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Abstract. Consider the instationary Boussinesq equations in a smooth
bounded domain Ω ⊆ R3 with initial values u0 ∈ L2

σ(Ω), θ0 ∈ L2(Ω) and
gravitational force g. We call (u, θ) strong solution if (u, θ) is a weak
solution and additionally Serrin’s condition u ∈ Ls(0, T ;Lq(Ω)) holds
where 1 < s, q < ∞ satisfy 2

s
+ 3

q
= 1. In this paper we show that∫∞

0
‖e−tAu0‖sq dt <∞ is necessary and sufficient for the existence of such

a strong solution (u, θ) in a sufficiently small interval [0, T [ , 0 < T ≤ ∞.
Furthermore we show that strong solutions are uniquely determined and
that they are smooth if the data are smooth. The crucial point is the
fact that we have required no additional integrability condition for θ in
the definition of a strong solution (u, θ).

1. Introduction and main results

Let Ω ⊆ R3 be a domain, and let [0, T [ , 0 < T ≤ ∞, be a time interval.
Then we consider the Boussinesq equations

ut −∆u+ u · ∇u+∇p = θg in ]0, T [×Ω ,

div u = 0 in ]0, T [×Ω ,

θt −∆θ + u · ∇θ = 0 in ]0, T [×Ω ,

u = 0 , θ = 0 on ]0, T [×∂Ω ,

u = u0 , θ = θ0 at t = 0 ,

(1.1)

where u denotes the velocity of the fluid, θ the difference of the tempera-
ture to a fixed reference temperature and p denotes the pressure. Further,
u0 , θ0 are the initial values. For mathematical completeness we allow a
time dependent gravitational force g = g(t, x). However, in most appli-
cations the gravitational force is a constant vector field in time. To sim-
plify the notation we have set the density, kinematic viscosity and thermal
conductivity to 1. The Boussinesq equations constitute a model of motion
of a viscous, incompressible buoyancy-driven fluid flow coupled with heat
convection. For further information about the Boussinesq system we re-
fer to [17, 22]. The Boussinesq equations have been investigated by many
researchers, see e.g. [1, 2, 3, 11, 12, 14, 16, 18, 21] and papers cited there.

We need the following space of test functions:

C∞0 ([0, T [;C∞0,σ(Ω)) := {w |[0,T [×Ω ;w ∈ C∞0 (]− 1, T [×Ω) ; divw = 0 }.
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Motivated by the concept of a weak solution of the instationary Navier-Stokes
equations (in the sense of Leray-Hopf) we arrive at the following

Definition 1.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let
g :]0, T [×Ω→ R3 be a measurable vector field. Further assume u0 ∈ L2

σ(Ω)
and θ0 ∈ L2(Ω). A pair

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2

loc([0, T [;W 1,2
0,σ (Ω)) , (1.2)

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2
loc([0, T [;H1

0 (Ω)) , (1.3)

with θg ∈ L1
loc([0, T [;L2(Ω)) is called a weak solution of the Boussinesq sys-

tem (1.1) if the following identities are satisfied for all w ∈ C∞0 ([0, T [;C∞0,σ(Ω))

and all φ ∈ C∞0 ([0, T [×Ω):

− 〈u,wt〉Ω,T + 〈∇u,∇w〉Ω,T + 〈u · ∇u,w〉Ω,T = 〈θg, w〉Ω,T + 〈u0, w〉Ω ,
− 〈θ, φt〉Ω,T + 〈∇θ,∇φ〉Ω,T + 〈u · ∇θ, φ〉Ω,T = 〈θ0, φ(0)〉Ω.

In the identities above 〈·, ·〉Ω , 〈·, 〉Ω,T denotes the usual L2-scalar product in
Ω and in ]0, T [×Ω, respectively.

Given a weak solution (u, θ) of (1.1) we may assume, after a possible re-
definition on a set of Lebesgue measure 0, that u : [0, T [→ L2

σ(Ω) and
θ : [0, T [→ L2(Ω) are both weakly continuous functions and the initial values
u0, θ0 are attained in the following sense:

lim
t↘0
〈u(t), w〉Ω = 〈u0, w〉Ω , lim

t↘0
〈θ(t), φ〉Ω = 〈θ0, φ〉Ω

for all w ∈ L2
σ(Ω) and all φ ∈ L2(Ω). If g ∈ L∞(]0, T [×Ω) it can be

proved using the Faedo-Galerkin method that there exists a weak solution
(u, θ) of (1.1) in [0, T [×Ω. We can show this analogously as in [16, Theorem
1] where the corresponding result is proven in the case of mixed Dirich-
let/Neumann boundary conditions. Moreover, there exists a distribution p,
called an associated pressure, such that

ut −∆u+ u · ∇u+∇p = θg

holds in the sense of distributions in ]0, T [×Ω, see [19, V.1.7]. For exponents
s, q with 1 < q, s <∞ we define the Serrin number by

S(s, q) :=
2

s
+

3

q
.

Up to now, uniqueness and regularity of a weak solution u of the three-
dimensional instationary Navier-Stokes equations is an unsolved problem.
However, it is known that uniqueness and regularity holds if additionally
Serrin’s condition u ∈ Ls(0, T ;Lq(Ω)) holds where 1 < s, q < ∞ with
S(s, q) = 1. Since the Navier-Stokes equations can reduced to the Boussinesq
equations we give the following definition.

Definition 1.2. Consider data as in Definition 1.1. We say that (u, θ) is a
strong solution of (1.1) if (u, θ) is a weak solution of (1.1) and if there are
exponents 1 < s, q <∞ with S(s, q) = 1 such that u ∈ Ls(0, T ;Lq(Ω)).

The present paper deals with optimal initial value conditions, uniqueness
and regularity of strong solutions as defined above. The crucial point in
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this analysis is the fact that we have required no additional integrability
condition for θ.

Our first main result is a sufficient criterion for the existence of a strong
solution of (1.1). We denote by ∆ = ∆2 , A = A2 the Laplace and Stokes
operator, respectively. For further information about these operators we
refer to the preliminaries.

Theorem 1.3. Let Ω ⊆ R3 be a bounded domain with ∂Ω ∈ C2,1, let 0 <
T ≤ ∞. Consider 1 < s, q < ∞ with S(s, q) = 1. Let 1 < s1, s2, q1 < ∞ be
defined by

1

s1
=

1

2
− 1

s
,

1

q1
=

1

2
− 1

q
,

1

s2
=

1

2
+

1

s
.

Consider g ∈ Ls2(0, T ;Lq(Ω)) ∩ Lµ(0, T ;Lp(Ω)) where 1 < µ, p <∞ satisfy
S(µ, p) = 3

2 and 2 + 3
q >

3
q1

+ 3
p . Further assume u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω).
Then there exists a constant ε∗ = ε∗(Ω, p, q) > 0 with the following property:
If the conditions ∫ T

0
‖e−tAu0‖sq dt ≤ ε∗ , (1.4)∫ T

0
‖et∆θ0‖s1q1 dt ≤ ε∗ , (1.5)

‖g‖p,µ;T ≤ ε∗ , (1.6)

are satisfied, then there exists a strong solution (u, θ) of the Boussinesq equa-
tions (1.1). After a possible redefinition on a null set, u : [0, T [→ L2

σ(Ω) and
θ : [0, T [→ L2(Ω) are strongly continuous and the energy equalities

1

2
‖u(t)‖22 +

∫ t

0
‖∇u(τ)‖22 dτ =

1

2
‖u0‖22 +

∫ t

0
〈θg, u〉Ω dτ , (1.7)

1

2
‖θ(t)‖22 +

∫ t

0
‖∇θ(τ)‖22 dτ =

1

2
‖θ0‖22 (1.8)

are satisfied for all t ∈ [0, T [. Moreover (u, θ) is the only strong solution
of (1.1) in [0, T [×Ω.

Remark. It follows from (2.2), (2.4) below that e−tAu0 ∈ Lq(Ω) for a.a. t > 0
and consequently the left hand side of (1.4) is well defined. It is easy to see
that for all q > 3 there exists p > 2 satisfying 2 + 3

q >
3
q1

+ 3
p . Therefore, the

requirements on µ, p can be fulfilled for all possible exponents s, q. In the
case 3 < q < 9 it is possible to choose p = q1.

For a proof of this theorem we refer to Section 4. The idea is to construct
(u, θ) as a solution in Ls(0, T ;Lqσ(Ω))× Ls1(0, T ;Lq1(Ω)) of a suitable non-
linear system, see (3.14) below. The estimates needed to solve this system
with the help of Banach’s fixed point theorem are presented in Lemma 3.2.
The final step is to prove that (u, θ) fulfils (1.2), (1.3) and is therefore a
strong solution of (1.1).

In [5, 6] the authors proved that (1.9) below is the optimal initial value
condition on u0 ∈ L2

σ(Ω) to get a strong solution u ∈ Ls(0, T ;Lq(Ω)) , 0 <
T ≤ ∞, of the instationary Navier-Stokes equations in a smooth bounded do-
main Ω ⊆ R3 where S(s, q) = 1. In the following theorem we show that this
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condition also characterizes the class of initial values u0 ∈ L2
σ(Ω) , θ0 ∈ L2(Ω)

that allow a strong solution of the Boussinesq equations (1.1) in a sufficiently
small interval [0, T [ , 0 < T ≤ ∞. Especially no additional integrability con-
dition is required for θ0.

Theorem 1.4. Consider Ω, T, g and exponents s, q, s1, s2, q1 as in Theo-
rem 1.3. Further assume u0 ∈ L2

σ(Ω) , θ0 ∈ L2(Ω). Then the condition∫ ∞
0
‖e−tAu0‖sq dt <∞ (1.9)

is necessary and sufficient for the existence of 0 < T ′ ≤ T and a strong
solution (u, θ) with u ∈ Ls(0, T ′;Lq(Ω)) of the Boussinesq equations (1.1).

It is known (see [16, Theorem 3]) that weak solutions of the Boussinesq equa-
tions are uniquely determined if u ∈ Ls(0, T ;Lq(Ω)) , θ ∈ Ls(0, T ;Lq(Ω))
where S(s, q) = 1. The following uniqueness theorem for (1.1) needs no
additional integrability condition for θ.

Theorem 1.5. Let Ω ⊆ R3 be a bounded domain with ∂Ω ∈ C2,1, let 0 <
T ≤ ∞, and 1 < s, q <∞ with S(s, q) = 1. Consider g ∈ Lµloc([0, T [;Lp(Ω))

where 1 < µ, p < ∞ satisfy S(µ, p) = 3
2 and 2 + 3

q > 3
q1

+ 3
p . Assume

that (u1, θ1) and (u2, θ2) are weak solutions of (1.1) such that additionally
u1 , u2 ∈ Lsloc([0, T [;Lq(Ω)). Then u1(t) = u2(t) and θ1(t) = θ2(t) for almost
all t ∈ [0, T [.

The next theorem states that strong solutions (u, θ) of (1.1) are smooth if
the data are sufficiently smooth. A proof can be found in Section 5. In this
theorem we allow domains which are not necessarily bounded.

Theorem 1.6. Let Ω ⊆ R3 be a uniform C2-domain (which is not neces-
sarily bounded) such that Ω is also a C∞-domain. Let 0 < T ≤ ∞ and
g ∈ C∞0 (]0, T [×Ω). Consider u0 ∈ W 1,2

0,σ (Ω) , θ0 ∈ H1
0 (Ω). Let (u, θ) be a

strong solution of (1.1) in [0, T [×Ω. Then, after redefinition on a null set of
]0, T [×Ω,

u ∈ C∞loc(]ε, T ′[×Ω) , θ ∈ C∞loc(]ε, T ′[×Ω) (1.10)
for all ε, T ′ with 0 < ε < T ′ < T . There exists an associated pressure p of u
satisfying

p ∈ C∞loc(]ε, T ′[×Ω) (1.11)
for all ε, T ′ with 0 < ε < T ′ < T .

The paper is organized as follows: In Section 2 we present some preliminaries.
Section 3 deals with the construction of a fixed point needed for the proof
of Theorem 1.3. In the following section we will prove Theorems 1.3-1.5.
Finally, Section 1.6 is dedicated to the proof of Theorem 1.6.

2. Preliminaries
Given a domain Ω ⊆ Rn , n ∈ N, and 1 ≤ q ≤ ∞ , k ∈ N, we need the

usual Lebesgue and Sobolev spaces, Lq(Ω) ,W k,q(Ω) with norm ‖ · ‖Lq(Ω) =
‖ · ‖q and ‖ · ‖Wk,q(Ω), respectively. For two measurable functions f, g with
f · g ∈ L1(Ω), where f · g means the usual scalar product of vector or matrix
fields, we set 〈f, g〉Ω :=

∫
Ω f(x) · g(x) dx. Note that the same symbol Lq(Ω)
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etc. will be used for spaces of scalar-, vector- or matrix-valued functions.
Let Cm(Ω) ,m = 0, 1, . . . ,∞, denote the space of functions for which all
partial derivatives of order |α| ≤ m (|α| < ∞ when m = ∞) exist and are
continuous. As usual, Cm0 (Ω) is the set of all functions from Cm(Ω) with
compact support in Ω. Further C∞0,σ(Ω) := { v ∈ C∞0 (Ω); div v = 0 }. For

1 < q < ∞ we define Lqσ(Ω) := C∞0,σ(Ω)
‖·‖q and W 1,2

0,σ (Ω) := C∞0,σ(Ω)
‖·‖W1,2 .

For 1 ≤ q ≤ ∞ let q′ be the dual exponent such that 1
q + 1

q′ = 1. It is well

known that Lqσ(Ω)′ ∼= Lq
′
σ (Ω) , 1 < q <∞, using the standard pairing 〈·, ·〉Ω.

Given a Banach space X, 1 ≤ p ≤ ∞, and an interval ]0, T [ we denote by
Lp(0, T ;X) the space of (equivalence classes of) strongly measurable func-

tions f :]0, T [→ X such that ‖f‖p :=
(∫ T

0 ‖f(t)‖pX dt
) 1
p
< ∞ if 1 ≤ p < ∞

and ‖f‖∞ := ess supt∈]0,T [ ‖f(t)‖X if p =∞. Moreover

Lploc([0, T [;X) := {u : [0, T [→ X strongly measurable,

u ∈ Lp(0, T ′;X) for all 0 < T ′ < T}.

If X = Lq(Ω), 1 ≤ q ≤ ∞, the norm in Lp(0, T ;Lq(Ω)) will be denoted by
‖f‖q,p;T .

Fix a bounded domain Ω ⊆ R3 with ∂Ω ∈ C2,1 and 1 < q < ∞. Let
Pq : Lq(Ω) → Lqσ(Ω), be the Helmholtz projection and let ∆q denote the
Laplace operator with domain D(∆q) := W 1,q

0 (Ω) ∩W 2,q(Ω). We introduce
the Stokes operator by

D(Aq) = Lqσ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), Aqu := −Pq∆qu , u ∈ D(Aq).

The Stokes operator is consistent in the sense that for 1 < q, r <∞

Aqu = Aru ∀u ∈ D(Aq) ∩ D(Ar). (2.1)

Throughout this paper we will write A = A2. For α ∈ [0, 1] the fractional
power Aαq : D(Aαq ) → Lqσ(Ω) with dense domain D(Aαq ) ⊆ Lqσ(Ω) and range
R(Aαq ) = Lqσ(Ω) is a well defined, bijective, closed operator (see [8, 9]). In
particular the inverse operator (Aαq )−1 := A−αq is a bounded operator on
Lqσ(Ω). Further (Aαq )′ ∼= Aαq′ for the adjoint operator. The space D(Aαq )

equipped with the graph norm ‖u‖D(Aαq ) := ‖u‖q + ‖Aαq u‖q which is equiva-
lent to ‖Aαq u‖q is a Banach space. Analogous properties hold for fractional
powers (−∆q)

α : D((−∆q)
α) ⊆ Lq(Ω)→ Lq(Ω) of −∆q.

It is well known that −Aq generates a uniformly bounded analytic semi-
group { e−tAq ; t ≥ 0 } on Lqσ(Ω) and that ∆q generates a bounded analytic
semigroup { et∆q ; t ≥ 0} on Lq(Ω). The decay estimates

‖Aαq e−tAq‖q ≤ c t−α, t > 0 , (2.2)

‖(−∆q)
αet∆q‖q ≤ c t−α t > 0 , (2.3)

are satisfied where α ≥ 0 , q > 1, and c = c(Ω, q, α) > 0. There holds

‖u‖γ ≤ c‖Aαq u‖q ∀u ∈ D(Aαq ) , (2.4)
‖φ‖γ ≤ c‖(−∆q)

αφ‖q ∀φ ∈ D((−∆q)
α) (2.5)
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with a constant c = c(Ω, q, α) > 0 where 0 ≤ α ≤ 1 , 1 < q < ∞ with
2α+ 3

γ = 3
q . Furthermore

D(A1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) , ‖∇u‖q ≤ c‖A1/2
q u‖q , u ∈ D(A1/2

q ) , (2.6)

D((−∆q)
1/2) = W 1,q

0 (Ω) , ‖∇u‖q ≤ c‖(−∆q)
1/2u‖q , u ∈ D((−∆q)

1/2)
(2.7)

for all 1 < q < ∞ with a constant c = c(Ω, q) > 0. If q = 2 it is possible
to choose c = 1 in (2.2), (2.3), (2.6), (2.7). We refer to [7, 8, 9, 10] for the
results above and further properties.

To proceed we formulate integral equations which characterize weak solu-
tions of the Boussinesq system (1.1).

Lemma 2.1. Let Ω ⊆ R3 be a general domain, let 0 < T ≤ ∞, let g :
]0, T [×Ω→ R3 be a measurable vector field. Further assume u0 ∈ L2

σ(Ω) and
θ0 ∈ L2(Ω). Then (u, θ) satisfying (1.2), (1.3) and θg ∈ L1

loc([0, T [;L2(Ω))
is a weak solution of (1.1) if and only if the integral equations

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ

−A1/2

∫ t

0
e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ u(τ)

)
dτ ,

(2.8)

θ(t) = et∆θ0 − (−∆)1/2

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ (2.9)

are satisfied for almost all t ∈ [0, T [.

Proof. The representation formula (2.8) follows from [19, Chapter IV, Sec-
tion 2.4] with f := θg ∈ L1

loc([0, T [;L2(Ω)). To prove (2.9) we replace −A
by ∆ and use the same argumentation as in the proof of (2.8). �

3. Construction of a suitable fixed point

The proof of Theorem 1.3 is based on the construction of a solution of the
system (3.14) below. To solve this system with the help of Banach’s fixed
point theorem we need the estimates presented in Lemma 3.2. In the follow-
ing lemma we use the boundedness of Ω to show that the assumption p > 3

2
in [4, Lemma 3.1] can be removed.

Lemma 3.1. Let Ω ⊆ R3 be a bounded domain with ∂Ω ∈ C2,1 and p >
1 , F ∈ Lp(Ω). Choose r, σ ≥ 0 with

2σ +
3

r
=

3

p
, 0 ≤ σ ≤ 1

2
. (3.1)

There exists a unique element in Lrσ(Ω) denoted by A−1/2−σ
r PrdivF ∈ Lrσ(Ω)

with
〈A−1/2−σ

r PrdivF,A
1/2+σ
r′ w〉Ω = −〈F,∇w〉Ω (3.2)

for all w ∈ D(A
1/2+σ
r′ ). There holds

‖A−1/2−σ
r PrdivF‖r ≤ c‖F‖p (3.3)

with a constant c = c(Ω, p, r) > 0.
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Proof. From 2 · 1
2 + 3

r ≥
3
p it follows 2 · 1

2 + 3
p′ ≥

3
r′ . Sobolev’s imbedding

theorem yields the continuous imbedding

W 1,r′(Ω) ↪→ Lp
′
(Ω). (3.4)

(If r′ ≥ 3 we use the boundedness of Ω.) Fix w ∈ D(Ar′). Using (2.6)
and (3.4) we see w ∈ D(A

1/2
p′ ). From the consistence of the Stokes operator

(see (2.1)) it follows A1/2
p′ w = A

1/2
r′ w. Further, since A1/2

r′ w ∈ D(A
1/2
r′ ) we

get from (2.6), (2.4)
|〈F,∇w〉Ω| ≤ ‖F‖p‖∇w‖p′

≤ c‖F‖p‖A1/2
p′ w‖p′

= c‖F‖p‖A1/2
r′ w‖p′

≤ c‖F‖p‖A1/2+σ
r′ w‖r′

with a constant c = c(Ω, p, r) > 0. The rest of the proof can be finished
as in [4, Lemma 3.1]. There are no problems occurring although we allow
1 < p <∞. �

In the same way (−∆r)
−1/2−σdivF is well defined by

〈(−∆r)
−1/2−σdivF, (−∆r′)

1/2+σφ〉Ω = −〈F,∇φ〉Ω
for all φ ∈ D((−∆r′)

1/2+σ). We proceed with the lemma below.

Lemma 3.2. Let Ω ⊆ R3 be a bounded domain with ∂Ω ∈ C2,1 and 0 < T ≤
∞. Consider 1 < s, q < ∞ with S(s, q) = 1. Let 1 < s1 , q1 < ∞ be defined
by

1

s1
=

1

2
− 1

s
,

1

q1
=

1

2
− 1

q
.

Consider g ∈ Lµ(0, T ;Lp(Ω)) where 1 < µ, p < ∞ satisfy S(µ, p) = 3
2 and

2 + 3
q >

3
q1

+ 3
p . Define α := 1

2 + 3
2q and the Banach spaces

X := Ls(0, T ;Lqσ(Ω)) , Y := Ls1(0, T ;Lq1(Ω)).

(i) Define the bilinear form F1 : X ×X → X by

F1(u, v)(t) := −Aαq
∫ t

0
e−(t−τ)AqA−αq Pqdiv

(
u(τ)⊗ v(τ)

)
dτ

for a.a. t ∈ [0, T [.

Then

‖F1(u, v)‖X ≤ c‖u⊗ v‖ q
2
, s
2

;T ≤ c‖u‖X‖v‖X (3.5)

for all u, v ∈ X where c = c(Ω, q) > 0 is a constant.
(ii) Define the bilinear form F2 : X × Y → Y by

F2(u, θ)(t) := −(−∆q1)α
∫ t

0
e(t−τ)∆q1 (−∆q1)−αdiv

(
θ(τ)u(τ)

)
dτ

for a.a. t ∈ [0, T [.

Then
‖F2(u, θ)‖Y ≤ c‖θu‖2,2;T ≤ c‖u‖X‖θ‖Y (3.6)

for all u ∈ X , θ ∈ Y with c = c(Ω, q) > 0.
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(iii) Define the linear map L : Y → X by(
Lθ
)
(t) :=

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ for a.a. t ∈ [0, T [.

Then
‖Lθ‖X ≤ c‖g‖p,µ;T ‖θ‖Y (3.7)

for all θ ∈ Y with c = c(Ω, p, q) > 0.

Proof. Fix u , v ∈ Ls(0, T ;Lqσ(Ω)) and θ ∈ Ls1(0, T ;Lq1(Ω)).
Proof of (i). We use (2.2), (3.3) and get

‖F(u, v)(t)‖q ≤ c
∫ t

0
|t− τ |−α‖A−αq Pqdiv

(
u(τ)⊗ v(τ)

)
‖q dτ

≤ c
∫ T

0
|t− τ |−α‖u(τ)⊗ v(τ)‖ q

2
dτ

for almost all t ∈ [0, T [ with c = c(Ω, q) > 0. Apply the Hardy-Littlewood
inequality (see [20, Ch. V, 1.2]) with (1− α) + 1

s = 1
s/2 to obtain

‖F(u, v)‖q,s;T ≤ c‖u⊗ v‖ q
2
, s
2

;T ≤ c‖u‖q,s;T ‖v‖q,s;T (3.8)

with c = c(Ω, q) > 0.
Proof of (ii). There holds 2 · 3

2q + 3
q1

= 3
2 . By an analogous version

of (3.3) for −∆q1 we get

‖(−∆q1)−αdiv
(
θ(t)u(t)

)
‖q1 ≤ c(Ω, q)‖θ(t)u(t)‖2 (3.9)

for a.a. t ∈ [0, T [. It follows from (2.3), (3.9)

‖(F2(u, θ))(t)‖q1 ≤ c
∫ t

0
|t− τ |−α‖(−∆q1)−αdiv

(
θ(τ)u(τ)

)
‖q1 dτ

≤ c
∫ T

0
|t− τ |−α‖θ(τ)u(τ)‖2 dτ

for a.a. t ∈ [0, T [ with c = c(Ω, q) > 0. The Hardy-Littlewood inequality
with (1− α) + 1

s1
= 1

2 , combined with Hölder’s inequality, yields

‖F2(u, θ)‖q1,s1;T ≤ c‖θu‖2,2;T ≤ c(Ω, q)‖u‖q,s;T ‖θ‖q1,s1;T . (3.10)

Proof of (iii). Choose 0 ≤ σ < 1 such that 2σ + 3
q = 3

q1
+ 3

p . Define
1 < p∗, µ∗ <∞ by

1

p∗
=

1

q1
+

1

p
,

1

µ∗
=

1

s1
+

1

µ
. (3.11)

Using (2.2), (2.4) yields

‖(Lθ)(t)‖q ≤ c
∥∥∥Aσp∗ ∫ t

0
e−(t−τ)Ap∗Pp∗

(
θ(τ)g(τ)

)
dτ
∥∥∥
p∗

≤ c
∫ T

0
|t− τ |−σ‖θ(τ)g(τ)‖p∗ dτ

(3.12)

for a.a. t ∈ [0, T [ with c = c(Ω, p, q) > 0. Since

(1− σ) +
1

s
=

1

µ∗
=

1

s1
+

1

µ
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we can apply the Hardy-Littlewood estimate to (3.12) and get

‖Lθ‖q,s;T ≤ c‖θg‖p∗,µ∗;T ≤ c(Ω, p, q)‖g‖p,µ;T ‖θ‖q1,s1;T . �

Now we have all ingredients at hand to construct a solution of (3.14).

Theorem 3.3. Let Ω ⊆ R3 be a bounded domain with ∂Ω ∈ C2,1, let 0 <
T ≤ ∞. Consider 1 < s, q < ∞ with S(s, q) = 1. Let 1 < s1 , q1 < ∞ be
defined by

1

s1
=

1

2
− 1

s
,

1

q1
=

1

2
− 1

q
.

Consider g ∈ Lµ(0, T ;Lp(Ω)) where 1 < µ, p < ∞ satisfy S(µ, p) = 3
2 and

2 + 3
q >

3
q1

+ 3
p . Then there exists a constant ε∗ = ε∗(Ω, q, p) > 0 with the

following property: If E1 ∈ Ls(0, T ;Lqσ(Ω)) , E2 ∈ Ls1(0, T ;Lq1(Ω)) fulfil

‖E1‖q,s;T + ‖E2‖q1,s1;T + ‖g‖p,µ;T ≤ ε∗ (3.13)

then there exists u ∈ Ls(0, T ;Lqσ(Ω)) , θ ∈ Ls1(0, T ;Lq1(Ω)) satisfying

u = E1 + F1(u, u) + Lθ ,
θ = E2 + F2(u, θ)

(3.14)

and

‖u‖q,s;T + ‖θ‖q1,s1;T ≤ 4(‖E1‖q,s;T + ‖E2‖q1,s1;T ).

Proof. Let X,Y , let F1,F2,L be defined as in Lemma 3.2, and let c =
c(Ω, p, q) > 0 be a constant such that the estimates (3.5), (3.6), (3.7) are
fulfilled. We endow X × Y with the norm ‖(u, θ)‖X×Y := ‖u‖X + ‖θ‖Y and
obtain that X × Y is a Banach space. Introduce the nonlinear map

T : X × Y → X × Y , T (u, θ) :=
(
E1 + F1(u, u) + Lθ,E2 + F2(u, θ)

)
.

Define ε∗ := 1
32c . Therefore

‖Lθ‖X ≤ c‖g‖p,µ;T ‖θ‖Y ≤
1

2
‖θ‖Y

for all θ ∈ Y . Introduce M := ‖E1‖X + ‖E2‖Y . With no loss of generality
assume M > 0. Since 4cM < 1 we can define R as the smallest positive root
of the polynomial cx2 − 1

2x+M , i.e.

R =

1
2 −

√
1
4 − 4cM

2c
=

2M

1
2 +

√
1
4 − 4cM

.

We define the closed ball B := {(u, θ) ∈ X × Y ; ‖(u, θ)‖X×Y ≤ R}. Hence
there holds

‖T (u, θ)‖X×Y ≤ c‖u‖X(‖u‖X + ‖θ‖Y ) +
1

2
‖θ‖Y +M ≤ cR2 +

1

2
R+M = R.
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Thus T (B) ⊆ B. We obtain

‖T (u, θ)− T (ũ, θ̃)‖X×Y
=
(
F1(u, u− ũ) + F1(u− ũ, ũ) + L(θ − θ̃) ,F2(u, θ − θ̃) + F2(u− ũ, θ̃)

)
≤ c(‖u‖X + ‖ũ‖X + ‖θ̃‖Y )‖u− ũ‖X + c‖u‖X‖θ − θ̃‖Y +

1

2
‖θ − θ̃‖Y

≤ 2cR‖u− ũ‖X + cR‖θ − θ̃‖Y +
1

2
‖θ − θ̃‖Y

≤ (2cR+
1

2
)‖(u, θ)− (ũ, θ̃)‖X×Y

for all (u, θ) , (ũ, θ̃) ∈ B. We get from R < 4M and (3.13) that

2cR+
1

2
< 8cM +

1

2
< 1.

Altogether T : B → B is a strict contraction. By Banach’s fixed point
theorem there exists (u, θ) ∈ B with T (u, θ) = (u, θ). Especially

‖u‖X + ‖θ‖Y ≤ R < 4M. �

4. Proof of Theorems 1.3, 1.4 and 1.5

Proof of Theorem 1.3. Step 1. Define

E1(t) := e−tAu0 , E2(t) := et∆θ0 for t ∈ [0, T [. (4.1)

We use [19, IV, Theorems 2.3.1 and 2.4.1] to get E1 ∈ L∞(0, T ;L2
σ(Ω)) ∩

L2
loc([0, T [;W 1,2

0,σ (Ω)) and that E1 is a weak solution to the (linear) Stokes
system with initial value u0 and external force 0. Analogously it follows
E2 ∈ L∞(0, T ;L2(Ω)) ∩ L2

loc([0, T [;H1
0 (Ω)) and that E2 is a weak solution

to the heat equation with initial value θ0 and external force 0.
Let F1 ,F2 ,L be defined as in Lemma 3.2 and let ε∗ = ε∗(Ω, p, q) > 0 be

the constant constructed in Theorem 3.3. Thus, if

‖E1‖q,s;T + ‖E2‖q1,s1;T + ‖g‖p,µ;T ≤ ε∗ (4.2)

then there exists u ∈ Ls(0, T ;Lqσ(Ω)) , θ ∈ Ls1(0, T ;Lq1(Ω)) satisfying

u = E1 + F1(u, u) + Lθ ,
θ = E2 + F2(u, θ)

(4.3)

and
‖u‖q,s;T + ‖θ‖q1,s1;T ≤ 4(‖E1‖q,s;T + ‖E2‖q1,s1;T ). (4.4)

In the following assume that u ∈ Ls(0, T ;Lqσ(Ω)) , θ ∈ Ls1(0, T ;Lq1(Ω))
satisfy (4.3), (4.4). We will show that, after a possible reduction of ε∗ (see
the discussion following (4.8)), that (u, θ) is a weak solution of (1.1), in
particular (u, θ) fulfils (1.2), (1.3).
Step 2. We obtain

‖θu‖2,2;T ≤ ‖θ‖q1,s1;T ‖u‖q,s;T <∞.

Consequently θu ∈ L2(0, T ;L2(Ω)). By construction

θ(t) = et∆θ0 − (−∆)1/2

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ
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for a.a. t ∈ [0, T [. Thus, from [19, Chapter IV, Lemma 2.4.2] (with A
replaced by −∆) it follows that θ fulfils (1.3).
Step 3. Define

E(t) := E1(t) + L(θ)(t) = e−tAu0 +

∫ t

0
e−(t−τ)AP

(
θ(τ)g(τ)

)
dτ , (4.5)

ũ(t) := −
∫ t

0
Aαq e

−(t−τ)AqA−αq Pqdiv
(
(ũ+ E)⊗ (ũ+ E)

)
(τ) dτ (4.6)

for a.a. t ∈ [0, T [. Thus u = ũ + E. From g ∈ Ls2(0, T ;Lq(Ω)) we
get that θg ∈ L1(0, T ;L2(Ω)). Therefore [19, IV, (2.3.2)] implies ∇E ∈
L2(0, T ;L2(Ω)). Let 1 < γ < ∞ be defined by 1

γ = 1
2 + 1

q . In the follow-
ing we use the consistence of the Stokes operator and duality arguments to
rewrite (4.6). We apply [4, (3.11)] (which is also true for a smooth bounded
domain) with r1 = q/2 , r2 = q and F := u ⊗ u ∈ L

s
2 (0, T ;L

q
2 (Ω)) to (4.6)

and obtain

ũ(t) = −
∫ t

0
A

1/2
q/2e

−(t−τ)Aq/2A
−1/2
q/2 Pq/2div

(
(ũ+ E)⊗ (ũ+ E)

)
(τ) dτ

for a.a. t ∈ [0, T [. Using (2.1) and F ∈ Ls2loc([0, T [;Lγ(Ω)) yields

ũ(t) = −
∫ t

0
A1/2
γ e−(t−τ)AγA−1/2

γ Pγdiv
(
(ũ+ E)⊗ (ũ+ E)

)
(τ) dτ (4.7)

for a.a. t ∈ [0, T [. Let Jn := (I + 1
nA

1/2
γ )−1 , n ∈ N, be the Yosida approxi-

mation of I in Lγσ(Ω), so that ũ = Jnũ+ 1
nA

1/2
γ Jnũ. For further properties of

Jn we refer to [19, II, Section 3.4]. Applying Yosida’s smoothing procedure
in combination with the consistence of the Stokes operator in the same way
as in [6] that leads from (2.46) to (2.48) in this paper shows that

‖Aγe1/2Jnũ‖2,2;T ≤ c1‖u‖q,s;T
(
‖A1/2

γ Jnũ‖2,2;T + ‖∇E‖2,2;T

)
(4.8)

for all n ∈ N with a fixed constant c1 = c1(Ω, q) > 0. Replacing ε∗ by
min{ε∗, 1

8c1
} it follows from (4.4) that

c1‖u‖q,s;T ≤ 4c1(‖E1‖q,s;T + ‖E2‖q1,s1;T ) ≤ 1

2
.

By construction ε∗ = ε∗(Ω, p, q) > 0. We can apply the absorption principle
to (4.8) and get

‖A1/2
γ Jnũ‖2,2;T ≤ c‖u‖q,s;T ‖∇E‖2,2;T (4.9)

with a constant c = c(Ω, q) > 0 independent of n ∈ N. By a functional
analytic argument (see [19, II. (3.1.8), (3.1.9)]) in combination with the
consistence of the Stokes operator it follows ũ(t) ∈ D(A1/2) for a.a. t ∈ [0, T [

and A1/2ũ ∈ L2(0, T ;L2(Ω)). Therefore ∇ũ ∈ L2(0, T ;L2(Ω)).
Step 4. Since ∇u ∈ L2(0, T ;L2(Ω)) we can write

ũ(t) = −
∫ t

0
e−(t−τ)AγPγ(u · ∇u)(τ) dτ
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for a.a. t ∈ [0, T [. The same argumentation as in [6, page 640] shows that (4)
implies u⊗ u ∈ L2(0, T ;L2(Ω)). We get

ũ(t) = −
∫ t

0
A1/2e−(t−τ)AA−1/2Pdiv(u⊗ u)(τ) dτ

for a.a. t ∈ [0, T [. Therefore, ũ can be considered as a weak solution of the
(linear) Stokes system with initial value 0 and external force f = −div(u⊗u)
where u ⊗ u ∈ L2(0, T ;L2(Ω)). Then linear theory (see [19, IV, Theorems
2.3.1 and 2.4.1]) implies that ũ satisfies (1.2).
Step 5. We have proven that (u, θ) satisfies (1.2), (1.3). Lemma 2.1 yields

that (u, θ) is a strong solution of (1.1). We obtain (see [19, IV, Theorem
2.3.1]), after a possible redefinition on a null set, that u : [0, T [→ L2

σ(Ω)
and θ : [0, T [→ L2(Ω) are strongly continuous. The uniqueness of a strong
solution follows from Theorem 1.5. The proof is complete. �

Proof of Theorem 1.4. Let ε∗ = ε∗(Ω, p, q) > 0 be the constant con-
structed in Theorem 1.3. Let E1, E2 be defined as in (4.1). Since E2 ∈
L∞(0, T ;L2(Ω)) ,∇E2 ∈ L2(0, T ;L2(Ω)) and S(s1, q1) = 3

2 it follows by
interpolation and the continuous imbedding H1(Ω) ↪→ L6(Ω) that E2 ∈
Ls1(0, T ;Lq1(Ω)).

First, assume (1.9). Due to ‖E2‖q1,s1;T + ‖g‖p,µ;T < ∞ we can choose
0 < T ′ ≤ T such that (1.4), (1.5), (1.6) are fulfilled where T is replaced by
T ′. Consequently, by Theorem 1.3 there exists a strong solution (u, θ) with
u ∈ Ls(0, T ′;Lq(Ω)) of (1.1).

For the proof of the converse direction consider 0 < T ′ < T and a strong
solution (u, θ) with u ∈ Ls(0, T ′;Lq(Ω)) of (1.1). From (1.3) it follows by
interpolation θ ∈ Ls1(0, T ′;Lq1(Ω)). By (3.7) we get Lθ ∈ Ls(0, T ′;Lq(Ω)).
Using (2.8) we obtain

e−tAu0 = u(t)− (Lθ)(t)− ũ(t) (4.10)

for almost all t ∈ [0, T ′[ where

ũ(t) := −
∫ t

0
A1/2e−(t−τ)AA−1/2Pdiv

(
u(τ)⊗ u(τ)

)
dτ

for a.a. t ∈ [0, T ′[. From [4, (3.11)] (which holds true for a bounded domain)
it follows

ũ(t) = −
∫ t

0
Aαq e

−(t−τ)AqA−αq Pqdiv
(
u(τ)⊗ u(τ)

)
dτ

for a.a. t ∈ [0, T ′[ where α := 1
2 + 3

2q . Consequently, (3.5) yields ũ ∈
Ls(0, T ′;Lq(Ω)). Altogether, from (4.10) we get e−tAu0 ∈ Ls(0, T ′;Lq(Ω)).
From (2.2), (2.4) and S(s, q) = 1 we get∫ ∞

T ′
‖e−tAu0‖sq dt ≤ c

∫ ∞
T ′

t
− 3

2
s( 1

2
− 1
q

)‖u0‖s2 dt <∞.

Altogether (1.9) holds. �
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Proof of Theorem 1.5. Throughout this proof we will use the results of
Lemma 3.2 without referring back to them. Especially let s1, q1, µ∗, p∗ be
defined as in (3.2), (3.11). Further we introduce for 0 < T ′ ≤ T ≤ ∞ and

f ∈ Ls(0, T ;Lq(Ω)) the notation ‖f‖q,s;T ′,T :=
(∫ T

T ′ ‖f(t)‖sq dt
) 1
s .

Define

Tmax := sup {T ′ ∈ [0, T [; u1(t) = u2(t) , θ1(t) = θ2(t) for a.a. t ∈ [0, T ′[ }.

Suppose by contradiction Tmax < T . Consider any T ′ ∈ [Tmax, T [. By
Lemma 2.1 there holds

u1 − u2 = F1(u1, u1 − u2) + F1(u1 − u2, u2) + L(θ1 − θ2) ,

θ1 − θ2 = F2(u1 − u2, θ1) + F2(u2, θ1 − θ2).

Thus
‖u1 − u2‖q,s;T ′
≤ c
(
‖u1 ⊗ (u1 − u2)‖ q

2
, s
2

;T ′ + ‖(u1 − u2)⊗ u2‖ q
2
, s
2

;T ′

+ ‖(θ1 − θ2)g‖p∗,µ∗;T ′
)

= c
(
‖u1 ⊗ (u1 − u2)‖ q

2
, s
2

;Tmax,T ′ + ‖(u1 − u2)⊗ u2‖ q
2
, s
2

;Tmax,T ′

+ ‖(θ1 − θ2)g‖p∗,µ∗;Tmax,T ′
)

≤ c
(
‖u1‖q,s;Tmax,T ′ + ‖u2‖q,s;Tmax,T ′

)
‖u1 − u2‖q,s;Tmax,T ′

+ c‖g‖p,µ;Tmax,T ′‖θ1 − θ2‖q1,s1;Tmax,T ′

(4.11)

with c = c(Ω, p, q) > 0. The difference ‖θ1 − θ2‖q1,s1;T ′ can be estimated
analogously. We get

‖θ1 − θ2‖q1,s1;T ′ ≤ c
(
‖u1 − u2‖q,s;Tmax,T ′‖θ1‖q1,s1;Tmax,T ′

+ ‖u2‖q,s;Tmax,T ′‖θ1 − θ2‖q1,s1;Tmax,T ′
)
.

Altogether

‖u1 − u2‖q,s;T ′ + ‖θ1 − θ2‖q1,s1;T ′

≤ c1

(
‖u1‖q,s;Tmax,T ′ + ‖u2‖q,s;Tmax,T ′ + ‖θ1‖q1,s1;Tmax,T ′

)
‖u1 − u2‖q,s;Tmax,T ′

+ c1

(
‖g‖p,µ;Tmax,T ′ + ‖u2‖q,s;Tmax,T ′

)
‖θ1 − θ2‖q1,s1;Tmax,T ′

(4.12)

with a fixed constant c1 = c1(Ω, p, q) > 0. Now T ′ > Tmax can be chosen
such that the two conditions

c1

(
‖u1‖q,s;Tmax,T ′ + ‖u2‖q,s;Tmax,T ′ + ‖θ‖q1,s1;Tmax,T ′

)
≤ 1

4
,

c1

(
‖g‖p,µ;Tmax,T ′ + ‖u2‖q,s;Tmax,T ′

)
≤ 1

4

(4.13)

are satisfied. From (4.12), (4.13) we get

‖u1 − u2‖q,s;T ′ + ‖θ1 − θ2‖q1,s1;T ′ = 0.

Since T ′ > Tmax this is a contradiction to the definition of Tmax. Therefore
Tmax = T . �
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5. Regularity of a strong solution

The goal of this section is to show the smoothness of a strong solution
(u, θ) of (1.1) if the data are sufficiently smooth. The definition of a strong
solution (u, θ) of (1.1) is ’asymmetric’ in the sense that we require u ∈
Ls(0, T ;Lq(Ω)) , 2

s + 3
q = 1 but no additional condition on θ. Therefore,

the crucial point in the first step in the proof of Theorem 1.6 is to show
u · ∇θ ∈ L2

loc([0, T [;L2(Ω)).

Theorem 5.1. Let Ω ⊆ R3 be a uniform C2-domain, let 0 < T ≤ ∞.
Consider 1 < s, q <∞ with S(s, q) = 1 and g ∈ L8

loc([0, T [;L4(Ω)). Consider
u0 ∈ W 1,2

0,σ (Ω) , θ0 ∈ H1
0 (Ω). Let (u, θ) be a weak solution of (1.1) with

u ∈ Lsloc([0, T [;Lq(Ω)). Then the following statements are satisfied:

(i) u fulfils

u ∈ L∞loc([0, T [;W 1,2
0,σ (Ω)) ∩ L2

loc([0, T [;H2(Ω)) , ut ∈ L2
loc([0, T [;L2

σ(Ω))

(5.1)
and

u · ∇u ∈ L2
loc([0, T [;L2(Ω)). (5.2)

Moreover, there exists an associated pressure p of u with

p ∈ L2
loc([0, T [;L2

loc(Ω)) , ∇p ∈ L2
loc([0, T [;L2(Ω)). (5.3)

(ii) θ fulfils

θ ∈ L∞loc([0, T [;H1
0 (Ω))∩L2

loc([0, T [;H2(Ω)) , θt ∈ L2
loc([0, T [;L2(Ω)) (5.4)

and
u · ∇θ ∈ L2

loc([0, T [;L2(Ω)). (5.5)

Proof. Step 1. Replacing T by T ′ , 0 < T ′ < T , we may assume with
no loss of generality that g ∈ L8(0, T ;L4(Ω)) , u ∈ Ls(0, T ;Lq(Ω)) and
u ∈ L2(0, T ;W 1,2

0,σ (Ω)) , θ ∈ L2(0, T ;H1
0 (Ω)). From (1.3) it follows by in-

terpolation θ ∈ L8/3(0, T ;L4(Ω)). Thus θg ∈ L2(0, T ;L2(Ω)). We consider
u as a strong solution of the instationary Navier-Stokes equations with initial
value u0 and external force f := θg. From [19, Chapter V, Theorem 1.8.1]
we obtain (5.1), (5.2) and an associated pressure p of u satisfying (5.3).
Step 2. Fix 2 < γ < 4. Define α := 1

γ . Then 1
4 < α < 1

2 . Choose
3 < r < 6, such that 2α+ 3

r = 3
2 . We get with Sobolev’s imbedding theorem

and [19, Chapter III. (2.2.8), (2.4.18)] that

‖u(t)‖∞ ≤ c‖u(t)‖W 1,r(Ω)

≤ c
(
‖A1/2+αu(t)‖2 + ‖u(t)‖2

)
≤ c
(
‖Au(t)‖2α2 ‖A1/2u(t)‖1−2α

2 + ‖u(t)‖2
) (5.6)

for almost all t ∈ [0, T [ with a constant c > 0 independent of t. Integrat-
ing (5.6) yields

‖u‖∞,γ;T ≤ c
(
‖Au‖2α2,2;T ‖A1/2u‖1−2α

2,∞;T + ‖u‖2,γ;T

)
<∞ (5.7)
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for all 2 ≤ γ < 4. We know (see (2.9)) that

θ(t) = E2(t) + θ̃(t) := et∆θ0− (−∆)1/2

∫ t

0
e(t−τ)∆(−∆)−1/2div

(
θ(τ)u(τ)

)
dτ

(5.8)
for a.a. t ∈ [0, T [. There holds

‖(−∆)1/2et∆θ0‖2 = ‖et∆(−∆)1/2θ0‖2 ≤ ‖(−∆)1/2θ0‖2
for all t > 0. Thus

E2 ∈ L∞(0, T ;H1
0 (Ω)). (5.9)

We use [19, Chapter IV, Lemma 1.5.3] (also true for (−∆)) and obtain:

‖(−∆)et∆θ0‖2,2;T = ‖(−∆)1/2et∆(−∆)1/2θ0‖2,2;T ≤ ‖(−∆)1/2θ0‖2.

By the maximal regularity of −∆ (c.f. [19, IV, Lemma 1.6.2] for −∆) it
follows that E2 fulfils (5.4) where θ is replaced by E2.

By (5.7) and ∇θ ∈ L2(0, T ;L2(Ω)) it follows u · ∇θ ∈ L1(0, T ;L2(Ω)).
Consequently, since div

(
(θu)(t)

)
= (u · ∇θ)(t) for a.a. t ∈ [0, T [ in the sense

of distributions in Ω, we obtain

θ̃(t) = −
∫ t

0
e(t−τ)∆

(
u · ∇θ

)
(τ) dτ (5.10)

for a.a. t ∈ [0, T [. The proof of u · ∇θ ∈ L2(0, T ;L2(Ω)) is based on the
following
Assertion. Consider 2 ≤ γ1 < ∞ and assume ∇θ ∈ Lγ1(0, T ;L2(Ω)).

Let 2 < γ2 <∞ be defined by 1
4 + 1

γ2
= 1

γ1
. Then

∇θ ∈ Lγ(0, T ;L2(Ω)) (5.11)

for all 2 ≤ γ < γ2.
Proof of the assertion. We get

‖(−∆)1/2θ̃(t)‖2 =
∥∥∥∫ t

0
(−∆)1/2e(t−τ)∆(u · ∇θ)(τ) dτ

∥∥∥
2

≤
∫ T

0
|t− τ |−1/2‖

(
u · ∇θ

)
(τ)‖2 dτ

for a.a. t ∈ [0, T [. Define 1 < γ3 < ∞ by 1
γ3

= 1
4 + 1

γ1
. Consequently,

the estimate ‖u · ∇θ‖2 ≤ ‖u‖∞‖∇θ‖2, Hölder’s inequality and (5.7) imply
u · ∇θ ∈ Lγ(0, T ;L2(Ω)) for all 1 ≤ γ < γ3. Thus, the Hardy-Littlewood
inequality with 1

2 + 1
γ2

= 1
γ3

implies (−∆)1/2θ̃ ∈ Lγ(0, T ;L2(Ω)) for all
1 ≤ γ < γ2. From (5.9) it follows (−∆)1/2E2 ∈ Lγ(0, T ;L2(Ω)) , 1 ≤ γ < γ2.
Altogether, see (5.8), we get (−∆)1/2θ ∈ Lγ(0, T ;L2(Ω)) for all 1 ≤ γ < γ2

and consequently, (see (2.7)) the proof of the assertion is finished. �
We use an iterative procedure to show u · ∇θ ∈ L2(0, T ;L2(Ω)). First,

define γ1 := 2. Consequently, we get ∇θ ∈ Lγ(0, T ;L2(Ω)) for all 2 ≤ γ <
4. In the next step, the requirements of the assertion are fulfilled for all
2 ≤ γ1 < 4. Thus ∇θ ∈ Lγ(0, T ;L2(Ω)) for all 2 ≤ γ < ∞. Especially
u · ∇θ ∈ L2(0, T, L2(Ω)).
Step 3. Since u ·∇θ ∈ L2(0, T ;L2(Ω)) we obtain from [19, IV, Theorem

2.5.2] (with A replaced by −∆) that θ̃ fulfils (5.4), (5.5). Thus θ = θ̃ + E2

satisfies (5.4), (5.5). The proof of this theorem is completed. �
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Looking at Theorem 5.1 we see that u and θ obtain the same degree of regu-
larity. Now, well known methods developed for the Navier-Stokes equations
can be used to show the smoothness of (u, θ).

Proof of Theorem 1.6. From (2.8), (2.9) in combination with (5.2), (5.5)
we get

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)AP (θg) dτ −

∫ t

0
e−(t−τ)AP (u · ∇u) dτ

θ(t) = et∆θ0 −
∫ t

0
e(t−τ)∆(u · ∇θ) dτ

(5.12)

for almost all t ∈ [0, T [. By the maximal regularity of A and −∆ it follows

ut +Au = P (θg)− P (u · ∇u) in L2
loc([0, T [;L2

σ(Ω)) ,

θt −∆θ = −u · ∇θ in L2
loc([0, T [;L2(Ω)).

(5.13)

Further, let p be an associated pressure of u satisfying (5.3). A careful
inspection of the proof of [19, Theorem V, 1.8.2] shows that u , θ , p can be
redefined on a null set of ]0, T [×Ω such that (1.10), (1.11) are fulfilled. Every
step in this proof to increase the regularity of u can be used analogously to
increase the regularity of θ.

Acknowledgement. The author thanks Reinhard Farwig for his kind sup-
port.
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