
INFLUENCE OF SURFACE ROUGHNESS TO SOLUTIONS
OF THE BOUSSINESQ EQUATIONS WITH ROBIN

BOUNDARY CONDITION

CHRISTIAN KOMO

Abstract. Every ’real existing’ domain Ω is covered by microscopic
asperities. We replace Ω by a sequence (Ωk)k∈N of domains with rough
boundaries where Ωk → Ω. Consider weak solutions (uk, θk) , k ∈ N, of
the Boussinesq equations in [0, T [×Ωk where the temperature θk satis-
fies a Robin boundary condition. Passing to the limit we will observe an
additional weight factor in the Robin boundary condition which reflects
the rugosity of the boundaries (∂Ωk)k∈N. Motivated by this observa-
tion, fix Λ ∈ L∞(∂Ω) ,Λ ≥ 1. We will construct domains (Ωk)k∈N and
weak solutions (uk, θk)k∈N of the Boussinesq equations in [0, T [×Ωk with
∂θk
∂N

+ (θk− ζ) = 0 on ]0, T [×∂Ωk converging to a weak solution (u, θ) in
[0, T [×Ω with ∂θ

∂N
+ Λ(θ− ζ) = 0 on ]0, T [×∂Ω; here ζ describes the ex-

ternal temperature. This result is essentially based on the construction
of some special gradient Young measures.

1. Introduction and main results

In this paper we consider the Boussinesq equations
ut −∆u+ u · ∇u+∇p = θg in ]0, T [×Ω ,

div u = 0 in ]0, T [×Ω ,

θt −∆θ + u · ∇θ = 0 in ]0, T [×Ω ,

u = u0 at t = 0 ,

θ = θ0 at t = 0 ,

(1.1)

in a domain Ω ⊆ Rn , n ∈ {2, 3}, and a finite time interval [0, T [. The
unknowns in (1.1) are u, θ, p, where u denotes the velocity of the fluid, θ
denotes the difference of the temperature to a fixed reference temperature
and p denotes the pressure. The following data are given: u0 , θ0 are the
initial values and g the gravitational force. To simplify the notation we
have set the density, kinematic viscosity and thermal conductivity to 1. The
Boussinesq equations constitute a model of motion of a viscous, incompress-
ible buoyancy-driven fluid flow coupled with heat convection; for further
information we refer to [20, 27]. Many researchers have investigated the
Boussinesq system, see e.g. [4, 9, 12, 17, 18, 19, 22] and papers cited there.
In this paper we supplement the Boussinesq system (1.1) with the no slip
boundary condition

u = 0 on ]0, T [×∂Ω (1.2)

2010 Mathematics Subject Classification. Primary: 35Q35; Secondary: 76D99.
Key words and phrases. Instationary Boussinesq equations; weak solutions; Robin

boundary condition; Young measures.
1



2 CHRISTIAN KOMO

and the Robin boundary condition
∂θ

∂N
+ Λ(θ − ζ) = 0 on ]0, T [×∂Ω (1.3)

where ζ denotes the exterior temperature on ∂Ω and where Λ : ∂Ω→]0,∞[
is a positive, scalar function describing the ratio of heat transfer to the
difference θ − ζ.

The effect of surface roughness to weak solutions of the Navier-Strokes
equations was observed in several papers. The common idea is that the
’physical’ domain Ω ⊆ R3 is covered by microscopic asperities and is there-
fore replaced by a sequence (Ωk)k∈N of domains with rough boundaries where
Ωk → Ω. It follows from the pioneering work [10] that for periodically,
smooth oscillating Ωk the complete slip boundary condition on ∂Ωk trans-
forms into the no slip boundary condition on ∂Ω if there is ’enough boundary
rugosity’. Introducing a Young measure which describes the character of os-
cillations of (∂Ωk)k∈N the authors in [6] removed the periodicity assumption
on Ωk. For further results and approaches we refer to [3, 5, 7, 8, 11].

In the present paper we want to investigate the influence of surface rough-
ness to weak solutions of the Boussinesq equations where the temperature
satisfies a Robin boundary condition. Consider n ∈ {2, 3}, and

Ω = { (x′, xn) ∈ Rn; xn > 0; x′ ∈ Rn−1 }. (1.4)

We replace the ’ideal’ domain Ω by the sequence (Ωk)k∈N of ’domains with
rough boundaries’ defined by

Ωk = { (x′, xn) ∈ Rn−1; xn > −hk(x′); x′ ∈ Rn−1} , k ∈ N , (1.5)

where (hk)k∈N are admissible functions, i.e. non-negative functions hk :
Rn−1 → R+

0 , k ∈ N, which are equi-Lipschitz continuous and hk → 0 uni-
formly on all compact subsets of Rn−1. By definition, the equi-Lipschitz
continuity means that there is a constant L > 0 such that

|hk(x′)− hk(y′)|
|x′ − y′|

≤ L ∀x′, y′ ∈ Rn−1 , x′ 6= y′ ∀k ∈ N.

It follows that (∇hk)k∈N is bounded in L∞(Rn−1). By Theorem 4.1 we
can assume (after a not relabelled subsequence) that (∇hk)k∈N generates a
Young measure ν = (νx′)x′∈Rn−1 .

Consider weak solutions (uk, θk) , k ∈ N, of the Boussinesq equations (1.1)
in [0, T [×Ωk satisfying the energy inequalities (1.11), (1.12) below and the
following boundary conditions:

uk = 0 ,
∂θk
∂N

+ (θk − ζ) = 0 on ]0, T [×∂Ωk. (1.6)

Let (u, θ) be a weak limit of (uk, θk)k∈N in [0, T [×Ω. In Theorem 1.2 we will
show that (u, θ) is a weak solution of (1.1) in [0, T [×Ω and

u = 0 ,
∂θ

∂N
+ Λ(θ − ζ) = 0 on ]0, T [×∂Ω (1.7)

where Λ : ∂Ω → [1,∞[ describes an additional heat transfer coefficient to
the exterior which is due to the rugosity of the boundaries. This function
can be computed using the Young measure ν, see (1.16).
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Motivated by this result, fix Λ ∈ L∞(∂Ω) ,Λ ≥ 1. In Theorem 1.3 we
will construct domains (Ωk)k∈N as in (1.5) and weak solutions (uk, θk)k∈N
of (1.1) in [0, T [×Ωk with (1.6) converging to a weak solution (u, θ) of (1.1) in
[0, T [×Ω with (1.7). This result makes essentially use of the Young measures
constructed in Theorem 4.3.

We need the following spaces of test functions:
C∞0 ([0, T [;C∞0,σ(Ω)) := {w|[0,T [×Ω; w ∈ C∞0 (]− 1, T [×Ω) ; divw = 0 } ,

C∞0 ([0, T [×Ω) := {φ|[0,T [×Ω ; φ ∈ C∞0 (]− 1, T [×Rn) }.

Motivated by the concept of a weak solution of the Navier-Stokes equations
in the sense of Leray-Hopf we arrive at the following

Definition 1.1. Let Ω ⊆ Rn , n ∈ {2, 3}, be a uniform Lipschitz domain, let
0 < T < ∞, g ∈ L∞(]0, T [×Ω), let ζ ∈ L2(0, T ;L2(∂Ω)), Λ ∈ L∞(∂Ω) with
Λ(x) ≥ 0 for almost all x ∈ ∂Ω. Further assume u0 , θ0 ∈ L2(Ω).
(i) A pair

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2
0,σ (Ω)) ,

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
(1.8)

is called a weak solution of the Boussinesq equations (1.1) with no slip bound-
ary condition (1.2) and Robin boundary condition (1.3) if

−
∫ T

0
〈u,wt〉Ω dt+

∫ T

0
〈∇u,∇w〉Ω dt+

∫ T

0
〈u · ∇u,w〉Ω dt

=

∫ T

0
〈θg, w〉Ω dt+ 〈u0, w(0)〉Ω

(1.9)

for all w ∈ C∞0 ([0, T [;C∞0,σ(Ω)) and

−
∫ T

0
〈θ, φt〉Ω dt+

∫ T

0
〈∇θ,∇φ〉Ω dt+

∫ T

0
〈u · ∇θ, φ〉Ω dt

= −
∫ T

0
〈Λ(θ − ζ), φ〉∂Ω dt+ 〈θ0, φ(0)〉Ω

(1.10)

for all φ ∈ C∞0 ([0, T [×Ω). In the identities above 〈·, ·〉Ω denotes the usual
L2-scalar product in Ω.
(ii) Consider a weak solution of (1.1) with (1.2), (1.3). Then (u, θ) satisfies
the energy inequalities if

1

2
‖u(t)‖22 +

∫ t

0
‖∇u‖22 dτ ≤

1

2
‖u0‖22 +

∫ t

0
〈θg, u〉Ω dτ , (1.11)

1

2
‖θ(t)‖22 +

∫ t

0
‖∇θ‖22 dτ +

∫ t

0
‖
√

Λ θ‖22,∂Ω dτ

≤ 1

2
‖θ0‖22 +

∫ t

0
〈Λζ, θ〉∂Ω dτ

(1.12)

are satisfied for almost all t ∈ [0, T [.

Consider a weak solution (u, θ) as above. After a redefinition on a null set
of [0, T [ we have that u : [0, T [→ L2

σ(Ω) and θ : [0, T [→ L2(Ω) are weakly
continuous functions and u(0) = Pu0 , θ(0) = θ0 where P : L2(Ω) → L2

σ(Ω)
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denotes the usual Helmholtz projection, see [23, IV, Lemma 2.4.2]. Further,
there exists a distribution p, called an associated pressure, such that

ut −∆u+ u · ∇u+∇p = θg

holds in the sense of distributions in ]0, T [×Ω, see [23, V.1.7]. Our first main
result reads as follows.

Theorem 1.2. Let n ∈ {2, 3}, let Ω , (Ωk)k∈N be as in (1.4), (1.5), and
0 < T < ∞. Further let g ∈ L∞(]0, T [×Rn) , ζ ∈ L2(0, T ;H1(Rn)), and
u0 , θ0 ∈ L2(Rn). Assume that (∇hk)k∈N generates the Young measure ν =
(νx′)x′∈Rn−1. For every k ∈ N let (uk, θk) be a weak solution of the Boussinesq
equations (1.1) in [0, T [×Ωk (with data g, ζ| ]0,T [×Ωk and u0, θ0|Ωk) satisfying
the energy inequalities (1.11), (1.12) (where Ω is replaced by Ωk) and

uk = 0 ,
∂θk
∂N

+ (θk − ζ) = 0 on ]0, T [×∂Ωk. (1.13)

Consider u , θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

uk ⇀∗
k→∞

u in L∞(0, T ;L2(Ω)) , uk ⇀
k→∞

u in L2(0, T ;H1(Ω)) ,

θk ⇀∗
k→∞

θ in L∞(0, T ;L2(Ω)) , θk ⇀
k→∞

θ in L2(0, T ;H1(Ω)).
(1.14)

Then (u, θ) is a weak solution of (1.1) in [0, T [×Ω (with data g, ζ| ]0,T [×Ω and
u0, θ0|Ω) satisfying

u = 0 ,
∂θ

∂N
+ Λ(θ − ζ) = 0 on ]0, T [×∂Ω (1.15)

where the function Λ : ∂Ω→ R fulfils

Λ(x′, 0) =

∫
Rn−1

√
1 + |λ|2 dνx′(λ) (1.16)

for almost all x = (x′, 0) ∈ ∂Ω with x′ ∈ Rn−1.

We proceed with the following theorem.

Theorem 1.3. Let n ∈ {2, 3}, let Ω := { (x′, xn) ∈ Rn; xn > 0 , x′ ∈ Rn−1 },
and 0 < T <∞. Further assume g ∈ L∞(]0, T [×Rn), ζ ∈ L2(0, T ;H1(Rn)),
and u0, θ0 ∈ L2(Rn). Let Λ : ∂Ω → [1,∞[ be a bounded, measurable func-
tion. If n = 3 we need additionally g ∈ L4(0, T ;L2(Rn)). Then there exist
admissible functions (hk)k∈N and domains (Ωk)k∈N defined as in (1.5) such
that the following properties are fulfilled:

• There exist weak solutions (uk, θk) , k ∈ N, of (1.1) in [0, T [×Ωk (with
data g, ζ| ]0,T [×Ωk and u0, θ0|Ωk) satisfying

uk = 0 ,
∂θk
∂N

+ (θk − ζ) = 0 on ]0, T [×∂Ωk. (1.17)

• There exists a weak solution (u, θ) of (1.1) in [0, T [×Ω (with data
g, ζ|]0,T [×Ω and u0, θ0|Ω) satisfying

u = 0 ,
∂θ

∂N
+ Λ(θ − ζ) = 0 on ]0, T [×∂Ω. (1.18)
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• We have
uk ⇀∗

k→∞
u in L∞(0, T ;L2(Ω)) , uk ⇀

k→∞
u in L2(0, T ;H1(Ω)) ,

θk ⇀∗
k→∞

θ in L∞(0, T ;L2(Ω)) , θk ⇀
k→∞

θ in L2(0, T ;H1(Ω)).

In the two-dimensional case we can use (see Theorem 3.1 (iii)) the uniqueness
of weak solutions of the Boussinesq equations (1.1) with (1.2), (1.3) to obtain
the following ’stronger version’ of Theorem 1.3.

Theorem 1.4. Let Ω := { (x′, x2) ∈ R2; x2 > 0 , x′ ∈ R }, let 0 < T <∞, let
g ∈ L∞(]0, T [×R2) , ζ ∈ L2(0, T ;H1(R2)), let u0 , θ0 ∈ L2(R2). Consider a
bounded, measurable function Λ : ∂Ω→ [1,∞[. Let (u, θ) be the unique weak
solution of (1.1) in [0, T [×Ω (with data g, ζ|]0,T [×Ω and u0, θ0|Ω) satisfying

u = 0 ,
∂θ

∂N
+ Λ(θ − ζ) = 0 on ]0, T [×∂Ω.

Then there exist admissible functions (hk)k∈N and domains (Ωk)k∈N defined
as in (1.5) such that if (uk, θk) , k ∈ N, denotes the unique weak solution
of (1.1) in [0, T [×Ωk (with data g, ζ| ]0,T [×Ωk and u0, θ0|Ωk) satisfying

uk = 0 ,
∂θk
∂N

+ (θk − ζ) = 0 on ]0, T [×∂Ωk

then
uk ⇀∗

k→∞
u in L∞(0, T ;L2(Ω)) , uk ⇀

k→∞
u in L2(0, T ;H1(Ω)) ,

θk ⇀∗
k→∞

θ in L∞(0, T ;L2(Ω)) , θk ⇀
k→∞

θ in L2(0, T ;H1(Ω)).

The paper is organized as follows. In Section 2 we present some preliminaries.
The following section investigates existence and uniqueness of weak solutions
of (1.1) with (1.2), (1.3). In Section 4 we present the needed results from the
theory of Young measures and construct some ’special gradient Young mea-
sures’. After some preparation in Section 5 we prove Theorem 1.2. Finally,
Section 7 is dedicated to the proof of Theorem 1.3.

2. Preliminaries

Let Ω ⊆ Rn , n ∈ N, be an open set, let 1 ≤ p ≤ ∞ , k ∈ N. We denote by
Lp(Ω),W k,p(Ω),W k,p

0 (Ω) the usual Lebesgue and Sobolev spaces with norm
‖ · ‖Lp(Ω) = ‖ · ‖p and ‖ · ‖Wk,p(Ω), respectively. We set Hk(Ω) := W k,2(Ω)

and Hk
0 (Ω) := W k,2

0 (Ω) . Furthermore H−1(Ω) := H1
0 (Ω)′. For s ∈ R+ \ N

let W s,2(Ω) denote the usual Sobolev-Slobodeckij space, see [25, Definition
II.3.1]. Looking at [25, Satz II.5.3, Satz II.5.4 and Satz II.7.9 ] we get that
for a bounded Lipschitz domain Ω ⊆ Rn and 0 ≤ s2 < s1 ≤ 1 the imbedding

W s1, 2(Ω) ↪→W s2, 2(Ω) (2.1)

is compact. For two measurable functions f, g with the property f ·g ∈ L1(Ω)
where f · g means the usual scalar product of scalar, vector or matrix fields,
we set 〈f, g〉Ω :=

∫
Ω f(x) · g(x) dx. Note that (in general) the symbol Lp(Ω)

etc. will be used for spaces of scalar, vector or matrix-valued functions.
By v ⊗ v = (vivj)

n
i,j=1 we denote the usual tensor product of v ∈ Rn. Let

Cm(Ω) ,m = 0, 1, . . . ,∞, denote the usual space of functions for which all
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partial derivatives of finite order |α| ≤ m exist and are continuous and let
Cm(Ω) := {φ|Ω;φ ∈ Cm(Rn)}. As usual, Cm0 (Ω) is the set of all func-
tions from Cm(Ω) with compact support in Ω and let C∞0 (]0, T [×Ω) de-
note the space of smooth function with compact support in ]0, T [×Ω. Fur-
ther we introduce C∞0,σ(Ω) := { v ∈ C∞0 (Ω); div v = 0 } as the space of
smooth solenoidal vector fields. For 1 < q < ∞ we define the spaces
Lqσ(Ω) := C∞0,σ(Ω)

‖·‖q and W 1,2
0,σ (Ω) := C∞0,σ(Ω)

‖·‖W1,2 . For 1 ≤ q ≤ ∞
let q′ be the dual exponent such that 1

q + 1
q′ = 1. It is well known that

Lqσ(Ω)′ ∼= Lq
′
σ (Ω) , 1 < q < ∞, using the standard pairing 〈·, ·〉Ω. Given a

Banach space X and an interval ]0, T [ , 0 < T <∞, we denote by Lp(0, T ;X)
the Banach space of (equivalence classes) of strongly measurable functions

f :]0, T [→ X such that‖f‖p :=
(∫ T

0 ‖f(t)‖pX dt
) 1
p
< ∞ if 1 ≤ p < ∞ and

‖f‖∞ := ess supt∈]0,T [‖f(t)‖X , if p = ∞. If X = Lq(Ω) , 1 ≤ q ≤ ∞, the
norm in the space Lp(0, T ;Lq(Ω)) is denoted by ‖ · ‖q,p;Ω;T .

Let Ω ⊆ Rn , n ≥ 2, be a uniform Lipschitz domain (see f. ex. [1, 4.9].) Let
dS denote the surface measure on ∂Ω. The space L2(∂Ω) should denote the
usual Lebesgue space on ∂Ω with scalar product 〈·, ·〉∂Ω. If Ω is bounded and
0 < s < 1 we define the trace space W s,2(∂Ω) as in [23, I.3.6]. Further (see
[25, Satz II.8.7]) for 1

2 < s ≤ 1 there exists a continuous, linear trace operator
T : W s,2(Ω) → W s− 1

2
,2(∂Ω) with the property Tφ = φ|∂Ω for φ ∈ C1(Ω).

When there is no possibility of confusion we will identify φ ∈ W s,2(Ω) with
its trace and just write φ instead of φ|∂Ω := Tφ.

Further if (Xn)n∈N is a sequence of Banach spaces we will write that a
sequence vn ∈ Xn, n ∈ N, is bounded in (Xn)n∈N if there is a constantM > 0
such that ‖vn‖Xn ≤M for all n ∈ N.

3. Existence and uniqueness of weak solutions

The following theorem is needed for the construction of the weak solutions
stated in Theorems 1.3, 1.4. It is not known whether weak solutions of (1.1)
are uniquely determined if n = 3 since the corresponding problem for the
Navier-Stokes equations is not solved.

Theorem 3.1. Let Ω ⊆ Rn , n ∈ {2, 3}, be a uniform Lipschitz domain, let
0 < T < ∞, g ∈ L∞(]0, T [×Ω), let ζ ∈ L2(0, T ;L2(∂Ω)) ,Λ ∈ L∞(∂Ω) with
Λ(x) ≥ 0 for almost all x ∈ ∂Ω. Further assume u0 , θ0 ∈ L2(Ω). Then the
following statements are satisfied:

(i) There exists a weak solution of the Boussinesq equations of (1.1) with
boundary conditions (1.2), (1.3).

(ii) If n = 3 and if additionally g ∈ L4(0, T ;L2(Ω)) holds then there
exists a weak solution of (1.1) with (1.2), (1.3) satisfying the energy
inequalities (1.11), (1.12) for a.a. t ∈ [0, T [.

(iii) If n = 2 there exists exactly one weak solution (u, θ) of the Boussinesq
equations (1.1) with (1.2), (1.3). After a redefinition on a null set of
[0, T [ we have that u : [0, T [→ L2

σ(Ω) , θ : [0, T [→ L2(Ω) are strongly
continuous and the energy equalities are satisfied, i.e. (1.11), (1.12)
hold as equality for all t ∈ [0, T [.
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The most parts of the proof of this theorem are based on well known argu-
ments. Therefore we will only give a sketch of proof and focus on the parts
of the proof which are not standard, i.e. (3.4) and statement (ii).
Sketch of proof. Choose linearly independent vectors wk ∈ C∞0,σ(Ω), k ∈

N, such that span{wk; k ∈ N} is dense in W 1,2
0,σ (Ω) and 〈wi, wj〉 = δi,j for

i, j ∈ N. Further, choose linearly independent vectors ψk ∈ C∞0 (Ω) , k ∈ N,
such that span{ψk; k ∈ N} is dense in H1(Ω) and 〈ψi, ψj〉Ω = δi,j for i, j ∈ N.

Fix k ∈ N. Using the well known Galerkin procedure and existence theory
for ordinary differential equations we can prove (see [24, Chapter 3, Theo-
rem 3.1], respectively [19, Theorem 1]) that there exist unique functions
uk(t) :=

∑k
i=1 αi,k(t)wi and θk(t) :=

∑k
i=1 βi,k(t)ψi which satisfy the finite

dimensional Galerkin approximation system

d

dt
〈uk, wi〉Ω + 〈∇uk,∇wi〉Ω + 〈uk · ∇uk, wi〉Ω = 〈θkg, wi〉Ω (Gal1)

for a.a. t ∈]0, T [ , ∀i = 1, . . . , k ,

d

dt
〈θk, ψl〉Ω + 〈∇θk,∇ψl〉Ω + 〈uk · ∇θk, ψl〉Ω + 〈Λ(θk − ζ), ψl〉∂Ω = 0

(Gal2)
for a.a. t ∈]0, T [ , ∀l = 1, . . . , k ,

uk(0) =
k∑
i=1

〈u0, wi〉Ωwi , (Gal3)

θk(0) =

k∑
i=1

〈θ0, ψi〉Ω ψi. (Gal4)

Further, there exists a (not relabelled) subsequence (uk, θk)k∈N and (u, θ)
such that

uk ⇀∗
k→∞

u in L∞(0, T ;L2(Ω)) , uk ⇀
k→∞

u in L2(0, T ;W 1,2
0,σ (Ω)) , (3.1)

θk ⇀∗
k→∞

θ in L∞(0, T ;L2(Ω)) , θmk ⇀
k→∞

θ in L2(0, T ;H1(Ω)). (3.2)

Analogously as in [24, Chapter 3, Theorem 3.1] it follows that for 0 < γ < 1
4

the sequence
(∫

R |τ |
2γ‖θ̂k(τ)‖22,Ω dτ

)
k∈N

is bounded where θ̂k : R → L2(Ω)

denotes the Fourier transform of 1[0,T [θk. Fix a bounded Lipschitz domain
G ⊆ Ω and 1

2 < s < 1. Consequently, (see 2.1)) the imbeddings

H1(G) ↪→
compact

W s,2(G) ↪→
continuous

L2(G) , (3.3)

and Theorem [24, Chapter 3, Theorem 2.2] imply that (θk)k∈N contains a
strongly convergent subsequence in L2(0, T ;W s,2(G)). Due to the continuous
trace operator W s,2(Ω)→ L2(∂Ω)) it follows

θk →
k→∞

θ strongly in L2(0, T ;L2(G)) ∩ L2(0, T ;L2(∂G)). (3.4)

A similar argumentation as above (see also [24, III, (3.41)]) shows

uk →
k→∞

u strongly in L2(0, T ;L2(G)). (3.5)
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Using (Gal1)- (Gal4) and (3.1), (3.2), (3.4), (3.5) we can prove that (u, θ) is
a weak solution of (1.1) with (1.2), (1.3).
Proof of (ii). The crucial point in the proof of (1.11) is to show

lim
k→∞

∫ t

0
〈θkuk, g〉Ω dτ =

∫ t

0
〈θu, g〉Ω dτ (3.6)

for a.a. t ∈ [0, T [. Sobolev’s imbedding theorem implies that (θkuk)k∈N is
bounded in L4/3(0, T ;L2(Ω)). Looking at (3.4), (3.5) it follows θkuk ⇀ θu in
L4/3(0, T ;L2(Ω)). Now we make use of the assumption g ∈ L4(0, T ;L2(Ω))
to obtain (3.6). From (Gal1), (Gal3) we get

1

2
‖uk(t)‖22 +

∫ t

0
‖∇uk‖22 dτ =

1

2
‖u0‖22 +

∫ t

0
〈θkg, uk〉Ω dτ (3.7)

for all k ∈ N and t ∈ [0, T [. By (3.6), (3.7) and (3.1), (3.5) it follows
that (1.11) is satisfied for almost all t ∈ [0, T [. Using (3.1), (3.2), (3.4) we
can show in a standard way that (1.12) is fulfilled for a.a. t ∈ [0, T [.
Proof of (iii). This can be shown using the ideas presented in [24,

Chapter 3, Section 3.3] in a standard way. �

4. Young measures

Our main tool to analyse the boundary behaviour of weak solutions of the
Boussinesq equations is the theory of Young measures. Theorem 4.1 deals
with the existence of Young measures generated by bounded sequences in
L∞(Ω). Afterwards, we will construct some ’special gradient Young mea-
sures’ which will be needed for the existence of the domains with rough
boundaries stated in Theorem 1.3 and Theorem 1.4.

Consider n , d ∈ N and a measurable set Ω ⊆ Rn. A Carathéodory function
is a function ψ : Ω × Rd → R such that for almost all x ∈ Ω the function
ψ(x, ·) : Rd → R is a continuous function and for all λ ∈ Rd the function
ψ(·, λ) : Ω → R is measurable. We denote by B(Rd) the σ-algebra of Borel
sets on Rd, define C0(Rd) := {φ ∈ C(Rd); limλ→∞ φ(λ) = 0 }. A Young
measure ν = (νx)x∈Ω is a family of probability measures on (Rd,B(Rd)) such
that for all φ ∈ C0(Rd) the function

Ω→ R , x 7→
∫
Rd
φ(λ) dνx(λ)

is measurable. We will use the notation ν = (νx)x∈Ω. Consider measurable
function zk : Ω → Rd , k ∈ N. We say that (zk)k∈N generates the Young
measure ν = (νx)x∈Ω if for all φ ∈ C0(Rd) we have

φ(zk) ⇀∗
k→∞

φ in L∞(Ω) (4.1)

where

φ(x) :=

∫
Rd
φ(λ) dνx(λ) for a.a. x ∈ Ω. (4.2)

We proceed with the following theorem which plays a crucial role in this
paper. For a proof we refer to [2, Section 2]. We remark that ψ(·, zmk(·)) is
an abbreviation for the function x 7→ ψ(x, zmk(x)) , x ∈ A.
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Theorem 4.1. Let n, d ∈ N, let Ω ⊆ Rn be a measurable set, let zk :
Ω → Rd , k ∈ N, be measurable functions, assume that (zk)k∈N is bounded
in L∞(Ω). Then there exist a subsequence (zmk)k∈N and a Young measure
ν = (νx)x∈Ω such that the following properties are satisfied:

(i) The sequence (zmk)k∈N generates ν.
(ii) There is a compact subset K ⊆ Rd with supp(νx) ⊆ K for a.a. x ∈ Ω.
(iii) Let A ⊆ Ω be a measurable set, let ψ : A×Rd → R be a Carathéodory

function with the property that
(
ψ(·, zmk(·))

)
k∈N is a weakly conver-

gent sequence in L1(A). Then ψ(x, ·) is integrable with respect to νx
for a.a. x ∈ A. Define

ψ(x) :=

∫
Rd
ψ(x, λ) dνx(λ) for a.a. x ∈ A.

Then ψ ∈ L1(A) and

ψ(·, zmk(·)) ⇀
k→∞

ψ in L1(A).

The rest of this section is dedicated to the proof of Theorem 4.3 below. First,
we consider the ’homogeneous case’ of this theorem.

Lemma 4.2. Let Ω ⊆ Rn , n ∈ N, be a bounded Lipschitz domain, let z ∈ Rn.
Define the (homogeneous) Young measure ν = (νx)x∈Ω by

νx :=
1

2

(
δz + δ−z

)
, x ∈ Ω.

Then there exist non-negative functions uk : Ω → R+
0 , k ∈ N, fulfilling the

following properties:
(i) The sequence (uk)k∈N is bounded in W 1,∞(Ω) with uk|∂Ω = 0 and

(∇uk)k∈N generates ν.
(ii) There holds uk → 0 strongly in L∞(Ω) as k → ∞ and ‖∇uk‖∞ ≤

3
2 |z| for all k ∈ N.

Proof. Step 1. Define for x ∈ [0, 1[

χ(x) :=

{
1 , x ∈ [0, 1

2 ] ,

−1 , x ∈]1
2 , 1[ ,

and extend χ by periodicity to all of R. Introduce

h : Rn → R , h(x) := 1 +

∫ x·z

0
χ(s) ds.

Then ∇h(x) = χ(x · z)z for almost all x ∈ Rn. Define

wk(x) :=
1

k
h(kx) =

1

k
+

1

k

∫ kx·z

0
χ(s) ds , x ∈ Rn.

Consequently ∇wk(x) = χ(kx · z)z for almost all x ∈ Rn. There holds
‖wk‖∞ ≤ 2

k , k ∈ N, and therefore wk → 0 strongly in L∞(Ω) as k → ∞.
Moreover wk ∈ W 1,∞(Ω) and ‖∇wk‖∞ = |z|. In the following we will show
that (∇wk)k∈N generates ν. For φ ∈ C0(Rn) we introduce

f : Rn → R , f(x) := φ(χ(x · z)z).



10 CHRISTIAN KOMO

Define fk : Rn → R , fk(x) := f(kx) for every k ∈ N. By the Riemann-
Lebesgue Lemma, see [13, Theorem 2.6], we get

fk ⇀∗
k→∞

f in L∞(Ω) (4.3)

where f : Ω→ R denotes the constant function with f(x) := 1
2(φ(z)+φ(−z))

for every x ∈ Ω. The definition of ν implies∫
Rn
φ(λ) dνx(λ) =

1

2
(φ(z) + φ(−z)) (4.4)

for all x ∈ Ω. Combining (4.3), (4.4) yields

φ(∇wk) ⇀∗
k→∞

(
x 7→

∫
Rn
φ(λ) dνx(λ)

)
in L∞(Ω)

for a.a. x ∈ Ω. Therefore (∇wk)k∈N generates ν.
Step 2. We have to modify the sequence (wk)k∈N such that additionally

wk|∂Ω = 0. We follow the ideas presented in [21, Lemma 8.3]. Let ηk ∈ C1(Ω)
be a sequence of cut-off functions with 0 ≤ ηk ≤ 1 such that:

1. ηk(x) = 0 if x ∈ ∂Ω .
2. ηk(x) = 1 if x ∈ Ω with dist(x, ∂Ω) > 1

k .
3. We have |∇ηk(x)| ≤ ck for all x ∈ Ω , k ∈ N, with c = c(Ω) > 0.

For j, k ∈ N define

wj,k(x) := ηk(x)wj(x) for a.a. x ∈ Ω , (4.5)

so that wj,k|∂Ω = 0 and ∇wj,k(x) = ηk(x)∇wj(x) + wj(x)∇ηk(x) for a.a.
x ∈ Ω. Choose a strictly increasing sequence (jk)k∈N of natural numbers
jk ∈ N , k ∈ N, such that ‖wjk,k‖∞ ≤

1
k3
, k ∈ N, and define uk := wjk, k for

k ∈ N. Then

‖∇uk‖∞ ≤ ‖∇wjk‖∞ + ‖wjk‖∞‖∇ηk‖∞ ≤ ‖∇wjk‖∞ + c
1

k2
. (4.6)

By (4.5), (4.6) we get that (uk)k∈N is bounded in W 1,∞(Ω) and uk → 0
strongly in L∞(Ω) as k →∞. From∣∣{x ∈ Ω;∇uk(x) 6= ∇wjk(x)

}∣∣ ≤ ∣∣{x ∈ Ω; dist(x, ∂Ω) ≤ 1

k

}∣∣ →
k→∞

0

and [21, Lemma 6.3] it follows that (∇uk)k∈N generates ν. Due to (4.6) we
can choose a subsequence (lk)k∈N of (jk)k∈N with ‖∇ulk‖∞ ≤

3
2 |z| for all

k ∈ N. Altogether, (ulk)k∈N satisfies (i), (ii). �

Now we have all ingredients at hand to prove the following

Theorem 4.3. Let Ω ⊆ Rn , n ∈ N, be an arbitrary open set, let z : Ω→ Rn
be a bounded, measurable function. Define the Young measure ν = (νx)x∈Ω

by

νx :=
1

2

(
δz(x) + δ−z(x)

)
, x ∈ Ω. (4.7)

Then there exist non-negative functions uk : Ω → R+
0 , k ∈ N, such that

(uk)k∈N is bounded in W 1,∞(Ω), we have that (∇uk)k∈N generates ν and
uk → 0 strongly in L∞(Ω) as k →∞.
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Proof. Choose a sequence (hi)i∈N ⊆ C∞0 (Ω) which is dense in L1(Ω) and a
sequence (φj)j∈N ⊆ C0(Rn) which is dense in C0(Rn). Define for j ∈ N

φj(x) :=

∫
Rn
φj(λ) dνx(λ) =

1

2

(
φj(z(x)) + φj(−z(x))

)
for a.a. x ∈ Ω.

(4.8)
Step 1. Define the set

A :=
⋂
j∈N

{
x ∈ Ω; lim

r↘0

1

|B(x, r)|

∫
B(x,r)

|φj(y)− φj(x)| dy = 0
}
.

It is easily verified that A ⊆ Ω is measurable. By Lebesgue’s differentiation
theorem we have |Ω \A| =0. For k ∈ N define

Ok :=
{
B(x, r) ⊆ Ω such that x ∈ A , 0 < r <

1

k
satisfy

1

|B(x, r)|

∫
B(x,r)

|φj(y)− φj(x)| dy ≤ 1

k
for all j = 1, . . . , k

}
.
(4.9)

By Vitali’s covering theorem (see [15, Theorem 1.150 and Remark 1.151])
there exist for every k ∈ N a countable set Ik ⊆ N and pairwise disjoint
B(xk,l, rk,l) ∈ Ok , l ∈ Ik, such that∣∣A \ ⋃

l∈Ik

B(xk,l, rk,l)
∣∣ = 0.

To simplify the notation assume Ik = N , k ∈ N. Fix j ∈ N and h ∈
C∞0 (Ω). Without loss of generality assume supp(h) 6= ∅. Define δ :=
dist(supp(h),Rn \ Ω) if Ω 6= Rn and δ := 1 if Ω = Rn. Introduce

D := {x ∈ Ω; dist(supp(h), x) <
δ

2
} ,

Mk := { l ∈ N; supp(h) ∩B(xk,l, rk,l) 6= ∅ } , k ∈ N.

For all k ∈ N with k > max{4
δ , j} it follows with (4.9)∣∣∣∫

Ω
h(x)φj(x) dx−

∑
l∈N

φj(xk,l)

∫
B(xk,l,rk,l)

h(x) dx
∣∣∣

≤ ‖h‖∞
∑
l∈Mk

∫
B(xk,l,rk,l)

|φj(x)− φj(xk,l)| dx

≤ ‖h‖∞
∑
l∈Mk

1

k
|B(xk,l, rk,l)|

≤ 1

k
‖h‖∞|D|.

Passing to the limit in the inequality above yields∫
Ω
h(x)φj(x) dx = lim

k→∞

∑
l∈N

φj(xk,l)

∫
B(xk,l,rk,l)

h(x) dx (4.10)

for all h ∈ C∞0 (Ω) , j ∈ N. For k, l ∈ N define the homogeneous Young
measure

νk,l(x) := νxk,l for all x ∈ B(xk,l, rk,l).
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Step 2. In this step we will define functions uk : Ω → R+
0 , k ∈ N, with

uk → 0 strongly in L∞(Ω) as k →∞ and ‖∇uk‖∞ ≤ 3
2‖z‖∞ , k ∈ N, in such

a way that

lim
k→∞

∑
l∈N

∫
B(xk,l,rk,l)

hi(x)φj(∇uk(x)) dx = lim
k→∞

∑
l∈N

φj(xk,l)

∫
B(xk,l,rk,l)

hi(x) dx

(4.11)
for all i, j ∈ N.

Fix k, l ∈ N. In the following uk will be defined on B(xk,l, rk,l). Use
Lemma 4.2 to obtain functions zk,lm : B(xk,l, rk,l)→ R+

0 ,m ∈ N, such that:

(i) (zk,lm )m∈N is bounded inW 1,∞(B(xk,l, rk,l)), we have z
k,l
m → 0 strongly

in L∞(Ω) as m→∞ and zk,lm |∂B(xk,l,rk,l) = 0, m ∈ N.
(ii) (∇zk,lm )m∈N generates νk,l and ‖∇zk,lm ‖∞ ≤ 3

2‖z‖∞ for all m ∈ N.
Thus

lim
m→∞

∫
Ω
h(x)φ(∇zk,lm (x)) dx = φ(xk,l)

∫
Ω
h(x) dx (4.12)

for all h ∈ L1(Ω) and φ ∈ C0(Rn). Choose m = m(k, l) ∈ N (see (4.12))
such that ‖zk,lm(k,l)‖∞ ≤

1
k and that∣∣∣∫

B(xk,l,rk,l)
hi(x)φj(∇zk,lm(k,l)(x)) dx− φj(xk,l)

∫
B(xk,l,rk,l)

hi(x) dx
∣∣∣ ≤ 1

2lk

(4.13)
is satisfied for all i, j = 1, . . . , k. Now we define

uk(x) :=

{
zk,lm(k,l)(x) , if x ∈ B(xk,l, rk,l) ,

0 , if x ∈ Nk.
(4.14)

Fix k ∈ N. Since zk,lm(k,l)|∂B(xk,l,rk,l) = 0 for all l ∈ N we obtain that the weak
gradient ∇uk exists as function ∇uk ∈ L∞loc(Ω). For fixed i, j ∈ N we sum
over l ∈ N in (4.13), let k → ∞ in this sum and use (4.14) to prove (4.11).
Moreover by construction ‖uk‖∞ ≤ 1

k and ‖∇uk‖∞ ≤ 3
2‖z‖∞ for k ∈ N.

Step 3. Fix i, j ∈ N. Then

lim
k→∞

∫
Ω
hi(x)φj(∇uk(x)) dx = lim

k→∞

∑
l∈N

∫
B(xk,l,rk,l)

hi(x)φj(∇uk(x)) dx

= lim
k→∞

∑
l∈N

φj(xk,l)

∫
B(xk,l,rk,l)

hi(x) dx

=

∫
Ω
hi(x)φj(x) dx.

To obtain the identity above we have used (4), (4.11) and (4.10). By den-
sity of (hi)i∈N in L1(Ω) and of (φj)j∈N in C0(Rn) it follows that (∇uk)k∈N
generates ν. �

5. Preparation of the proof of Theorem 1.2

5.1. Decomposition of the pressure. Let G ⊆ Rn , n ≥ 2, be a bounded
Lipschitz domain. For u ∈ L2(G) we write divu = 0 or ∆u = 0 if these
identities are satisfied in the sense of distributions in G. If u ∈ L2(G)
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satisfies ∆u = 0, we can apply Weyl’s Lemma to get (after a redefinition on
a null set) that u is smooth, i.e. u ∈ C∞(G). Define

∆W 2,2
0 (G) := {∆p; p ∈W 2,2

0 (G) } ,

L2
0(G) := { p ∈ L2(G);

∫
G
p dx = 0 }.

A major point in the proof of Theorem 1.2 is to prove identity (6.6) below.
This proof is based on the construction of a ’local pressure’ introduced by
J. Wolf. We proceed with the following theorem which is a variant of [26,
Theorem 2.6].

Theorem 5.1. Let G ⊆ Rn , n ≥ 2, be a bounded C2-domain, let 1 <
γ < ∞, 0 < T < ∞, let u0 ∈ L2(G), let Q1 ∈ Lγ(0, T ;L2(G)), and let
Q2 ∈ Lγ(0, T ;L2(G)). Consider u ∈ L∞(0, T ;L2(G)) with divu(t) = 0 for
a.a. t ∈]0, T [ and

−
∫ T

0
〈u,wt〉G dt+

∫ T

0
〈Q1,∇w〉G dt+

∫ T

0
〈Q2, w〉G dt− 〈u0, w(0)〉G = 0

(5.1)
for all w ∈ C∞0 ([0, T [;C∞0,σ(G)). Then there exist unique functions pr ∈
Lγ(0, T ;L2(G)), ph ∈ L∞(0, T ;L2

0(G)) with pr(t) ∈ ∆W 2,2
0 (G) ,∆xph(t) = 0

for a.a. t ∈]0, T [ such that

−
∫ T

0
〈u+∇xph, wt〉G dt+

∫ T

0
〈Q1,∇w〉G dt+

∫ T

0
〈Q2, w〉G dt

= 〈u0, w(0)〉G +

∫ T

0
〈pr, divw〉G dt

(5.2)

for all w ∈ C∞0 ([0, T [;C∞0 (G)). We have

‖pr‖2,γ;G;T ≤ c(‖Q1‖2,γ;G;T + ‖Q2‖2,γ;G;T ) , (5.3)
‖ph‖2,∞;G;T ≤ c(‖u‖2,∞;G;T + ‖Q1‖2,γ;G;T + ‖Q2‖2,γ;G;T ) (5.4)

with a constant c = c(G, γ, T ) > 0.

Proof. Step 1. Define u(0) := u0. For w ∈ C∞0,σ(G) , η ∈ C∞0 ([0, T [) we
have

−
∫ T

0
〈u(t), w〉G η′(t) dt− 〈u0, w(0)〉G η(0)

= −
∫ T

0

(
〈Q1(t),∇w〉G + 〈Q2(t), w〉G

)
η(t) dt.

(5.5)

Identity (5.5) implies that there exists a null set N = N(w) such that

〈u(t), w〉G − 〈u0, w〉G = −
∫ t

0

(
〈Q1(t),∇w〉G + 〈Q2(t), w〉G

)
dt (5.6)

for all t ∈ [0, T [\N . Using u ∈ L∞(0, T ;L2(G)) and a separability argument
u can be redefined on a null set of [0, T [ such that (5.6) holds for all t ∈ [0, T [

and all w ∈ C∞0,σ(G). For t ∈ [0, T [ define Q̃1(t) :=
∫ t

0 Q1(s) ds and Q̃2(t) :=
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0 Q2(s) ds. We employ Fubini’s Theorem and [23, II, Lemma 2.2.2] to get
for each fixed t ∈ [0, T [ a unique p(t) ∈ L2

0(G) such that

〈u(t)− u0, w〉G + 〈Q̃1(t),∇w〉G + 〈Q̃2(t), w〉G = 〈p(t), divw〉G (5.7)

for all w ∈W 1,2
0 (G). Estimate [23, II, (2.2.6)] yields

‖p(t)‖2 ≤ c(G, γ)(‖u(t)− u0‖2 + ‖Q̃1(t)‖2 + ‖Q̃2(t)‖2) (5.8)

for all t ∈ [0, T [. Using (5.8) we can show that [0, T [→ L2(G) , t 7→ p(t), is
Bochner measurable. Furthermore

‖p‖2,∞;G;T ≤ c(G, γ, T )(‖u‖2,∞;G;T + ‖Q1‖2,γ;G;T + ‖Q2‖2,γ;G;T ). (5.9)

Step 2. From [26, Corollary 2.5] we get unique p̃r(t) ∈ ∆W 2,2
0 (G) , ph(t) ∈

L2(G) with ∆xph(t) = 0 for all t ∈ [0, T [ such that

p(t) = p̃r(t) + ph(t) , ‖p̃r(t)‖2 + ‖ph(t)‖2 ≤ c‖p(t)‖2 (5.10)

with c = c(G, γ, T ) for a.a. t ∈ [0, T [. Since p(t) ∈ L2
0(G) we get ph(t) ∈

L2
0(G) , t ∈ [0, T [. Combining (5.9), (5.10) yields ph ∈ L∞(0, T ;L2(G)).

From (5.8), (5.10) it follows p̃r(0) = 0. For fixed w ∈ C∞0 ([0, T [×G) we
insert w(t) in (5.7) and integrate with respect to t ∈ [0, T [ to obtain

∫ T

0
〈u(t)− u0, w〉G dt+

∫ T

0
〈Q̃1(t),∇w〉G dt+

∫ T

0
〈Q̃2(t), w〉G dt

=

∫ T

0
〈p̃r(t),divw〉G dt−

∫ T

0
〈∇xph(t), w〉G dt.

(5.11)

Step 3. Fix τ ∈]0, T [. Given φ ∈ C∞0 (G) insert w := ∇φ in (5.7).
Consider t ∈]0, T − τ [ such that divu(t) = 0 , divu(t+ τ) = 0. We make use
of ∆xph(t) ,∆xph(t+ τ) = 0 and obtain

〈p̃r(t+ τ)− p̃r(t),∆φ〉G = 〈Q̃1(t+ τ)− Q̃1(t),∇2φ〉G
+ 〈Q̃2(t+ τ)− Q̃2(t),∇φ〉G.

Since p̃r(t) ∈ ∆W 2,2
0 (G) we obtain from [26, (2.1), (2.2)] that

‖p̃r(t+ τ)− p̃r(t)‖γ2 ≤ c
2∑
i=1

∥∥∥∫ t+τ

t
Qi(s) ds

∥∥∥γ
2

(5.12)
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with a constant c = c(G, γ, T ) independent of t, τ . Especially, (5.12) is
satisfied for a.a. t ∈]0, T − τ [. Fix 0 < T ′ < T . We get∫ T ′

0

∥∥p̃r(t+ τ)− p̃r(t)
∥∥γ

2
dt ≤ c

2∑
i=1

∫ T ′

0

(∫ t+τ

t
‖Qi(s)‖2 ds

)γ
dt

≤ c
2∑
i=1

∫ T ′

0

∫ t+τ

t
‖Qi(s)‖γ2 ds τ

γ/γ′ dt

= cτγ/γ
′

2∑
i=1

∫ T

0

∫ T ′

0
1[t,t+τ ](s)‖Qi(s)‖

γ
2 dt ds

≤ cτγ
2∑
i=1

∫ T

0
‖Qi(s)‖γ2 ds

(5.13)

for all τ ∈]0, T −T ′[ with a constant c = c(γ,G, T ) > 0 independent of T ′ , τ .
Estimate (5.13) yields p̃r ∈W 1,γ(0, T ;L2(G)) and

‖∂tp̃r‖2,γ;T ≤ c ( ‖Q1‖2,γ;T + ‖Q2‖2,γ;T ).

Step 4. Define pr := ∂tp̃r ∈ Lγ(0, T ;L2(G)). For w ∈ C∞0 ([0, T [×G)
insert wt instead of w in (5.11) and integrate by parts to get (5.2). In this
argument divu = 0 , w(T ) = 0 and p̃r(0) = 0 were used. The uniqueness
follows from (5.3), (5.4). �

5.2. Two auxiliary lemmata.

Lemma 5.2. Let Ω , (Ωk)k∈N be as in (1.4), (1.5), let 0 < T < ∞, and
K ⊆ Rn−1 be compact.

(1) Let (vk)k∈N be a bounded sequence in H1(Ωk). Then

lim
k→∞

∫
K
|vk(x′,−hk(x′))− vk(x′, 0)| dx′ = 0. (5.14)

(2) If (θk)k∈N is a bounded sequence in L2(0, T ;H1(Ωk)) then

lim
k→∞

∫
[0,T [×K

|θk(t, x′,−hk(x′))− θk(t, x′, 0)| d(x′, t) = 0. (5.15)

Proof. For v ∈ C∞0 (Ωk) and k ∈ N there holds∫
K
|v(x′,−hk(x′))− v(x′, 0)| dx′ =

∫
K

∣∣∣∫ −hk(x′)

0

∂v

∂xn
(x′, τ) dτ

∣∣∣ dx′. (5.16)

By a density argument, identity (5.16) holds true for vk ∈ H1(Ωk). We
deduce∫

K
|vk(x′,−kk(x′))− vk(x′, 0)| dx′

≤

(∫
K

∫ 0

−hk(x′)
| ∂vk
∂xn

(x′, τ)|2 dτ dx′
)1/2(∫

K

∫ 0

−hk(x′)
1 dτ dx′

)1/2

≤ |K|1/2
(

sup
x′∈K

hk(x
′)
)1/2‖vk‖H1(Ωk)

(5.17)
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for all k ∈ N. Using hk(x
′) → 0 as k → ∞ uniformly for x′ ∈ K, we

get (5.14). We employ uk(·, t) ∈ H1(Ωk) for a.a. t ∈ [0, T [ and inte-
grate (5.17) with respect to t ∈ [0, T [ to show (5.15). �

Lemma 5.3. Let Ω , (Ωk)k∈N be as in (1.4), (1.5), let 0 < T <∞. Consider
a sequence (uk)k∈N which is bounded in L4/3(0, T ;L2(Ωk)), consider u ∈
L4/3(0, T ;L2(Ω)) with uk ⇀ u as k →∞ in L4/3(0, T ;L2(Ω)). Then

lim
k→∞

∫ T

0
〈uk, w〉Ωk dt =

∫ T

0
〈u ,w〉Ω dt (5.18)

for all w ∈ C0
0 ([0, T [×Rn).

Proof. Choose a ball B ⊆ Rn such that supp(w) ⊆ [0, T [×B. Define Bk :=
(Ωk \ Ω) ∩B , k ∈ N. Then∫ T

0
〈uk, w〉Ωk dt =

∫ T

0
〈uk, w〉Ω dt+

∫ T

0
〈uk, w〉Bk dt. (5.19)

We obtain with Hölder’s inequality∫ T

0
|〈uk, w〉Bk | dt ≤ ‖uk‖L4/3(0,T ;L2(Bk))‖w‖L4(0,T ;L2(Bk))

≤ |Bk|1/2 T 1/4 ‖uk‖L4/3(0,T ;L2(Bk)) sup
(t,x)∈[0,T [×Rn

|w(t, x)|

for all k ∈ N. Since |Bk| → 0 as k →∞, we get limk→∞
∫ T

0 〈uk, w〉Bk dt = 0.
Consequently from (5.19) we conclude that (5.18) is fulfilled. �

6. Proof of Theorem 1.2

Since the sequence (hk)k∈N is equi-Lipschitz continuous the norm of the
trace operator on H1(Ωk) can be chosen independently of k ∈ N, i.e. there
is a constant c > 0 such that

‖φ‖H1(Ωk) ≤ c‖φ‖L2(∂Ωk) (6.1)

for all k ∈ N and all φ ∈ H1(Ωk). Since (uk, θk)k∈N satisfies (1.12) in
[0, T [×Ωk we get with Hölder’s inequality, Young’s inequality and (6.1) that

1

4
‖θk‖22,∞;Ωk;T +

1

2
‖∇θk‖22,2;Ωk;T + ‖θk‖22,2;∂Ωk;T

≤ ‖θ0‖22,Ωk + c‖ζ‖22,1;∂Ωk;T + c‖ζ‖22,2;∂Ωk;T

≤ c
(
‖θ0‖22,Rn + ‖ζ‖2L2(0,T ;H1(Rn))

)
for all k ∈ N with a constant c > 0 independent of k. Thus

(θk)k∈N is bounded in L∞(0, T ;L2(Ωk)) ∩ L2(0, T ;H1(Ωk)). (6.2)

Furthermore, since (uk, θk) fulfils (1.11) in [0, T [×Ωk we get with (6.2)

(uk)k∈N is bounded in L∞(0, T ;L2(Ωk)) ∩ L2(0, T ;H1(Ωk)). (6.3)

The proof of Theorem 1.2 is based on Lemma 6.1, 6.2 and 6.3 below.

Lemma 6.1. The weak limit (u, θ) in (1.14) satisfies (1.9) for all w ∈
C∞0 ([0, T [;C∞0,σ(Ω)).
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Proof. By interpolation and Sobolev’s imbedding theorem we get with (6.3)∫ T

0
‖uk ⊗ uk‖

4/3
2,Ω dt ≤ c

∫ T

0
‖uk‖

2/3
2,Ω‖uk‖

2
H1(Ω) dt ≤ c (6.4)

with a constant c > 0 independent of k ∈ N. Therefore we find a matrix
field in L4/3(0, T ;L2(Ω)), denoted by u⊗ u, such that (along a not relabelled
subsequence)

uk ⊗ uk ⇀
k→∞

u⊗ u in L4/3(0, T ;L2(Ω)). (6.5)

The main step in the proof of this lemma is to prove the following assertion.
Assertion. There holds (along a not relabelled subsequence)

lim
k→∞

∫ T

0
〈uk ⊗ uk,∇w〉Ω dt =

∫ T

0
〈u⊗ u,∇w〉Ω dt (6.6)

for all w ∈ C∞0 ([0, T [;C∞0,σ(Ω)).
Proof of (6.6). Fix w ∈ C∞0 ([0, T [;C∞0,σ(Ω)). Choose smooth, bounded
domains Ω1,Ω2 with Ω1 ⊆ Ω2 and supp(w(t, ·)) ⊆ Ω1 for all t ∈ [0, T [.
Since (uk, θk)k∈N is a weak solution of (1.1) in [0, T [×Ωk we see that (5.1) is
fulfilled with Q1 := ∇uk − uk ⊗ uk and Q2 := −θkg on G := Ω2. Therefore,
there exist unique

pr,k ∈ L4/3(0, T ;L2(Ω2)) , pr,k(t) ∈ ∆W 2,2
0 (Ω2), a.a. t ∈ [0, T [ ,

ph,k ∈ L∞(0, T ;L2
0(Ω2)) , ∆xph,k(t) = 0, a.a. t ∈ [0, T [ ,

such that

−
∫ T

0
〈uk +∇xph,k, w〉Ω2η

′(t)dt =

∫ T

0

(
〈uk ⊗ uk,∇w〉Ω2 − 〈∇uk,∇w〉Ω2

+ 〈θkg, w〉Ω2 + 〈pr,k,divw〉Ω2

)
η(t) dt

(6.7)

for all w ∈ C∞0 (Ω2) , η ∈ C∞0 (]0, T [). Since the constant c in (5.3) and (5.4) is
independent of k ∈ N it follows that (ph,k)k∈N is bounded in L∞(0, T ;L2(Ω2))

and that (pr,k)k∈N is bounded in L4/3(0, T ;L2(Ω2)). Hence (along a not
relabelled subsequence)

ph,k ⇀∗
k→∞

ph in L∞(0, T ;L2(Ω2)) , (6.8)

pr,k ⇀
k→∞

pr in L4/3(0, T ;L2(Ω2)). (6.9)

By (6.8) we conclude ∆xph(t) = 0 for a.a. t ∈ [0, T [. Since Ω1 ⊆ Ω2 we get
from (6.8) and the estimates for harmonic functions in [14, Theorem 2.2.7]
that (ph,k)k∈N is bounded in L∞(0, T ;H2(Ω1)). Therefore

ph,k ⇀
k→∞

ph in L2(0, T ;H2(Ω1)). (6.10)

We use the imbedding L2(Ω1) ↪→ H−1(Ω1) to identify uk(t)+∇xph,k(t) for
a.a. t ∈ [0, T [ with the functional w 7→ 〈uk(t)+∇xph,k(t), w〉Ω1 , w ∈ H1

0 (Ω1).
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Thus, we obtain from (6.7) with (6.2), (6.3), (6.6), (6.9)∫ T

0

∥∥ d
dt

(uk +∇xph,k)
∥∥4/3

H−1(Ω1)
dt

≤ c
∫ T

0

(
‖uk ⊗ uk‖

4/3
2 + ‖∇uk‖

4/3
2 + ‖θkg‖

4/3
2 + ‖pr,k‖

4/3
2

)
dt

≤ c

(6.11)

with a constant c > 0 independent of k ∈ N. Consider the imbedding scheme

H1(Ω1) ↪→
compact

L2(Ω1) ↪→
continuous

H−1(Ω1). (6.12)

We get with (6.3), (6.11), (6.12) and the Aubin-Lions compactness theorem
(see [24, Theorem 3.2.2]) that (after a not relabelled subsequence)

uk +∇xph,k →
k→∞

u+∇xph strongly in L2(0, T ;L2(Ω1)). (6.13)

To proceed we need the following fact: Consider ψ ∈ L2(0, T ;H1(Ω2))
with ∆ψ(t) = 0 for a.a. t ∈ [0, T [. From Weyl’s lemma and [14, Theorem
2.2.7] it follows ψ ∈ L2(0, T ;H2(Ω1)). A short computation shows∫ T

0
〈∇xψ ⊗∇xψ,∇w〉Ω1 dt = −

n∑
i,j=1

∫ T

0

1

2
〈(∂iψ)2, ∂jwj〉Ω1 dt = 0. (6.14)

We employ (1.14), (6.5), (6.10), (6.13), (6.14) to obtain∫ T

0
〈u⊗ u,∇w〉Ω1 dt

= lim
k→∞

∫ T

0
〈uk ⊗ uk,∇w〉Ω1 dt

= lim
k→∞

∫ T

0
〈(uk +∇xph,k)⊗ uk,∇w〉Ω1 dt

− lim
k→∞

∫ T

0
〈∇xph,k ⊗ (uk +∇xph,k),∇w〉Ω1 dt

=

∫ T

0
〈(u+∇xph)⊗ u,∇w〉Ω1 −

∫ T

0
〈∇xph ⊗ (u+∇xph),∇w〉Ω1 dt

=

∫ T

0
〈u⊗ u,∇w〉Ω1 dt.

Now the proof of Lemma 6.1 can be finished. Fix w ∈ C∞0 ([0, T [;C∞0,σ(Ω)).
Since (uk, θk) is a weak solution of (1.1) in [0, T [×Ωk and w has compact
support in [0, T [×Ω we have that (1.9) is fulfilled where (u, θ) is replaced by
(uk, θk). Passing to the limit in this identity and using (1.14), (6.6) we get
that (u, θ) fulfils (1.9) .

�

Lemma 6.2. (u, θ) satisfies (1.10) for all φ ∈ C∞0 ([0, T [×Rn) with Λ defined
by (1.16).
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Proof. Step 1. In this step we show that for all bounded Lipschitz domains
G ⊆ Ω there holds

θk →
k→∞

θ strongly in L2(0, T ;L2(G)) ∩ L2(0, T ;L2(∂G)) . (6.15)

Proof of (6.15). Fix 1
2 < s < 1 and a bounded Lipschitz domain G ⊆ Ω.

From (1.10) it follows

−
∫ T

0
〈θk, φ〉Gη′(t) dt =

∫ T

0

(
〈θkuk,∇φ〉G − 〈∇θk,∇φ〉G

)
η(t) dt (6.16)

for all φ ∈ C∞0 (G) and η ∈ C∞0 (]0, T [). We use the continuous imbedding
L2(G) ↪→ H−1(G) to identify θk(t) for a.a. t ∈ [0, T [ with the functional
φ 7→ 〈θk(t), φ〉G , φ ∈ H1

0 (G). Thus, we obtain from (6.16) with (6.2), (6.3)∫ T

0

∥∥ d
dt
θk
∥∥4/3

H−1(G)
dt ≤ c

∫ T

0

(
‖θkuk‖

4/3
2 + ‖∇θk‖

4/3
2

)
dt ≤ c (6.17)

for all k ∈ N with a constant c > 0 independent of k. Consider the imbedding
scheme (see (2.1))

H1(G) ↪→
compact

W s,2(G) ↪→
continuous

H−1(G). (6.18)

From (6.2), (6.17), (6.18) and [24, Theorem 3.2.2] we get the existence of
a subsequence (θmk)k∈N which is strongly convergent in L2(0, T ;W s,2(G)).
Since θk ⇀ θ as k → ∞ in L2(0, T ;L2(G)) it is possible to choose mk =
k , k ∈ N. Looking at the continuous operator W s,2(G) → L2(∂G) we see
that (6.15) holds. �
Step 2. In the following we want to show that

lim
k→∞

∫ T

0
〈θk, φ〉∂Ωk dt =

∫ T

0
〈Λθ, φ〉∂Ω dt (6.19)

for all φ ∈ C∞0 ([0, T [×Rn) where Λ is defined by (1.16).
Proof of (6.19). Choose an open ball B := Br(0) ⊆ Rn−1 with 0 < r <∞
such that

supp(φ) ⊆ { (t, x′, xn) ∈ [0, T [×Rn−1 × R; x′ ∈ B }.
Define

sk(x
′) :=

√
1 + |∇hk(x′)|2 for a.a. x′ ∈ B and all k ∈ N ,

and Q := [0, T [×B. We get∣∣∣∫ T

0
〈θk, φ〉∂Ωk dt−

∫ T

0
〈Λθ, φ〉∂Ω dt

∣∣∣
≤
∫
Q
| (θkφ)(t, x′,−hk(x′))− (θkφ)(t, x′, 0) | sk(x′) d(x′, t)

+

∫
Q
| (θkφ)(t, x′, 0)− (θφ)(t, x′, 0) | sk(x′) d(x′, t)

+
∣∣∣∫
Q

(θφ)(t, x′, 0)
(
sk(x

′)−
∫
Rn−1

√
1 + |λ|2 dνx′(λ)

)
d(x′, t)

∣∣∣
(6.20)

for all k ∈ N. Introduce G := {(x′, xn) ∈ Rn; 0 < xn < 1 , x′ ∈ B}.
By (5.15), the boundedness of (sk)k∈N in L∞(B), the uniform convergence
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of φ(t, x′,−hk(x′)) for (t, x′) ∈ Q, and (6.15) we obtain that the first two
terms on the right hand side of (6.20) tend to zero as k →∞.

To show that the third term in (6.20) converges to zero introduce the
Carathéodory function

ψ(x′, λ) :=
√

1 + |λ|2 , x′ ∈ B , λ ∈ Rn−1. (6.21)

By assumption (∇hk)k∈N generates ν. Combining Theorem 4.1 with the
uniqueness statement in [21, Lemma 6.3] it follows that properties (ii), (iii)
stated in Theorem 4.1 are fulfilled with mk = k , k ∈ N. Therefore

sk ⇀
k→∞

(
x′ 7→

∫
Rn−1

√
1 + |λ|2 dνx′(λ)

)
(6.22)

in L1(B) and even in L2(B) due to the the boundedness of B. Especially
we get for a.a. t ∈ [0, T [

lim
k→∞

∫
B

(θφ)(t, x′, 0) sk(x
′) dx′

=

∫
B

(θφ)(t, x′, 0)

∫
Rn−1

√
1 + |λ|2 dνx′(λ) dx′.

(6.23)

Due to the boundedness of (sk)k∈N in L∞(B) and (6.23) we conclude with
Lebesgue’s dominated convergence theorem that the third term on the right
hand side of (6.20) tends to zero as k →∞. Altogether (6.19) holds. �
Analogously we can prove

lim
k→∞

∫ T

0
〈ζ, φ〉∂Ωk dt =

∫ T

0
〈Λζ, φ〉∂Ω for all φ ∈ C∞0 ([0, T [×Rn). (6.24)

Step 3. Since (uk, θk)k∈N is a weak solution of (1.1) in [0, T [×Ωk there
holds

−
∫ T

0
〈θk, φt〉Ωk dt+

∫ T

0
〈∇θk,∇φ〉Ωk dt+

∫ T

0
〈uk · ∇θk, φ〉Ωk dt

= −
∫ T

0
〈θk − ζ, φ〉∂Ωk dt+ 〈θ0, φ(0)〉Ωk

(6.25)

for all φ ∈ C∞0 ([0, T [×Rn)). From [1, Theorem 5.8], n ∈ {2, 3}, and the
equi-Lipschitz continuity of (hk)k∈N we get

‖θk(t)uk(t)‖2,Ωk ≤ ‖θk(t)‖4,Ωk‖uk(t)‖4,Ωk
≤ c‖θk(t)‖

1/4
2,Ωk
‖θk(t)‖

3/4
H1(Ωk)

‖uk(t)‖
1/4
2,Ωk
‖uk(t)‖

3/4
H1(Ωk)

≤ c‖θk‖
1/4
2,∞;Ωk;T ‖uk‖

1/4
2,∞;Ωk;T

(
‖θk(t)‖

3/2
H1(Ωk)

+ ‖uk(t)‖
3/2
H1(Ωk)

)
for a.a. t ∈]0, T [ and all k ∈ N with a constant c > 0 independent of k.
From (6.2), (6.3) it follows that (θkuk)k∈N is bounded in L4/3(0, T ;L2(Ωk)).
From (1.14), (6.15) we get

θkuk ⇀
k→∞

θu in L4/3(0, T ;L2(Ω)). (6.26)
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Integration by parts in space and employing (5.18), (6.26) implies

lim
k→∞

∫ T

0
〈uk · ∇θk, φ〉Ωk dt = − lim

k→∞

∫ T

0
〈θkuk,∇φ〉Ωk dt

= −
∫ T

0
〈θu,∇φ〉Ω dt

=

∫ T

0
〈u · ∇θ, φ〉Ω dt

(6.27)

for all φ ∈ C∞0 ([0, T [×Rn). Passing to the limit in (6.25) and making use
of (1.14), (6.27) and of (6.19), (6.24) yield (1.10). �

Lemma 6.3. We have u(t) ∈W 1,2
0,σ (Ω) for almost all t ∈ [0, T [.

Proof. First we prove the following
Assertion. Let (vk)k∈N be a bounded sequence in H1

0 (Ωk), let v ∈ H1(Ω)
such that vk ⇀ v as k →∞ in H1(Ω). Then v ∈ H1

0 (Ω).
To prove the assertion consider an open ball B ⊆ Rn−1 and define G :=

{(x′, xn) ∈ Rn; 0 < xn < 1 , x′ ∈ B }. Since the operator H1(G) → L2(∂G)
is compact it follows vk → v as k →∞ strongly in L2(∂G). Therefore

lim
k→∞

∫
B
|v(x′, 0)− vk(x′, 0)| dx′ = 0. (6.28)

We use (5.14), (6.28) and vk|∂Ωk = 0 to obtain∫
B
|v(x′, 0)| dx′

≤
∫
B
|v(x′, 0)− vk(x′, 0)| dx′ +

∫
B
|vk(x′, 0)− vk(x′,−hk(x))| dx′︸ ︷︷ ︸

→0 as k→∞

.

Thus
∫
Rn−1 |v(x′, 0)| dx′ = 0 and consequently v|∂Ω = 0. �

To prove Lemma 6.3 we define for k ∈ N and δ > 0 with δ < T − δ

uδk(t) := (ũk ∗ ρδ)(t) =

∫
R
ũk(t− τ)ρδ(τ) dτ , t ∈ [δ, T − δ] ,

where (ρδ)δ>0 is a smooth Dirac sequence with suitable compact support
and ũk(τ) := 1[0,T [(τ)uk(τ). Then the sequence (uδk(t))k∈N with t ∈ [δ, T −δ]
has the properties of the sequence (vk)k∈N of the assertion above. Hence
uδ(t) ∈ H1

0 (Ω) for all t ∈ [δ, T − δ]. Since uδ(t)→ u(t) for δ ↘ 0 strongly in
H1(Ω) for a.a. t ∈ [0, T [ we get u(t) ∈ H1

0 (Ω) for a.a. t ∈ [0, T [.
From uk(t) ∈ L2

σ(Ωk) for all k ∈ N and a.a. t ∈ [0, T [ and (1.14) it follows
divu(t) = 0 for a.a. t ∈ [0, T [. Further, from [16, Chapter III, Section 4.3] we
get W 1,2

0,σ (Ω) = {v ∈ H1(Ω); divv = 0 , v|∂Ω = 0}. Altogether u(t) ∈W 1,2
0,σ (Ω)

for a.a. t ∈ [0, T [. �

Proof of Theorem 1.2. Combine Lemma 6.1 and Lemma 6.2 to get that
(u, θ) satisfies (1.9), (1.10) for all test function φ and w as in Definition 1.1.
From Lemma 6.3 we obtain u(t) ∈W 1,2

0,σ (Ω) for a.a. t ∈ [0, T [. �
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7. Proof of Theorem 1.3

Step 1. Choose w ∈ Rn−1 with |w| = 1. Introduce

z : Rn−1 → R , z(x′) :=

√(
Λ(x′, 0)

)2 − 1 w

Consequently,
Λ(x′, 0) =

√
1 + |z(x′)|2 (7.1)

for all x = (x′, 0) ∈ ∂Ω with x′ ∈ Rn−1. Define the Young measure ν =
(νx′)x′∈Rn−1 by

νx′ :=
1

2

(
δz(x′) + δ−z(x′)

)
, x′ ∈ Rn−1.

By Theorem 4.3 there exist non-negative functions hk : Rn−1 → R+
0 , k ∈

N, such that (hk)k∈N is bounded in W 1,∞(Rn−1), we have that (∇hk)k∈N
generates ν and hk → 0 strongly in L∞(Rn−1) as k → ∞. For every k ∈ N
the function hk can be redefined on a null set of Rn−1 such that hk : Rn−1 →
R+

0 is Lipschitz continuous. Altogether, the sequence (hk)k∈N is admissible.
Further, the definition of ν and (7.1) imply that

Λ(x′, 0) =

∫
Rn−1

√
1 + |λ|2 dνx′(λ) for a.a. x′ ∈ Rn−1. (7.2)

Step 2. Define

Ωk := { (x′, xn) ∈ Rn;xn > −hk(x′);x′ ∈ Rn−1 } , k ∈ N.

Making use of Theorem 3.1 we obtain for every k ∈ N a weak solution (uk, θk)
of the Boussinesq equations (1.1) in [0, T [×Ωk (with data g, ζ| ]0,T [×Ωk and
u0, θ0|Ωk) satisfying the energy inequalities (1.11), (1.12) (where Ω is replaced
by Ωk) and the boundary conditions (1.17).

Therefore we can choose u , θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and a
subsequence (umk , θmk)k∈N such that

umk ⇀∗
k→∞

u in L∞(0, T ;L2(Ω)) , umk ⇀
k→∞

u in L2(0, T ;H1(Ω)) ,

θmk ⇀∗
k→∞

θ in L∞(0, T ;L2(Ω)) , θmk ⇀
k→∞

θ in L2(0, T ;H1(Ω)).

Theorem 1.2 in combination with (1.16), (7.2) implies that (u, θ) is a weak
solution of (1.1) with boundary conditions (1.18). �
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