
, a

time interval [0; T ), 0 < T � 1, and in [0; T )�
 the nonhomogeneous
Navier-Stokes system ut��u+u �ru+rp = f , ujt=0 = u0, divu = k,
uj@
 = g, with su�ciently smooth data f; u0; k; g. In this general case
there are mainly known two classes of weak solutions, the class of global
weak solutions, similar as in the well known case k = 0, g = 0 which
need not be unique, see [5], and the class of local very weak solutions,
see [1], [2], [3], [4], which are uniquely determined but need neither have
di�erentiability properties nor satisfy the energy inequality. Our aim
is to introduce a new class of local strong solutions for the general case
k 6= 0, g 6= 0, satisfying similar regularity and uniqueness properties as
in the known case k = 0, g = 0. For slightly restricted data this class
coincides with the corresponding class of very weak solutions yielding
new regularity results. Further, through the given data we obtain a
control on the interval of existence of the strong solution.
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1 Introduction

Let 
 � R
3 be a bounded domain with boundary @
 of class C2;1 and let

[0; T ), 0 < T � 1, be the time interval. Then we consider in [0; T )�
 the
general nonhomogeneous Navier-Stokes system

ut ��u+ u � ru+rp = f; ujt=0 = u0; divu = k; uj@
 = g; (1.1)

whererp means the associated pressure. We refer to [3] and [5] for very weak
and weak solutions of this system, respectively; for a review on very weak
solutions see [4]. However, the focus of this paper is put on the existence of
local in time strong solutions.

In the following we construct u in (1.1) in the form u = v + E, see
De�nition 1.2, where vjt=0 = ujt=0, Ejt=0 = 0. Therefore in the following
we use the notation

ujt=0 = vjt=0 = u0 = v0:

For simplicity we use for weak and strong solutions the same data class
to exploit from the beginning both theories simultaneously; see [5] for a more
general theory of weak solutions.

Next we describe the general assumptions on the data f , u0 = v0, k and
g; here N(x) denotes the outward normal vector at x 2 @
.

Assumption 1.1

(i) f = divF; F 2 Ls=2(0; T ;Lq=2(
)); (1.2)

with 4 � s � 8; 4 � q � 6;
2

s
+

3

q
= 1;

(ii) v0 2 L2
�(
); kv0kBq;s

T
(
) :=

�Z T

0



e�tAv0

sq dt�1=s

<1; (1.3)

(iii) k 2 Ls(0; T ;Lq(
)); g 2 Ls(0; T ;W� 1

q
;q(@
)) (1.4)

with compatibility condition

Z



k(t)dx = hg(t); Ni@

for a.a. t 2 [0; T ):

Here Lr(
) denotes the usual Lebesgue space of functions (or vector
or matrix �elds) with norm k � kr and pairing h�; �i
 with its dual Lr0

(
),

1 < r < 1, r0 = r
r�1

. Moreover, Lr
�(
) = C1

0;�(
)
k�kr

where C1
0;�(
) :=

fv = (v1; v2; v3) 2 C1
0 (
); div v = 0g. Usual Bochner spaces are denoted by

Ls(0; T ;Lq(
)) with norm k � kq;s;T , 1 < q; s <1, and with pairing h�; �i
;T .
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The nonlinear term u �ru is de�ned by u �ru = (u �ru1; u �ru2; u �ru3)
where u�r = u1D1+u2D2+u3D3 and Dj = @=@xj, j = 1; 2; 3. When divu =
0, we obtain that u � ru = div (uu) = r � (uu) where uu = (uiuj)i;j=1;2;3.
Further, for F = (Fij)i;j=1;2;3, we have divF = (D1F1j+D2F2j+D3F3j)j=1;2;3.

The initial value norm kv0kBq;s

T
(
) is a so-called Besov space norm, see [3],

[6]�[9], and Section 3 for details. The space W� 1

q
;q(@
) is a Sobolev trace

space of negative order �1
q
, namely the dual of the trace spaceW

1

q
;q0

(@
), see

[13, I.3.6, (3.6.9)]. For Ls(0; T ;W� 1

q
;q(@
)) we denote the norm by k�k� 1

q
;q;s;T

and use the pairing h�; �i@
;T . Concerning the trace uj@
 = g see [3, Remarks
1 and 3(2)].

Let P = Pq : Lq(
) ! Lq
�(
) denote the Helmholtz projection and

A = Aq = �P� in (1.3) the Stokes operator, 1 < q <1.
To obtain a precise de�nition of weak and strong solutions u for (1.1), see

[5, (1.2)�(1.6)], we use in [0; T )�
 a �xed solution

E = Ek;g 2 Ls(0; T ;Lq(
)) (1.5)

of the linear Stokes system

Et ��E +rh = 0; Ejt=0 = 0; divE = k; Ej@
 = g (1.6)

with associated pressure rh.
We know, see [3, Theorem 4], that there exists a unique solution E =

Ek;g 2 Ls(0; T ;Lq(
)) of (1.6) satisfying for each w 2 C1
0 ([0; T );C1

0;�(
)),
C1

0;�(
) = fvj
 ; v 2 C1
0;�(R

3)g, with wj@
 = 0

�hE;wti
;T � hE;�wi
;T + hg;N � rwi@
;T = 0; (1.7)

divE = k; N � Ej@
 = N � g a.e. in (0; T ); (1.8)

as well as

(A�1PE)t 2 Ls(0; T ;Lq
�(
));

A�1PE 2 C([0; T );Lq
�(
)); A�1PEjt=0 = 0; (1.9)

k(A�1PE)tkq;s;T + kEkq;s;T � C
�kkkq;s;T + kgk� 1

q
;q;s;T

�
with C = C(
; q) > 0.

The condition Ej@
 = g is well de�ned in the sense of boundary distribu-
tions, see [3, Remarks 3, (2)]. Moreover, the condition Ejt=0 = 0 is de�ned
by (1.9) in the generalized sense that A�1PEjt=0 = 0, see [3, (1.6)]. This
means that

hE(:); vi
 : t! hE(t); vi
; t 2 [0; T ); is continuous (1.10)
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for each test function v 2 C1
0;�(
) and even for all v in the domain of Aq0 .

In particular, we conclude from (1.10) that Ejt=0 = 0 is de�ned modulo
gradients.

To give the system (1.1) a precise meaning we set

u = v + E; E = Ek;g (1.11)

and choose a vector �eld v satisfying in [0; T )�
 the system

vt��v+(v+E) �r(v+E)+rp� = f; vjt=0 = v0; vj@
 = 0; div v = 0 (1.12)

which is called the perturbed Navier-Stokes system, see [5], with associated
pressure rp�.

The following de�nition extends the well known special case k = 0, g = 0
to our general case k 6= 0, g 6= 0 including the additional terms h(v+E)(v+
E);rwi
;T and �hk(v + E); wi
;T in (1.15) below. Correspondingly, we
obtain two additional terms in the energy inequality (1.16), see Section 4.1,
c) concerning these terms.

De�nition 1.2 (Weak and strong solutions for (1.1).) Suppose f; u0 =
v0; k; g; q; s satisfy Assumption 1.1, and let E = Ek;g be as in (1.5)-(1.6).

(1) A vector �eld v in [0; T )�
 is called a weak solution of the perturbed
system (1.12) with data f; v0, and u := v+E is called a weak solution of the
general system (1.1) with data f; u0 = v0; k; g, if the following conditions are
satis�ed:

a) v 2 L1
loc
([0; T );L2

�(
)) \ L2
loc
([0; T );W 1;2

0 (
)); (1.13)
b) v : [0; T )! L2

�(
) is weakly continuous and vjt=0 = v0 (1.14)
c) � hv; wti
;T + hrv;rwi
;T � h(v + E)(v + E);rwi
;T (1.15)

� hk(v + E); wi
;T = hv0; w(0)i
 � hF;rwi
;T

for each w 2 C1
0 ([0; T );C1

0;�(
));

d)
1

2
kv(t)k22 +

Z t

0

krvk22 d� �
1

2
kv0k22 �

Z t

0

hF;rvi
 d� (1.16)

+

Z t

0

h(v + E)E;rvi
 d� +
1

2

Z t

0

hk(v + 2E); vi
 d�

for each t 2 [0; T ):

(2) Let v be a weak solution of (1.12) with data f; v0 and let

v 2 Ls(0; T ;Lq(
)): (1.17)
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Then v is called a strong solution of the perturbed system (1.12) with data
f; v0, and

u = v + Ek;g (1.18)

is called a strong solution of the general system (1.1) with data f; u0 = v0; k; g.

We see that in the well known case Ek;g = 0, the weak solution v is a
Hopf type weak solution, and u = v is the usual strong solution.

In the following we will get that the strong solutions v and u = v + Ek;g

have similar uniqueness and regularity properties as in the known case Ek;g =
0.

2 Main results

We are mainly interested in strong solutions v and u + v, given in De�ni-
tion 1.2, which are also weak solutions. Therefore, for simplicity, we used the
same data class in De�nition 1.2 for weak and strong solutions. Indeed, the
data class in [5, Theorem 1.4], for (global) weak solutions is slightly more
general than that in De�nition 1.2.

An important aspect in the main Theorem 2.1 below is that the existence
of a strong solution in a given interval [0; T ) can be proven if the norm b(T ) of
the data, see (2.1), satis�es a smallness condition b(T ) � "�(
; q). Since b(T )
tends to zero for T ! 0, we can determine some interval [0; T �), 0 < T � � T ,
satisfying b(T �) � "�(
; q) and yielding precisely the existence interval for
the local strong solution, see Corollary 2.2 below. Usually, in the well known
case k = 0, g = 0, the existence of a strong solution has been shown only in
some �su�ciently small� subinterval of [0; T ).

Theorem 2.1 (Existence of a strong solution in [0; T )). Let f = divF ,
u0 = v0; k; g; q; s;

2
s
+ 3

q
= 1 be given as in Assumption 1.1, let E = Ek;g be

as in (1.5)�(1.9), and let

b(T ) := kv0kBq;s

T
(
) + kFk q

2
; s
2
;T + kkkq;s;T + kgk� 1

q
;q;s;T (2.1)

be the data norm in [0; T ).
There exists a constant "� = "�(
; q) > 0 such that if

b(T ) � "�; (2.2)

then there exist in [0; T ) uniquely determined strong solutions v of the per-
turbed system (1.12) and u = v+E of the general system (1.1), respectively.
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Since b(T ) ! 0 for T ! 0 we obtain well de�ned existence intervals
[0; T �), 0 < T � � T , for strong solutions. Thus we get the following result.

Corollary 2.2 (Interval of existence of local strong solutions) Let f =
divF , u0 = v0; k; g; "

� = "�(
; q), and E = Ek;g be as in Theorem 2.1.
Then each [0; T �), 0 < T � � T , de�ned by b(T �) � "�, is an interval of

existence of uniquely determined strong solutions v of (1.12) and u = v +E
of (1.1), respectively, with T replaced by T �.

The next result yields the regularity of strong solutions.

Theorem 2.3 (Regularity result for strong solutions) Let f = divF , u0 =
v0; k; g; q; s satisfy Assumption 1.1, and let E = Ek;g be as in (1.5)�(1.9).
Assume the following additional regularity properties of the data,

F 2 Ls(0; T ;W 1;q(
)); k 2 Ls(0; T ;W 1;q(
)); kt 2 Ls(0; T ;Lq(
)); (2.3)

g 2 Ls(0; T ;W 2�1=q;q(@
)); gt 2 Ls(0; T ;W� 1

q
;q(@
)); v0 2 W 2;q(
);

g(0) = 0; k(0) = 0;

and assume that v and u = v + E are strong solutions in [0; T ) as given in
Theorem 2.1.

Then v; E satisfy, additionally to (1.13)�(1.16) and (1.7)�(1.10) respec-
tively, the following regularity properties

v 2 L1
loc
([0; T );W 1;2

0 (
)) \ L2
loc
([0; T );W 2;2(
)); (2.4)

vt 2 L2
loc
([0; T );L2

�(
));

E 2 Ls(0; T ;W 2;q(
)); Et 2 Ls(0; T ;Lq(
)); (2.5)

and u = v + E satis�es corresponding additional regularity properties. In
particular,

u 2 L2
loc
([0; T );W 2;2(
)); ut 2 L2

loc
([0; T );L2

�(
)): (2.6)

Remarks 2.4 (1) In order to compare the class of strong solutions in De�ni-
tion 1.2 with the class of very weak solutions in [3, Theorem 1] let us restrict,
for simplicity, the condition for F in (1.2) and for v0 in (1.3) as follows:

F 2 Ls(0; T ;Lq(
)); v0 = 0: (2.7)

Then the data class in Assumption 1.1, restricted by (2.7), is contained in the
data class of very weak solutions in [3, Theorem 1]. Let Dr be this restricted
data class. Then there is some 0 < T � � T such that in [0; T �) the solution
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class V Dr of very weak solutions coincides with the solution class SDr of
strong solutions, see [3, (4.23)] for very weak and (2.2) for strong solutions.
Then it holds V Dr = SDr in [0; T �): Each such strong solution is a very
weak one and each such very weak solution is a strong one, because of the
uniqueness of very weak solutions. However, the very weak solutions V Dr

need not have any di�erentiability property in space and time, and need not
satisfy any energy inequality. These are weaker conditions as for the usual
(possibly non uniquely determined) weak solutions - this is the reason for the
notion �very weak�, see [3, p. 425].

Since V Dr = SDr in [0; T �), our result shows, at least for slightly re-
stricted data, that the very weak solution class V Dr has the same regularity
properties as the class of strong solutions SDr. Thus the notion �very weak�
seems to be no longer justi�ed.

(2) Let u be a strong solution as in Theorem 2.1. Then we can use
similar arguments as in [13, V. Theorem 1.8.2] and obtain for smooth data
f; k; g; v0 2 C1 that v and u = v + Ek;g satisfy v; u 2 C1((0; T )�
).

(3) Let v be a strong solution of (1.1) as in De�nition 1.2. Then we can
replace the energy inequality (1.16) by the corresponding energy equality as
in the known case k = 0; g = 0.

3 Preliminaries

In Assumption 1.1 we already used for 0 < T � 1 the Besov-type space

Bq;s
T (
) :=

(
v 2 L2

�(
); kvkBq;s

T
:=

�Z T

0

ke��Avksq d�
�1=s

<1
)

(3.1)

with norm kvkBq;s

T
= kvkBq;s

T
(
). This normed space, which has been intro-

duced in [6], [7], [8], is important for our results. Equipped with the norm
v 7! kvkBq;s

T
+ kvkL2

�
it is a Banach space.

In (3.1) A = Aq denotes the Stokes operator, and S(�) = e��A; 0 � � <
1, the analytic semi-group generated by �A. Using the fractional powers
A� we will exploit for v 2 L2

�(
) the estimates

kA��vkq � Ckvk2 (3.2)

kS(�)vkq � C���e���kA��vkq � C���e���kvk2; (3.3)

with 0 < � < 3
4
, 2�+ 3

q
= 3

2
, � > 0, C = C(
; q; �; �) > 0, see [6, (1.14)]. By

(3.3) we conclude that the function � 7! kS(�)vksq is well de�ned on (0; T ).
Therefore, v 2 Bq;s

T (
) � L2
�(
) simply means that this function is Lebesgue

integrable on [0; T ).
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Moreover, letW 1;2
0;� (
) = C1

0;�(
)
k�k

W1;2 . Then we de�ne the Banach space

X :=
�
v 2 L2

loc
([0; T );W 1;2

0;� (
)); (3.4)

(A� 1

2v)t; A
1

2v 2 Ls=2(0; T ;Lq=2(
)); A� 1

2vjt=0 = 0
	

equipped with the norm

kvkX := k(A� 1

2v)tk q

2
; s
2
;T + kA 1

2vk q

2
; s
2
;T :

Additionally to the data given in Assumption 1.1, in the following propo-
sitions we need a vector �eld

f0 2 Ls=2(0; T ;Lq=2(
)) with q; s as in (1.2): (3.5)

Note that f = divF , f0 in (1.2), (3.5), respectively, satisfy

F 2 L2
loc
([0; T );L2(
)); f0 2 L2

loc
([0; T );L2(
)): (3.6)

Next we consider several well known results on the linear nonstationary
Stokes system in [0; T )�
 given by

vt ��v +rh = f + f0; div v = 0; vj@
 = 0; vjt=0 = v0 (3.7)

with associated pressure rh.

Proposition 3.1 Let f = divF; f0; v0 be as in Assumption 1.1 and (3.5),
and let Ef;f0;v0 := v 2 L2

loc
([0; T );W 1;2

0;� (
)) be a weak solution of the system
(3.7) in the usual sense, de�ned by the relation

�hv; wti
;T + hrv;rwi
;T = hv0; w(0)i
 � hF;rwi
;T + hf0; wi
;T (3.8)

for each w 2 C1
0 ([0; T );C1

0;�(
)). Then we obtain the following properties:
(i) The function

v = Ef;f0;v0 : [0; T )! L2
�(
) (3.9)

is strongly continuous, after rede�nition on a null set of [0; T ), and it holds
the energy equality

1

2
kv(t)k22 +

Z t

0

krvk22 d� =
1

2
kv0k22 + hf0; vi
;t � hF;rvi
;t (3.10)

for each t 2 [0; T ). Further, v is uniquely determined by f; f0; v0.
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(ii) Let S(t) := e�tA, t 2 [0; T ). Then v = Ef;f0;v0 has the representation

v(t) = S(t)v0 +

Z t

0

S(t� �)Pf0(�)d� (3.11)

+ A
1

2

Z t

0

S(t� �)A� 1

2P divF (�)d�

for each t 2 [0; T ), and it holds Ef;f0;v0 = S(�)v0 + Ef;f0;0.
(iii) If v0 = 0, then ~v = Ef;f0;0 2 X as in (3.4), i.e.

(A� 1

2 ~v)t; A
1

2 ~v 2 Ls=2(0; T ;Lq=2(
)); A� 1

2 ~vjt=0 = 0; (3.12)

and

(A� 1

2 ~v)t + A
1

2 ~v = A� 1

2P divF + A� 1

2Pf0; t 2 [0; T ); (3.13)

k~vkX � C
�kFk q

2
; s
2
;T + kf0k q

2
; s
2
;T

�
(3.14)

with some constant C = C(
; q) > 0 independent of T .
(iv) Conversely, let ~v 2 L2

loc
([0; T );W 1;2

0;� (
)) satisfy the properties (3.12),
(3.13), (3.14). Then ~v = Ef;f0;0 is a weak solution of the system (3.7) with
v0 = 0, and Ef;f0;v0 = Ef;f0;0 + Sv0 is a weak solution of (3.7) with the given
data f; f0; v0.

(v) There holds

kEf;f0;v0kq;s;T � kv0kBq;s

T
(
) + kEf;f0;0kq;s;T <1; (3.15)

and there exists some constant C = C(
; q) > 0 independent of T such that

kEf;f0;0kq;s;T � C
�k(A� 1

2Ef;f0;0)tk q

2
; s
2
;T + kA 1

2Ef;f0;0k q

2
; s
2
;T

�
: (3.16)

Proof (i) See [13, IV. De�nition 2.1.1 and Theorem 2.3.1] concerning exis-
tence and uniqueness of v. Using (3.6) and (3.10) we obtain for v = Ef;f0;v0

and 0 < T 0 < T the estimate

1

2
kvk22;1;T 0 + krvk22;2;T 0 � 2kv0k22 + 8kf0k22;1;T 0 + 4kFk22;2;T 0 : (3.17)

(ii) The representation (3.11) follows from [13, IV. Theorem 2.4.1], [3,
(2.16)]. Note that A� 1

2P div, de�ned by hA� 1

2P divF; 'i = h�F;rA� 1

2'i for
' 2 C1

0;�(
), is a bounded operator satisfying

kA� 1

2P divF (t)k q

2

� CkF (t)k q

2

for a.a. t 2 [0; T ) (3.18)
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with C = C(
; q) > 0; see [3, Examples 3), (2.14)], [13, IV (2.1.8)].
(iii) Applying A� 1

2 to (3.11) when v0 = 0, we get for ~v := Ef;f0;0 that
A� 1

2 ~v is a weak solution of (3.13) in [0; T ) � 
. By the maximal regularity
estimate, see, e.g., [6, (2.7)], we obtain ~v 2 X and the estimate (3.14).

(iv) Let ~v 2 L2
loc
([0; T );W 1;2

0;� (
)) satisfy (3.12), (3.13), (3.14). Testing
(3.13) with A1=2w, w 2 C1

0 ([0; T );C1
0;�(
)), we obtain the relation (3.8) for

~v = Ef;f0;0 where v0 = 0. Here we need the properties

d

dt
h~v; wi
 =

d

dt
hA� 1

2 ~v; A
1

2wi
 2 L1(0; T );

and v0 = 0, w(T ) = 0 yielding

�h~v; wti
;T = �
Z T

0

hA� 1

2 ~v; (A
1

2w)ti
 dt =
Z T

0

h(A� 1

2 ~v)t; A
1

2wi
 dt:

Next we use that E0;0;v0 = Sv0 satis�es (3.8) for f = 0, f0 = 0 as weak
solution. This implies, together with (3.8) for ~v = Ef;f0;0, that Ef;f0;v0 =
E0;0;v0 + Ef;f0;0 solves (3.8) and is a weak solution of (3.7).

(v) Setting ~v = Ef;f0;0 when v0 = 0, we obtain using (3.11), (3.13) the
representation

A� 1

2 ~v(t) =

Z t

0

S(t� �)A� 1

2Pf0 d� +

Z t

0

S(t� �)A� 1

2P divF d� (3.19)

=

Z t

0

S(t� �)
�
(A� 1

2 ~v)t + A
1

2 ~v
�
d�:

By the fractional Sobolev embedding estimate kwkq � ckA 3

2qwkq=2 and the
Hardy-Littlewood inequality, see [15, p. 140], we obtain (3.16) from (3.19),
cf. [6, (2.24)].

Next we obtain for Ef;f0;v0 = Ef;f0;0 + Sv0 that

kEf;f0;v0kq;s;T � kSv0kq;s;T + kEf;f0;0kq;s;T = kv0kBq;s

T
(
) + kEf;f0;0kq;s;T

which proves (3.15).
This completes the proof of Proposition 3.1.

4 Proof of the main results

4.1 Proof of Theorem 2.1

Let f = divF; u0 = v0; k; g; E = Ek;g, 0 < T � 1 be given as in Theorem 2.1.
We will need several steps for the proof.
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a) Preliminaries: Consider a solution u of (1.1) in the form u = v + Ek;g

with v satisfying (1.12) - (1.16). To work in the space X, see (3.4), we have
to turn to v̂ = v � Ef;0;v0 which is a solution of the equation

v̂t��v̂+rh = k(v̂+ bE)�div
�
(v̂+ bE)(v̂+ bE)

�
; bE := Ef;0;v0 +Ek;g ; (4.1)

together with div v̂ = 0, v̂(0) = 0 and v̂j@
 = 0. Here k(v̂ + bE) plays the
role of f0 in Proposition 3.1. To reformulate the �xed point problem (4.1)
we de�ne

bF (v̂) := �(v̂ + bE)(v̂ + bE);

f̂(v̂) := div bF (v̂); (4.2)

f̂0(v̂) := k(v̂ + bE):

By Hölder's inequality and (3.15) we obtain that bE;Ef;0;v0 ; E = Ek;g 2
Ls(0; T ;Lq(
)) as well as v̂; v 2 Ls(0; T ;Lq(
)), and that

k bF (v̂)k q

2
; s
2
;T � kv̂ + bEk2q;s;T � �kv̂kq;s;T + k bEkq;s;T �2 <1; (4.3)

kf̂0(v̂)k q

2
; s
2
;T � kkkq;s;T

�kv̂kq;s;T + k bEkq;s;T � <1:

Correspondingly, we set

F (v) := �(v + E)(v + E) = �(v̂ + bE)(v̂ + bE);

f(v) := divF (v) = div bF (v̂) = f̂(v̂); (4.4)

f0(v) := k(v + E) = k(v̂ + bE);

and get estimates of F (v), f0(v) in L
s
2 (0; T ;L

q

2 (
)) as those for bF (v̂), f̂0(v̂)
in (4.3).

Next we mention an estimate for b(T ) as given in (2.1). We obtain, using
(3.15), (3.16), (3.14) with f0 = 0 and (1.9), the estimate

k bEkq;s;T � kEf;0;v0kq;s;T + kEkq;s;T
� kv0kBq;s

T
(
) + kEf;0;0kq;s;T + kEkq;s;T

� kv0kBq;s

T
(
) + C

�kFk q

2
; s
2
;T + kkkq;s;T + kgk� 1

q
;q;s;T

�
with constant C = C(
; q) > 0. We may assume that C � 1. Hence

k bEkq;s;T � Cb(T ); kkkq;s;T � b(T ) (4.5)

with C = C(
; q) � 1 independent of T .
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b) Properties of F(v̂): Let v̂ 2 X and let F(v̂) := w be the solution of
the system

(A� 1

2w)t + A
1

2w = A� 1

2P div bF (v̂) + A� 1

2P f̂0(v̂); w 2 X; (4.6)

as in (3.13).
Using, step by step, (3.16), (3.14) and (4.3), we obtain that

kF(v̂)kq;s;T = kwkq;s;T � C1kwkX
� C2

�k bF (v̂)k q

2
; s
2
;T + kf̂0(v̂)k q

2
; s
2
;T

�
(4.7)

� C3

�
(kv̂kq;s;T + k bEkq;s;T )2 + kkkq;s;T (kv̂kq;s;T + k bEkq;s;T )�:

Moreover, by (3.16) for v and (4.5) for bE, k, we get that
kF(v̂)kq;s;T � C4

�kv̂kX + b(T )
�2 (4.8)

with constants C1; C2; C3; C4 > 0 depending on 
; q. Consequently, by (4.7),
(4.8)

kF(v̂)kq;s;T � C1kF(v̂)kX � C4(kv̂kX + b)2; (4.9)
kF(v̂)kX � a(kv̂kX + b)2; a = C4=C1; b = b(T )

with constants C1; C4 > 0 depending on 
; q.
Next we estimate the expression F(v̂) � F(~v) with v̂; ~v 2 X, using the

representation formula (3.11) with v; f0; F replaced by F(v̂) � F(~v) and
f̂0(v̂)� f̂0(~v), bF (v̂)� bF (~v), respectively. We obtain that

(F(v̂)�F(~v))(t)

=

Z t

0

A
1

2S(t� �)A� 1

2P [div( bF (v̂)� bF (~v)) + f̂0(v̂)� f̂0(~v)] d�

=

Z t

0

A
1

2S(t� �)A� 1

2P [div((v̂ + bE)(v̂ � ~v) + (v̂ � ~v)(~v + bE)) + k(v̂ � ~v)] d�:

Then we apply the same arguments as in (4.7), (4.8), (4.9) to get for v̂; ~v 2 X
the estimate

kF(v̂)�F(~v)kX � C 0
1

�kv̂kX + b+ k~vkX + b+ b
�kv̂ � ~vkX)

� C 0
2

�kv̂kX + b+ k~vkX + b
�kv̂ � ~vkX

with C 0
1; C

0
2 > 0 depending on 
; q. We may assume that C 0

2 = a with a as
in (4.9). Thus we obtain that

kF(v̂)�F(~v)kX � a
�kv̂kX + b+ k~vkX + b

�kv̂ � ~vkX : (4.10)
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c) The condition F(v̂) = v̂, v̂ 2 X: Assume that v̂ 2 X satis�es the
condition F(v̂) = v̂. Then we show that

v := v̂ + Ef;0;v0 is a strong solution of (1.12) (4.11)

as in De�nition 1.2 (2).
For the proof we �rst consider (4.6), and using (3.12), (3.13), (3.14) with

v; F; f0 replaced by w = F(v̂); bF (v̂); f̂0(v̂) together with the estimate (4.3),
we conclude with (3.16) that

w 2 Ls(0; T ;Lq(
)): (4.12)

Then we use Proposition 3.1 (iv) to see that w is a weak solution of the system
(3.7) with v; f; f0 replaced by w, f̂(v̂), f̂0(v̂), and with v(0) = w(0) = 0.

Now we consider bE = Ef;0;v0 + E, E = Ek;g, as in (4.1) and use the
relation (3.8) for v = Ef;0;v0 with f = divF; f0 = 0 as well as for the weak
solution w = F(v̂) of (3.8). We conclude that

v = w + Ef;0;v0 satis�es (1.15) with E = Ek;g: (4.13)

Thus it holds (3.8) with F; f0 replaced by F (v) + F , f0(v), see (4.4). Using
Proposition 3.1, (i) we obtain that v = w + Ef;0;v0 satis�es the properties
(1.13)�(1.16).

To prove (1.16) we use (3.10) with F; f0 replaced by F (v) +F , f0(v) and
the following elementary calculations:Z t

0

h(v + E)v;rvi
 d� =

Z t

0

hvv;rvi
 d� +

Z t

0

hEv;rvi
 d�

= 0� 1

2

Z t

0

hkv; vi
 d�;Z t

0

h(v + E)(v + E);rvi
 d� +

Z t

0

hk(v + E); vi
 d� =Z t

0

h(v + E)E;rvi
 d�+
1

2

Z t

0

hk(v + 2E); vi
 d�:

By (4.11) and (3.15) v 2 Ls(0; T ;Lq(
)), and, consequently, v is a strong
solution as in De�nition 1.2.

Conversely, assume that v is a strong solution as in De�nition 1.2. Then
we show that

v̂ := v � Ef;0;v0 2 X and F(v̂) = v̂: (4.14)
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Since by Proposition 3.1 (iv) v is also a weak solution as in De�nition 1.2,
we obtain, using (1.15), (3.11) and (4.4), the representation

v(t) = S(t)v0 +

Z t

0

S(t� �)Pf0(v) d� (4.15)

+

Z t

0

A
1

2S(t� �)A� 1

2Pdiv(F + F (v))d�

with F as in (1.2). Subtracting the integral representation of Ef;0;v0 we arrive
at the formula

v̂(t) =

Z t

0

S(t� �)Pf0(v) +

Z t

0

A
1

2S(t� �)A� 1

2PdivF (v)d� ; (4.16)

in particular, v̂(t) 2 X. Since f0(v) = f̂0(v̂), F (v) = bF (v̂), the right-hand
side of (4.16) coincides with F(v̂) and (4.14) is proved.

d) Uniqueness of v̂ = F(v̂): Suppose that v̂1; v̂2 2 X are �xed points of
F . Then we conclude from (4.10) with k � � � kX replaced by k � � � kq;s;T that

kv̂1 � v̂2kq;s;T = kF(v̂1)�F(v̂2)kq;s;T (4.17)

� a
�kv̂1kq;s;T + b(T ) + kv̂2kq;s;T + b(T )

�kv̂1 � v̂2kq;s;T
with b = b(T ) as in (4.5), and with a = a(
; q) > 0 as in (4.9).

Consider any subinterval [0; T 0), 0 < T 0 < T . Then we obtain the same
estimate (4.17) with k � � � kq;s;T , b(T ) replaced by k � � � kq;s;T 0 , b(T 0), and choose
0 < T 0 < T such that

a
�kv̂1kq;s;T 0 + b(T 0) + kv̂2kq;s;T 0 + b(T 0)

� � 1

2
;

thus we conclude that 1
2
kv̂1 � v̂2kq;s;T 0 � 0, v̂1 = v̂2. Finally, we repeat this

argument with [0; T 0) replaced by [T 0; 2T 0) with the same constant a, and so
on. This yields v̂1 = v̂2 in [0; T ).

e) Fixed point problem v̂ = F(v̂): Here we use similar arguments as in
the existence proof of very weak solutions, see [3], [6], [7].

Let v̂; ~v 2 X. Then F(v̂);F(~v) satisfy the estimates (4.9), (4.10), i.e.,
with a = a(
; q) > 0 and b = b(T )

kF(v̂)kX � a(kv̂kX + b)2; (4.18)

kF(v̂)�F(~v)kX � a
�kv̂kX + b+ k~vkX + b

�kv̂ � ~vkX : (4.19)
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For the given data f = divF , v0; k; g as in Assumption 1.1 and with
b = b(T ) de�ned in (2.1) we suppose the smallness condition

4ab = 4a
�kv0kBq;s

T
+ kFk q

2
; s
2
;T + kkkq;s;T + kgk� 1

q
;q;s;T

�
< 1: (4.20)

Using 4ab < 1 we choose

0 < y1 := 2b(1 +
p
1� 4ab)�1 < 2b; y1 = ay21 + b > b

and the closed ball B := fv 2 X; kvkX � y1 � bg. Then, if v̂ 2 B, we obtain
from the estimate

kF(v̂)kX � a(kv̂kX + b)2 � ay21 = y1 � b

that F(B) � B. Further we use (4.19) and obtain with v̂; ~v 2 B that

kF(v̂)�F(~v)kX � 2ay1kv̂ � ~vkX � 4abkv̂ � ~vkX :

Thus F : B ! B is a strict contraction, and Banach's �xed point theorem
yields a v̂ 2 B satisfying v̂ = F(v̂), see [13, V, (4.2.21)] and [14, Lemma 10.2].

Using Part c) above we conclude that v := v̂+Ef;0;v0 is a strong solution of
the system (1.12), and u = v+Ek;g is a strong solution of the general system
(1.1). Moreover, by Part d), v and u = v + Ek;g are uniquely determined.

Setting "� = "�(
; q) := 1
8a

we thus obtain the existence and uniqueness
of a strong solution v of (1.12) and of a strong solution u = v+Ek;g of (1.1)
provided the condition b = b(T ) � "� is satis�ed. This completes the proof
of Theorem 2.1.

4.2 Proof of Corollary 2.2

Let f; v0; k; g; q; s; [0; T ); E = Ek;g, b = b(T ) and "� = "�(
; q) > 0 be given
as in Corollary 2.2.

Since b(T ) ! 0 as T ! 0, we �nd some T �, 0 < T � � T , satisfying
b(T �) � "�. Applying Theorem 2.1 we get the uniquely determined solutions
v; u = v + E.

4.3 Proof of Theorem 2.3

Assume that the given data f = divF; v0; k; g additionally satis�es the reg-
ularity conditions (2.3). From [3, Corollary 5] we obtain for the solution
E = Ek;g of the Stokes system (1.6), in addition to (1.9), that

E 2 Ls(0; T ;W 2;q(
)); Et 2 Ls(0; T ;Lq(
)): (4.21)
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Then we have to prove the regularity properties (2.4) for the solution v
of (1.12), written in the form

vt ��v + (v + E) � rv +rp� = f � := divF � (v + E) � rE (4.22)
vjt=0 = v0; vj@
 = 0; div v = 0:

For a moment let v := v̂ be the corresponding solution for the well known
case k = 0, g = 0, E = 0. In this case the regularity properties (2.4)
for v = v̂ have been shown in [13, V. Theorem 1.8.1, pp. 298], where the
critical expression, now written in the form v̂ � rv̂, has been treated using
the Yosida operators Jk =

�
I + 1

k
A1=2

��1, k 2 N, see [16], and v̂ � rJkv̂ with
v̂ 2 Ls(0; T ;Lq(
)).

We can reduce our regularity problem for (4.22) to this known case. Since
v + E 2 Ls(0; T ;Lq(
)), we use the approximation (v + E) � rJkv, k 2 N,
for the critical term (v + E) � rv. Furthermore, since by (4.21) E;rE 2
Ls(0; T ;Lq(
)) and v 2 L1

loc
([0; T );L2(
)), and since q � 4; s � 4, we obtain

that
v � rE;E � rE 2 L2

loc
([0; T );L2(
)): (4.23)

Thus we obtain from (4.23), (2.3) that f � 2 L2
loc
([0; T );L2(
)). Then we get

for (4.22) - as in [13, V. Theorem 1.8.1] - the properties (2.4), (2.5), (2.6).
This completes the proof of Theorem 2.3.
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