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Abstract

We consider the uniqueness of bounded continuous L3
w-solutions on the whole time

axis to the Navier-Stokes equations in 3-dimensional unbounded domains. Thus far,
uniqueness of such solutions to the Navier-Stokes equations in unbounded domain,
roughly speaking, is known only for a small solution in BC(R; L3

w) within the class
of solutions which have sufficiently small L∞(L3

w)-norm. In this paper, we discuss
another type of uniqueness theorem for solutions in BC(R; L3

w) using a smallness
condition for one solution and a precompact range condition for the other one. The
proof is based on the method of dual equations.
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1 Introduction

The motion of a viscous incompressible fluid in 3-dimensional domains Ω is governed by

the Navier-Stokes equations:

(N-S)


∂tu− ∆u+ u · ∇u+ ∇p = f, t ∈ R, x ∈ Ω,

div u = 0, t ∈ R, x ∈ Ω,
u|∂Ω = 0, t ∈ R,

where u = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the velocity vector and the

pressure, respectively, of the fluid at the point (x, t) ∈ Ω × R. Here f is a given external
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force. In this paper we consider the uniqueness of mild solutions to (N-S) in unbounded

domains Ω which are bounded on the whole time axis. Typical examples of such solutions

are periodic-in-time and almost periodic-in-time solutions.

In case where Ω ⊂ R3 is bounded, the existence and uniqueness of time-periodic solu-

tions were considered by several authors; see e.g. [8] and references therein. Maremonti

[30, 31] was the first to prove the existence of unique time-periodic regular solutions to

(N-S) in unbounded domains, namely for Ω = R3 and Ω = R3
+. In the case of more gen-

eral unbounded domains, the existence of time-periodic solutions was proven by Kozono-

Nakao [23], Maremonti-Padula [32], Salvi [38], Yamazaki [45], Galdi-Sohr [16], Kubo [27],

Crispo-Maremonti [6] and Kang-Miura-Tsai [21]. In particular, Yamazaki [45] proved the

existence of time-periodic mild solutions in L3,∞(Ω) in the case where Ω is a 3D exterior

domain with ∂Ω ∈ C∞. Here Lp,q denotes the Lorentz space and Lp,∞ is equivalent to the

weak-Lp space (Lp
w). Without time-periodic condition on f , the existence of mild solu-

tions bounded on the whole time axis was also shown in [23], [45] and [21]. Furthermore,

Kang-Miura-Tsai [21] showed the existence of mild solutions u with the spatial decay

(1.1) sup
t

sup
|x|>r

|x|α|u(x, t) − U(x)| <∞

for some α > 1, r > 0 and some function U(x) with sup|x|>r |x||U(x)| < ∞, if Ω ⊂ R3

is an exterior domain and if f satisfies adequate conditions. They also dealt with the

inhomogeneous boundary value problem. Concerning the uniqueness of solutions bounded

on the whole time-axis, roughly speaking, it was shown in [30, 31, 23, 32, 45, 27, 6] that

a small solution in some function spaces (e.g. BC(R;L3,∞(Ω))) is unique within the class

of solutions which are sufficiently small; i.e., if u and v are solutions for the same force

f and if both of them are small, then u = v. In [16], it was shown that a small time-

periodic solution is unique within the larger class of all periodic weak solutions v with

∇v ∈ L2(0, T ;L2), satisfying the energy inequality
∫ T

0
‖∇v‖2

L2 dτ ≤ −
∫ T

0
(F,∇v) dτ and

mild integrability conditions on the corresponding pressure; here T is a period of F and

f = ∇ · F .

Another type of uniqueness theorem for time-periodic L3,∞-solution was proven by

the third author [43] without assuming the energy inequality. In the case of an exterior

domain Ω ⊂ R3, the whole space R3, the halfspace R3
+, a perturbed halfspace, or an

aperture domain, it was shown in [43] that if u and v are time-periodic solutions in

(1.2) BC(R;L3,∞) ∩ L2
uloc(R;L6,2)

for the same force f , and if one of them is small in L3,∞, then u = v. The same uniqueness
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theorem was proven in [12] and [13] for almost periodic-in-time solutions and backward

asymptotically almost periodic-in-time solutions, respectively. The second author [36, 37]

also proved similar uniqueness theorems for stationary solutions. In [37], he proved that

if u and v are stationary solutions in L3,∞ with ∇u,∇v ∈ L3/2,∞ for the same force f ,

and if u is small in L3,∞ and v ∈ L3 + L∞, then u = v.

Note that stationary as well as continuous time-periodic and almost periodic-in-time

L3,∞-solutions u have a precompact range R(u) = {u(t); t ∈ R} in L3,∞, see [5, Theorem

6.5]. Furthermore, there exist many functions which have a precompact range and are not

almost periodic, e.g. a sin(t2) for a 6= 0. Hence, the set of all functions having precompact

range is much larger than the set of all almost periodic functions. In the present paper, we

establish new uniqueness theorems for bounded continuous solutions having precompact

range on the whole time axis, which improve our previous results in [43, 12, 13, 36, 37].

We also consider the uniqueness of solutions with (1.1) and solutions in weighted L∞

spaces.

Our proof is based on an idea given by Lions-Masmoudi [29]. They proved the unique-

ness of Ln-solutions to the initial-boundary value problem of (N-S) by using the backward

initial-boundary value problem of dual equations. Of course, in the initial-boundary value

problem of (N-S), the initial condition u(0) = v(0) plays an important role in proving

w(t) := u(t)−v(t) = 0 for t > 0. In our problem, however, we cannot assume u(0) = v(0),

and hence, it is difficult to prove w ≡ 0 directly. A key point of our proof is to show

limj→∞ j−1
∫ 0

−j
‖w(t)‖2

L2(B)dt = 0 for any ball B, by using the method of dual equations.

Then, applying some uniqueness theorems on mild solutions, we can conclude w ≡ 0,

under some hypotheses.

Throughout this paper we impose the following assumption on the domain.

Assumption 1 Ω ⊂ R3 is an exterior domain, the half-space R3
+, the whole space R3, a

perturbed half-space, or an aperture domain with ∂Ω ∈ C∞.

For the definitions of perturbed half-spaces and aperture domains, see Kubo-Shibata

[28] and Farwig-Sohr [9, 10]. Let BC(I;X) denote the set of all bounded continuous

functions on an interval I with values in a Banach space X. The open ball in X with

center 0 and radius R > 0 will be denoted by BR(0) = BR.

Now our main results on uniqueness of mild L3,∞-solutions, to be defined in the next

section, read as follows:
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Theorem 1. Let Ω satisfy Assumption 1. There exists a constant δ(Ω) > 0 such that if

T ≤ ∞, u and v are mild L3,∞-solutions to (N-S) on (−∞, T ) for the same force f ,

u, v ∈ BC((−∞, T ); L̃3,∞
σ ),(1.3)

the range R(v) := {v(t); t ∈ (−∞, T )} is precompact in L3,∞(1.4)

and if

(1.5) lim sup
t→−∞

‖u(t)‖L3,∞ < δ,

then u ≡ v on (−∞, T ). Here L̃3,∞
σ = L3,∞

σ ∩ L∞
‖·‖L3,∞

.

Remark 1. (1) Since L∞ ∩ L3
σ is dense in L3

σ and L3
σ is continuously embedded in L3,∞

σ ,

we see that L̃3,∞
σ coincides with L3,∞

σ ∩ (L∞ + L3
σ)

‖·‖L3,∞
. Moreover, L̃3,∞

σ also coincides

with L3,∞
σ ∩ Lp

‖·‖L3,∞
for any p > 3.

(ii) Yamazaki [45] proved the existence of bounded continuous mild L3,∞-solutions u

on the whole time axis, if f can be written in the form f = ∇ · F , F ∈ BUC(R;L3/2,∞)

and F is sufficiently small. We note that, in addition to this smallness condition on F ,

if we assume f ∈ BC(R;L3,∞), then standard arguments easily prove that Yamazaki’s

small solution u belongs to L∞(R;L9)∩BC(R;L3,∞
σ ); see [12, Remark 2]. Then, u belongs

to BC(R; L̃3,∞
σ ), since L3,∞

σ ∩ L9 is dense in L̃3,∞
σ . Moreover, Yamazaki showed that if F

is almost periodic in L3/2,∞, then u is almost periodic in L3,∞. Since an almost periodic

function in L3,∞
σ has a precompact range in L3,∞

σ , Theorem 1 is applicable to his solution.

For the definition and properties of almost periodic functions in a Banach space, see [5].

(iii) In [12], the first and third authors proved a similar uniqueness theorem for almost

periodic mild L3,∞-solutions. Since it was assumed that both of u and v are almost

periodic and belong to (1.2) and since the class (1.3) is strictly larger than (1.2), Theorem

1 improves the result given in [12].

(iv) Condition (1.3) will be used only in the proofs of Lemmata 2.5 and 2.7. As will

be mentioned in the proofs of these lemmata, (1.3) can be replaced by the condition

u, v ∈ SI := {g = g1 + g2 ∈ BC(I;L3,∞
σ ) ; g2 ∈ C(I;L3,∞ ∩ L∞), sup

t∈I
‖g1(t)‖L3,∞ ≤ κ}

where I = (−∞, T ) and κ is a small constant depending only on Ω. Hence, we can prove

Theorem 1 without assuming condition (1.3), provided that v ∈ SI and supt<T ‖u‖L3,∞ <

min(δ, κ), instead of (1.5). From this observation, we notice that our uniqueness result

improves that in [37].
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Theorem 2. Let Ω satisfy Assumption 1. There exists a constant δ(Ω) > 0 with the

following property: Let R > 0, p > 3, T ≤ ∞, u and v be mild L3,∞-solutions to (N-S)

on (−∞, T ) for the same force f ,

u, v ∈ BC((−∞, T ); L̃3,∞
σ (Ω) ∩ Lp(Ω ∩BR)),

and let

lim sup
t→−∞

‖u(t)‖L3,∞ < δ.

Assume that either

(i) The range

(1.6)
{
v(t)

∣∣
ΩrBR

; t ∈ (−∞, T )
}

is precompact in L3,∞(Ω rBR),

or

(ii) there exists a function V (x) ∈ L3,∞(Ω rBR) such that

(1.7) lim sup
t→−∞

∥∥v(t) − V
∥∥

L3,∞(ΩrBR)
< δ.

Then u ≡ v on (−∞, T ).

The following corollaries are direct consequences of Theorem 2.

Corollary 1. Let Ω = R3, T ≤ ∞ and α > 1. If u, v are mild L3,∞-solutions to (N-S)

on (−∞, T ) for the same force f ,

u, v ∈ BC((−∞, T );Xα), lim sup
t→−∞

‖u(t)‖L3,∞ < δ,

then u ≡ v on (−∞, T ). Here Xα := {f ∈ L∞ ; ‖(1 + |x|)αf(x)‖L∞ <∞}.

It is straightforward to see that if v ∈ BC((−∞, T );Xα) for some α > 1, then v

belongs to BC((−∞, T );L3,∞ ∩ L∞) and satisfies (1.7) with V ≡ 0 for large R > 0.

Corollary 2. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C∞, T ≤ ∞, α > 1 and

p > 3. If u, v are mild L3,∞-solutions to (N-S) on (−∞, T ) for the same force f ,

u, v ∈ BC((−∞, T );L3,∞
σ ∩ Lp(Ω)), lim sup

t→−∞
‖u(t)‖L3,∞ < δ,

and if there exist r > 0, s ∈ (−∞, T ) and V ∈ L3,∞(Ω rBr) such that

(1.8) sup
t<s

sup
|x|>r

|x|α|v(x, t) − V (x)| <∞,

then u ≡ v on (−∞, T ).

5



For the proof note that L3,∞
σ ∩ Lp ⊂ L̃3,∞. Moreover, we see easily that if v satisfies

(1.8) for some α > 1, then (1.7) holds for sufficiently large R > r.

Remark 2. The existence of small mild solutions with property (1.8) was proven by

Kang-Miura-Tsai [21] if Ω is a 3D exterior domain with ∂Ω ∈ C∞ and under adequate

conditons on f . Moreover, if Ω = R3, the existence of small mild solutions in BC(R;Xα)

was also proven in [21] for 1 ≤ α < 2.

2 Preliminaries

In this section, we introduce some notation, function spaces and key lemmata. Let

C∞
0,σ(Ω) = C∞

0,σ denote the set of all C∞-real vector fields φ = (φ1, · · · , φn) with com-

pact support in Ω such that div φ = 0. Then Lr
σ, 1 < r < ∞, is the closure of C∞

0,σ with

respect to the Lr-norm ‖ · ‖r. Concerning Sobolev spaces we use the notations W k,p(Ω)

and W k,p
0 (Ω), k ∈ N, 1 ≤ p ≤ ∞. Note that very often we will simply write Lr and

W k,p instead of Lr(Ω) and W k,p(Ω), respectively. Let Lp,q(Ω), 1 ≤ p, q ≤ ∞, denote the

Lorentz spaces and ‖ · ‖p,q the norm (not quasi-norm) of Lp,q(Ω); for the definition and

properties of Lp,q(Ω), see e.g. [1]. The symbol (·, ·) denotes the L2- inner product and the

duality pairing between Lp,q and Lp′,q′ , where 1/p+1/p′ = 1 and 1/q+1/q′ = 1. We note

that Lp,∞ is norm equivalent to the weak-Lp space (Lp
w) and Lp,p is norm equivalent to Lp.

Moreover, when 1 < p < ∞ and 1 ≤ q < ∞, then the dual space of Lp,q is isometrically

isomorphic to Lp′,q′ .

In this paper, we denote by C various constants. In particular, C = C(∗, · · · , ∗)
denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: Lr(Ω) = Lr
σ ⊕ Gr (1 < r < ∞), where

Gr = {∇p ∈ Lr; p ∈ Lr
loc(Ω)}, see Fujiwara-Morimoto [14], Miyakawa [34], Simader-Sohr

[41], Borchers-Miyakawa [2], and Farwig-Sohr [9, 11]; Pr denotes the projection operator

from Lr onto Lr
σ along Gr. The Stokes operator Ar on Lr

σ is defined by Ar = −Pr∆ with

domain D(Ar) = W 2,r ∩W 1,r
0 ∩ Lr

σ. It is known that (Lr
σ)∗ (the dual space of Lr

σ) = Lr′
σ

and A∗
r (the adjoint operator of Ar) = Ar′ , where 1/r + 1/r′ = 1. It is shown by Giga

[17], Giga-Sohr [18], Borchers-Miyakawa [2] and Farwig-Sohr [9, 11] that −Ar generates a

uniformly bounded holomorphic semigroup {e−tAr ; t ≥ 0} of class C0 in Lr
σ. Since Pru =

Pqu for all u ∈ Lr ∩ Lq (1 < r, q < ∞) and since Aru = Aqu for all u ∈ D(Ar) ∩D(Aq),

for simplicity, we shall abbreviate Pru, Pqu as Pu for u ∈ Lr ∩Lq and Aru,Aqu as Au for
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u ∈ D(Ar) ∩D(Aq), respectively. By real interpolation, we define Lp,q
σ by

Lp,q
σ := [Lp0

σ , L
p1
σ ]θ,q

where 1 < p0 < p < p1 <∞, θ ∈ (0, 1), q ∈ [1,∞] satisfy 1/p = (1 − θ)/p0 + θ/p1.

Now, we define mild L3,∞-solutions to (N-S), following [24].

Definition 1 ([24]). Let T ≤ ∞ and f ∈ L1
loc(−∞, T ;D(Ap)

∗ + D(Aq)
∗) for some 1 <

p, q < ∞. A function v ∈ C((−∞, T );L3,∞
σ ) is called a mild L3,∞-solution to (N-S) on

(−∞, T ) if v satisfies

(2.1)

(v(t), φ) =
(
e−(t−s)Av(s), φ

)
+

∫ t

s

((
v(τ) · ∇e−(t−τ)Aφ, v(τ)

)
+ < f(τ), e−(t−τ)Aφ >

)
dτ

for all φ ∈ L
3/2,1
σ and all −∞ < s < t < T .

For a moment let us consider the case where
∫ t

s
< f(τ), e−(t−τ)Aφ > dτ converges as

s → −∞ for all φ ∈ L
3/2,1
σ . E.g., this holds true by (2.7) below when f = ∇ · F with

F = (Fij)i,j=1,2,3 ∈ L∞(−∞, T ;L
3/2,∞
σ ). Since moreover lim

s→−∞
e−(t−s)Aφ = 0 in L

3/2,1
σ ,

we conclude from Lemma 2.3 below that in this case (2.1) for v ∈ L∞(−∞, T ;L3,∞
σ ) is

equivalent to

(2.2) (v(t), φ) =

∫ t

−∞

(
(v · ∇e−(t−τ)Aφ, v)(τ)+ < f(τ), e−(t−τ)Aφ >

)
dτ

for all φ ∈ L
3/2,1
σ and all t < T . We also note that (2.2) is a weak form of

v(t) =

∫ t

−∞
e−(t−τ)AP (−v · ∇v + f)(τ) dτ.

In order to prove our main results, we recall properties of the Lorentz spaces, estimates

of the Stokes semigroup and several uniqueness theorems for mild solutions.

Lemma 2.1 (Kozono-Yamazaki [25]). Let p1, p2 ∈ (1,∞) with 1/r := 1/p1 + 1/p2 < 1

and let q ∈ [1,∞]. Then, for all f ∈ Lp1,∞(Ω) and g ∈ Lp2,q(Ω), it holds that

(2.3) ‖f · g‖r,q ≤ C‖f‖p1,∞‖g‖p2,q,

where C = C(p1, p2, q).

For u ∈ Ẇ 1,2
0 (Ω) = C∞

0 (Ω)
‖∇·‖2

it holds with an absolute constant C > 0 that

(2.4) ‖u‖6,2 ≤ C‖∇u‖2.
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Moreover, we mention the convolution estimate ‖ρ ∗ f‖p,q ≤ ‖ρ‖1‖f‖p,q, 1 < p <

∞, 1 ≤ q ≤ ∞, for functions ρ ∈ L1 and f ∈ Lp,q using the norm properties of ‖ · ‖p,q

including its translation invariance.

Lemma 2.2 (Shibata [39, 40]). For all t > 0 and φ ∈ Lq,s
σ , the following inequalities are

satisfied:

(2.5) ‖e−tAφ‖p,r ≤ Ct−3/2(1/q−1/p)‖φ‖q,s when

{
1 < q ≤ p <∞, r = s ∈ [1,∞],

1 < q < p <∞, r = 1, s = ∞,

(2.6)

‖∇e−tAφ‖p,r ≤ Ct−1/2−3/2(1/q−1/p)‖φ‖q,s when

{
1 < q ≤ p ≤ 3, r = s ∈ [1,∞],

1 < q < p ≤ 3, r = 1, s = ∞.

In the case where Ω is an exterior domain, Shibata [39, 40] proved (2.5) and (2.6)

for all r = s. If q < p, his estimates (2.5)-(2.6) with r = s and real interpolation yield

(2.5)-(2.6) even for r = 1, s = ∞. In the restricted case r = 1, Yamazaki [45] obtained

(2.6) also by a method different from [39, 40]. In the case where Ω is R3, R3
+, a perturbed

halfspace or an aperture domain, the usual Lq-Lp estimates for the Stokes semigroup and

real interpolation directly yield (2.5)-(2.6), since in this case the Lq-Lp estimates hold

for all 1 < q ≤ p < ∞. For details of Lq-Lp estimates for the Stokes semigroup, see

[44, 18, 20, 2, 3, 22, 39, 19, 28, 26].

Lemma 2.3 (Meyer [33], Yamazaki [45]). The following estimates∫ t

s

∣∣(F (τ),∇e−(t−τ)Aφ)
∣∣ dτ ≤ C(ess sup

s<τ<t
‖F‖3/2,∞)‖φ‖3/2,1,(2.7) ∫ t

s

∣∣(u · ∇e−(t−τ)Aφ,w)(τ)
∣∣ dτ ≤ C(ess sup

s<τ<t
‖u‖3,∞)(ess sup

s<τ<t
‖w‖3,∞)‖φ‖3/2,1(2.8)

hold for all F ∈ L∞(s, t;L3/2,∞), u,w ∈ L∞(s, t;L3,∞), φ ∈ L
3/2,1
σ (Ω) and all −∞ ≤ s < t,

where the constant C depends only on Ω.

In the case where Ω is an exterior domain, the whole space or halfspace, Yamazaki

[45] proved Lemma 2.3 by real interpolation. His proof is also valid in the case where Ω

is a perturbed halfspace or an aperture domain. In the case where Ω = R3 Meyer [33]

obtained Lemma 2.3 by a method different from [45].

The following lemma is direct consequence of Lemma 2.3 using the duality L3,∞
σ =

(L
3/2,1
σ )∗.
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Lemma 2.4 ([45]). There exists a constant ε0 = ε0(Ω) with the following property: Let

T ≤ ∞, u, v, w ∈ BC((−∞, T );L3,∞
σ ) and let w satisfy

(2.9) (w(t), φ) =

∫ t

−∞

((
w · ∇e−(t−τ)Aφ, u

)
(τ) +

(
v · ∇e−(t−τ)Aφ,w

)
(τ)

)
dτ

for all φ ∈ L
3/2,1
σ and all −∞ < t < T . Assume that

sup
−∞<t<T

‖u‖3,∞ + sup
−∞<t<T

‖v‖3,∞ < ε0.

Then, w(t) = 0 for all t ∈ (−∞, T ).

Lemma 2.5. Let T ≤ ∞. If u, v are mild L3,∞-solutions to (N-S) on (0, T ) for the same

force f , u(0) = v(0) and

(2.10) u, v ∈ BC([0, T ); L̃3,∞
σ ),

then

u = v on [0, T ).

Lemma 2.5 was essentially proven by Meyer [33], Yamazaki [45] and Lions-Masmoudi

[29]. See also Furioli, Lemarié-Rieusset and Terraneo [15], Cannone-Planchon [4], Mon-

niaux [35]. We note that Lemma 2.5 can be proven by using Lemma 2.3, cf. [13, Lemma

2.5]. For readers’ convenience, we give a sketch of the proof of Lemma 2.5. Since

u, v ∈ BUC([0, T ′]; L̃3,∞) for each fixed T ′ ∈ (0, T ) and since L∞ ∩ L3,∞
σ is dense in

L̃3,∞
σ , u and v can be decomposed into u = u1 + u2 and v = v1 + v2 with

u1, v1 ∈ BC([0, T ′];L3,∞
σ ), u2, v2 ∈ BC([0, T ′];L3,∞

σ ∩ L∞)

sup
0<τ<T ′

‖u1(τ)‖3,∞ ≤ κ, sup
0<τ<T ′

‖v1(τ)‖3,∞ ≤ κ,

KT ′ := sup
0<τ<T ′

‖u2(τ)‖∞ + sup
0<τ<T ′

‖v2(τ)‖∞ <∞

where κ = κ(Ω) > 0 is a sufficiently small number. Let w := u− v. Then w satisfies

(2.11) (w(t), φ) =

∫ t

0

((
w · ∇e−(t−τ)Aφ, u

)
(τ) +

(
v · ∇e−(t−τ)Aφ,w

)
(τ)

)
dτ.

Using Lemmata 2.2 and 2.3, we observe that the first term on the right-hand side of (2.11)

is bounded by∫ t

0

∣∣(w · ∇e−(t−τ)Aφ, u1

)∣∣(τ) dτ +

∫ t

0

∣∣(w · ∇e−(t−τ)Aφ, u2

)∣∣(τ) dτ
≤Cκ sup

0<τ<t
‖w‖3,∞‖φ‖3/2,1 + C

∫ t

0

‖w‖3,∞(t− τ)−
1
2‖φ‖3/2,1‖u2‖∞ dτ

≤C(κ+KT ′t1/2) sup
0<τ<t

‖w‖3,∞‖φ‖3/2,1
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for 0 < t ≤ T ′, where the constant C depends only on Ω. Since the second term on the

right-hand side of (2.11) can be estimated in the same way, by the duality L3,∞
σ = (L

3/2,1
σ )∗,

we have

sup
0<τ<t

‖w(τ)‖3,∞ ≤ 2C(κ+KT ′t1/2) sup
0<τ<t

‖w(τ)‖3,∞

for all 0 < t ≤ T ′. Hence, letting κ < 1
4C

and t0 = ( 1
8CKT ′

)2, we obtain w ≡ 0 on

[0,min(t0, T
′)]. Repeating this argument, we can also prove w ≡ 0 on [0, T ′], which proves

Lemma 2.5, since T ′ ∈ (0, T ) is arbitrary.

As can be seen from the above proof, condition (2.10) can be replaced by the condition

u, v ∈ SI with I = [0, T ). For the definition of SI , see Remark 1 (iv). See also [29, Remark

1.4.2] and [13].

Lemma 2.6. There exists a constant ε1(Ω) > 0 such that if T ≤ ∞, u, v are mild L3,∞-

solutions to (N-S) on (−∞, T ) for the same force f ,

u, v ∈ BC((−∞, T ); L̃3,∞
σ ),

lim sup
t→−∞

‖u(t)‖3,∞ < ε1 and lim inf
t→−∞

‖u(t) − v(t)‖3,∞ < ε1,

then

u = v on (−∞, T ).

Proof of Lemma 2.6. Since lim sup
t→−∞

‖u(t)‖3,∞ < ε1, there exists τ0 ∈ (−∞, T ) such that

sup
−∞<τ≤τ0

‖u(τ)‖3,∞ ≤ ε1.

Furthermore, for w = u−v, from the assumption lim inf
t→−∞

‖w(t)‖3,∞ < ε1, we see that there

exists a sequence {sj} such that

‖w(sj)‖3,∞ ≤ ε1, sj < τ0 and sj → −∞.

Let hs(t) := sup
s≤τ≤t

‖w(τ)‖3,∞ for s < t < T . Since w satisfies

(w(t), φ) =
(
e−(t−sj)Aw(sj), φ

)
+

∫ t

sj

{(
w(τ) · ∇e−(t−τ)Aφ, u(τ)

)
+

(
v(τ) · ∇e−(t−τ)Aφ,w(τ)

)}
dτ

(2.12)
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for all φ ∈ L
3/2,1
σ and since sup

sj≤τ≤t
‖v‖3,∞ ≤ sup

sj≤τ≤t
‖u‖3,∞ + hsj

(t), by Lemma 2.3 and the

duality L3,∞
σ = (L

3/2,1
σ )∗, we have

hsj
(t) ≤ C0

(
‖w(sj)‖3,∞ +

(
sup

sj≤τ≤t
‖u(τ)‖3,∞ + sup

sj≤τ≤t
‖v(τ)‖3,∞

)
hsj

(t)
)

≤ C0

(
ε1 + 2ε1hsj

(t) + h2
sj

(t)
)(2.13)

for sj < t ≤ τ0. Since hsj
(sj) = ‖w(sj)‖3,∞ ≤ ε1 and hsj

(t) is a continuous function,

it holds that hsj
(t) < 2(C0 + 1)ε1 for t sufficiently close to sj. Assume that hsj

(T∗) =

2(C0 + 1)ε1 for some T∗ ∈ (sj, τ0]. Let ε1 <
1

8(C0+1)2
. Then, (2.13) yields

hsj
(T∗) ≤ C0ε1(1 + 4(C0 + 1)ε1 + 4(C0 + 1)2ε1) < 2C0ε1,

which contradicts the above assumption. Hence

hsj
(τ0) < 2(C0 + 1)ε1.

As j → ∞, we obtain sup
−∞<t≤τ0

‖w(t)‖3,∞ ≤ 2(C0 + 1)ε1. Let ε1 <min( ε0
4(C0+1)

, 1
8(C0+1)2

),

where ε0 is a constant given in Lemma 2.4, i.e.,

sup
−∞<t≤τ0

‖u(t)‖3,∞ + sup
−∞<t≤τ0

‖v(t)‖3,∞ < ε0.

Since limj→∞(e−(t−sj)Aw(sj), φ) = limj→∞(w(sj), e
−(t−sj)Aφ) = 0 for all φ ∈ L

3/2,1
σ , using

Lemma 2.3 and (2.12), we easily see that w satisfies (2.9). Hence by Lemma 2.4, we have

u = v on (−∞, τ0]. Since u(τ0) = v(τ0), by Lemma 2.5, we even get that u = v on [τ0, T ),

which proves Lemma 2.6.

We note that, since condition (2.10) in Lemma 2.5 can be replaced by u, v ∈ SI

with I = [0, T ), the condition u, v ∈ BC((−∞, T ); L̃3,∞
σ ) in Lemma 2.6 can replaced by

u, v ∈ SI with I = (−∞, T ),

Finally, we come to the key lemma of the proof of uniqueness. If u and v are solutions

to the Navier-Stokes equations, then w := u− v satisfies

(U)


∂tw − ∆w + w · ∇u+ v · ∇w + ∇p′ = 0, t ∈ (−∞, T ), x ∈ Ω,

div w = 0, t ∈ (−∞, T ), x ∈ Ω,
w|∂Ω = 0.

Hence, if Ω is a bounded domain and if u, v belong to the Leray-Hopf class, under the

hypotheses of Theorem 1, the usual energy method and the Poincaré inequality yield
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‖w(t)‖2
2 ≤ e−c(t−s)‖w(s)‖2

2 for t > s. Letting s → −∞, we get w(t) = 0 for all t.

Consequently, in the case of bounded domains, Theorem 1 is obvious. In the case where

Ω is an unbounded domain, u and v do not belong to the energy class in general and

the Poincaré inequality does not hold in general. Hence, since we cannot use the energy

method, we will use the argument of Lions-Masmoudi [29].

We recall the dual equations of the above system (U), namely,

(D)


−∂tΨ −4Ψ −

3∑
i=1

ui∇Ψi − v · ∇Ψ + ∇π = h, t ∈ (−∞, 0), x ∈ Ω,

∇ · Ψ = 0, t ∈ (−∞, 0), x ∈ Ω,
Ψ|∂Ω = 0,
Ψ(0) = 0.

Lemma 2.7. There exists an absolute constant δ0 > 0 with the following property: Let

u, v ∈ BC((−∞, 0]; L̃3,∞
σ ), h ∈ BC((−∞, 0];L6/5 ∩ L2) and

sup
t≤0

‖u(t)‖3,∞ ≤ δ0.

Then there exists a unique solution Ψ ∈ L2
loc((−∞, 0];D(A2))∩W 1,2

loc ((−∞, 0];L2
σ) to (D)

such that

(2.14) ‖Ψ(t)‖2
2 +

∫ 0

t

‖∇Ψ‖2
2 dτ ≤ C

∫ 0

t

‖h‖2
6/5 dτ

for all t < 0. Here C is an absolute constant.

Remark 3. As can be seen from the proof below, Lemma 2.7 is valid for a general

unbounded uniform C2-domain Ω ⊂ R3. For the properties of the Stokes operator A2 in

a uniform C2-domain, see [42, 7].

Lemma 2.7 was essentially proven in [29]. For readers’ convenience, we give a proof.

Proof of Lemma 2.7. Let E0 be the 0-extension operator for functions defined on Ω ×
(−∞, 0] to functions on R3 × R, i.e., E0f := f if (x, t) ∈ Ω × (−∞, 0] and E0f := 0

otherwise. Then let uλ := ρλ(t) ∗t ρ̃λ(|x|) ∗x E0u for 0 < λ < 1, where ρλ(t) ∗t ρ̃λ(|x|)∗x is

the space-time mollifier defined via an even function 0 ≤ ρ ∈ C∞
0 (R) with

∫
ρ ds = 1 and

ρλ(τ) = 1
λ
ρ(τ/λ), ρ̃λ(x) = λ−3ρ̃(|x|/λ), λ > 0. Similarly vλ and hλ are defined. Then we

see that for each fixed λ > 0

uλ, vλ ∈ BC∞(R;W 1,∞ ∩ L3,∞), div vλ = 0 in Ω, hλ ∈ BC∞(R;L∞ ∩ L6/5)

sup
t<0

‖uλ(t)‖3,∞ ≤ sup
t<0

‖u(t)‖3,∞ ≤ δ0,

uλ, vλ → u, v in L4(τ, 0;L2 + L4), hλ → h in L2(τ, 0;L6/5 ∩ L2) as λ→ 0+

(2.15)
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for all τ < 0.

For any a ∈ L2
σ, the backward initial-boundary value problem

(D)λ


−∂tψ − ∆ψ −

3∑
i=1

ui
λ∇ψi − vλ · ∇ψ + ∇π = hλ, t < 0, x ∈ Ω,

∇ · ψ = 0, t < 0, x ∈ Ω,
ψ|∂Ω = 0,
ψ|t=0 = a,

has a unique solution ψλ ∈ C((−∞, 0];L2
σ) ∩ C((−∞, 0);D(A2)) ∩ C1((−∞, 0);L2

σ) with

|t|1/2∇ψλ ∈ L∞
loc((−∞, 0];L2). Indeed, by the usual iterative argument we observe that

the integral equation

ψλ(t) = etAa−
∫ 0

t

e(t−τ)AP
(
−

3∑
i=1

ui
λ∇ψi

λ − vλ · ∇ψλ − hλ

)
(τ) dτ , t < 0,

has a unique solution in C([−T∗, 0];L2
σ) with |t|1/2∇ψλ ∈ L∞(−T∗, 0;L2), where T∗ =

C 1
supt(‖uλ‖∞+‖vλ‖∞)2

is independent of a. Hence ψλ can be extended to a solution on

(−∞, 0). Since uλ, vλ ∈ C∞(R;L∞), by the above integral equation, for all α > 0 we have

−
∑3

i=1
ui

λ∇ψi
λ − vλ · ∇ψλ − hλ ∈ Cβ((−∞,−α);L2) for some β > 0. Consequently, ψλ

satisfies (D)λ in the strong sense and

ψλ ∈ C((−∞, 0];L2
σ) ∩ C((−∞, 0);D(A2)) ∩ C1((−∞, 0);L2

σ).

The usual energy calculation, the duality L6/5,2 = (L6,2)∗ and Lemma 2.1 yield

−1

2

d

dt
‖ψλ‖2

2 + ‖∇ψλ‖2
2 ≤

∥∥|uλ| |∇ψλ|
∥∥

6/5,2
‖ψλ‖6,2 + ‖hλ‖6/5‖ψλ‖6

≤M‖uλ‖3,∞‖∇ψλ‖2
2 +M‖hλ‖6/5‖∇ψλ‖2(2.16)

≤
(
Mδ0 +

1

4

)
‖∇ψλ‖2

2 +M2‖hλ‖2
6/5,

where M is an absolute constant. Let δ0 ≤ 1
4M

and a = 0. Then

(2.17) ‖ψλ(t)‖2
2 +

∫ 0

t

‖∇ψλ‖2
2 dτ ≤ C

∫ 0

t

‖hλ(τ)‖2
6/5 dτ for t < 0.

Let −∞ < s < 0. Since u, v ∈ BUC([s− 1, 0]; L̃3,∞
σ ) and L3,∞

σ ∩ L∞ is dense in L̃3,∞
σ ,

u, v can be decomposed into u = u1 + u2 and v = v1 + v2 with

u1, v1 ∈ BC([s− 1, 0];L3,∞
σ ), u2, v2 ∈ BC([s− 1, 0];L3,∞

σ ∩ L∞)

sup
s−1<τ<0

‖u1(τ)‖3,∞ ≤ κ, sup
s−1<τ<0

‖v1(τ)‖3,∞ ≤ κ,

Ks := sup
s−1<τ<0

‖u2(τ)‖∞ + sup
s−1<τ<0

‖v2(τ)‖∞ <∞
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where κ = κ(Ω) > 0 is a sufficiently small number. Then, with the space-time mollifica-

tions ui,λ, vi,λ of ui, vi, i = 1, 2, respectively, we see that

sup
s<τ<0

‖u1,λ(τ)‖3,∞ ≤ κ, sup
s<τ<0

‖v1,λ(τ)‖3,∞ ≤ κ, sup
s<τ<0

‖u2,λ‖∞ + sup
s<τ<0

‖v2,λ‖∞ ≤ Ks <∞.

The well-known L2-maximal regularity (cf. [42, Chap. IV, Theorem 1.6.3]) yields

(2.18)

∫ 0

s

(‖∂tψλ‖2
2 + ‖Aψλ‖2

2)dτ ≤ C

∫ 0

s

(∥∥ 3∑
i=1

ui
λ∇ψi

λ

∥∥2

2
+ ‖vλ · ∇ψλ‖2

2 + ‖hλ‖2
2

)
dτ.

Since there is a bounded extension mapping from W 1,2(Ω) to W 1,2(R3), by Lemma 2.1

we have ‖f‖L6,2(Ω) ≤ C‖f‖W 1,2(Ω) for all f ∈ W 1,2(Ω). Then,

C
∥∥|uλ| |∇ψλ|

∥∥2

2
≤ C‖u1,λ‖2

3,∞‖∇ψλ‖2
6,2 + C‖u2,λ‖2

∞‖∇ψλ‖2
2

≤ Cκ2‖∇ψλ‖2
6,2 + CK2

s‖∇ψλ‖2
2

≤ Cκ2(‖∇2ψλ‖2
2 + ‖∇ψλ‖2

2) + CK2
s‖∇ψλ‖2

2(2.19)

≤ Cκ2‖Aψλ‖2
2 + Cκ2‖ψλ‖2

2 + C(κ2 +K2
s )‖∇ψλ‖2

2,

where we used the fact that D(A2) ⊂ W 2,2(Ω). By analogy, we obtain

(2.20) C‖vλ · ∇ψλ‖2
2 ≤ Cκ2‖Aψλ‖2

2 + Cκ2‖ψλ‖2
2 + C(κ2 +K2

s )‖∇ψλ‖2
2.

By combining (2.17), (2.19) and (2.20) with (2.18) and letting Cκ2 ≤ 1/4, we observe

that ∫ 0

s

(‖∂tψλ‖2
2 + ‖Aψλ‖2

2) dτ ≤ C(Ω, s, u, v)

∫ 0

s

(‖ψλ‖2
2 + ‖∇ψλ‖2

2 + ‖hλ‖2
2) dτ

≤ C(Ω, s, u, v)

∫ 0

s

(‖hλ‖2
6/5 + ‖hλ‖2

2) dτ,

(2.21)

where the constant C is independent of λ > 0.

Hence there exist a sequence {λj} converging to 0+ as j → ∞ and a function Ψ ∈
L2

loc(−∞, 0;D(A2)) ∩W 1,2
loc (−∞, 0;L2

σ) with Ψ(0) = 0 such that

(2.22) ψλj
⇀ Ψ weakly in L2(s, 0;D(A2)) ∩W 1,2(s, 0;L2

σ) as j → ∞ for all s < 0.

Letting j → ∞, by (2.15) and (2.22), we see that Ψ satisfies (D) in the sense of distribu-

tions. In the same way as in (2.19)-(2.20), we have

3∑
i=1

ui∇Ψi + v · ∇Ψ ∈ L2(s, 0;L2(Ω)) for all s < 0.
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Hence we conclude that Ψ satisfies (D) in the strong sense. It is straightforward to see

that (2.17) yields (2.14), which proves Lemma 2.7. Finally, we note that the condition

u, v ∈ BC((−∞, 0]; L̃3,∞
σ ) can be clearly replaced by the condition u, v ∈ SI with I =

(−∞, 0].

3 Proof of Main Theorems

In this section, we prove Theorems 1 and 2. As in section 2 let w = u − v for two given

mild solutions u and v of (N-S). We first prove the following theorem:

Theorem 3. Let T ≤ ∞, u and v be mild L3,∞-solutions to (N-S) on (−∞, T ) for the

same force f ,

u, v ∈ BC((−∞, T ); L̃3,∞
σ ),

and let

(3.1) lim sup
t→−∞

‖u(t)‖3,∞ < δ0,

where δ0 is an absolute constant given in Lemma 2.7. Then there exists s0 < T such that

(3.2) lim
j→∞

1

j

∫ s0

−j+s0

‖w(τ)‖2
L2(Ω∩Br) dτ = 0 for all r > 0.

Moreover, there exists a sequence {tn} such that

(3.3) lim
n→∞

tn = −∞ and lim
n→∞

‖w(tn)‖L2(Ω∩Br) = 0 for all r > 0.

Remark 4. (i) Since supt<T ‖w(t)‖3,∞ < ∞ and since C0(Ω) is dense in L3/2,1(Ω), it is

straightforward to see that (3.3) implies

(3.4) w(tn) ⇀ 0 weakly-∗ in L3,∞(Ω) as n→ ∞.

(ii) If we assume that both of u and v are stationary or time-periodic in L3,∞, then

(3.2) directly yields w ≡ 0.

(iii) In order to prove Theorem 3, we use Lemma 2.7. Since the condition u, v ∈
BC((−∞, 0]; L̃3,∞

σ ) in Lemma 2.7 can be replaced by u, v ∈ SI with I = (−∞, 0], we

notice that the condition u, v ∈ BC((−∞, T ); L̃3,∞
σ ) in Theorem 3 can be also replaced

by u, v ∈ SI with I = (−∞, T ).
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Proof of Theorem 3. By (3.1), there exists s0 < T such that supt≤s0
‖u(t)‖3,∞ ≤ δ0. With-

out loss of generality, we may assume 0 < T and s0 = 0. Let j ∈ N. For −3j < t < T ,

let

w0(t) := e−(t+3j)Aw(−3j)

w1(t) := w(t) − w0(t).
(3.5)

Then, it holds that

(w1(t), φ) =

∫ t

−3j

(
(w · ∇e−(t−s)Aφ, u) + (v · ∇e−(t−s)Aφ,w)

)
ds

for all φ ∈ L
3/2,1
σ . By the duality L3/2,∞ = (L3,1)∗, Lemma 2.1 and Lemma 2.2, we have

for ϕ ∈ L3/2,1 ∩ L2

|(w1(t), ϕ)| =|(w1(t), Pϕ)|

≤
∫ t

−3j

∥∥∇e−(t−s)APϕ
∥∥

3,1
‖w ⊗ u+ v ⊗ w‖3/2,∞ ds

≤C
∫ t

−3j

(t− s)−
3
4‖ϕ‖2,∞‖w ⊗ u+ v ⊗ w‖3/2,∞ ds

≤C(t+ 3j)
1
4 sup
−∞<s<T

‖w(s)‖3,∞(‖u(s)‖3,∞ + ‖v(s)‖3,∞)‖ϕ‖2,

(3.6)

which implies w1(t) ∈ L2 for −3j < t < T and

(3.7) ‖w1(t)‖2 ≤ C(t+ 3j)
1
4 sup
−∞<s<T

‖w‖3,∞ sup
−∞<s<T

(‖u‖3,∞ + ‖v‖3,∞).

Furthermore we observe that w1 satisfies∫ 0

−j

(
(w1,−∂tψ − ∆ψ) − (w · ∇ψ, u) − (v · ∇ψ,w)

)
ds

= (w1(−j), ψ(−j)) − (w1(0), ψ(0))

(3.8)

for all ψ ∈ W 1,2(−j, 0;L2
σ) ∩ L2(−j, 0;D(A2)). Indeed, let G := v ⊗ w + w ⊗ u and

Gε := ρε ∗G ∈ BC((−∞, T );W 2,2(Ω) ∩ L3/2,∞(Ω)) where {ρε} is a usual family of space

mollifiers, and define

w1,ε(t) := −
∫ t

−3j

e−(t−s)AP∇ ·Gε(s) ds for − 3j < t < T.

Then in the same way as in the proof of (3.7), we have

(3.9) ‖w1,ε(t)‖2 ≤ C(t+ 3j)
1
4 sup
−∞<s<T

‖Gε‖3/2,∞ ≤ C(t+ 3j)
1
4 sup
−∞<s<T

‖G‖3/2,∞.
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Since (w1,ε(t), φ) =
∫ t

−3j
(Gε,∇e−(t−s)Aφ) ds and Gε(s) → G(s) weakly-∗ in L3/2,∞ for all

s < T , we see by Lebesgue’s theorem on dominated convergence that

(w1,ε(t), φ) →
∫ t

−3j

(
G,∇e−(t−s)Aφ

)
ds = (w1(t), φ) as ε→ 0+

for all t ∈ (−3j, T ) and φ ∈ L2
σ. Moreover, by (3.9), {w1,ε} is uniformly bounded in

L2(−3j, 0;L2
σ) and, consequently, there exists a sequence {εk} such that

εk → 0 + and w1,εk
⇀ w1 weakly in L2(−3j, 0;L2

σ) as k → ∞.

Since −P∇ · Gεk
∈ L2(−3j, 0;L2

σ), by L2-maximal regularity w1,εk
∈ W 1,2(−3j, 0;L2

σ) ∩
L2(−3j, 0;D(A2)) and d

dt
w1,εk

+ Aw1,εk
= −P∇ · Gεk

. Hence, for all test functions ψ ∈
W 1,2(−j, 0;L2

σ) ∩ L2(−j, 0;D(A2)),

(3.10)

∫ 0

−j

(
(w1,εk

,−∂tψ − ∆ψ) − (Gεk
,∇ψ)

)
ds = (w1,εk

(−j), ψ(−j)) − (w1,εk
(0), ψ(0)).

Since ∇ψ ∈ L2(−j, 0;L2 ∩ L6) ⊂ L2(−j, 0;L3,1), we obtain, as k → ∞, (3.8) from (3.10).

Let Ωr := Ω ∩B(0, r) for fixed r > 0 and

h(x, t) := w(x, t) · 1Ωr .

In order to show (3.2), we decompose −
∫ 0

−j
‖w(τ)‖2

L2(Ωr) dτ , the integral mean of ‖w(τ)‖2
L2(Ωr)

over the interval (−j, 0), into two terms as follows:

−
∫ 0

−j

‖w(τ)‖2
L2(Ωr) dτ = −

∫ 0

−j

(w(τ), h(τ)) dτ

= −
∫ 0

−j

(w0(τ), h(τ)) dτ + −
∫ 0

−j

(w1(τ), h(τ)) dτ =: I0 + I1.

We estimate I0 and I1 separately. Since Lemma 2.1 yields

(3.11) ‖h‖6/5 = ‖w · 1Ωr‖L6/5 ≤ C‖w‖3,∞‖1Ωr‖2,6/5 ≤ C‖w‖3,∞|Ωr|1/2,

from Lemma 2.2 we obtain

|I0| ≤ −
∫ 0

−j

‖w0(τ)‖6‖h‖6/5 dτ ≤ C−
∫ 0

−j

∥∥e−(τ+3j)Aw(−3j)
∥∥

6
‖w(τ)‖3,∞|Ωr|1/2 dτ

≤ C−
∫ 0

−j

(τ + 3j)−
1
4‖w(−3j)‖3,∞‖w(τ)‖3,∞|Ωr|1/2 dτ ≤ Cj−1/4 → 0

(3.12)

as j → ∞.
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Let Ψ be the solution to (D) with right-hand side h = w·1Ωr and initial value Ψ(0) = 0,

cf. Lemma 2.7. Then,

I1 = −
∫ 0

−j

(w1(τ), h(τ)) dτ

= −
∫ 0

−j

(
w1(τ),−∂tΨ − ∆Ψ −

3∑
i=1

ui∇Ψi − v · ∇Ψ + ∇π
)
dτ.

Since Ψ(0) = 0 and w1 ∈ L2(−j, 0;L2
σ) implies that

∫ 0

−j
(w1,∇π)dτ = 0, by (3.8) we

observe that

I1 =
1

j
(w1(−j),Ψ(−j))

+ −
∫ 0

−j

(
(w · ∇Ψ, u) + (v · ∇Ψ, w) − (w1,

3∑
i=1

ui∇Ψi + v · ∇Ψ)
)
dτ

=
1

j
(w1(−j),Ψ(−j)) + −

∫ 0

−j

(w0 · ∇Ψ, u) dτ + −
∫ 0

−j

(v · ∇Ψ, w0) dτ

=: J0 + J1 + J2.

By (2.14), (3.7) and (3.11), we have

|J0| =
1

j

∣∣(w1(−j),Ψ(−j))
∣∣ ≤ 1

j
‖w1(−j)‖2‖Ψ(−j)‖2

≤ 1

j
· Cj1/4 ·

{∫ 0

−j

‖h‖2
6/5 dτ

}1/2

≤ 1

j
· Cj1/4 · j1/2 → 0 as j → ∞.

Furthermore, by Lemmata 2.1 and 2.2, (2.14), (3.11) and the duality L6,2 = (L6/5,2)∗, we

have

|J1| =
∣∣∣−∫ 0

−j

(w0(τ) · ∇Ψ(τ), u(τ)) dτ
∣∣∣ =

∣∣∣−∫ 0

−j

(
e−(τ+3j)Aw(−3j) · ∇Ψ, u

)
dτ

∣∣∣
≤ −

∫ 0

−j

∥∥e−(τ+3j)Aw(−3j)
∥∥

6,2

∥∥|∇Ψ(τ)||u(τ)|
∥∥

6/5,2
dτ

≤ −
∫ 0

−j

(τ + 3j)−
1
4‖w(−3j)‖3,∞‖∇Ψ(τ)‖2‖u(τ)‖3,∞ dτ

≤ C
{
−
∫ 0

−j

(τ + 3j)−1/2dτ
}1/2{

−
∫ 0

−j

‖∇Ψ‖2
2 dτ

}1/2

≤ Cj−1/4
{
−
∫ 0

−j

‖h‖2
6/5 dτ

}1/2

≤ Cj−1/4 → 0
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as j → ∞. Similarly, we observe that J2 → 0 as j → ∞. Hence, we obtain I1 =

J0 + J1 + J2 → 0 so that by (3.12)

−
∫ 0

−j

‖w‖2
L2(Ωr) dτ = I0 + I1 → 0 as j → ∞,

which proves (3.2). It is straightforward to see that (3.2) implies

lim inf
t→−∞

‖w(t)‖L2(Ωr) = 0 for all r > 0.

Therefore, with r = n, we see that for all n = 1, 2, · · · , there exists tn such that

tn < −n, ‖w(tn)‖L2(Ωn) ≤ 1/n,

which implies (3.3).

Proof of Theorem 1. Let δ < ε1/4, where ε1 is a constant given in Lemma 2.6. In view of

Lemma 2.6, it suffices to show

(3.13) lim inf
t→−∞

‖w(t)‖3,∞ < ε1.

Let {tn} be the sequence given in Theorem 3. Due to the precompact range condition on

v, i.e., R(v) = {v(t) ; t < T} is precompact in L3,∞(Ω), there exist a subsequence {tnk
}

of {tn} and a function V (x) ∈ L3,∞(Ω) such that

(3.14) lim
k→∞

‖v(tnk
) − V ‖3,∞ = 0.

Since (3.4) implies w(tnk
) + V → V weakly-∗ in L3,∞(Ω), by (3.14) and the assumption

lim sup
t→−∞

‖u‖3,∞ < δ we have

(3.15) ‖V ‖3,∞ ≤ lim inf
k→∞

‖w(tnk
) + V ‖3,∞ ≤ lim sup

k→∞
‖u(tnk

) − (v(tnk
) − V )‖3,∞ < δ.

Therefore, since w = u− (v − V ) − V , we obtain

lim sup
k→∞

‖w(tnk
)‖3,∞ ≤ lim sup

k→∞
(‖u(tnk

)‖3,∞ + ‖v(tnk
) − V ‖3,∞ + ‖V ‖3,∞) < 2δ,

which proves (3.13).
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Proof of Theorem 2. Let δ be the constant given in Proof of Theorem 1 and let {tn} be

the sequence given in Theorem 3. Since, with ΩR = Ω ∩BR,

‖w(tn)‖L3,∞(ΩR) ≤ C‖w(tn)‖θ
L2(ΩR)‖w(tn)‖1−θ

Lp(ΩR)

holds for 1
3

= θ
2

+ 1−θ
p

, by (3.3) and the assumption u, v ∈ BC((−∞, T ;Lp(ΩR)), we have

(3.16) lim
n→∞

‖w(tn)‖L3,∞(ΩR) = 0.

Let E := Ω rBR.

(i) Assume that (1.6) holds. In the same way as in (3.14)-(3.15), from (3.4) and (1.6),

we observe that there exist a subsequence {tnk
} of {tn} and a function V (x) ∈ L3,∞(E)

such that limk→∞ ‖v(tnk
) − V ‖L3,∞(E) = 0 and consequently also that ‖V ‖L3,∞(E) < δ.

Then we conclude that

lim sup
k→∞

‖w(tnk
)‖L3,∞(E) ≤ lim sup

k→∞
(‖u(tnk

)‖L3,∞(E)+‖v(tnk
)−V ‖L3,∞(E)+‖V ‖L3,∞(E)) < 2δ.

This and (3.16) prove (3.13) and hence the first part of the theorem.

(ii) Assume that (1.7) holds. Since lim sup
n→∞

‖v(tn) − V ‖L3,∞(E) < δ and since (3.4)

implies w(tn) + V ⇀ V weakly-∗ in L3,∞(E), in the same way as in the proof of (3.15),

we obtain ‖V ‖L3,∞(E) < 2δ and

lim sup
n→∞

‖w(tn)‖L3,∞(E) ≤ lim sup
n→∞

(‖u(tn)‖L3,∞(E) + ‖v(tn) − V ‖L3,∞(E) + ‖V ‖L3,∞(E)) < 4δ.

This and (3.16) prove (3.13).
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