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Abstract. Consider the instationary Navier-Stokes equations in
a smooth exterior domain Ω ⊆ R3 with initial value u0 and exter-
nal force f = divF . It is an important question to characterize
the class of initial values u0 ∈ L2

σ(Ω) that allow a strong solution
u ∈ Ls(0, T ;Lq(Ω)) in some interval [0, T [ , 0 < T ≤ ∞ where s, q
with 3 < q <∞ and 2

s + 3
q = 1 are so-called Serrin exponents. In

(Analysis (Munich) 33 (2013), 101-119) the authors proved that∫∞
0
‖e−νtAu0‖sq dt <∞ is necessary and sufficient for the existence

of a strong solution u ∈ Ls(0, T ;Lq(Ω)) , 0 < T ≤ ∞, if addition-
ally 3 < q ≤ 8. In this paper we will show that this result remains
true if q > 8 and consequently

∫∞
0
‖e−νtAu0‖sq dt <∞ is the opti-

mal initial value condition to obtain such a strong solution for all
possible Serrin exponents s, q.

1. Introduction and main results

In this paper, Ω ⊆ R3 is an exterior domain, i.e. an open, connected
subset having a nonempty, compact complement in R3, with smooth
boundary ∂Ω ∈ C2,1, and [0, T [ , 0 < T ≤ ∞, denotes the time interval.
In [0, T [×Ω we consider the instationary Navier-Stokes equations

ut − ν∆u+ u · ∇u+∇p = f in ]0, T [×Ω ,

div u = 0 in ]0, T [×Ω ,

u = 0 on ]0, T [×∂Ω ,

u = u0 at t = 0 ,

(1.1)

with external force f = divF = (
∑3

i=1 ∂iFi,j)
3
j=1, initial value u0 and

constant viscosity ν > 0. First we recall the definition of weak and
strong solutions. We introduce the space of test functions by

C∞0 ([0, T [;C∞0,σ(Ω)) := {w |[0,T [×Ω ;w ∈ C∞0 (]− 1, T [×Ω) ; divw = 0 }.
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Definition 1.1. Let Ω ⊆ R3 be an arbitrary domain, let 0 < T ≤
∞ , ν > 0, let f = div F with F ∈ L1

loc([0, T [;L2(Ω)), and u0 ∈ L2
σ(Ω).

Then a vector field u ∈ LHT , where LHT denotes the Leray-Hopf class

LHT := L∞loc([0, T [;L2
σ(Ω)) ∩ L2

loc([0, T [;W 1,2
0,σ (Ω)) , (1.2)

is called weak solution (in the sense of Leray-Hopf ) of the instationary
Navier-Stokes system (1.1) with data f , u0 if

−〈u,wt〉Ω,T +ν〈∇u,∇w〉Ω,T +〈u ·∇u,w〉Ω,T = 〈u0, w(0)〉Ω−〈F,∇w〉Ω,T
for all test functions w ∈ C∞0 ([0, T [;C∞0,σ(Ω)). In the identity above
〈·, ·〉Ω , 〈·, ·〉Ω,T denotes the usual L2-scalar product in Ω and in ]0, T [×Ω,
respectively.

If u is such a weak solution, it can be proved (see [18, Chapter V,
Theorem 1.7.1]) that there exists a distribution p, called an associated
pressure, such that the equality

ut − ν∆u+ u · ∇u+∇p = f

holds in the sense of distributions in ]0, T [×Ω, see [18, V.1.7]. The
existence of a global weak solution satisfying the energy inequality (1.4)
below is well known, see [18, Chapter V, Theorem 3.1.1]. For exponents
1 < s , q <∞ we introduce the Serrin number by

S(s, q) :=
2

s
+

3

q
.

A weak solution of (1.1) is called a strong solution if there exist
Serrin exponents s, q, i.e. exponents 1 < s, q < ∞ with S(s, q) = 1
such that additionally Serrin’s condition

u ∈ Ls(0, T ;Lq(Ω)) (1.3)

is satisfied. By Serrin’s uniqueness Theorem [18, V, Theorem 1.5.1] a
weak solution with (1.3) is unique within the class of weak solutions
satisfying the energy inequality, i.e. fulfilling

1

2
‖u(t)‖2

2 + ν

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖2

2 −
∫ t

0

〈F,∇u〉Ω dτ (1.4)

for almost all t ∈ [0, T [. For sufficiently smooth Ω , f , u0 a strong
solution u has the regularity property

u ∈ C∞(]0, T [×Ω) , p ∈ C∞(]0, T [×Ω) ,

see [18, Theorem V.1.8.2].
Up to now, the existence of a strong solution u of (1.1) is only known

in a sufficiently small interval [0, T [ , 0 < T ≤ ∞, and under additional
assumptions on Ω, f , and u0. Since the work [16] there have been found
several conditions on u0 in order to obtain the existence of a strong
solution u ∈ Ls(0, T ;Lq(Ω)) of (1.1) in some interval [0, T [ , 0 < T ≤ ∞,
getting weaker step by step, see [1, 9, 10, 13, 15, 17, 18, 19].
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Let A = A2 denote the Stokes operator; for more information we refer
to the preliminaries. In [7] Farwig et al. considered (1.1) in a smooth
bounded domain and proved that (1.10) below is the optimal (weakest
possible) condition to obtain a strong solution u ∈ Ls(0, T ;Lq(Ω)) in
some interval [0, T [ , 0 < T ≤ ∞, for all exponents 1 < s, q < ∞
with S(s, q) = 1. In [5] the author proved that the condition (1.10) is
sufficient for the existence of a strong solution u ∈ Ls(0, T ;Lq(Ω)) , 0 <
T ≤ ∞ of (1.1) in a smooth exterior domain where s, q are exponents
with S(s, q) = 1 and additionally 3 < q ≤ 8. The corresponding
necessity is proven even without restriction on q. The goal of the
present paper is to show that this condition (1.10) is sufficient for the
existence of such a strong solution in a smooth exterior domain for the
’remaining’ exponents s, q, i.e. for 8 < q < ∞ , 2

s
+ 3

q
= 1. Our first

main result reads as follows.

Theorem 1.2. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1,
let 1 < s < ∞ , 8 < q < ∞, be given with S(s, q) = 1. Assume
0 < T ≤ ∞ , ν > 0, assume F ∈ L2(0, T ;L2(Ω)), and u0 ∈ L2

σ(Ω). Let

E(t) := e−νtAu0+

∫ t

0

A1/2e−ν(t−τ)AA−1/2PdivF (τ) dτ , a.a. t ∈ [0, T [ ,

denote the weak solution of the (linear) Stokes system with initial value
u0 and external force f = divF . Then there exists a constant ε∗ =
ε∗(Ω, q) > 0 (independent of T, ν, F , and u0) with the following prop-
erty: If E ∈ Ls(0, T ;Lq(Ω)) and

‖E‖2,2;T + ‖E‖q,s;T ≤ ε∗ν
1
2

+ 3
2q (1.5)

holds, then there exists a strong solution u ∈ Ls(0, T ;Lq(Ω)) of the
Navier-Stokes equations (1.1). After a possible redefinition on a set of
Lebesgue measure 0, we get that u : [0, T [→ L2

σ(Ω) is strongly continu-
ous and satisfies the energy equality

1

2
‖u(t)‖2

2 + ν

∫ t

0

‖∇u‖2
2 dτ =

1

2
‖u0‖2

2 −
∫ t

0

〈F,∇u〉Ω dτ (1.6)

for all t ∈ [0, T [.

For a proof of this theorem we refer to Section 4. The idea is to
construct u as a fixed point in Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2

σ(Ω)) of a
suitable non-linear problem, see (3.13) below. The estimates needed
to solve this fixed point equation with the help of Banach’s fixed point
theorem are presented in Lemma 3.2. Afterwards we use the Yosida
approximation to show that u satisfies (1.2) and is therefore a strong
solution of (1.1).

The corollary below presents a smallness conditions on the data u0, F
which imply the existence of a strong solution u ∈ Ls(0, T ;Lq(Ω))
of (1.1). Especially it follows that the condition (1.10) is sufficient for
the existence of a strong solution u ∈ Ls(0, T ′;Lq(Ω)) in a sufficiently
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small interval [0, T ′[ , 0 < T ′ ≤ T , for exponents s, q with q > 8 and
S(s, q) = 1.

Corollary 1.3. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1,
consider 1 < s <∞ , 8 < q <∞, with S(s, q) = 1, and 1 < s∗, q∗ <∞
with S(s∗, q∗) = 2 where 1

3
+ 1

q
≥ 1

q∗
≥ 1

q
. Further assume 0 < T <∞,

ν > 0, assume F ∈ Ls∗(0, T ;Lq∗(Ω))∩L2(0, T ;L2(Ω)), and u0 ∈ L2
σ(Ω).

There exists a constant ε∗ = ε∗(Ω, q, q∗) > 0 (independent of T, ν, F ,
and u0) with the following property: If the conditions∫ T

0

‖e−ντAu0‖sq dτ ≤ ε∗ν
s−1 , (1.7)∫ T

0

‖e−ντAu0‖2
2 dτ ≤ ε∗ν

2− 2
s , (1.8)

ν−1− 3
2q∗ ‖F‖q∗,s∗;T + ν−1− 3

2qT
1
2‖F‖2,2;T ≤ ε∗ , (1.9)

are satisfied, then there exists a strong solution u ∈ Ls(0, T ;Lq(Ω)) of
the Navier-Stokes equations (1.1). After a possible redefinition on a
set of Lebesgue measure 0, we get that u : [0, T [→ L2

σ(Ω) is strongly
continuous and fulfils (1.6) for all t ∈ [0, T [.

A proof of this result can be found in Section 5. It follows from [14,
Theorem 1.2 (ii)] that e−ντAu0 ∈ Lq(Ω) for almost all τ > 0 and con-
sequently the left hand side of (1.7) is well defined.

The following theorem is a consequence of Corollary 1.3 and [5, The-
orem 1.3 and Corollary 1.4]. It states that the condition (1.10) on
u0 ∈ L2

σ(Ω) defines the largest possible class to get a strong solution
u ∈ Ls(0, T ;Lq(Ω)), 0 < T ≤ ∞ of (1.1) for all Serrin exponents s, q.

Theorem 1.4. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1,
let 1 < s, q < ∞ with S(s, q) = 1. Further, let 1 < s∗ , q∗ < ∞ with
S(s∗, q∗) = 2 where 1

3
+ 1

q
≥ 1

q∗
≥ 1

q
, let 0 < T ≤ ∞ , ν > 0, assume

F ∈ Ls∗(0, T ;Lq∗(Ω)) ∩ L2(0, T ;L2(Ω)), and u0 ∈ L2
σ(Ω). Then∫ ∞

0

‖e−ντAu0‖sq dτ <∞ (1.10)

is a necessary and sufficient condition for the existence of a strong
solution u ∈ Ls(0, T ′;Lq(Ω)) of (1.1) in some interval [0, T ′[ , 0 < T ′ ≤
T .

After some preliminaries in Section 2 we deal with the construction of
a fixed point needed for the proof of Theorem 1.2. In Section 4 we
will prove this theorem and the goal of the last section is to show that
Corollary 1.3 holds.

2. Preliminaries
Given an open set Ω ⊆ Rn , n ∈ N, and 1 ≤ q ≤ ∞ , k ∈ N, we

need the usual Lebesgue and Sobolev spaces, Lq(Ω) and W k,q(Ω) with



NECESSARY AND SUFFICIENT CONDITIONS IN EXTERIOR DOMAINS 5

norm ‖ · ‖Lq(Ω) = ‖ · ‖q and ‖ · ‖Wk,q(Ω) = ‖ · ‖k,q, respectively. For
two measurable functions f , g with the property f · g ∈ L1(Ω), where
f · g means the usual scalar product of vector or matrix fields, we set
〈f, g〉Ω :=

∫
Ω
f(x) · g(x) dx. Note that the same symbol Lq(Ω) etc. will

be used for spaces of scalar-, vector- or matrix-valued functions. Let
Cm(Ω) ,m = 0, 1, . . . ,∞, denote the usual space of functions for which
all partial derivatives of order |α| ≤ m (|α| < ∞ when m = ∞) exist
and are continuous. As usual, Cm

0 (Ω) is the set of all functions from
Cm(Ω) with compact support in Ω. Further we introduce C∞0,σ(Ω) :=
{ v ∈ C∞0 (Ω); div v = 0 } as the space of smooth solenoidal vector
fields. For 1 < q < ∞ we define the spaces Lqσ(Ω) := C∞0,σ(Ω)

‖·‖q and

W 1,2
0,σ (Ω) := C∞0,σ(Ω)

‖·‖W1,2 . For 1 ≤ q ≤ ∞ let q′ be the dual exponent
such that 1

q
+ 1

q′
= 1. It is well known that Lqσ(Ω)′ ∼= Lq

′
σ (Ω) , 1 < q <∞,

using the standard pairing 〈·, ·〉Ω.
Given a Banach spaceX, 1 ≤ p ≤ ∞, and an interval ]0, T [ we denote

by Lp(0, T ;X) the space of (equivalence classes of) strongly measurable

functions f :]0, T [→ X such that ‖f‖p :=
(∫ T

0
‖f(t)‖pX dt

) 1
p
< ∞ if

1 ≤ p <∞ and ‖f‖∞ := ess supt∈]0,T [ ‖f(t)‖X if p =∞. Moreover, we
define the set of locally integrable functions

Lploc([0, T [;X) := {u : [0, T [→ X strongly measurable,
u ∈ Lp(0, T ′;X) for all 0 < T ′ < T}.

If X = Lq(Ω), 1 ≤ q ≤ ∞, the norm in Lp(0, T ;Lq(Ω)) will be denoted
by ‖f‖q,p;T .

Fix an exterior domain Ω ⊆ R3 with ∂Ω ∈ C2,1. Let Pq : Lq(Ω) →
Lqσ(Ω), 1 < q < ∞, be the Helmholtz projection with range R(Pq) =
Lqσ(Ω) and null space N (Pq) = {∇p ∈ Lq(Ω) ; p ∈ Lqloc(Ω)}. This
operator is consistent in the sense that Pqf = Prf for f ∈ Lq(Ω) ∩
Lr(Ω). Furthermore, we get for the adjoint operator P ′q ∼= Pq′ which
means that 〈Pqf, g〉Ω = 〈f, Pq′g〉Ω for all f ∈ Lq(Ω), g ∈ Lq′(Ω). For
1 < q <∞ we define the Stokes operator by

D(Aq) = Lqσ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), Aqu := −Pq∆u , u ∈ D(Aq).

The Stokes operator is consistent in the sense that for 1 < q, r <∞

Aqu = Aru ∀u ∈ D(Aq) ∩ D(Ar). (2.1)

Throughout this paper we will write A = A2. It is well known that −Aq
generates a uniformly bounded analytic semigroup { e−tAq : t ≥ 0 } on
Lqσ(Ω) satisfying the decay estimate

‖Aαq e−tAq‖q ≤ c t−α, t > 0 , (2.2)

where α ≥ 0 , q > 1, and c = c(Ω, q, α) > 0.
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For α ∈ [−1, 1] the fractional power Aαq : D(Aαq ) → Lqσ(Ω) with
dense domain D(Aαq ) ⊆ Lqσ(Ω) and dense range R(Aαq ) ⊆ Lqσ(Ω) is a
well defined, injective, closed operator such that

(Aαq )−1 = A−αq , R(Aαq ) = D(A−αq ), and (Aαq )′ = Aαq′ .

In general, D(Aαq ) will be equipped with the graph norm ‖u‖D(Aαq ) :=

‖u‖q + ‖Aαq u‖q for u ∈ D(Aαq ) which makes D(Aαq ) to a Banach space
since Aαq is closed. There holds D(Aq) ⊆ D(Aαq ) ⊆ D(Aβq ) ⊆ Lqσ(Ω)

for 0 ≤ β ≤ α ≤ 1 . Furthermore we have D(A1/2) = W 1,2
0,σ (Ω) and

‖∇u‖2 = ‖A1/2u‖2 for all u ∈ D(A1/2). There holds

‖u‖γ ≤ c‖Aαq u‖q where 0 ≤ α ≤ 1

2
, 1 < q < 3 , 2α +

3

γ
=

3

q
, (2.3)

for all u ∈ D(Aαq ) with a constant c = c(Ω, q, α) > 0. Concerning fur-
ther information on the Helmholtz projection and the Stokes operator
in exterior domains we refer to [2, 3, 11, 12, 14].

3. Construction of a suitable fixed point

The proof of Theorem 1.2 is essentially based on the construction of a
fixed point of (3.13) below. Throughout this paper we will essentially
make use of the following lemma.

Lemma 3.1. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let
p > 3

2
, F ∈ Lp(Ω). Choose r, σ ≥ 0 with

2σ +
3

r
=

3

p
, 0 ≤ σ ≤ 1

2
. (3.1)

There exists a unique element in Lrσ(Ω) denoted by A−1/2−σ
r PrdivF ∈

Lrσ(Ω) with

〈A−1/2−σ
r PrdivF,A

1/2+σ
r′ w〉Ω = −〈F,∇w〉Ω (3.2)

for all w ∈ D(A
1/2+σ
r′ ). There holds

‖A−1/2−σ
r PrdivF‖r ≤ c‖F‖p (3.3)

with a constant c = c(Ω, p, r) > 0.

Proof. This is [5, Lemma 3.1]. �

The next lemma presents estimates which will be frequently used in
Theorem 3.3.

Lemma 3.2. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let
exponents 2 < s < ∞ , 6 < q < ∞, be given such that S(s, q) = 1.
Further assume 0 < T ≤ ∞ and ν > 0. Define α := 1

2
+ 3

2q
and the

Banach space

X := Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2
σ(Ω)) , ‖u‖X := ‖u‖q,s;T + ‖u‖2,2;T .
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For u, v ∈ X the expression

F(u, v)(t) := −
∫ t

0

Aαq e
−ν(t−τ)AqA−αq Pqdiv(u⊗ v)(τ) dτ (3.4)

is well defined as element of Lqσ(Ω) ∩ L2
σ(Ω) for almost all t ∈ [0, T [.

There holds that F : X ×X → X is a continuous bilinear form satis-
fying the estimate

‖F(u, v)‖X ≤ cν−α‖u‖X‖v‖X (3.5)

for all u, v ∈ X with a constant c = c(Ω, q) > 0.

Proof. Step 1. We apply [5, Lemma 3.2] with with r = q, σ = 3/2q,
β = α and F := u⊗v ∈ L s

2 (0, T ;L
q
2 (Ω)) to see that F(u, v)(t) ∈ Lqσ(Ω)

is well defined for a.a. t ∈ [0, T [. Further, since S(s, q) = S( s
2
, q

2
) − 1

we get from [5, (3.12)]

‖F(u, v)‖q,s;T ≤ cν−α‖u⊗ v‖ q
2
, s
2

;T ≤ cν−α‖u‖q,s;T‖v‖q,s;T . (3.6)

Since all exponents in Lemma 3.2 are uniquely determined by q it
follows that the constant c in (3.6) depends only on Ω, q.
Step 2. Define 1 < q2 , s2 <∞ such that

1

q2

=
1

q
+

1

2
,

1

s2

=
1

s
+

1

2
. (3.7)

From u, v ∈ X and Hölder’s inequality we get u⊗v ∈ Ls2(0, T ;Lq2(Ω)).
Further

2 · 3

2q
+

3

2
=

3

q2

. (3.8)

From q > 6 it follows q2 >
3
2
. Therefore, we obtain from (3.3), (3.8)

that
‖A−αPdiv

(
u⊗ v

)
(t)‖2 ≤ c(Ω, q)‖(u⊗ v)(t)‖q2 (3.9)

for a.a. t ∈ [0, T [ and consequently A−αPdiv(u⊗v) ∈ Ls2(0, T ;L2(Ω)).
Therefore, the consistence of the Stokes operator (see (2.1)) applied
to (3.4) yields

F(u, v)(t) = −
∫ t

0

Aαe−ν(t−τ)AA−αPdiv
(
u⊗ v

)
(τ) dτ (3.10)

for almost all t ∈ [0, T [. We get from [5, (3.12)] in combination
with (3.8), (3.10) that

‖F(u, v)‖2,2;T ≤ cν−α‖u⊗v‖q2,s2;T ≤ c(Ω, q)ν−α‖u‖2,2;T‖v‖q,s;T (3.11)

Combining (3.6), (3.11) yields

‖F(u, v)‖X ≤ cν−α‖u‖X‖v‖X
for all u, v ∈ X with a constant c = c(Ω, q) > 0. �

The following fixed point result is needed for the construction of the
strong solution u in Theorem 1.2.
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Theorem 3.3. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let
exponents 2 < s < ∞ , 6 < q < ∞ be given with S(s, q) = 1. Further
assume 0 < T ≤ ∞ , ν > 0 and E ∈ Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2

σ(Ω)).
Define α := 1

2
+ 3

2q
. Then there exists a constant ε∗ = ε∗(Ω, q) > 0 with

the following property: If

‖E‖q,s;T + ‖E‖2,2;T ≤ ε∗ν
α (3.12)

then there exists u ∈ Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2
σ(Ω)) satisfying

u(t) = E(t)−
∫ t

0

Aαq e
−ν(t−τ)AqA−αq Pqdiv(u⊗ u)(τ) dτ (3.13)

for almost all t ∈ [0, T [ and

‖u‖q,s;T + ‖u‖2,2;T ≤ 2(‖E‖q,s;T + ‖E‖2,2;T ). (3.14)

Proof. With no loss of generality assume E 6= 0. Let X, let F :
X × X → X be defined as in Lemma 3.2, and let c = c(Ω, q) > 0 be
the constant obtained in (3.5). Let R be the smallest positive root of
the polynomial cν−αx2 − x+ ‖E‖X , i.e.

R =
1−

√
1− 4cν−α‖E‖X

2cν−α
=

2‖E‖X
1 +

√
1− 4cν−α‖E‖X

.

It is easy to see ‖E‖X < R < 2‖E‖X . We introduce the closed ball
B := {u ∈ X; ‖u‖X ≤ R} and define

T : X → X , Tu := E + F(u, u).

Define ε∗ := 1
8c
. To finish the proof we show T (B) ⊆ B and that T is a

strict contraction on B. To begin with, we obtain
‖Tu‖X ≤ ‖E‖X + cν−αR2 = R

for all u ∈ B. Thus T (B) ⊆ B. Further
‖Tu− Tv‖X = ‖F(u, u− v) + F(u− v, v)‖X

≤ cν−α
(
‖u‖X + ‖v‖X

)
‖u− v‖X

≤ 2cν−αR‖u− v‖X
for all u, v ∈ B. By construction 2cν−αR ≤ 4cν−α‖E‖X < 1 and
consequently T : B → B is a strict contraction. By Banach’s fixed
point theorem there exists u ∈ B with T (u) = u. Especially

‖u‖X ≤ R < 2‖E‖X .
�

We remark that u is constructed as a very weak solution of (1.1) with
the additional property u ∈ L2(0, T ;L2(Ω)). We refer to [1, 4, 6]
for the notion of a very weak solution and their properties. This L2-
integrability is needed for the application of the Yosida approximation
in the proof of Theorem 1.2. In the case 3 < q < 24

7
it is proved in [5]

that a solution in u ∈ Ls(0, T ;Lqσ(Ω)) of (3.13) automatically satisfies
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u ∈ L2(0, T ;L2(Ω)). The proof is based on imbedding properties which
cannot be used in the case q > 8.

4. Proof of Theorem 1.2

Step 1. We use [18, IV, Theorems 2.3.1 and 2.4.1] to get E ∈
L∞(0, T ;L2

σ(Ω)) ∩ L2(0, T ;W 1,2
0,σ (Ω)) and that E is a weak solution to

the (linear) Stokes system with external force f = divF and initial
value u0. Define α := 1

2
+ 3

2q
. Let ε∗ = ε∗(Ω, q) > 0 be the constant

from Theorem 3.3. It follows that if

‖E‖q,s;T + ‖E‖2,2;T ≤ ε∗ν
α

holds then there exists u ∈ Ls(0, T ;Lqσ(Ω))∩L2(0, T ;L2
σ(Ω)) satisfying

u(t) = E(t)−
∫ t

0

Aαq e
−ν(t−τ)AqA−αq Pqdiv(u⊗ u)(τ) dτ (4.1)

for a.a. t ∈ [0, T [ and
‖u‖q,s;T ≤ 2‖E‖X . (4.2)

In the following assume that u ∈ Ls(0, T ;Lqσ(Ω)) ∩ L2(0, T ;L2
σ(Ω))

fulfils (4.1), (4.2). We have to prove, after a possible reduction of ε∗
(see the discussion following (4.7)), that u satisfies (1.2).
Step 2. By construction u⊗u ∈ Ls2(0, T ;Lq2(Ω)) where 1 < s2, q2 <
∞ are defined by

1

s2

=
1

2
+

1

s
,

1

q2

=
1

2
+

1

q
.

Define ũ := u− E. Thus

ũ(t) = −
∫ t

0

Aαq e
−ν(t−τ)AqA−αq Pqdiv((ũ+ E)⊗ (ũ+ E))(τ) dτ (4.3)

for almost all t ∈ [0, T [. We apply [5, (3.11)] with r1 = q/2 , r2 = q and
F := u⊗u ∈ L s

2 (0, T ;L
q
2 (Ω)) to (4.3) and afterwards, we use the consis-

tence of the Stokes operator in combination with F ∈ Ls2(0, T ;Lq2(Ω))
and obtain

ũ(t) = −
∫ t

0

A
1/2
q/2e

−ν(t−τ)Aq/2A
−1/2
q/2 Pq/2div

(
(ũ+ E)⊗ (ũ+ E)

)
(τ) dτ

= −
∫ t

0

A1/2
q2
e−ν(t−τ)Aq2A−1/2

q2
Pq2div

(
(ũ+ E)⊗ (ũ+ E)

)
(τ) dτ

(4.4)

for a.a. t ∈ [0, T [.
To prove ∇u ∈ L2(0, T ;L2(Ω)) we will slightly modify the arguments

presented in [5] respectively [7]. Let Jn := (I+ 1
n
A

1/2
q2 )−1 , n ∈ N, be the
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Yosida approximation of I in Lq2σ (Ω), so that ũ = Jnũ+ 1
n
A

1/2
q2 Jnũ. For

further properties of Jn we refer to [18, II, Section 3.4]. There holds

A1/2
q2
JnA

−1/2
q2

Pq2div
(
u⊗ (ũ+ E)

)
= JnPq2

(
u · ∇Jnũ+ u · ∇E

)
+

1

n
A1/2
q2
JnA

−1/2
q2

Pq2div
(
u⊗ A1/2

q2
Jnũ
)
.

Consequently, we apply Aq2Jn to (4.4) and obtain

A1/2
q2
Jnũ(t)

= −
∫ t

0

A1/2
q2
e−ν(t−τ)Aq2

(
JnPq2

(
u · ∇Jnũ+ u · ∇E

)
+

1

n
A1/2
q2
JnA

−1/2
q2

Pq2div
(
u⊗ A1/2

q2
Jnũ
) )

dτ

(4.5)

for almost all t ∈ [0, T [. We use 2 · 3
2q

+ 3
2

= 3
q2
, 1 < q2 < 3, in

combination with (2.2), (2.3) and the boundedness of the sequences
( 1
n
A

1/2
q2 Jn)n∈N, (JnPq2)n∈N to obtain the estimate

‖A1/2
q2
Jnũ(t)‖2 ≤ c‖A3/2q

q2
A1/2
q2
Jnũ‖q2

≤ cν−α
∫ t

0

|t− τ |−α
(
‖JnPq2

(
u · ∇Jnũ+ u · ∇E

)
‖q2

+ ‖ 1

n
A1/2
q2
JnA

−1/2
q2

Pq2div
(
u⊗ A1/2

q2
Jnũ
)∥∥

q2

)
dτ

≤ cν−α
∫ T

0

|t− τ |−α
(
‖u · ∇Jnũ‖q2 + ‖u · ∇E‖q2

+ ‖u⊗ A1/2
q2
Jnũ‖q2

)
dτ

(4.6)

with a constant c = c(Ω, q) > 0. The Hardy-Littlewood inequality
(see [20, Ch. V, 1.2]) with (1− α) + 1

2
= 1

s2
applied to (4.6) combined

with Hölder’s inequality and ‖∇Jnũ‖2,2;T = ‖A1/2
q2 Jnũ‖2,2;T yields

‖A1/2
q2
Jnũ‖2,2;T

≤ cν−α
(
‖u · ∇Jnũ‖q2,s2;T + ‖u · ∇E‖q2,s2;T + ‖u⊗ A1/2

q2
Jnũ‖q2,s2;T

)
≤ cν−α‖u‖q,s;T

(
‖∇Jnũ‖2,2;T + ‖∇E‖2,2;T + ‖A1/2

q2
Jnũ‖2,2;T )

≤ c∗ν
−α‖u‖q,s;T

(
‖A1/2

q2
Jnũ‖2,2;T + ‖∇E‖2,2;T

)
(4.7)

with a fixed constant c∗ = c∗(Ω, q) > 0. Replacing ε∗ by min{ε∗, 1
4c∗
}

and using (1.5) yields

c∗ν
−α‖u‖q,s;T ≤ 2c∗ν

−α‖E‖X ≤
1

2
. (4.8)
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We can apply the absorption principle to (4.7) and get

‖A1/2
q2
Jnũ‖2,2;T ≤ cν−α‖u‖q,s;T‖∇E‖2,2;T (4.9)

with a constant c = c(Ω, q) > 0 independent of n ∈ N. By a functional
analytic argument (see [18, II. (3.1.8), (3.1.9)]) in combination with the
consistence of the Stokes operator it follows ũ(t) ∈ D(A1/2) for a.a. t ∈
[0, T [ and A1/2ũ ∈ L2(0, T ;L2(Ω)). Therefore ∇ũ ∈ L2(0, T ;L2(Ω)).
Step 3. Since ∇u ∈ L2(0, T ;L2(Ω)) we can write

ũ(t) = −
∫ t

0

e−ν(t−τ)Aq2Pq2
(
u · ∇u

)
dτ (4.10)

for a.a. t ∈ [0, T [. The same argumentation as in [7, page 640] shows
that (4.10) implies u⊗u ∈ L2(0, T ;L2(Ω)). A careful inspection shows
that this proof remains true although we consider an exterior domain
instead of a bounded domain. Therefore

ũ(t) = −
∫ t

0

A1/2e−ν(t−τ)AA−1/2Pdiv(u⊗ u)(τ) dτ

for a.a. t ∈ [0, T [. Consequently, ũ can be considered as a weak solution
of the instationary Stokes system with initial value 0 and external force
f = −div(u ⊗ u) where u ⊗ u ∈ L2(0, T ;L2(Ω)). Then linear theory
(see [18, IV, Theorems 2.3.1 and 2.4.1]) implies that ũ satisfies (1.2).
Thus u = ũ+E satisfies (1.2). Altogether u is a strong solution of (1.1).

�

5. Proof of Corollary 1.3
Let ε∗ = ε∗(Ω, q) > 0 be the constant obtained in Theorem 1.2.

Define

E1(t) + E2(t) := e−νtAu0 +

∫ t

0

A1/2e−ν(t−τ)AA−1/2PdivF (τ) dτ

for a.a. t ∈ [0, T [. Assumption (1.7) yields E1 ∈ Ls(0, T ;Lq(Ω)).
From [18, IV, Lemma 2.4.2 d)] we get

‖E2‖2,2;T ≤ T 1/2‖E2‖2,∞;T ≤ T 1/2

√
8

ν
‖F‖2,2;T . (5.1)

We use (2.1) to obtain

E2(t) =

∫ t

0

A1/2
q∗ e

−ν(t−τ)Aq∗A−1/2
q∗ Pq∗divF (τ) dτ

for almost all t ∈ [0, T [. Choose 0 ≤ σ ≤ 1
2
with 2σ + 3

q
= 3

q∗
. From [5,

(3.12)] it follows E2 ∈ Ls(0, T ;Lq(Ω)) and

‖E2‖q,s;T ≤ cν−
1
2
− 3

2
( 1
q∗
− 1
q

)‖F‖q∗,s∗;T
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with a constant c = c(Ω, q, q∗) > 0. Altogether

‖E‖2,2;T + ‖E‖q,s;T ≤ ‖e−νtAu0‖2,2;T + ‖e−νtAu0‖q,s;T
+ cν−

1
2
− 3

2
( 1
q∗
− 1
q

)‖F‖q∗,s∗;T + cT 1/2ν−1/2‖F‖2,2;T

(5.2)

with c = c(Ω, q, q∗) > 0. Looking at (5.2) it follows that there exists
a constant K∗ = K∗(Ω, q, q∗) > 0 such that if the conditions (1.7),
(1.8), (1.9) are fulfilled where ε∗ is replaced by K∗, then (1.5) holds.
Consequently, the proof of the corollary is completed. �
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