
On regularity of weak solutions to the instationary

Navier-Stokes system - a review on recent results

Reinhard Farwig �

Consider a weak instationary solution u of the Navier-Stokes equations in a do-
main 
 � R3, i.e., u solves the Navier-Stokes system in the sense of distributions
and

u 2 L1
�
0; T ;L2(
)

�
\ L2

�
0; T ;W 1;2

0 (
)
�
:

Since the pioneering work of J. Leray 1933/34 it is an open problem whether
weak solutions are unique and smooth. The main step - to nowadays knowledge
- is to show that the given weak solution is a strong one in the sense of J. Serrin,
i.e., u 2 Ls

�
0; T ;Lq(
)

�
where s > 2, q > 3 and 2

s +
3
q = 1. This review reports

on recent progress in this important problem, considering this issue locally on
an initial interval [0; T 0), T 0 < T , i.e., the problem of optimal initial values u(0),
globally on [0; T ), and from a one-sided point of view u 2 Ls

�
T 0 � "; T 0;Lq(
)

�
or u 2 Ls

�
T 0; T 0 + ";Lq(
)

�
. Further topics deal with the energy (in-)equality,

uniqueness of weak solutions and blow-up phenomena.
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1 Introduction

The Navier-Stokes system is the most classical model to describe the �ow of a
viscous incompressible �uid, the so-called Newtonian �uids. Despite of about
80 years of mathematical analysis, since the seminal paper of J. Leray [36] on
the existence of global weak solutions in the whole space R3 and corresponding
results of E. Hopf [29] for domains, basic questions on uniqueness and regularity
of weak solutions are still open. These fundamental problems are also of impor-
tance for the general theory of partial di�erential equations and brought Clay
Mathematics Institute in 2000 to classify the issue of regularity as one of the
seven Millennium Prize Problem, see C. Fe�erman [22].

Given a domain 
 � R3 and a time interval [0; T ), 0 < T � 1, let there be
given an external force f : 
 � (0; T ) ! R

3 and an initial value u0 : 
 ! R
3.
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Then we are looking for a velocity �eld u and an associated scalar pressure
function p such that

ut ��u+ u � ru+rp = f; div u = 0 in 
� (0; T );

u(0) = u0; u = 0 on @
� (0; T ):
(1.1)

For simplicity the coe�cient of viscosity � > 0 has been set to � = 1. The
nonlinear transport term u�ru is de�ned by

P3
j=1 uj@ju and can also be written

in the form u�ru = div (u
u) since u is solenoidal; recall that u
v = (uivj)
3
i;j=1

and div
�
(Fij)i;j

�
=
�P3

i=1 @iFij
�3
j=1

for a matrix �eld F = (Fij).
In this article we use standard notation for Lebesgue, Sobolev and Bochner

spaces spaces, i.e.
�
Lq(
) = Lq; k � kq

�
,
�
W k;q(
) = W k;q; k � kWk;q

�
, and�

Ls(0; T );Lq(
) = Ls(Lq)); k � kq;s;T = k � kLs(Lq)
�
, 1 � s; q � 1, respectively.

We do not di�er between spaces of scalar-, vector- and matrix-valued functions.
The index � will denote a subspace of solenoidal vector �elds, the subscript 0 a
subspace of functions with vanishing trace. Duality products of functions on 

and 
� (0; T ) will be denoted by h�; �i
 and h�; �i
;T , respectively.

To consider (1.1) as an abstract nonlinear evolution problem we introduce
the Helmholtz projection on Lq(
),

Pq : L
q(
)! Lq�(
) = C10;�(
)

k�kq
;

where 1 < q < 1 and C10;�(
) = fu 2 C10 (
) : div u = 0g. We recall that Pq
is a well-de�ned bounded projection for bounded and exterior C1-domains and
de�nes an algebraic and topological decomposition

Lq(
) = Lq�(
)�Gq(
)

with Lq�(
) = R(Pq), the range of Pq, and Gq(
) = frp 2 Lq(
) : p 2
Lqloc(
)g = N (Pq), the kernel of Pq; for details see [24], [45], [46].

Then we de�ne the Stokes operator Aq = �Pq� on Lq�(
), 1 < q <1, by

D(Aq) = W 2;q(
) \W 1;q
0 (
) \ Lq�(
);

Aq : D(Aq) � Lq�(
)! Lq�(
); u 7! Aqu = �Pq �u:

It is well-known, see e.g. [14], that �Aq generates a bounded analytic semigroup
fe�tAq ; t � 0g for bounded and exterior domains of class C1;1. Since Aq coincides
with Ar on D(Aq)\D(Ar), 1 < r, q <1, we simply write A; by analogy, since
Pqu = Pru for u 2 C10;�(
), we simply write P . Note that in general non-smooth
or general unbounded domains P and A may fail to exist, see [3], [38]. However,
for q = 2 and any domain 
 � R3, Hilbert space methods can be used to de�ne
P2 and A2 = �P2� with the properties mentioned above.

Using the Helmholtz projection P and the Stokes operator A = �P� we
get rid of the pressure term rp in (1.1)

�
P (rp) = 0

�
and rewrite (1.1) as an

abstract nonlinear evolution equation

ut +Au+ P (u � ru) = Pf in (0; T ); u(0) = u0 (1.2)

in Lq�(
). Here we assume the condition u0 2 Lq�(
) leading to Pqu0 = u0. Now
we are in the position to introduce several notions of solutions u to (1.1).
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De�nition 1.1 (De�nition of several notions of solutions)

1. A weak solution u (in the sense of Leray-Hopf) is a solution in the sense
of distributions, i.e.

�hu;wti
;T+hru;rwi
;T+hu�ru;wi
;T = hf; wi
;T+hu0; w(0)i
 (1.3)

for all test functions w 2 C10
�
[0; T );C10;�(
)

�
, lying in the Leray-Hopf

class
u 2 LHT = L1

�
0; T ;L2

�(
)
�
\ L2

loc

�
[0; T );H1

0 (
)
�

(1.4)

and satisfying the energy inequality (EI)

1

2
ku(t)k22 +

tZ
0

kruk22 d� �
1

2
ku0k

2
2 +

tZ
0

hf; ui
 d� (1.5)

for all t 2 [0; T ). Rede�ning u on a subset of (0; T ) of Lebesgue measure
equal to 0 we may assume that

u : [0; T )! L2
�(
) is weakly continuous, (1.6)

or u 2 C0
w

�
[0; T );L2

�(
)
�
for short.

2. A weak solution u 2 LHT is called a strong solution (in the sense of
Serrin) if there are exponents s; q such that

u 2 Ls
�
0; T ;Lq(


�
); s > 2; q > 3;

2

s
+

3

q
= 1: (1.7)

Under the assumption 2
s + 3

q = 1 the space Ls
�
0; T ;Lq(
)

�
is called a

Serrin class.

3. A mild solution u 2 C0([0; T );Lq
�

)
�
, 1 < q < 1, is a solution of the

nonlinear integral equation

u(t) = e�tAu0 +

tZ
0

e�(t��)A
�
f(�)� div (u
 u)(�)

�
d�: (1.8)

which originates from the variation of constants formula applied to the
evolution problem (1.2).

4. Classical solutions have weak or even classical derivatives with respect to
time and space such that ut, ru, r2u 2 Lq(
), q > 1. A classical solution
satisfying u 2 C1

�

 � (0; T )

�
when f 2 C1

�

 � (0; T )

�
and even u 2

C1
�

� [0; T )

�
when f 2 C1

�

� [0; T )

�
, u0 2 C1(
) and @
 2 C1, is

called a smooth solution.

5. Strong solutions (in the sense of maximal regularity) are solutions of the
evolution equation (1.2) with f 2 Ls

�
0; T ;Lq(
)

�
and adequate initial

value u0 such that e.g.

ut;r
2u 2 Ls

�
0; T ;Lq(
)

�
for some 1 < s; q <1: (1.9)

For a more precise de�nition of maximal regularity of the linear Stokes
system and its properties we refer to Section 3.
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6. Very weak solutions are solutions u in Serrin's class Ls
�
0; T ;Lq(
)

�
as in

(1.7) with no di�erentiability (except for the weak divergence div u = 0).
To be more precise, for any test function w 2 C10

�
[0; T );C2

0;�(
)
�
(i.e.

w(t) 2 C2(
), w(t)j@

= 0, divw(t) = 0, suppw(t) � 
 compact)

�hu;wti
;T � hu;�wi
;T � hu
 u;rwi
;T

= hf; wi
;T + hu0; w(0)i


div u(t) = 0 in 
; u(t) �N = 0 on @
 for a.a. t 2 (0; T ):

(1.10)

Here N = N(x) denotes the outward normal at x 2 @
, and the tangential
component u� (u �N)N vanishes on @
 due to the �rst equation of (1.10).

Let us recall several important results on these di�erent notions of solutions.

Remark 1.2 1. The existence of weak solutions is known for arbitrary do-
mains 
 � R3, initial values in u0 2 L2

�(
) and forces f 2 L1
�
0; T ;L2(
)

�
.

More generally, f may be assumed to be a functional of the form f = divF ,
F 2 L2

�
0; T ;L2(
)

�
so that in (1.3)

hf; wi
;T := �hF;rwi
;T :

2. Weak solutions can be constructed by several methods, e.g. by Galerkin's
approximation method, approximation by time discretization or by ap-
proximation of the term u � ru by Jku � ru via Yosida operators Jk =�
I + 1

kA
1=2
��1

.

3. Weak solutions constructed as in 2. satisfy the energy inequality (EI) in
(1.5). The reason for the inequality rather than an equality is the use of
approximation techniques and the lower semi-continuity of the norm k � k2
with respect to weak convergence. When 
 is bounded, the weak solutions
constructed as in 2. even satisfy the strong energy inequality (SEI)

1

2
ku(t)k22 +

tZ
t0

kruk22 d� �
1

2
ku(t0)k

2
2 +

tZ
t0

hf; ui
 d� (1.11)

for almost all t0 2 [0; T ) (including t0 = 0) and for all t 2 (t0; T ). In the
case of an exterior domain maximal regularity estimates yielding Ls(Lq)-
estimates of the associated pressure p are needed to construct a weak
solution satisfying (SEI), see [41].

When a weak solution satis�es (1.11) for a speci�c t0, we will say that
u satis�es (EI)t0 . Hence

u satis�es (SEI) , u satis�es (EI)t0 for a.a. t0 2 [0; T ]:

It is an open problem whether (EI) for a weak solutions implies (SEI).
Moreover, it is even open whether every weak solution satisfying (1.3) and
(1.4) automatically satis�es the energy inequality (EI). Note that weak
solutions in our de�nition are assumed to satisfy (EI) = (EI)0.
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4. One of the fundamental problems on weak solutions is the question of
uniqueness. A classical theorem, the so-called Serrin uniqueness theo-
rem, states that a weak solution u lying in a Serrin class Ls

�
0; T ;Lq(
)

�
,

see (1.7), is unique in the class of all Leray-Hopf type weak solutions.
Note that by de�nition a Leray-Hopf type weak solution satis�es (EI)
and that a weak solution in a Serrin class even satis�es the energy equal-
ity (EE), see 5. below. Uniqueness for a weak solution in the limit class
L1
�
0; T ;L3(
)

�
was proved by Kozono-Sohr [35] and in [19], see also

Theorem 2.14 below.

5. Less restrictive assumptions than in 4. are needed to prove that a weak
solution u satis�es the energy equality (EE), i.e.

1

2
ku(t)k22 +

tZ
0

kruk22 d� =
1

2
ku0k

2
2 +

tZ
0

hf; ui
 d� (1.12)

for all t 2 (0; T ). A classical theorem requires the condition

u 2 L4
�
0; T ;L4(
)

�
(1.13)

or equivalently u 
 u 2 L2
�
0; T ;L2(
)

�
. In this case, the term u � ru =

div (u 
 u) has the same properties as the external force divF with F 2
L2
�
0; T ;L2(
)

�
. In particular, u may be used as test function w in (1.3)

leading to the integrability (u � ru)u 2 L1
�
0; T ;L1(
)

�
and the fact that

hu � ru; ui
(t) = 0 for a.a. t 2 (0; T ). Note that in the general three-
dimensional case a weak solution u 2 LHT is not an admissible test func-
tion in (1.3).

Assumptions di�erent to (1.13) were discussed by Shinbrot [44]: if
u 2 Lr

�
0; T ;Lq(
)

�
where 2

r +
3
q � 1+ 1

q , q � 4, then u satis�es (EE). Ac-
tually, Shinbrot's condition together with the Leray-Hopf integrability u 2
L1
�
0; T ;L2(
)

�
implies by Hölder's inequality that u 2 L4

�
0; T ;L4(
)

�
.

A similar argument can be applied when u 2 Lr
�
0; T ;Lq(
)

�
, where

2
r + 3

q � 1 + 1
r , r � 4, together with the fact that u 2 L2

�
0; T ;L6(
)

�
.

De�nitely weaker assumptions than (1.13) will be discussed in �2.3.

6. The main open problem for weak solutions is the question of regularity,
see [22]: is every weak solution u (and an associated pressure p) of class
C1 in space and time provided that f; u and @
 are of class C1? The
classical result requires that u lies in Serrin's class Ls

�
0; T ;Lq(
)

�
as in

(1.7); the proof of the implication u 2 Ls
�
0; T ;Lq(
)

�
) u; p 2 C1 is

based on mathematical induction, cf. [47, Ch. V, Theorems 1.8.1 and
1.8.2].

7. A weak solution u of (1.1) is de�ned on the half-open interval [0; T ) as
a solution of a partial di�erential equation. However, a careful check of
the proof of existence and of the de�nition shows that e.g. under the
assumption F 2 L2

�
0; T ;L2(
)

�
the solution u can be extended to t = T

and considered as a function u 2 C0
w

�
[0; T ];L2

�(
)
�
and that the energy

inequality (and energy equality, if possible) do hold for all t up to t = T .
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There are numerous results on conditional regularity, i.e., a posteriori con-
ditions on a given weak solution u to guarantee its regularity. Most of these
criteria are of Serrin type controlling ru, ! = rotu or various components of u,
ru, !; other conditions work with the deformation tensor 1

2

�
ru+(ru)T

�
or the

pressure p; concerning a recent review on results using the vorticity we refer to
[2]. Rather than trying to summarize and describe these results the focus of this
review is on a recent approach to use an optimal initial value condition on u0
and on function values u(t) of u for all or almost all t. These and further related
results, including also for unbounded domains, can be found in the articles [8],
[9], [10], [11], [12], [13], [15], [16], [17], [18], [19], [20], [21] and [33].

This article is organized as follows. In Section 2 we present the main results,
postponing the proofs to Section 3 - except for some short proofs. �2.1 starts
with the discussion of the optimal initial value condition on u0 to guarantee the
existence of a local strong solution. The main Theorem 2.1 is the basis for most
of the following results and uses a Besov space characterization to be introduced
in the beginning. Next, �2.2 deals with further regularity criteria which either
in some sense are beyond Serrin's condition or need the kinetic energy function.
Then we discuss conditions to guarantee the energy equality and the uniqueness
of weak solutions in �2.3. Section 3 contains all longer proofs, starting with
some preliminaries on the Stokes operator in �3.1. The proof of Theorem 2.1
can be found in �3.2, all other proofs in �3.3. Note that we consider mainly the
case of bounded domains, shifting further results on unbounded domains mainly
to the remarks.

2 Main Results

2.1 Optimal Initial Values

To describe an optimal condition on initial values u0 2 L2
�(
) to allow for a local

in time strong solution u 2 Ls
�
0; T ;Lq(
)

�
of Serrin type of the Navier-Stokes

system (1.1) it is natural to require that the solution

u(t) = E0(t) := e�tAu0

of the corresponding linear Stokes system with vanishing external force has the
property E0 2 Ls

�
0; T ;Lq(
)

�
. Actually, this condition which is well-known

for the case of the whole space 
 = R
3 yields also a necessary and su�cient

condition for smooth bounded and exterior domains, see [15], [17], [18] and [9],
[33], respectively. The integrability condition on E0, say

1Z
0

ke��Au0k
s
q d� <1; (2.1)

can be considered in terms of Besov spaces. Starting with the classical Besov
space B

2=s
q0;s0(
) for a domain 
 � R

3 (cf. [50, Ch. 4]) where q0, s0 are the

conjugate exponents to q, s, respectively, and 2
s +

3
q = 1, solenoidal subspaces

B
2=s
q0;s0(
) = B

2=s
q0;s0(
) \ L

q0
� (
) =

�
v 2 B

2=s
q0;s0(
) : div v = 0; N � vj@


= 0
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were de�ned in [1]. Actually, B2=s
q0;s0(
) coincides with the real interpolation

space
�
Lq

0

� (
);D(Aq0)
�
1=s;s0

� Lq
0

� (
) ([1, Prop. 3.4, (3.18)]) yielding an opti-

mal space of initial values u0 such that E0(t) = e�tAu0 satis�es (E0)t, AE0 2

Ls
0
�
0; T ;Lq

0

� (
)
�
, i.e., E0 is a classical strong solution of the homogeneous Stokes

problem with initial value u0.
Here we do need the dual space

B
�2=s
q;s (
) :=

�
B
2=s
q0;s0(
)

��
: (2.2)

By elementary properties of real interpolation and the duality theorem [50,
Theorem 1.11.2]

B
�2=s
q;s (
) =

��
D(Aq0); L

q0
� (
)

�
1=s0;s0

��
=
�
D(Aq0)

�; Lq�(
)
�
1=s0;s

since
�
Lq

0

� (
)
��

= Lq�(
). Hence

ku0k
B
�2=s
q;s

� ku0k�D(Aq0 )
�;Lq�(
)

�
1=s0;s

� kA�1u0k�Lq�(
);D(Aq)
�
1�1=s;s

� kA�1u0kq +

 1Z
0

kAe��A(A�1u0)k
s
q d�

!1=s (2.3)

where the second equivalence of norms uses the identity hA�1u0; A'i
 = hu0; 'i

for ' 2 D(Aq0) and the equivalence k'kW 2;q0 � kAq0'kq0 (for bounded 
). The

norm on the right-hand side of (2.3) is the norm of A�1u0 in B2=s
q;s (
), and, by

[50, Theorem 1.14.5], the interval of integration (0;1) may be replaced by any

interval (0; �), 0 < � � 1, yielding an equivalent norm on B�2=s
q;s (
). Finally,

for a bounded domain, the term kA�1u0kq in (2.3) may be omitted.

Given � 2 (0;1] we denote the space B�2=s
q;s (
) also by

Bq;s� (
) =

(
u0 : ku0kBq;s�

:=

 �Z
0

ke��Au0k
s
q d�

!1=s

<1

)
: (2.4)

Recall that Bq;s� (
) � D(Aq0)
� is a re�exive, separable Banach space and that

all norms k � kBq;s� (
), � > 0, are equivalent. To be more precise, there exists
c(�) > 0 such that

c(�)k � kBq;s1 (
) � k � kBq;s� (
) � k � kBq;s1 (
):

For Bq;s1 (
) we also simply write Bq;s(
).

Theorem 2.1 Let 
 � R
3 be a bounded domain with boundary @
 2 C1;1, let

0 < T � 1, 2 < s < 1, 3 < q < 1 with 2
s + 3

q = 1 be given, and consider

the Navier-Stokes system with initial value u0 2 L2
�(
) and an external force

f = divF where F 2 L2
�
0; T ;L2(
)

�
\ Ls=2

�
0; T ;Lq=2(
)

�
.
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(i) There exists an absolute constant "� = "�(q;
) > 0 with the following
property: If

ku0kBq;sT
+ kFkq=2;s=2;T � "�; (2.5)

then the Navier-Stokes system (1.1) has a unique strong solution u 2
Ls
�
0; T ;Lq(
)

�
.

(ii) The condition u0 2 Bq;s1 (
) is su�cient and necessary for the existence
and uniqueness of a local in time strong solution u 2 Ls

�
0; T 0;Lq(
)

�
of

(1.1) for some 0 < T 0 � T .

Let us recall further results and extensions of Theorem 2.1.

Remark 2.2 1. A classical result, see e.g. [31], states that an initial value

u0 2 D(A2) allows for a local strong solution. The condition u0 2 D(A
1=4
2 )

is due to Fujita and Kato [23] for a smooth bounded domain. Since this
result is based on L2-theory, it can be generalized to arbitrary bounded
and unbounded domains, see [47, Ch. V, Theorem 4.2.2]. Fabes, Jones and
Rivière [7] as well as Miyakawa [40] proved that the condition u0 2 Lr(
),
r > 3, yields a local strong solution.

2. The condition u0 2 D(A
1=4
2 ) has the important property of being scaling

invariant. To explain this notion recall that with a solution u of (1.1)
also u�(x; t) = �u(�x; �2t), � > 0, is a solution of (1.1) with the same
Reynolds number (here Re = 1

� = 1) on the time interval (0; ��2T ) and
domain ��1
. Note that

ku�kLs(Lq) = �
1�( 2

s
+ 3

q
)kukLs(Lq):

Hence ku�kLs(Lq) = kukLs(Lq) if and only if Ls(Lq) is a Serrin class; in
this case, the space Ls(Lq) (or its norm) is called scaling invariant.

The corresponding condition for the initial value is related to (u0)�(x) =
�u0(�x). Scaling invariant initial value conditions are u0 2 D(A1=4) and
u0 2 L3

�(
). The latter case was considered by Kato [30] and Giga [27].

The condition u0 2 L3
�(
) can be weakened to assumptions in Lorentz

spaces L3;s
� (
) when q � s <1, see [48]. Here we mention the continuous

embeddings
D(A

1=4
2 ) � L3

�(
) � L3;s
� (
) � Bq;s1 (
) (2.6)

where each space is scaling invariant; for the latter embedding which holds
when q � s <1 we refer to [1, (0.16)]. Replacing Bq;s1 (
) by Bq;s� (
), the
family of spaces Bq;s� (
) is scaling invariant in the sense that � must be
changed to ��2� (and 
 to ��1
) .

3. For a smooth exterior domain 
 � R
3 similar results were obtained in

[9], [33]. It is also shown that the assumption F 2 Ls=2
�
Lq=2

�
(with

2
s=2 + 3

q=2 = 2, cf. Theorem 2.1) can be generalized to F 2 Ls�(Lq�) with
2
s�

+ 3
q�

= 2. Then the condition
R1
0 ke��Au0ksq d� < 1 is necessary and

su�cient for the existence of a local strong solution u 2 Ls(Lq), 2
s+

3
q = 1.
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4. For a general bounded or unbounded domain 
 � R
3 only L2-theory for

the Stokes operator and the Helmholtz projection is available. In this case
Theorem 2.1 (i) holds with the exponents q = 4, s = 8, cf. [17, Sect. 4].

5. The largest space of initial values to yield solutions in scaling invariant
function spaces was found by Koch and Tataru [32] for the whole space
case R3. Assume that u0 2 BMO�1, i.e., u0 can be written in the form
u0 = div f with some f 2 BMO. Then there exists a local solution
u 2 L2

loc

�
R
3 � [0;1)

�
such that the scaling invariant norm

sup
x2R3;R>0

1

jBR(x)j

Z R2

0

Z
BR(x)

juj2 dy d�

is �nite; here BR(x) � R
3 denotes the ball with center x and radius R.

For simplicity let F = 0 in the following. It suggests itself to use Theorem
2.1 (i) not only at t0 = 0, but at all or almost all t0 2 [0; T ) to show that a
weak solution is a strong one. In view of (2.5) we need more information on the
space Bq;s(
) and on functions u : [0; T ) ! Bq;s� (
). Although the constant "�
in (2.5) cannot be determined precisely, we will �x some "� > 0 in the following
so that Theorem 2.1 (i) can be applied.

De�nition 2.3 Let 0 6= v 2 L2
�(
). Then

�(v) :=

8><>:
0 if v =2 Bq;s(
)

� 2 (0;1) if v 2 Bq;s(
) and kvkBq;s�
= "� < kvkBq;s1

1 if v 2 Bq;s(
) and kvkBq;s1 � "�

With an abuse of notation we set kvkBq;s =1 when v =2 Bq;s(
).
For a weak solution u 2 LHT of (1.1) we simply write �(t) for �(u(t)).

The second case in De�nition 2.3 is well de�ned: Assume that v 2 Bq;s(
)
and kvkBq;s > "�. Then the function V : (0;1) ! (0;1), V (t) := kvkBq;st

is a
strictly increasing continuous function with range (0; kukBq;s1 ) � (0; "�]. Hence
there exists a unique � 2 (0;1) such that V (�) = "�. The strict monotonicity of
V is based on the fact that if ke��Avkq = 0 then 0 = he��Av; vi = ke��A=2vk22
and consequently ke��A=2

k
vk2 = 0 for all k 2 N; in the limit k ! 1 we get

v = 0 due to the strong continuity of the Stokes semigroup.

Lemma 2.4 Let u 2 LHT be a Leray-Hopf type weak solution of (1.1), and
� > 0.

(i) If additionally u 2 L1
�
[0; T );Bq;s� (
)

�
, then u 2 C0

w

�
[0; T ];Bq;s� (
)

�
. In

particular, ku(t)kBq;s�
is a lower semi-continuous function of t 2 [0; T ], and

kukL1(0;T ;Bq;s� ) = sup
t2[0;T ]

ku(t)kBq;s�
: (2.7)

(ii) If u 2 LHT is not necessarily contained in L1
�
[0; T );Bq;s� (
)

�
, then the

function [0; T ]! [0;1], t 7! ku(t)kBq;s�
is lower semi-continuous.

(iii) The function �(�) from De�nition 2.3 is upper semi-continuous.

9



For the problem of local regularity we need the following terminology:

� u is left-sided Ls(Lq)-regular at t0 2 (0; T ] if there exists " = "(t0) 2 (0; t0)
such that u 2 Ls((t0 � "; t0);L

q(
))

� u is right-sided Ls(Lq)-regular at t0 2 [0; T ) if there exists " = "(t0) 2
(0; T � t0) such that u 2 Ls((t0; t0 + ");Lq(
))

� u is Ls(Lq)-regular at t0 2 (0; T ) if u is left- as well as right-sided regular
at t0.

Theorem 2.5 Let u 2 LHT be a weak solution of (1.1) in a bounded smooth
domain 
 � R3 satisfying the strong energy inequality (SEI), and let 2 < s <1,
3 < q <1, 2

s +
3
q = 1.

(i) Let u satisfy u(t) 2 Bq;s(
) for all t 2 [0; T ). Given t1 2 (0; T ) assume
that

�(t) � t1 � t (2.8)

for a.a. t in a left-sided neighborhood of t1. Then u is left-sided Ls(Lq)-regular
at t1.

(ii) Given t1 2 (0; T ) assume that u(t1) 2 Bq;s(
) and that u satis�es (EI)t1,
i.e., the strong energy inequality in t1. Then u is right-sided Ls(Lq)-regular at
t1.

(iii) Let u satisfy u(t) 2 Bq;s(
) for all t 2 [0; T ) and condition (2.8) at
t1 2 (0; T ). Then u is regular at t1. If condition (2.8) is satis�ed at every
t1 2 (0; T ), then u 2 Lsloc

�
[0; T );Lq(
)

�
.

(iv) Let u satisfy u(t) 2 Bq;s(
) for all t 2 [0; T ). Assume that at t1 2 (0; T )

lim
t%t1

ku(t)kBq;st1�t
= 0: (2.9)

Then u is Ls(Lq)-regular at t1. If condition (2.9) is satis�ed at every t1 2 (0; T ),
then u 2 Lsloc

�
[0; T );Lq(
)

�
.

Remark 2.6 The explicit lower bound �(t) � t1�t in (2.8) leads to the question
whether also the condition �(t) � �(t1� t) with � 2 (0; 1) will su�ce to get the
same result. For simplicity let T = t1. In this case, starting with t = t0 < T we
get the sequence of instants (tj) de�ned by tj = T � (1��)j(T � t0) converging
to T ; hence u 2 Ls

�
t0; tj ;L

q(
)
�
. However, there is no uniform bound of

kukq;s;(t0;tj) as j ! 1. To be more precise and to apply Serrin's uniqueness
theorem in each step, each tj can be replaced by t0j < tj such that still t0j ! T
as j !1.

Corollary 2.7 Let u be a weak solution of the Navier-Stokes system as in The-
orem 2.5.

(i) Assume that u 2 Lsloc
�
[0; t1);L

q
�(
)

�
, but u =2 Ls

�
0; t1;L

q
�(
)

�
. Then

there exists an �� > 0 such that for all � 2 (14 ;
1
2 ]

kA�u(t)k2 > ��(t1 � t)1=4�� for a.a. t 2 (0; t1): (2.10)

10



(ii) Assume that u satis�es (EI)t1 (this condition is e.g. satis�ed when t1
is a left-sided regular point of u), but is not right-sided regular at t1. Then
u(t1) =2 Bq;s(
) and for each � > 0 and � 2

�
1
4 ;

1
2

�
ku(t)k3; kA

�u(t)k2; ku(t)kBq;s�
!1 as t& t1:

2.2 Regularity Criteria Beyond Serrin's Condition and Energy

Criteria

The regularity criteria of Theorem 2.5 have the disadvantage that the norm of
u(t) in Bq;st1�t(
) cannot be controlled directly for the solution u. However, there
are many easy applications of Theorem 2.5 yielding more concrete conditions.

Corollary 2.8 Let u 2 LHT be a weak solution of (1.1) on a bounded smooth
domain 
 � R3 satisfying (SEI).

(i) If there exists � 2 (0;1] such that u 2 C0
�
[0; T );Bq;s� (
)

�
, then u is a

strong solution on [0; T ).

(ii) If there exists � 2 (0;1] such kukL1(0;T ;Bq;s� ) � "�, then u is a strong

solution on [0; T ).

(iii) In (i) and (ii) the space Bq;s� (
) can be replaced by any of the spaces

D(A1=4), L3
�(
) and L

3;s
� (
) (s � q > 3).

Proof (i) If u 2 C0
�
[0; T 0];Bq;s� (
)

�
, 0 < T 0 < T , then u is uniformly continuous

in t 2 [0; T 0] with values in Bq;s� (
). Given "� from Theorem 2.1 the uniform
continuity in t allows to �nd �0 2 (0; �] such that ku(t)kBq;s

�0
� "� for all t 2 [0; T 0]:

Then a compactness argument on [0; T 0] implies that u 2 Ls
�
[0; T 0];Lq(
)

�
.

(ii) From Lemma 2.4 we know that ku(t)kBq;s�
� kukL1(0;T ;Bq;s� ) � "� for all

t 2 [0; T ). Now a compactness argument as in (ii) completes the proof.
(iii) The embeddings (2.6) and (i), (ii) immediately prove (iii).

Note that L1
�
0; T ;Bq;s� (
)

�
= L1

�
0; T ;Bq;s1 (
)

�
and C0

�
[0; T ];Bq;s� (
)

�
=

C0
�
[0; T ];Bq;s1 (
)

�
, � 2 (0;1], with equivalent norms.

The next criteria are based on Theorem 2.1, however, in a certain sense work
beyond Serrin's condition at the expense of a further smallness assumption.

Theorem 2.9 Let u 2 LHT be a weak solution of (1.1) as in Corollary 2.8.
Further let the exponents q and r, s satisfy 2 < s < 1, 3 < q < 1, 2

s +
3
q = 1

and 1 � r � s.

(i) Assume that

lim inf
�!0

1

�1�r=s

t1Z
t1��

ku(�)krq d� = 0: (2.11)

Then u is regular at t1, i.e., u 2 Ls
�
t1 � "; t1 + ";Lq(
)

�
for some " > 0.

11



(ii) Assume that for 0 � t0 < t1 < T and some t1 < T 0 � T

1

t1 � t0

t1Z
t0

(T 0 � �)r=s ku(�)krq d� � ~"�: (2.12)

Then u is regular at t1. Here ~"� > 0 is a constant related to "� in (2.5).

An easy consequence of Theorem 2.9 (i) is the well-known fact that a weak
solution u 2 LHT is regular almost everywhere (even everywhere in (0; T ) ex-
cept for a possible set S � (0; T ) of vanishing Hausdor� measure H1=2(S) = 0).
Actually, since u 2 L2

�
0; T ;L6(
)

�
� L1

�
0; T ;L6(
)

�
, Lebesgue's di�erentia-

tion theorem implies that 1
�

R t1
t1��

kuk16 d� ! ku(t1)k6 t-a.e as �to0. Hence the
term in (2.11) (with q = 6, r = 1 and s = 4) vanishes t-a.e.

Finally, we describe a regularity criterion based on the kinetic energy

Ek(t) =
1

2
ku(t)k22: (2.13)

Theorem 2.10 Let u 2 LHT be a weak solution of (1.1) satisfying (SEI) as in
Corollary 2.8. Assume that at t1 2 (0; T ) for � 2 (12 ; 1] the left-sided �-Hölder
semi-norm

[Ek(t1�)]� = sup
�>0

jEk(t1 � �)� Ek(t1)j

��

is �nite (with the supremum taken only for small � > 0) or that

[Ek(t1�)]1=2 � "�: (2.14)

Then u is regular at t1.

Proof Obviously the condition [Ek(t1�)]� < 1 for � 2 (12 ; 1] implies that
[Ek(t1�)]1=2 � "� (with the supremum taken only for small � > 0). Hence
it su�ces to assume the second condition. With r = 2, q = 6 and s = 4 we get
that

t1Z
t1��

ku(�)krq d� � c

t1Z
t1��

kru(�)k22 d�

� c
�
Ek(t1 � �)� Ek(t1)

�
� c"��

1=2

(2.15)

provided we choose only those � > 0 such that (EI)t1�� holds. We conclude
that (2.11) is satis�ed and consequently that u is regular at t1.

Note that for the Hölder exponent � = 1
2 we do need a smallness condition on

the local left-sided Hölder seminorm. Actually, if (t0; t1) � [0; T ) is a maximal
interval of regularity of a weak solution u, then due to (2.10)

kru(�)k2 = kA1=2u(�)k2 � "�(t1 � �)�1=4; 0 < � < t1:

12



Hence the estimate

2c2 �
1

�1=2

Z t1

t1��
kru(�)k22 d� �

1

�1=2
�
Ek(t1 � �)� Ek(t1)

�
for a.a. � 2 (t1 � t0; t1) shows in this case that the condition (2.14) with an
arbitrary (not su�ciently small) "� > 0 does not imply regularity. For the case
including an external force we refer to [13].

For further regularity criteria beyond Serrin's condition we refer to [11].

In the case of a general domain where only the Stokes operator A = A2 on
L2
�(
) is available, we get the following results, cf. [11], [17]:

Theorem 2.11 Let 
 � R3 be a general domain and u 2 LHT be a weak solu-
tion satisfying (SEI). Assume that at t1 2 (0; T ) one of the following conditions
is satis�ed: there exists 0 < � < t1 such that

t1Z
�

t1��

kA1=4u(�)k2 d� � "�; (2.16)

t1Z
�

t1��

ku(�)k2 kru(�)k2 d� � "�; (2.17)

 
sup

[t1��;t1]
ku(�)k22

! t1Z
�

t1��

kru(�)k22 d� � "�: (2.18)

Here
R
� t1

t1��
(: : : ) denotes the integral mean 1

�

R t1
t1��

(: : : ), and "� in (2.16)�(2.18)
is an absolute constant independent of the domain. Then u is L8(L4)-regular at
t1.

The proof of Theorem 2.11 shows that each of the conditions (2.16), (2.17)
or (2.18) even yields the global regularity of u on (t1 � "; T ). Note that (2.16)�
(2.18) are scaling invariant conditions.

2.3 The Energy Equality and Uniqueness

As already mentioned in Remark 1.2 5., a weak solution u 2 LHT satis�es
(EE) if u 2 L4

�
0; T ;L4(
)

�
or if related Ls(Lq)-conditions are ful�lled which

imply u 2 L4(L4) by Hölder's inequality and the assumption u 2 LHT . In
other words, those Ls(Lq)-conditions are closer to Serrin's class as to the class
of weak solutions: actually, for those q; s we have 2

s +
3
q �

5
4 = 2

4 + 3
4 �

3
2 . Re-

cently, Cheskidov, Friedlander and Shvydkoy [5] and together with Constantin
[6] found conditions which concerning their scaling behavior are of the type
L3
�
0; T ;L9=2(
)

�
where

2

3
+

3

9=2
=

4

3
>

5

4
:
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Theorem 2.12 Let 
 � R
3 be a C2-domain and u 2 LHT be a weak solution

of (1.1)

(i) Asume that

u 2 L3
�
0; T ;D

�
A

5=12
2

��
:

Then u satis�es the energy equality (EE); see [5].

(ii) Let 
 = R
3 and let u satisfy

u 2 L3
�
0; T ;B

1=3
3;1(R3)

�
:

Then u satis�es (EE); see [6].

We note that D
�
A

5=12
2

�
� L

9=2
� (
) equals a solenoidal subspace of the Bessel

potential space H5=6(
). The second result is available only for the whole space

case since the characterization of the Besov space B1=3
3;1 via Littlewood-Paley

decomposition is crucially used. Formally, the order 1
3 of fractional derivatives

in B1=3
3;1 is optimal in view of the term

R
R3
(u � ru)u dx which must be shown to

vanish.
An intermediate result for domains exploiting derivatives of fractional order

1
2 was proved in [21]. To meet the same scaling as in Theorem 2.12 the space

D
�
A

5=12
2

�
is replaced by D

�
A

1=4
18=7

�
� L9=2(
).

Theorem 2.13 Let 
 � R
3 be a bounded domain with @
 2 C1;1 and let

u 2 LHT be a weak solution of (1.1) with u(0) = u0 2 L2
�(
) satisfying

u 2 L3
�
0; T;D

�
A

1=4
18=7

��
: (2.19)

Then u satis�es the energy equality (EE).

This theorem will be proved in �3.3. It can be extended to general unbounded
domains 
 � R

3 of uniform C1;1-type where D
�
A

1=2
18=7

�
has to be replaced by

D
�
(I + ~A18=7)

1=2
�
and ~ indicates that the space Lq(
), q > 2, is replaced

by ~Lq(
) = Lq(
) \ L2(
). For further details we refer to [21] where also a
generalization to domains of fractional powers of the Stokes operator on Lorentz
spaces can be found.

The �nal problem to be addressed is the question of uniqueness of weak
solutions. The regularity results of ��2.1 and 2.2 will yield uniqueness, but
there are several weaker conditions for this result.

Theorem 2.14 Let u 2 LHT be a weak solution of the Navier-Stokes system
(1.1) in a bounded smooth domain 
 � R3 with u0 2 L2

�(
).
(i) Assume that for some 2 < s < 1, 3 < q < 1, 2

s + 3
q = 1 there holds

u(t0) 2 Bq;s(
) for all t0 2 [0; T ), and that u satis�es the energy equality (EE).
Then u is uniquely determined by the initial value u0 within the class of all weak
solutions satisfying (SEI).
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(ii) If u 2 L4
loc

�
[0; T );L4(
)

�
or

u 2 L1loc
�
[0; T );L3;1

� (
)
�
; (2.20)

then u even satis�es (EE).

Remark 2.15 Let u be a weak solution of (1.1) as in Theorem 2:14. It is
interesting to discuss uniqueness and regularity properties of u with the Serrin
condition u 2 Ls

loc
([0; T );Lq(
)); 2

s +
3
q = 1 in the limit case s =1; q = 3. In

this case, the arguments in the proof of Lemma 2.4 (i) show that u(t) 2 L3(
)
for each t 2 [0; T ). Since L3(
) � L3;1(
) \ Bq;s(
), Theorem 2.14 yields
the uniqueness property for u. On the other hand, from Corollary 2:8 (iii) we
see that the stronger assumption u 2 C

�
[0; T );L3

�(
)
�
is su�cient to get the

regularity u 2 Ls
loc

�
[0; T );Lq(
)

�
with certain 2 < s <1; 3 < q <1 such that

2
s +

3
q = 1.

Furthermore, for u 2 L1
loc

�
[0; T );L3

�(
)
�
we get the local right-side regu-

larity property for each t 2 [0; T ), see Theorem 2:5 (ii). Hence Theorem 2.5
is a slightly weaker result than that in a series of papers on the celebrated
L1
�
0; T ;L3(
)

�
-regularity result of Seregin et al. We refer to [42] for domains

with a �at boundary, and to [39] where in domains with curved boundaries some
additional condition on the pressure had to be assumed.

3 Proof of the Main Results

3.1 Preliminaries

Before coming to the proof of the main result, Theorem 2.1, we start with some
preliminaries.

The Stokes operator Aq, 1 < q < 1, being sectorial and generating a
bounded analytic semigroup, admits fractional powers A�

q , �1 � � � 1. First
we consider the case of a bounded domain 
 � R

3 of class C1;1. Then A�
q ,

0 � � � 1, is an injective, closed and densely de�ned operator with domain
D(A�

q ) � Lq�(
) and range R(A�
q ) = Lq�(
) such that D(Aq) � D(A�

q ) �

D(A�
q ) � Lq�(
) for 0 � � � � � 1. For �1 � � < 0 we de�ne the bounded

operators A�
q = (A��q )�1 : Lq�(
) ! R(A�

q ) = D(A��q ). Important properties
are the embeddings

kvkq � ckA�
r vkr; v 2 D(A�

r ); 1 < r � q <1; 2�+
3

q
=

3

r
(3.1)

krvkq � kA
1=2
q vkq; v 2 D(A1=2

q ) = W 1;q
0;�(
); 1 < q <1; (3.2)

moreover, krvk2 = kA
1=2
2 vk2 for v 2 W 1;2

0;� (
). From semigroup theory and
the fact that �(Aq) � (0;1) we know that there exist c = c(q;
) > 0 and
� = �(q;
) > 0 such that

kA�
q e
�tAqvkq � ct��e��tkvkq; v 2 Lq�(
); 0 � � � 1: (3.3)
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When 
 � R3 is an exterior domain with @
 2 C1;1, then

kvkq � ckA�
r vkr; 0 � � �

1

2
; 1 < r < 3

kvkq � ckA�
r vkr; 0 � � � 1; 1 < r <

3

2

(3.4)

where 2� + 3
q = 3

r . Furthermore, the equivalence of norms in (3.2) is to be
replaced by

kA1=2
q vkq � ckrvkq; 1 < q <1; krvkq � ckA1=2

q vkq; 1 < q < 3: (3.5)

Since 0 2 �(A) = [0;1), inequality (3.3) does hold only with � = 0, cf. [4], [28].
A weak solution to the (Navier-)Stokes system can be considered as a mild

solution of the related (non-)linear integral equation

u(t) = e�tAu0 +A1=2

tZ
0

e�(t��)A
�
A�1=2P div

�
(F � u
 u)(�) d�; (3.6)

cf. (1.8). To understand this formula we have to explain the formal operator
A�1=2P div on matrix-valued Lq(
)-functions F . Actually, we de�ne for ' 2

D(A
�1=2
q0 ) � Lq

0

� (
)

hA�1=2P divF;'i := �hF;rA
�1=2
q0 'i
 (3.7)

admitting the estimate
��hF;rA�1=2

q0 'i
�� � kFkqkrA�1=2

q0 'kq0 � cq0k'kq0 . Hence

A�1=2P div 2 L
�
Lq(
)

�
; kA�1=2P div kL(Lq) � cq0(
): (3.8)

Note that (3.8) holds for all 1 < q < 1 when 
 is bounded, but for q > 3
2

(1 < q0 < 3) only when 
 is an exterior domain.
For a further analysis of (3.6) we need the notion of maximal regularity.

Consider the abstract inhomogeneous linear Cauchy problem

ut +Au = f in (0; T ); u(0) = u0 (3.9)

where �A is the generator of an analytic semigroup e�tA on a Banach space
X. Then A is said to admit maximal Lp-regularity on [0; T ), 1 < p < 1,
0 < T � 1, if for suitable u0 and all f 2 Lp(0; T ;X) the solution of (3.9) given
by the variation of constants formula

u(t) = e�tAu0 +

tZ
0

e�(t��)Af(�) d�; t 2 [0; T ); (3.10)

is di�erentiable a.e., u(t) 2 D(A) a.e. and ut, Au 2 Lp(0; T ;X). In this case
the closed graph theorem yields a constant C = C(p; T ) > 0 independent of f
such that

kut;AukLp(0;T ;X) � C

 TZ
0

kAe�tAu0k
p
X dt

!1=p

+ CkfkLp(0;T ;X): (3.11)
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It is well-known that maximal Lp-regularity for one p 2 (1;1) implies maximal
Lp-regularity for all p 2 (1;1).

The Stokes operator A = Aq on X = Lq�(
), 1 < q < 1, has maximal
Lp-regularity on [0;1) for bounded and exterior domains 
 � R3 of class C1;1;
see e.g. [28], [37], [49]. In particular, for any f 2 Ls

�
0;1;Lq(
)

�
the Cauchy

problem (3.9) with Aq = �Pq�, u0 = 0 and f replaced by Pqf has a unique
(strong) solution u 2 C0

loc[0;1);Lq�(
)) such that ut, Au 2 Ls
�
0;1;Lq(
)

�
,

1 < s <1, and
kut;Aukq;s;T � ckfkq;s;T : (3.12)

Moreover, if 
 is bounded and 1 < q < 1 or 
 is an exterior domain and
1 < q < 3

2 , there exists an associated pressure p such that

kut;r
2u;rpkq;s;T � ckfkq;s;T : (3.13)

For u0 2
�
Lq�(
);D(Aq)

�
1�1=s;s

� D(Aq), a real interpolation space with norm

jjju0jjj1�1=s;s;q := ku0kq +
� 1Z

0

kAe�tAu0k
s
q d�

�1=s
;

the Cauchy problem (3.9) has a unique solution as above; however, in (3.12),
(3.13) the additional term jjju0jjj1�1=s;s;q is needed on the right-hand side. For
details on the above real interpolation we refer to [50, Chapters 1.13, 1.14].
The integration over (0;1) in the norm k � k1�1=s;s;q may be replaced by an
integration over (0; �) for any � > 0, and, if 
 is bounded, the term k � kq may
be omitted [50, Theorem 1.14.5]; cf. the discussion of ku0k

B
�2=s
q;s

in x 2.1.

The relation between a weak solution u of the instationary Stokes system
(omitting the term u � ru in (1.1)) with force term f = divF and initial value
u0 and the notion of a mild solution, cf. (1.8), is given by the representation

u(t) = e�tAu0 +A1=2

tZ
0

e�(t��)A(A�1=2P div)F (�) d�: (3.14)

Due to [47, Ch. IV, Theorem 2.4.1, Lemma 2.4.2] for any u0 2 L2
�(
) and

F 2 L2
�
0; T ;L2(
)

�
, the vector �eld u in (3.14) is the unique weak solution

u 2 LHT of the instationary Stokes system. Moreover, u satis�es the energy
equality (EE), cf. (1.12), leading to the estimate

1

2
kuk22;1;T + kruk22;2;T � 2ku0k

2
2 + 4kFk22;2;T : (3.15)

Obviously, the closed operator A1=2 may be commuted with the integral in
(3.14). Working for a moment with v(t) = A�1=2u(t) we see that vt + Av =
A�1=2P divF . Hence (3.14) is equivalent to the identities

(A�1=2u)t +A1=2u = A�1=2P divF on (0; T ); u(0) = u0 (3.16)

and

u(t) = e�tAu0 +

tZ
0

A1=2e�(t��)A
�
(A�1=2u)t +A1=2u

�
(�) d�: (3.17)

17



3.2 Proof of Theorem 2.1

Proof of Theorem 2.1 (cf. [17]) The starting point to construct a strong solution
u 2 Ls

�
0; T ;Lq(
)

�
is the representation (3.14) where by (3.8)

~F := A�1=2P divF 2 Ls=2(0; T ;Lq=2(
))

for F 2 Ls=2
�
0; T ;Lq=2(
)

�
. Due to (3.1) with r = q

2 and � = 3
2q <

1
2 and by

(3.3) we get that

ku(t)kq � ke
�tAu0kq + c

tZ
0

(t� �)���1=2k ~F (�)kq=2 d� (3.18)

where �+ 1
2 = 3

2q +
1
2 = 1� 1

s . Then the Hardy-Littlewood inequality (see e.g.
[47, Ch. II, Lemma 3.3.2]) implies that

kukq;s;T � ke
�tAu0kq;s;T + Ck ~Fkq=2;s=2;T : (3.19)

Let u0 = 0. Then a direct application of the maximal regularity estimate
(3.12) to v(t) = A�1=2u(t), cf. (3.16), (3.17), yields the estimate

k(A�1=2u)t;A
1=2ukq=2;s=2;T � Ck ~Fkq=2;s=2;T (3.20)

with ~F = (A�1=2u)t +A1=2u. In view of (3.20) we de�ne the Banach space

XT =
n
v : [0; T )! Lq=2� (
) :�
A
�1=2
q=2 v

�
t
; A

1=2
q=2v 2 Ls=2

�
0; T ;Lq=2� (
)

�
; A

�1=2
q=2 v(0) = 0

o
equipped with the norm

kvkXT
=


(A�1=2

q=2 v)t;A
1=2
q=2v




q=2;s=2;T

which by (3.20) is equivalent to the norm


(A�1=2

q=2 v)t +A
1=2
q=2v




q=2;s=2;T

.

In our application to the Navier-Stokes system (1.1) with u0 2 L2
�(
)\B

q;s

let E0(t) := e�tAu0, which by assumption satis�es E0 2 Ls(Lq), and let

E1(t) =

tZ
0

A1=2e�(t��)AA�1=2P divF (�) d� (3.21)

satisfying E1 2 Ls
�
0; T ;Lq�(
)

�
by (3.19). Then ~u = u�E, with E := E0+E1 2

Ls(Lq), is a solution of the �xed point problem ~u = F ~u where

F ~u(t) = �

tZ
0

A1=2e�(t��)A
�
A�1=2P div

�
(~u+ E)
 (~u+ E)(�) d�: (3.22)

By (3.19) we conclude that F ~u 2 Ls(Lq) for ~u 2 Ls(Lq) and

kF ~ukq;s;T � c
�
k~uk2q;s;T + kEk2q;s;T

�
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where kEkq;s;T can be estimated by F in Ls=2(Lq=2) and by kE0kq;s;1. Due to
the quadratic term ~u + E in F it is easy to show that F de�nes a (strictly)
contractive map from a closed ball B � XT into itself provided that kEkq;s;T
is su�ciently small. This smallness condition is guaranteed by the assumption
(2.5). Now Banach's �xed point theorem yields the existence of a unique �xed
point ~u of F in B. Then u = ~u+ E 2 Ls(Lq) is a solution of (1.1) in the sense
of the integral equation (3.6).

In the second step of the proof we have to show that u = ~u + E 2 Ls(Lq)
is also a weak solution, i.e. u 2 LHT . To prove that ~u 2 L2(W 1;2

0 ) we use the

Yosida approximation operators Jn =
�
I + 1

nA
1=2
��1

: Lq�(
)!W 1;q
0;�(
). Note

that the family of operators (Jn)n2N and
�
1
nA

1=2
n Jn

�
n2N

are uniformly bounded
in L

�
Lq�(
)

�
and that Jnv ! v as n!1 for every v 2 Lq�(
), 1 < q <1.

Writing (3.22) with ~u = u� E = F(~u) in the form

~u(t) = �

tZ
0

A1=2e�(t��)A
�
A�1=2P div

�
(u
 ~u+ u
 E)(�) d�; (3.23)

we apply Jn which commutes with A�1=2 and e�(t��)A. Thus, with ~un := Jn~u,
we are led to the term

JnP div (u
 ~u) = JnP (u � r~un) +
� 1
n
A1=2Jn

��
A�1=2P div

��
u
A1=2~un

�
which can be estimated in Lr(
), 1

r = 1
2 + 1

q , as follows:

kJnP div (u ~u)kr � ckukq kA
1=2~unk2;

here we used (3.2), the uniform boundedness of the operators Jn, P , 1
nA

1=2Jn
and A�1=2P div , and Hölder's inequality. Moreover,

kJnP div (u
 E)kr � ckukq kA
1=2Ek2:

At this moment, we already mention that A1=2E = A1=2(e�tAu0) +A1=2E1 lies
in L2(L2) and satis�es due to (3.15) the estimate

kA1=2Ek2;2;T � c
�
ku0k2 + kFk2;2;T

�
:

We conclude that the operators A1=2 and A�1=2 in (3.23) cancel each other and
that A1=2~un = A1=2Jn~u has the representation

A1=2~un(t) = �

tZ
0

A1=2e�(t��)AJnP div (u
 ~u+ u
 E)(�) d�:

As for the proof of (3.18), (3.19) we use (3.1) (with 3
r = 3

2 +2�, � = 3
2q <

1
2)

and the Hardy-Littlewood inequality (with 1
s +

1
2 + (�+ 1

2) =
1
2 + 1) to get the

estimate

kA1=2~un(t)k2 � c

tZ
0

(t� �)���1=2kukq
�
kA1=2~unk2 + kA

1=2Ek2
�
d�;

kA1=2~unk2;2;T � c0kukq;s;T
�
kA1=2~unk2;2;T + kA1=2Ek2;2;T

�
;
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with an absolute constant c = c(q;
) > 0 independent of T . Choosing T1 2
(0; T ] su�ciently small such that c0kukq;s;T1 �

1
2 we obtain the uniform bound

kA1=2~unk2;2;T1 � 2c0kukq;s;T1 kA
1=2Ek2;2;T1 ; n 2 N:

Since (~un) � Ls
�
0; T1;L

q(
)
�
is bounded, we get that r~u 2 L2

�
0; T1;L

2(
)
�
;

for this argument we refer to the implication (3.1.8) ) (3.1.9) in [47, Ch. II,
3.1]. Repeating this step �nitely many times we show that ~u, u = ~u + E 2
L2
�
0; T ;W 1;2

0 (
)
�
for any �nite T .

Finally we have to show that ~u; u 2 L1(L2). Arguing formally and omitting
details, cf. [17, pp. 102f], we consider ~u as a solution of the instationary
Stokes system with right-hand side �P (u � ru) 2 Ls1(Lq1) where 1

s1
= 1

2 + 1
s ,

1
q1

= 1
2 + 1

q since u 2 Ls(Lq) and ru 2 L2(L2). The corresponding "Serrin

number" 2
s1

+ 3
q1

=
�
2
2 + 3

2

�
+
�
2
s + 3

q

�
equals 7

2 so that maximal regularity

estimates yield the result ~ut, A~u 2 Ls2(Lq2) with Serrin number 2
s2

+ 3
q2

= 7
2 .

Then Sobolev's embedding theorem formally implies that ~u 2 Ls3(Lq3) with
2
s3

+ 3
q3

= 7
2 � 2 = 3

2 . A rigorous analysis proves that 1
s3

= 1
2 �

1
s ,

1
q3

= 1
2 �

1
q

are admissible. Since also E 2 Ls3(Lq3) we have u 2 Ls3(Lq3) \ Ls(Lq), and by
Hölder's inequality u 2 L4(L4).

We conclude that u solves (3.6) and can be considered as a solution of the
Stokes system with right-hand side div (F � u
 u) where F � u
 u 2 L2(L2).
Then (3.6) implies that u is also a solution of the variational problem (1.3).
Testing (1.3) with w = u we get that hu 
 u;rui
;T = 0 and that u satis�es
(EE). In particular, u 2 L1(L2).

Now the proof of the su�ciency of the condition (2.1) to guarantee the
existence of a local strong solution is complete.

To prove necessity assume that F 2 Ls=2(Lq=2) and that u 2 Ls(Lq). Then
~u = u� E has the representation

~u(t) = �

tZ
0

A1=2e�(t��)AA�1=2P div (u
 u)(�) d�

where u 
 u 2 Ls=2(Lq=2). As in (3.19) we conclude that ~u 2 Ls(Lq) so that
also E = u� ~u 2 Ls(Lq). The term E1, see (3.21) satis�es E1 2 Ls(Lq) due to
(3.19) since F 2 Ls=2(Lq=2). Hence also E0 = e�tAu0 = E � E1 2 Ls(Lq).

3.3 Proof of Further Results

Proof of Lemma 2.4 (i) For the proof it is more convenient to consider u as
a function with values in the intersection space bBq;s� (
) = L2

�(
) \ B
q;s
� (
).

Obviously, bBq;s� (
) is a re�exive, separable Banach space when equipped with
the norm k � k2 + k � kBq;s�

. It is easy to see that there exists a Lebesgue null set
N � [0; T ] such that kukL1(0;T ; bBq;s� ) = supt2[0;T ]rN ku(t)k bBq;s�

. A similar result

holds when the norm in bBq;s� is replaced by the norm in Bq;s� .
Consider any t0 2 N and choose a sequence (tj) � (0; T ) r N such that

tj ! t0 as j ! 1. Thus
�
u(tj)

�
is a bounded sequence in bBq;s� (
) � L2

�(
).

20



Due to (1.6) we get that u(tj) * u(t0) 2 L2
�(
). Moreover, by the re�exivity ofbBq;s� (
) we may conclude by standard arguments that u(tj) * u(t0) in B

q;s
� (
).

Hence u(t0) 2 bBq;s� (
) and ku(t0)kBq;s�
� lim inf

j!1
ku(tj)kBq;s�

.

The same ideas prove that u 2 C0
w

�
[0; T ];Bq;s� (
)

�
. In particular, ku(�)kBq;s�

is lower semi-continuous.
(ii) We consider t 2 [0; T ] such that u(t) =2 Bq;s� (
) and choose any sequence

(tj) � [0; T ] with tj ! t as j ! 1. Since
�
u(tj)

�
� L2

�(
) is bounded, we get
from (3.1), (3.3) with 2�+ 3

q = 3
2 that ke��Au(tj)kq � c���ku(tj)k2 � C with a

constant C = C(�) > 0. Moreover, the weak continuity of u(�) in L2
�(
) implies

the convergence

he��Au(tj); 'i = hu(tj); e
��A'i ! hu(t); e��A'i = he��Au(t); 'i

for all ' in the dense subset L2
�(
) \ L

q0
� (
) of L

q0
� (
). Summarizing the last

two arguments we conclude that e��Au(tj) * e��Au(t) in Lq�(
); in particular,
ke��Au(t)kq � lim infj ke��Au(tj)kq. Hence by Fatou's lemmaZ �

0
ke��Au(t)ksq d� �

Z �

0
lim inf

j
ke��Au(tj)k

s
q d� � lim inf

j

Z �

0
ke��Au(tj)k

s
q d�;

i.e., 1 = ku(t)kBq;s�
� lim infj ku(tj)kBq;s�

. Thus ku(t0)kBq;s�
! ku(t)kBq;s�

as

t0 ! t. Similar arguments apply when u(t) 2 Bq;s� (
).
(iii) Assume that �(t) 2 [0;1). Then for � > �(t) and any sequence (tj) �

[0; T ] with tj ! t as j !1

"� <

Z �

0
ke��Au(t)ksq d� � lim inf

j

Z �

0
ke��Au(tj)k

s
q d�

which implies that
R �
0 ke

��Au(tj)ksq d� > "� for large j. Hence �(tj) < �, i.e.,
�(�) is upper semi-continuous at t. The case �(t) =1 is trivial.

Proof of Theorem 2.5 (i) Let t1 2 (0; T ). To show that t1 is a left-sided regular
point of u we �nd due to the assumption (2.8) and (SEI) t < t1 such that
ku(t)kBq;st1�t

� ku(t)kBq;s
�(t)

� "� and that (EI)t holds. Here "� > 0 is the constant

from Theorem 2.1, see (2.5). By Serrin's uniqueness theorem and Theorem 2.1
we conclude that u 2 Ls

�
t0; t1;L

q(
)
�
. Hence u is left-sided regular in t1.

(ii) Since u(t1) 2 Bq;s1 (
), there exists a strong solution v 2 Ls
�
t1; t1 +

";Lq(
)
�
, " > 0, of (1.1) with initial value v(t1) = u(t1). Moreover, by as-

sumption the energy inequality for u holds with initial time t1. Hence Serrin's
uniqueness theorem implies that v = u in [t1; t1+"), and u is right-sided regular
in t1.

(iii) To combine the results from (i) and (ii), in particular to apply (ii), it
su�ces to prove that u satis�es (EI)t1 at any t1. Let t1 2 (0; T ) be an instant
where the validity of the energy inequality is not guaranteed by (SEI). By (i)
t1 is a left-sided regular point for u and, consequently, u 2 Ls(t0; t1;L

q(
)) for
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some 0 < t0 < t1. Therefore, u satis�es (EE) for all initial times t00 2 (t0; t1),
in particular

1

2
ku(t1)k

2
2 +

Z t1

t00

kruk22 d� =
1

2
ku(t00)k

2
2:

Thus lim
t00%t1

ku(t00)k
2
2 = ku(t1)k22 for t00 2 (t0; t1). Moreover, by (SEI), there is a

sequence tj % t1 such that

1

2
ku(t)k22 +

Z t

tj

kruk22 d� �
1

2
ku(tj)k

2
2; tj � t < T:

Passing to the limit tj % t1 we get that u satis�es (EI)t1 .
Finally, since u(0) = u0 2 Bq;s1 (
), we know that u 2 Ls

�
0; "0;L

q(
)
�

for some "0 > 0. Now an elementary compactness argument proves that u 2
Lsloc

�
[0; T );Lq(
)

�
.

(iv) Under the assumption (2.9) for t1 we get for a.a. t in a left-sided neigh-
borhood of t1 that ku(t)jBq;st1�t

< "�. Hence �(t) > t1�t for these t; moreover, we

may assume (EI)t. By the above arguments we conclude that u lies in Serrin's
class Ls(Lq) on the interval (t; t+�(t)) � (t; t1), i.e., u is Ls(Lq)-regular at t1.

Proof of Corollary 2.7 (i) Fix � 2 (14 ;
1
2 ] and let q � q0 � 2 satisfy 2�+ 3

q = 3
q0
.

By Theorem 2.5 (i) we get for all t 2 (0; t1) where (EI)t is satis�ed that

�� <

Z t1�t

0
ke��Au(t)ksq d� � c

Z t1�t

0
kA�e��Au(t)ksq0 d�

� c

Z t1�t

0
�
� s

2
( 3
2
� 3

q0
)
kA�u(t)ks2 d�

= c(t1 � t)�
s
4
+�skA�u(t)ks2

since � s
2(

3
2 �

3
q0
) = � s

4 + �s � 1 > �1. Hence kA�u(t)k2 > ��(t1 � t)
1
4
�� for

a.a. t 2 (0; t1).
(ii) Since u(t1) =2 Bq;s(
), we have ku(t1)kBq;s�

= 1 for each � > 0. The
lower semi-continuity of the map t 7! ku(t)kBq;s�

implies that ku(t)kBq;s�
! 1

as t & t1. Moreover, due to the embeddings (2.6) we get that ku(t)kBq;s�
�

cku(t)k3 � cku(t)kD(A1=4) � cku(t)kD(A1=2).

Proof of Theorem 2.9 (i) Assuming (i) we �nd � > 0 such that with t0 = t1 � �
and T 0 = t1 + �

1

t1 � t0

t1Z
t0

(T 0 � �)r=sku(�)krq d� �
2r=s

�1�r=s

t1Z
t0

ku(�)krq d� � ~"�;

i.e., (2.12) is satis�ed. Thus it su�ces to prove (ii).
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(ii) Let us check condition (2.8) in Theorem 2.5 (i), i.e., �nd t 2 (0; t1) such
that ku(t)kBq;st1�t

� "� and that (EI)t is satis�ed. Now from (2.12) there exists

t 2 (t0; t1) such that
(T 0 � t)r=sku(t)krq � ~"�

or, equivalently, (T 0 � t)ku(t)ksq � "
s=r
� and that (EI)t holds. Hence, employing

the boundedness of the semigroup e��A on Lq�(
),

T 0�tZ
0

ke��Au(t)ksq d� � C(T 0 � t)ku(t)ksq � "�

with an appropriately chosen ~"� in (2.12).

Proof of Theorem 2.11 By the moment inequality of interpolation theory and the
identity kruk2 = kA1=2uk2 (cf. (3.2) with q = 2) which holds for any domain
we get that t1Z

�

t1��

kA1=4uk2 d�

!2

�

 t1Z
�

t1��

kuk
1=2
2 kA1=2uk

1=2
2 d�

!2

�

t1Z
�

t1��

kuk2 kruk2 d�

� sup
[t1��;t1]

ku(�)k2

 t1Z
�

t1��

kruk22 d�

!1=2

:

Hence it su�ces to consider (2.16) only. From (2.16) we �nd t 2 (t1 � �; t1)
where u satis�es kA1=4u(t)k2 � "� and (EI)t. Next we need the estimate Z 1

0
ke��Au(t)k84 d�

!1=8

� ckA1=4u(t)k2

which is based on L2-arguments only, cf. [17, Proof of Theorem 4.1], and holds
with a constant c > 0 independent of the domain. As in the case of smooth
bounded domains the condition ke��Au(t)k4;8;1 � "� su�ces to prove that the
weak solution u is L8(L4)-regular, cf. [17, Theorem 4.1].

Proof of Theorem 2.13 The main idea to analyze the term
R

(u � ru)udx is the

splitting of the third factor u into a low frequency and a high frequency part,
u` and uh, respectively. For u` we take

u`(t) = e��Au(t); 0 < � < 1;
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and use it as (admissible) test function in (1.3). By Lemma (3.2) below we get
that for 0 < t < T

1

2
hu(t); e��Au(t)i +

tZ
0

hA1=2u; e��AA1=2uid�

=
1

2
hu0; e

��Au0i+

tZ
0

hu � ru; e��Auid�:

Since A1=2u 2 L2
�
0; T ;L2

�(
)
�
we pass to the limit � ! 0 to get that

1

2
ku(t)k22 +

tZ
0

kruk22 d� =
1

2
ku0k

2
2 + lim

�!0

tZ
0

hu � ru; e��Aui d�:

To discuss the last term we write ru = ru` +ruh, use that hu � ru`; u`i = 0
and obtain, after an integration by parts, the estimate

jhu � ru; u`ij = jhu � ru`; uhij � kuk9=2 kru`k18=7 kuhk18=7

� ckuk9=2 kA
1=2u`k18=7 kuhk18=7

� ckA1=4uk18=7
�
��1=4kA1=4uk18=7

��
�1=4kA1=4uk18=7

�
= ckA1=4uk318=7;

in the second last step we used the embedding (3.1) with � = 1
4 , the estimate

kA1=2u`k18=7 � c��1=4kA1=4uk18=7, see (3.3) with � = 1
4 , and the identity uh =

u � e��Au =
R �
0 Ae

��Aud� for u 2 D
�
A

1=4
18=7

�
together with (3.3). Moreover,

since kuhk3 � c�1=4kA1=4uk3 � c�1=4kA1=2uk2 by (3.3) and (3.1), we get the
pointwise convergence

jhu � ru; u`i � hu � ru; uij � kuk6 kruk2 c�
1=4kruk2 ! 0

as � ! 0. Hence the assumption (2.19), i.e., kA1=4uk318=7 2 L1(0; T ), and
Lebesgue's convergence theorem yield the convergence

tZ
0

hu � ru; e��Aui d� !

tZ
0

hu � ru; ui d� = 0:

Now Theorem 2.13 is proved.

Lemma 3.1 Let u 2 LHT be a weak solution of (1.1) with u0 2 L2
�(
) and let

S 2 L
�
L2
�(
)

�
be a self-adjoint operator satisfying the estimate kSvkD(A2) �

ckvk2 for all v 2 L2
�(
) and commuting with A1=2 on D(A2). Then for all

0 � t < T

1

2
hu(t); S u(t)i+

tZ
0

hS A1=2u;A1=2ui d� =
1

2
hu0; S u0i �

tZ
0

hu � ru; S ui d�:
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Proof Following an approximation argument of Serrin [43] let 0 � % 2 C10 (R)
be an even cut-o� function with

R
%d� = 1 and let %"(�) = 1

"%(
�
" ), " > 0. Then

�x 0 < t < T , de�ne the convolution

u"(�) :=

tZ
0

%"(� � s)u(s) ds

and note that u" ! u and A1=2u" ! A1=2u in L2
�
0; t;L2(
)

�
as " ! 0. Since

S is self-adjoint, an elementary calculation using symmetry arguments and a
change of variables imply that

tZ
0

hu; @�S u"id� =

tZ
0

tZ
0

hu(�); @�%"(� � s)S u(s)i d� ds = 0:

Moreover, the weak L2-continuity of u with respect to time yield the conver-
gences

hu(t); S u"(t)i !
1

2
hu(t); S u(t)i; hu0; S(u0)"i !

1

2
hu0; S u0i

as "! 0. We also note that

tZ
0

hru;rS u"i d� =

tZ
0

hA1=2u;A1=2S u"id�

=

tZ
0

hS A1=2u;A1=2u"id� !

tZ
0

hS A1=2u;A1=2uid�

and that

��� tZ
0

hu � ru; S(u" � u)id�
��� � ckuk2;1;T kruk2;2;T

 tZ
0

kS(u" � u)k2D(A2)
d�

!1=2

� ckuk2;1;T kruk2;2;T ku" � uk2;2;t

converges to 0 as " ! 0. Now the assertion follows from (1.3) with the admis-
sible test function w = S u".

Proof of Theorem 2.14 (i) Assume that u satis�es (EE) and u(t0) 2 Bq;s(
) for
all t0 2 [0; T ). Moreover, let ~u be another weak solution satisfying (SEI) for
the same initial value u0 2 L2

�(
). We obtain that u 2 Ls
�
0; �;Lq(
)

�
with

some 0 < � < T . Then Serrin's uniquenes theorem implies that u(t) = ~u(t) for
0 � t < �.

Let [0; t0), 0 < t0 � T , be the largest half open interval such that u(t) = ~u(t)
is satis�ed for each t 2 [0; t0). If t0 < T , then the weak L2-continuity in time
(1.6) implies that u(t0) = ~u(t0).
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Since u satis�es u(t0) 2 Bq;s(
) and (EI)t0 we conclude that u 2 Ls
�
t0; t0+

�;Lq(
)
�
. Moreover, since ~u satis�es (SEI), hence (EI)tj for a sequence (tj)

with tj % t0, and since u = ~u on [0; t0] satis�es (EE), we conclude that
k~u(tj)k2 ! k~u(t0)k2. These arguments imply that ~u satis�es (EI)t0 . Con-
sequently, by Serrin's uniquenes theorem, u = ~u in [0; T1 + �). This is a contra-
diction to the construction of t0.

(ii) For u 2 L4(L4) Remark 1.2 5. yields (EE). Now assume that u satis�es
(2.20). By Hölder's inequality in Lorentz spaces ([34, Lemma 2.1]) and Sobolev's
embedding W 1;2

0 (
) � L6;2(
) ([34, Lemma 2.2]) we get that

kuukL2 � ckuukL2;2 � ckukL3;1kukL6;2

� ckukL3;1kukW 1;2 ;

where c = c(
) > 0. Hence u 2 L4(L4). Now we proceed as above.
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