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Abstract

Consider a bounded domain 
 � R
3 with smooth boundary, some

initial value u0 2 L2
�(
), and a weak solution u of the Navier-Stokes

system in [0; T ) � 
, 0 < T � 1. Our aim is to develop regularity
and uniqueness conditions for u which are based on the Besov space

Bq;s(
) :=
n
v 2 L2

�(
); kvkBq;s(
) :=

�Z 1

0



e��Av

s
q
d�

�1=s

<1
o

with 2 < s < 1, 3 < q < 1, 2
s + 3

q = 1; here A denotes the Stokes
operator. This space, introduced by the authors in [4], [5], is a subspace

of the well known Besov space B
�2=s
q;s (
), see [1]. Our main results on

the regularity of u exploits a variant of the space Bq;s(
) in which
the integral in time has to be considered only on �nite intervals (0; �)
with � ! 0. Further we discuss several criteria for uniqueness and local
right-hand regularity, in particular, if u satis�es Serrin's limit condition
u 2 L1

loc
([0; T );L3

�(
)). Finally, we obtain a large class of regular
weak solutions u de�ned by a smallness condition ku0kBq;s(
) � K

with some constant K = K(
; q) > 0.
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1 Introduction

Let 
 � R
3 be a bounded domain with boundary @
 of class C2;1 and 0 < T � 1.

In [0; T )�
 we consider weak and strong solutions of the Navier-Stokes system

ut ��u+ u � ru+rp = 0; divu = 0 (1.1)

uj@
 = 0; ujt=0 = u0

where u0 2 L2
�(
) is given and p means the associated pressure. For simplicity,

the external force is assumed to vanish.
We set Lq�(
) = C1

0;�(
)
k�kq

, C1
0;�(
) = fv = (v1; v2; v3) 2 C1

0 (
); div v =
r � v = 0g, 1 < q <1.

De�nition 1.1 Let u0 2 L2
�(
). Then a vector �eld

u = (u1; u2; u3) 2 L1(0; T ;L2
�(
)) \ L2(0; T ;W 1;2

0 (
)) (1.2)

is called a (Leray-Hopf type) weak solution of the system (1.1), if the relation

�hu;wti
;T + hru;rwi
;T � huu;rwi
;T = hu0; w(0)i
 (1.3)

holds for each w 2 C1
0 ([0; T );C1

0;�(
)), and if the strong energy inequality

1

2
ku(t)k22 +

Z t

t0

kruk22 d� �
1

2
ku(t0)k

2
2 (1.4)

holds for almost all t0 2 [0; T ) including t0 = 0, and all t 2 [t0; T ).

Usually, a weak solution u of the system (1.1) is de�ned with energy inequality
(1.4) only for t0 = 0, u(t0) = u(0) = u0. However, for a bounded domain, clas-
sical existence proofs of weak solutions rest on approximation procedures yielding
smooth approximate solutions (uk)k2N, such that uk ! u, k ! 1, in a cer-
tain sense, and that even the strong energy inequality (1.4) holds for almost all
t0 2 [0; T ), see [15, V. Theorem 3.6.2].

Moreover, we may assume that, after a rede�nition on a null set of [0; T ), such
a weak solution

u : [0; T )! L2
�(
) is weakly continuous: (1.5)

Thus the initial condition ujt=0 = u(0) = u0 is well de�ned, see [15, V], [17].

The regularity results in this paper are based on the idea to identify u locally
at least for almost all t0 2 [0; T ) with a regular Serrin solution in some interval
[t0; t0 + �) � [0; T ), � > 0. For this purpose we �rst develop such local Serrin solu-
tions for initial values u(t0), see Proposition 3.6 below. For this local identi�cation
we need that the given weak solution u satis�es the strong energy inequality (1.4).
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A weak solution u in De�nition 1.1 is called a strong solution of (1.1) if Serrin's
condition

u 2 Lsloc([0; T );L
q(
)); 2 < s <1; 3 < q <1;

2

s
+

3

q
= 1 (1.6)

is satis�ed. It is well known, see e.g. [15, V. Theorem 1.8.2], that a strong solu-
tion u is regular (of class C1) in (0; T )�
 and uniquely determined by u0 2 L2

�(
).

To present our main results in Section 2 below we will introduce some notation;
further notation and preliminaries will be described in Section 3 below. We will use
standard notation for Lebesgue and Sobolev spaces as well as for their solenoidal
subspaces of vector �elds.

We also discuss several regularity and uniqueness conditions for u based on
Lorentz spaces. We need the usual Lorentz spaces Lr;
(
) with 2 � r � 
 � 1,
see [1, (0.16), (0.17)], [18, 1.18.6]. Further we need the solenoidal Lorentz spaces

L
r;

� (
) := C1

0;�
k�kLr;
 (
) , see [1, (0.16), (0.17)], [5, Lemma 3.2]. In Proposition 3.3

below further properties of these spaces will be mentioned.
On L

q
�(
), 1 < q < 1, let A = �P�, A = Aq, denote the densely de�ned

Stokes operator which generates an analytic semigroup fe�tA; t � 0g; here P = Pq
denotes the Helmholtz projection from Lq(
) onto Lq�(
).

Let 2 < s <1, 3 < q <1, 2
s +

3
q = 1. Then we need the normed space

Bq;s(
) :=

(
v 2 L2

�(
); kvkBq;s(
) :=

�Z 1

0



e��Av

s
q
d�

�1=s

<1

)
with norm kvkBq;s(
). Equipped with the norm

kvk
bBq;s(
) := kvkBq;s(
) + kvk2bBq;s(
) = Bq;s(
) is a well de�ned Banach space of Besov space type, see Propo-

sition 3.1 below. Moreover, for � > 0 we consider the normed space

B
q;s
� (
) :=

(
v 2 L2

�(
); kvkBq;s
� (
) :=

�Z �

0



e��Av

s
q
d�

�1=s

<1

)
as well as the Banach spacebBq;s

� (
) := B
q;s
� (
) with kvk

bBq;s
� (
) := kvkBq;s

� (
) + kvk2:

Finally, we mention the continuous embeddings

D(A
1=4
2 ) � L3

�(
) = L3;3
� (
) � L3;s

� (
) � L3;1
� (
); (1.7)

L3;s
� (
) � bBq;s(
) = Bq;s(
) with 3 < q � s <1;

2

s
+

3

q
= 1;

see (3.19), (3.20), (3.21).
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2 Main results on regularity and uniqueness

2.1 Regularity of weak solutions

The following results are su�cient for weak solutions to (1.1) to satisfy Serrin's
condition (1.6), i.e. u 2 Ls

loc
([0; T );Lq(
)).

Theorem 2.1 Let u be a weak solution of the Navier-Stokes system (1:1) as in

De�nition 1:1, and let 2 < s < 1, 3 < q < 1, 2
s + 3

q = 1. Then the following

properties are su�cient for Serrin's condition (1.6):

u 2 L1loc([0; T );B
q;s(
)); (2.1)

lim
t"t1

�Z t1�t

0
ke��Au(t)ksq d�

�1=s

= 0 for each t1 2 (0; T ): (2.2)

Remarks a) Using Proposition 3.2 below we conclude from (2.1) that u(t) 2
Bq;s(
) is well de�ned for each 0 � t < T , and that

kukL1(0;S;Bq;s(
)) = sup
0�t<S

ku(t)kBq;s(
) (2.3)

is satis�ed for each 0 < S < T . Thus (2.2) is well de�ned.
b) The condition (2.2) can be written in the form

ku(t)kBq;s
t1�t

(
) =

�Z t1�t

0
ke��Au(t)ksq d�

�1=s

! 0 as t " t1: (2.4)

The next result rests instead of (2.2) on the slightly stronger condition (2.5).

Corollary 2.2 Let u; s; q be as in Theorem 2:1. Suppose the condition (2:1), and
assume that for each S 2 (0; T ) there exists some S0 2 [0; S) satisfying

lim
�#0

kukL1(S0;S;B
q;s
� (
)) = 0: (2.5)

Then Serrin's condition (1:6) is satis�ed.

Remarks a) Assume (2.5) holds for each S 2 (0; T ) with S0 = 0. Then

lim
�#0

kukL1(0;S;Bq;s
� (
)) = 0 holds for each S 2 (0; T ); (2.6)

and it follows from Corollary 2.2 that Serrin's condition (1.6) is satis�ed
b) Assume instead of (2.5) that for each S 2 (0; T ) there exists some S0 2 [0; S)

satisfying
lim
�#0

ku(t)kBq;s
� (
) = 0 uniformly for a.a. t 2 (S0; S):
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Then Serrin's condition (1.6) is satis�ed. This result is obvious from (2.5).
c) Using the estimates in the proof of [4, Theorem 1.3] we obtain the following

result:

Let u; s; q be as in Theorem 2.1. Then the conditions (2.1) and (2.2)
are su�cient and necessary for the validity of Serrin's condition (1:6):

(2.7)

The next result shows the validity of Serrin's condition if u : [0; T ) ! B
q;s
� (
)

is continuous for some � > 0 or equivalently for all � > 0 including � = 1; note
that this equivalence follows from (3.11) below.

Theorem 2.3 Let u be a weak solution of the Navier-Stokes system (1:1), and let

2 < s <1, 3 < q <1, 2
s +

3
q = 1. If the condition

u 2 C([0; T );Bq;s
� (
)) holds with any 0 < � � 1; (2.8)

then Serrin's condition (1:6) is satis�ed.

The following theorem yields the regularity of u if the norm of u 2
L1(0; T ;Bq;s

� (
)), 0 < � � 1 is su�ciently small.

Theorem 2.4 Let u be a weak solution of the Navier-Stokes system (1:1) and let

2 < s <1, 3 < q <1, 2
s+

3
q = 1. Then there exists a (su�ciently small) constant

K = K(
; q) > 0 such that the condition

kukL1(0;T ;Bq;s
� (
)) � K with some 0 < � � 1 (2.9)

implies Serrin's condition (1:6).

The next corollaries are based on the embedding properties (1.7) and are
consequences of Theorems 2.3 and 2.4. Note that s � q is needed in this case.

Corollary 2.5 Let u be a weak solution of the Navier-Stokes system (1.1) and let

3 < q � s <1, 2
s +

3
q = 1.

(i) Each of the conditions

u 2 C([0; T );D(A
1=4
2 )) or u 2 C([0; T );L3

�(
)) or u 2 C([0; T );L3;s
� (
)) (2.10)

is su�cient for Serrin's regularity condition (1:6).
(ii) There exists a constant K = K(
; q) > 0 such that each of the conditions

kuk
L1(0;T ;D(A

1=4
2 ))

� K or kukL1(0;T ;L3
�(
)) � K or kukL1(0;T ;L3;s

� (
)) � K (2.11)

implies Serrin's condition (1:6).
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2.2 Uniqueness conditions for weak solution

The regularity results in Subsection 2.1 also show that the given weak solution
u is uniquely determined for the initial value u0 2 L2

�(
). However, if we are
only interested in the uniqueness of u, there are several weaker conditions, see the
following results.

Theorem 2.6 Let u be a weak solution of the Navier-Stokes system (1:1) with

u0 2 L2
�(
), and let 2 < s <1, 3 < q <1, 2

s +
3
q = 1. Assume that

u 2 L1loc([0; T );B
q;s(
)); (2.12)

and that the energy equality

1

2
ku(t)k22 +

Z t

t0

kruk22 d� =
1

2
ku(t0)k

2
2 (2.13)

holds for each 0 � t0 � t < T . Then u is uniquely determined by the initial value

u0.

The next lemma yields some su�cient conditions for the energy inequality (1.4)
to hold at every t0 and for the energy equality (2.13).

Lemma 2.7 Let u; u0 be as in Theorem 2:6.
(i) If we assume

ku(�)k22 2 C([0; T )); (2.14)

then the energy inequality (1.4) holds at every t0 2 [0; T ).
(ii) If either

uu 2 L2
loc([0; T );L

2(
)); (2.15)

or

u 2 L1loc([0; T );L
3;1
� (
)); (2.16)

then the energy equality (2:13) holds.

If (2.12) is replaced by (2.17) below, we obtain the following simpler result.

Corollary 2.8 Let u be a weak solution of the Navier-Stokes system (1:1) with

initial value u0 2 L2
�(
), and let 3 < q � s < 1 be given such that 2

s + 3
q = 1.

Assume that one of the following conditions is satis�ed:

u 2 L1loc([0; T );D(A
1=4
2 )) or u 2 L1loc([0; T );L

3
�(
)) (2.17)

or u 2 L1loc([0; T );L
3;s
� (
)):

Then u is uniquely determined by the initial value u0.
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Remark Let u be a weak solution of (1.1) as in Corollary 2:8. It is interest-
ing to discuss uniqueness and regularity properties of u if the Serrin condition
u 2 Ls

loc
([0; T );Lq(
)); 2

s + 3
q = 1 holds in the limit case s = 1; q = 3. In

this case, Corollary 2:8 yields the uniqueness property for u, and from Corol-
lary 2:5 we see that the stronger assumption u 2 C([0; T );L3

�(
)) or the small-
ness condition kukL1(0;T ;L3

�(
)) � K are su�cient for Serrin's regularity class

u 2 Ls
loc

([0; T );Lq(
)) with certain 2 < s < 1; 3 < q < 1; 2
s +

3
q = 1. Further,

in the limit case u 2 L1
loc

([0; T );L3
�(
)) we can prove, instead of the complete

regularity, the local right-side regularity property of u for each t 2 [0; T ), see The-
orem 2:10 (ii) below. Hence Theorem 2.10 is a slightly weaker result than that in
[12] where, on the other hand, in domains with curved boundaries some additional
condition on the pressure had to be assumed; we also refer to [13] for domains with
a �at boundary.

2.3 Local regularity results

De�nition 2.9 Let u be a weak solution of the Navier-Stokes system (1.1) and let

2 < s <1, 3 < q <1, 2
s +

3
q = 1.

(i) A point t 2 (0; T ) is called an Ls(Lq)-regular point of u if there exists

some interval (t� "; t+ ") � (0; T ) with " > 0 such that u 2 Ls(t� "; t+ ";Lq(
)).
Moreover, t = 0 is called Ls(Lq)-regular for u if there exists some " > 0 with

(0; ") � (0; T ) and u 2 Ls(0; ";Lq(
)).
(ii) A point t 2 [0; T ) is called local right-side Ls(Lq)-regular for u if there

is some " > 0, t < t+ " < T , such that u 2 Ls(t; t+ ";Lq(
)). By analogy, a point

t 2 (0; T ) is called local left-side Ls(Lq)-regular for u if there is some " > 0,
t� " > 0, such that u 2 Ls(t� "; t;Lq(
)).

(iii) A point t 2 [0; T ) is called a singular point for u if it is not regular.

Note that in De�nition 2.9 " = "(t) > 0 may depend on t 2 [0; T ). We know
from [5, Proposition 1.2] that t = 0 is regular if and only if u0 2 Bq;s(
).

The following local Ls(Lq)-result extends the result in [5, Theorem 4.4], where
the energy equality is supposed. We will see that the conditions (2.12), (2.13) in
Theorem 2.6 are su�cient to obtain the local right-side Ls(Lq)-regularity condition
for each t 2 [0; T ). Since " = "(t) > 0 may depend on t 2 [0; T ) we do not know
whether u 2 Ls

loc
([0; T );Lq(
)) is satis�ed. Thus we only obtain a partial regularity

result.

Theorem 2.10 Let u be a weak solution of the Navier-Stokes system (1:1), and
let 2 < s <1, 3 < q <1, 2

s +
3
q = 1.

(i) Assume that u 2 L1
loc

([0; T );Bq;s(
)) and that u satis�es the energy in-

equality (2:13) (i.e., for each t0 2 [0; T ) and each t 2 [t0; T )). Then u satis�es the

local right-side Ls(Lq)-regularity condition u 2 Ls(t; t+";Lq(
)) for each t 2 [0; T )
with " = "(t) > 0, t+ " < T .

7



(ii) Assume that either u 2 L1
loc

([0; T );D(A
1=4
2 )) or u 2 L1

loc
([0; T );L3

�(
))

or u 2 L1
loc

([0; T );L3;s
� (
)) where additionally s � q. Then u satis�es the local

right-side Ls(Lq) regularity condition as in (i).

The next result shows that the local left-side Ls(Lq)-regularity condition for
u 2 L1

loc
([0; T );Bq;s(
)) even yields the complete regularity of u.

Theorem 2.11 Let u be a weak solution of the Navier-Stokes system (1:1) as in

De�nition 1:1, and let 2 < s <1, 3 < q <1, 2
s +

3
q = 1. Assume that

u 2 L1loc([0; T );B
q;s(
)) (2.18)

or that

u(t) 2 Bq;s(
) for each t 2 [0; T ): (2.19)

Further assume that each t 2 (0; T ) is local left-side Ls(Lq)-regular for u. Then u

satis�es Serrin's condition (1:6).

It is interesting to note that the corresponding result for local right-side points
cannot be proved. We know that (2.19) is a corollary of (2.18), see Proposition 3.2.

Corollary 2.12 Let u be a weak solution of the Navier-Stokes system (1.1) with

u0 2 L2
�(
). Then the set R � [0; T ) of regular points of u is dense in [0; T ), and

the set [0; T ) n R of singular points of u is a null set.

2.4 A large class of regular weak solutions

The following result yields a regular weak solution u of (1.1) if the initial value
norm ku0kBq;s(
) is su�ciently small.

Theorem 2.13 Let u0 2 Bq;s(
) with 2 < s <1, 3 < q <1, 2
s+

3
q = 1. Assume

that

ku0kBq;s(
) � "� (2.20)

with "� = "�(
; q) > 0 as in Proposition 3:6 below. Let u be a weak solution of

the Navier-Stokes system (1.1) with initial value u0 2 Bq;s(
). Then u satis�es

Serrin's condition (1.6) on [0; T ).
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3 Preliminaries

In this section 
 � R
3 is always a bounded domain with @
 2 C2;1. Moreover,

[0; T ) with 0 < T � 1 will be a time interval. By h�; �i
 we denote the pairing of
vector �elds in 
, and h�; �i
;T means the corresponding pairing in [0; T )�
. Let

C1
0;�(
) = fv 2 C1

0 (
); div v = 0g and L
q
�(
) = C1

0;�(
)
k�kq

, 1 < q < 1, where

k � kq means the norm in the Lebesgue space Lq(
). Further, W k;q(
), k 2 N, and

W
k;q
0 (
) = C1

0 (
)
k�k

Wk;q(
) are the usual Sobolev spaces.
The Bochner space Ls(0; T ;Lq(
)), 1 < s; q <1, has the norm

kvkLs(0;T ;Lq(
)) = kvkq;s;T = kvkq;s;(0;T ) =

�Z T

0
kvksq d�

�1=s

; v 2 Ls(0; T ;Lq(
));

and L1(0; T ;Lq(
)) has the norm

kvkL1(0;T ;Lq(
)) = inf
F�[0;T );jFj=0

�
sup

t2[0;T )nF
kv(t)kLq(
)

�
;

where F � [0; T ) runs through the set of all Lebesgue null subsets of [0; T ), i.e.
with jFj = 0. A calculation shows that for each v 2 L1(0; T ;Lq(
)) there is a
null set F � [0; T ), jFj = 0, depending on v, such that

kvkL1(0;T ;Lq(
)) = sup
t2[0;T )nF

kv(t)kLq(
): (3.1)

Let P = Pq : Lq(
) ! L
q
�(
), 1 < q < 1, denote the Helmholtz projec-

tion, and let A = Aq = �Pq� : D(Aq) ! L
q
�(
) be the Stokes operator with

domain D(Aq) = W 2;q(
) \W
1;q
0 (
) \ L

q
�(
) and range R(Aq) = L

q
�(
). Then

A�
q : D(A�

q ) ! L
q
�(
), �1 � � � 1, denotes the fractional power of Aq. It holds

D(Aq) � D(A�
q ) � L

q
�(
), R(A�

q ) = L
q
�(
) if 0 � � � 1, see [6], [9]. In par-

ticular, D(A
1=2
q ) = W

1;q
0 (
) \ L

q
�(
) with equivalent norms kA

1=2
q vkq � krvkq,

v 2 D(A
1=2
q ). Moreover, with C = C(
; q) > 0 we need the following important

embedding estimates:

kvkq � CkA�

vk
 ; v 2 D(A�


 ); 1 < 
 � q; 2�+
3

q
=

3



; 0 � � � 1; (3.2)

kA��vkq � Ckvk2; v 2 L2
�(
); 0 < � <

3

4
; 2�+

3

q
=

3

2
: (3.3)

Let e�tAq : Lq�(
) ! L
q
�(
), 0 � t < 1, denote the analytic semigroup

generated by the Stokes operator Aq. Since 
 is bounded, we obtain with some
� = �(
) > 0 and C = C(
;�) > 0 the estimates

kA�e�tAvkq � Ct��e��tkvkq; v 2 Lq�(
); 0 � � � 1; t > 0; (3.4)

ke�tAvkq � Ct��e��tkA��vkq � Ct��e��tkvk2; v 2 L2
�(
); (3.5)

9



where in (3.5) the parameters �, q are assumed to satisfy the conditions in (3.3),
see [4], [5].

For 2 < s <1, 3 < q <1, 2
s +

3
q = 1 we de�ne the normed space

Bq;s(
) :=

(
v 2 L2

�(
); kvkBq;s(
) :=

�Z 1

0



e��Av

s
q
d�

�1=s

<1

)
: (3.6)

Since q > 2 and v 2 L2
�(
), we conclude from (3.5) that the function � 7! ke��Avksq

is well de�ned for � 2 (0;1). Thus the condition v 2 Bq;s(
) is well de�ned and
means that � 7! ke��Avksq is integrable on [0;1). The space Bq;s(
) with norm
kvkBq;s(
) is a normed space. Additionally,

bBq;s(
) := Bq;s(
) with kvk
bBq;s(
) := kvkBq;s(
) + kvk2; (3.7)

is a well de�ned Banach space, see Proposition 3.1 below.

Let B
2=s
q0;s0(
), s0 = s

s�1 , q
0 = q

q�1 , denote a well known closed solenoidal sub-

space of the usual Besov space B
2=s
q0;s0(
) introduced in [1], see also [4, (3.1)], [5,

Lemma 3.1], and let B
�2=s
q;s (
) be its dual space. Using [4], [5], we obtain for

v 2 L2
�(
) that kvkBq;s(
) + kvk2 and kvk

B
�2=s
q;s (
)

+ kvk2 as well as kvk
bBq;s(
) are

equivalent. Therefore we obtain that

bBq;s(
) = Bq;s(
) = B
�2=s
q;s (
) \ L2

�(
) � B
�2=s
q;s (
); (3.8)

and we call bBq;s(
) a Besov space.
Further we need, for � > 0, the normed space

B
q;s
� (
) :=

(
v 2 L2

�(
); kvkBq;s
� (
) :=

�Z �

0
ke��Avksq d�

�1=s

<1

)
: (3.9)

Correspondingly, we obtain that

bBq;s
� (
) := B

q;s
� (
) with kvk

bBq;s
� (
) := kvkBq;s

� (
) + kvk2 (3.10)

is a Banach space. Using the estimates (3.2)�(3.5) we easily get for the normed
spaces Bq;s(
), Bq;s

� (
) and the Banach spaces bBq;s(
), bBq;s
� (
) the following

results:bBq;s(
) = bBq;s
� (
) with equivalent norms k � k

bBq;s
� (
) � k � k

bBq;s(
);

Bq;s(
) = B
q;s
� (
) with equivalent norms k � kBq;s

� (
) � k � kBq;s(
):
(3.11)

Next we will analyze the structure of the spaces Bq;s(
); Bq;s
� (
), etc. Any

v 2 Bq;s(
) can be identi�ed with an element of L2
�(
) and with the function

� 7! e��Av, such that Bq;s(
) can be considered as a subspace of Ls(0;1;Lq(
)).
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Due to this point of view we will identify each (continuous linear) functional onbBq;s(
) with a pair (F; f) where F 2 Ls
0

(0;1;Lq
0

(
)) and f 2 L2
�(
) in the sense

hhv; (F; f)ii =

Z 1

0
he��Av; F (�)i
 d� + hv; fi
; v 2 bBq;s(
): (3.12)

Proposition 3.1 bBq;s(
) and bBq;s
� (
) are re�exive Banach spaces.

Proof Since B
�2=s
q;s (
) and L2

�(
) are re�exive Banach spaces, the same holds forbBq;s(
) = B
�2=s
q;s (
) \ L2

�(
) as well as for bBq;s
� (
).

Finally we investigate properties of weak solutions u with values u(t) in
Bq;s(
)), 0 < t < T .

Proposition 3.2 Let u be a weak solution of the Navier-Stokes system (1.1), and
assume that u 2 L1loc([0; T );B

q;s(
)). Then u(t) 2 Bq;s(
) is well de�ned for each

t 2 [0; T ) and it holds

kukL1(0;S;Bq;s(
)) = sup
t2[0;S)

ku(t)kBq;s(
); 0 < S < T: (3.13)

The corresponding result holds with Bq;s(
) replaced by Bq;s
� (
); � > 0.

Proof Let F � [0; S) be a Lebesgue null set such that kukL1(0;S;Bq;s(
) =
sup

t2[0;S)nF
ku(t)kBq;s(
)), cf. (3.1). Let t0 2 [0; S) be given. Then we choose a decreas-

ing sequence (tj)j2N � (0; S) n F such that t0 = lim
j!1

tj satisfying u(tj) 2 Bq;s(
)

for each j 2 N and supj ku(tj)kBq;s(
) < 1. Due to (1.2) also (ku(tj)k2)j2N is

bounded so that (u(tj))j2N is bounded even in bBq;s(
). Since bBq;s(
) is re�exive,

see Proposition 3.1, we obtain some u0 2 bBq;s(
) such that (omitting the notion
of subsequences) u(tj) * u0 converges weakly to u0 in bBq;s(
). Moreover, in view
of the calculation (3.12) it holds

ku0kBq;s(
) � lim inf
j!1

kujkBq;s(
) � supj kujkBq;s(
) <1 (3.14)

and u(tj) * u0 in L2
�(
. Finally, due to (1.5), u(tj) * u(t0) in L2

�(
. Hence
u0 = u(t0) 2 Bq;s(
).

Thus we obtain from (3.14) that

ku(t0)kBq;s(
) � supj ku(tj)kBq;s(
) � kukL1(0;S;Bq;s(
)):

This shows that u(t) 2 Bq;s(
) is well de�ned for each t 2 [0; S), and that (3.13)
is satis�ed. By analogy, we get the proof with Bq;s(
) replaced by Bq;s

� (
).

The next proposition concerns the Lorentz spaces L3;s
� (
) � L

3;1
� (
). Note

that k � k
B
�2=s
q;s (
)

+ k � k2 means the norm of B
�2=s
q;s (
) \ L2

�(
).
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Proposition 3.3 Let 2 < s <1, 3 < q <1, s � q, 2
s +

3
q = 1. Then there hold

the following continuous embeddings with constants C = C(
; s) > 0.

a) D(A
1=4
2 ) � L3

�(
) � L3;s
� (
) � B

�2=s
q;s (
); (3.15)

b) L3
�(
) = L3;3

� (
); L2
�(
) = L2;2

� (
); (3.16)

c) L3;s
� (
) � L2

�(
); (3.17)

d) L3;s
� (
) � B

�2=s
q;s (
) \ L2

�(
) = bBq;s(
); (3.18)

e) L3;s
� (
) � L3;1

� (
): (3.19)

Proof a) The �rst result in (3.15) is proved by (3.2). The other embeddings are
contained in [1, (0.16)] and [5, Lemma 3.2].

b) See [18, 1.18.6, (5a)].
c) The result (3.17) rests on [18, 1.3.3, (e), (f), and 1.18.6, Theorem 2]: Since

L6(
) � L2(
) for the bounded domain 
, we get that (L2(
; L6(
)1=2;s =
L3;s(
) � (L2(
); L2(
)1=2;s = L2(
) with a continuous embedding. Hence also

L
3;s
� (
) � L2

�(
) by the density of the space C1
0;�(
) in both spaces L3;s

� (
) and

L2
�(
), see Section 1.
d) This result is obtained combining (3.15) with (3.17).
e) [18, 1.3.3 (3)] yields (3.19).

By Proposition 3.3 we get for 3 < q � s < 1, 2
s + 3

q = 1, the continuous
embeddings

D(A
1=4
2 ) � L3

�(
) � L3;s
� (
) � bBq;s(
) = Bq;s(
) (3.20)

with the estimate

kvkBq;s(
) � kvk
bBq;s(
) � CkvkL3;s

� (
) � CkvkL3
�(
) � Ckvk

D(A
1=4
2 )

(3.21)

for all v 2 D(A
1=4
2 ), where C = C(
; q) > 0, see [5, Lemma 3.2], [1, (0.16), (0.17)].

Hence, by (3.20), (3.21), for 0 < T <1, we also obtain the continuous embeddings

C([0; T ];D(A
1=4
2 )) � C([0; T ];L3

�(
)) � C([0; T ];L3;s
� (
)) (3.22)

� C([0; T ];Bq;s(
)):

Next we recall the classical uniqueness result by Serrin and Masuda, see [15,
V. Theorem 1.5.1].

Proposition 3.4 Let u; ~u be two weak solutions of the Navier-Stokes system (1.1)
in the sense of De�nition 1.1 with the same initial value u0 2 L2

�(
), and assume

that u 2 Ls
loc

([0; T );Lq(
)) is satis�ed with 2 < s < 1, 3 < q < 1, 2
s + 3

q = 1.
Then it holds u = ~u in [0; T ).
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Lemma 3.5 Let u be a weak solution of the Navier-Stokes system (1.1) and choose

t0 2 (0; T ) such that the energy inequality (1.4) is satis�ed for t0 � t < T . Then ~u
de�ned by

~u(t) := u(t+ t0) for each t 2 [0; T � t0)

is a well de�ned weak solution of the system (1.1) with initial value ~u0 = u(t0) and
with T replaced by T � t0.

Proof Let ew 2 C1
0 ([t0; T );C

1
0;�(
)). Then we use in (1.3) test functions wj ,

j 2 N, de�ned as follows: Choose tj = t0
�
1� 1

j

�
, and set wj(t) = 0 for 0 � t � tj ,

wj(t) =
t�tj
t0�tj

ew(t0) for tj � t � t0 and wj(t) = ~w(t) for t0 � t < T . Omitting

a smoothing procedure we can use wj as test functions in (1.3) and let j ! 1.
Then a calculation and (1.5) show that ~u with ~u0 = u(t0) is a well de�ned weak
solution as in De�nition 1.1 with u0 replaced by ~u0 and with T replaced by T�t0.

The next proposition is a local regularity result from [5, Proposition 1.2, Corol-
lary 1.3], see also [4, Theorems 1.1 and 1.2].

Proposition 3.6 Let u be a weak solution of the Navier-Stokes system (1.1) on

[0; T ), 0 < T � 1, with u0 2 L2
�(
), and let t0 2 [0; T ) be given such that the

energy inequality (1.4) is valid for t0 and t 2 [t0; T ). Then there is a constant

"� = "�(
; q) > 0 with the following property: If for 0 < � < 1 with t0 + � < T ,

and with 2 < s <1, 3 < q <1, 2
s +

3
q = 1,�Z �

0
ke��Au(t0)k

s
q d�

�1=s

� "�; (3.23)

then u satis�es locally the Serrin condition

u 2 Ls(t0; t0 + �;Lq(
)): (3.24)

Proof In [4, Theorem 1.2], Proposition 3.6 has been shown only for t0 = 0 and
is based on Banach's �xed point principle. The same arguments can be used
replacing [0; T ) by [t0; T ) and u0 = u(0) by ~u0 = u(t0). Here we need Lemma 3.5
to treat u as a weak solution of (1.1) in the interval [t0; T ). To identify the weak
solution on [t0; t0 + �) with initial value u(t0) by Proposition 3.4 with the given
weak solution u we need that u satis�es the strong energy inequality (1.4) for t0.
The proof of this proposition also follows from [5, Corollary 1.3].

Now we discuss some su�cient conditions on a weak solution u to satisfy the
strong energy (in-)equality for each t0 2 [0; T ).

Proposition 3.7 Let u be a weak solution of the Navier-Stokes system (1.1) as in
De�nition 1:1, and assume additionally that

t 7�! ku(t)k22; t 2 [0; T ); is a continuous function:

Then the strong energy inequality holds at each t0 2 [0; T ) and each t 2 [t0; T ).
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Proof Starting from (1.4) with t0 = 0 and for almost all t0 2 [0; T ), let us consider
any t0 2 [0; T ) and choose a strictly decreasing sequence (tj)j2N � (t0; t) with
t0 = lim

j!1
tj such that for all T > t > tj

1

2
ku(t)k22 +

Z t

tj

kruk22 d� �
1

2
ku(tj)k

2
2:

Then we take the limit j !1 on both sides and obtain the result.

Proposition 3.8 Let u be a weak solution of the Navier-Stokes system (1.1) as in
De�nition 1.1.

(i) Assume that

uu 2 L2
loc([0; T );L

2(
)): (3.25)

Then, after rede�nition on a null set of [0; T ), we obtain the energy equality

1

2
ku(t)k22 +

Z t

t0

kruk22 d� =
1

2
ku(t0)k

2
2 (3.26)

for each t0 2 [0; T ) and each t 2 [t0; T ).
(ii) Assume that one of the following conditions is satis�ed: either

u 2 L1loc([0; T );L
3
�(
)) (3.27)

or

u 2 L1loc([0; T );L
3;1
� (
)) (3.28)

or

u 2 L1loc([0; T );D(A
1=4
2 )) (3.29)

is valid. Then (3.25) is satis�ed, and consequently the energy equality (3.26) holds.

Proof (i) Since u � ru = divF with F = uu, we can write (1.1) as a
Stokes system with external force f = �divF . Using hdiv u(t)u(t); u(t)i
 =
�1

2hu(t);rju(t)j
2i
 = 0, and (3.25), we see that (3.26) is the well de�ned energy

equality for this Stokes system.
(ii) By Hölder's inequality and (1.2) we obtain for 0 < T 0 < T that kuuk2;2;T 0 �

Ckuk3;1;T 0kuk6;2;T 0 <1: Hence (3.27) yields (3.25).
In the case (3.28) we use Hölder's inequality in Lorentz spaces ([10, Lemma

2.2]), namely

kvwkL2(
) � ckvwkL2;2(
) � ckvkL3;1(
)kwkL6;2(
); c = c(
) > 0;

and the Sobolev embedding W
1;2
0 (
) � L6;2(
), see [10, Lemma 2.1 (1)], to get

that kuukL2(
) � ckukL3;1(
)kukW 1;2
0 (
): Now we may proceed as in the previous

case.
Assuming (3.29) we know from (3.21) that L1(0; T 0;D(A

1=4
2 )) �

L1(0; T 0;L3
�(
)) for 0 < T 0 < T . Hence we proceed as for (3.27).
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4 Proof of the main results

Proof of Theorem 2.1 First we show that each point t1 2 (0; T ) is local left-side
Ls(Lq)-regular for u. Let t1 2 (0; T ) and let "� = "�(
; q) > 0 be given as in
Proposition 3.6. Then, using (2.2), there exists some 0 < �0 < t1 such that�Z t1�t

0
ke��Au(t)ksq d�

�1=s

� "� (4.1)

is satis�ed for each t < t1 with t1�t � �0. In particular, choose t = t0 2 [t1��0; t1)
such that also the energy inequality (1.4) is satis�ed for t0. Using Proposition 3.6
we conclude that

u 2 Ls(t0; t1;L
q(
)): (4.2)

Thus each t1 2 (0; T ) is a local left-side Ls(Lq)-regular point.
In a second step we show that each t1 2 [0; T ) is local right-side Ls(Lq)-regular.

Let t1 2 [0; T ) be given. In order to apply Proposition 3.6 with u(t0) replaced by
u(t1) we have to show that the energy inequality (1.4) holds, here in the form

1

2
ku(t)k22 +

Z t

t1

kruk22 d� �
1

2
ku(t1)k

2
2; t1 � t < T: (4.3)

To prove this we �rst conclude from (4.2) with t1 = t0 + �0 that uu 2
L2(t0; t1;L

2(
)). This follows from Hölder's inequality

kuuk2;2;(t0;t1) � Ckukq;s;(t0;t1)kukq1;s1;(t0;t1); C > 0; (4.4)

with q1; s1 > 2, 1
2 = 1

q +
1
q1
, 1
2 = 1

s +
1
s1
, 2
s1

+ 3
q1

= 3
2 , see [15, V. (1.8.11)].

Then we obtain from Proposition 3.8 that the energy equality

1

2
ku(t1)k

2
2 +

Z t1

t00

kruk22 d� =
1

2
ku(t00)k

2
2 (4.5)

is satis�ed for each t00 2 [t0; t1). Thus it holds

lim
t00"t1

ku(t00)k
2
2 = ku(t1)k

2
2: (4.6)

Next we use (1.4) with a sequence t0j 2 (t0; t1), t
0
j < t0j+1, j 2 N, lim

j!1
t0j = t1,

such that
1

2
ku(t)k22 +

Z t

t0j

kruk22 d� �
1

2
ku(t0j)k

2
2; t1 � t < T (4.7)

is satis�ed for j 2 N. Using (4.6) and the same argument as in the proof of
Proposition 3.7, we pass to the limit j !1 on both sides of (4.7) and obtain that

1

2
ku(t)k22 +

Z t

t1

kruk22 d� �
1

2
ku(t1)k

2
2; t1 � t < T (4.8)
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is satis�ed.
Further we observe, using Proposition 3.2, that u(t) 2 Bq;s(
) is well de�ned

for each t 2 [0; T ). Thus we can apply Proposition 3.6 for each initial value u(t1),
t1 2 [0; T ). This shows that each t1 2 [0; T ) is local right-side Ls(Lq)-regular.

Together with the �rst step of the proof we conclude that each t1 2 [0; T )
is Ls(Lq)-regular. Thus u 2 Ls(0; S;Lq(
)) for each S 2 (0; T ) and Serrin's
condition (1.6) is satis�ed. This completes the proof of Theorem 2.1.

Proof of Corollary 2.2 Assume it holds (2.1) and (2.5). Then we have to show the
validity of (2.2). Let t1 2 (0; T ), 0 < t < t1, be given. Then we set S = t1 and we
choose S0 2 [0; S) satisfying (2.5). Let " > 0 be given and choose 0 < �0 < t1 such
that kukL1(S0;S;B

q;s
� (
)) � " holds for each 0 < � � �0. Then for each 0 < t < t1

with t1 � t � �0 we obtain, using the argument as in (3.13), that

ku(t)kBq;s
t1�t

(
) � ku(t)kBq;s
�0

(
) � kukL1(S0;S;B
q;s
�0

(
)) � "

is satis�ed.

Proof of Theorem 2.3 Let (2.8) with 0 < � � 1 be given. We show that the
conditions (2.1), (2.2) are satis�ed. Let 0 < S < T . Then, using (3.13) and (3.11)
we obtain that

kukL1(0;S;Bq;s(
)) � CkukL1(0;S;Bq;s
� (
)) <1

with C > 0. Thus (2.1) is satis�ed.
To prove (2.2) let t1 2 (0; T ) and let " > 0. Then, using (2.8), we choose

0 < �0 < t1; �0 � � such that

ku(t)� u(t1)kBq;s
t1�t

(
) � ku(t)� u(t1)kBq;s
� (
) �

"

2
;

ku(t1)kBq;s
t1�t

(
) � ku(t1)kBq;s
�0

(
) �
"

2

hold for each t 2 (0; t1) with t1 � t � �0. Consequently,

ku(t)kBq;s
t1�t

(
) � ku(t)� u(t1)kBq;s
t1�t

(
) + ku(t1)kBq;s
t1�t

(
)

�
"

2
+
"

2
= "

for each t 2 (0; t1) with t1 � t � �0. Thus (2.2) is satis�ed.

Proof of Theorem 2.4. Choose K := "� = "�(
; q) > 0 with "� as in Proposi-
tion 3.6. Using Proposition 3.2 with Bq;s(
) replaced by B

q;s
� (
); � > 0, we see

that u(t) 2 B
q;s
� (
) is well de�ned for each t 2 [0; T ), and that

sup
t2[0;T )

ku(t)kBq;s
� (
) = kukL1(0;T ;Bq;s

� (
)) � "� = K:
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Hence for each � > 0 and almost all t0 2 [0; T ) it holds the energy inequal-
ity (1.4) and we have ku(t0)kBq;s

� (
) � "�: Now Proposition 3.6 implies that

u 2 Ls
loc

([0; T );Lq(
)).

Proof of Corollary 2.5 This result follows from Theorem 2.3 and Theorem 2.4,
using the embedding properties (1.7).

Proof of Theorem 2.6 Assume that in addition to the weak solution u satisfying
(2.12), (2.13) there is another weak solution ~u for the same initial value u0. By
Proposition 3.6 for u with t0 = 0 we obtain that u 2 Ls(0; �;Lq(
)) with some
0 < � < T . Then Proposition 3.4 implies that u(t) = ~u(t) holds for 0 � t < �.

Let [0; T1), 0 < T1 � T , be the largest half open interval such that u(t) = ~u(t)
is satis�ed for each t 2 [0; T1). Assume that T1 < T . Due to Proposition 3.2,
u(T1) 2 Bq;s(
) is well de�ned. Choose an increasing sequence (tj)j2N 2 (0; T1)
with lim

j!1
tj = T1, and use the weak continuity (1.5) for both u and ~u at each tj .

Then u(tj) = ~u(tj) converges weakly in L2
�(
) for j !1 to u(T1) = ~u(T1).

Now let t0 := T1. Obviously, by (2.13), u satis�es the energy inequality at t0.
Using Proposition 3.6 for the initial value u(t0) 2 Bq;s(
) = B

q;s
� (
) with some

� > 0, t0 + � < T , such that ku(t0)kBq;s
� (
) � "� is satis�ed, we conclude that

u 2 Ls(t0; t0 + �;Lq(
)). Moreover, since u = ~u on [0; t0] and since ~u satis�es the
strong energy inequality, the energy equality (2.13) for u on [0; t0] implies that ~u
satis�es the energy inequality with initial time t0. Hence Proposition 3.4 implies
that u(t) = ~u(t) in [t0; t0 + �). Thus t0 + � = T1 + � > T1 and u = ~u in [0; T1 + �).
This is a contradiction to the construction of T1. This proves Theorem 2.6.

Proof of Lemma 2.7 (i) If (2.14) holds, then Proposition 3.7 yields the result.
(ii) In the case of (2.15) and (2.16), we use Proposition 3.8 (i) and (ii), respec-

tively, to get the energy equality.

Proof of Corollary 2.8 By the embeddings (3.20) and Lemma 2.7 (ii) we see
that the conditions (2.12) and (2.13) are satis�ed. Then Theorem 2.6 yields
the result.

Proof of Theorem 2.10 (i) Due to Proposition 3.2 we know that u(t0) 2
Bq;s(
) = B

q;s
� (
) for each t0 2 [0; T ) and � > 0. By (2.13) we obtain from

Proposition 3.6 that u 2 Ls(t0; t0 + �;Lq(
)) for each t0 2 [0; T ) with some
� = �(t0) > 0, t0 + � < T . This proves part (i).

(ii) Using Propositions 3.8 and 3.3, (3.19) we conclude from the as-
sumptions that the energy equality (3.20) is satis�ed for each t0 2 [0; T ),
t 2 [t0; T ). Further we obtain from the embedding properties (3.20) that
u 2 L1

loc
([0; T );Bq;s(
)) holds as in (i). Now the result follows as in (i).
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Proof of Theorem 2.11 Recall that (2.18) implies (2.19); thus we only as-
sume (2.19). Assuming the local left-side Ls(Lq)-regularity for each t 2 (0; T )
we can argue as in the proof of Theorem 2.1, part b). This shows that each
t1 2 [0; T ) is local right-side Ls(Lq)-regular. Thus each t 2 [0; T ) is regular
and we obtain the Serrin condition (1.6).

Proof of Corollary 2.12 Let u be the given weak solution. Then u(t0) 2
L2
�(
) is well de�ned for each t0 2 [0; T ) and u(t0) 2 W

1;2
0 (
) � L3(
)

holds for almost all t0 2 [0; T ), cf. (1.5) and (1.2). Thus using (3.20) we
see that u(t0) 2 L3

�(
) � Bq;s(
) = B
q;s
� (
) for a.a. t0 2 [0; T ). Moreover,

we may assume that the energy inequality (1.4) is satis�ed for t0 and all
t 2 (t0; T ). Proposition 3.6 implies for each such t0 that for the initial value
u(t0) 2 Bq;s(
) there exists some �(t0) > 0 such that the weak solution u

is a strong solution in Ls(t0; t0 + �(t0);L
q(
)). Hence each such interval

(t0; t0 + �(t0)) � [0; T ) consists of regular points. Since this holds for a.a.
t0 2 [0; T ), the union of these intervals is an open dense set of regular points.

Proof of Theorem 2.13 Use Proposition 3.6 with T � 1, t0 = 0; u(t0) =
u(0) = u0 2 B

q;s(
). Then we obtain from (2.20) that (3.23) and (3.24) hold
for each 0 < � < T . Thus Serrin's condition (1.6) is satis�ed for T � 1.
This proves Theorem 2.13.
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