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Abstract. In an exterior domain Ω ⊂ R3 and a time interval [0, T ), 0 < T ≤ ∞,
consider the instationary Navier-Stokes equations with initial value u0 ∈ L2

σ(Ω)
and external force f = divF , F ∈ L2(0, T ;L2(Ω)). As is well-known there exists
at least one weak solution in the sense of J. Leray and E. Hopf with vanishing
boundary values satisfying the strong energy inequality. In this paper, we extend
the class of global in time Leray-Hopf weak solutions to the case when u|∂Ω

= g

with non-zero time-dependent boundary values g. Although uniqueness for these
solutions cannot be proved, we show the existence of at least one weak solution
satisfying the strong energy inequality and a related energy estimate.
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1 Introduction

Let Ω ⊂ R3 be an exterior domain with boundary of class C1,1, and let [0, T ),
0 < T ≤ ∞, be a time interval. In Ω × [0, T ) we consider the instationary
Navier-Stokes system with viscosity ν > 0 and data f, g, u0 in the form

ut − ν∆u+ u · ∇u+∇p = f, div u = 0

u|∂Ω
= g, u(0) = u0.

(1.1)
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For the data we assume the following:

f = divF, F ∈ L2
(
0, T ;L2(Ω)

)
, u0 ∈ L2

σ(Ω),

g ∈ L4
(
0, T ;W− 1

4
,4(∂Ω)

)
∩ Ls0

(
0, T ;W

− 1
q0
,q0(∂Ω)

)
,

2

s0

+
3

q0

= 1, 2 < s0 <∞, 3 < q0 <∞;

(1.2)

the initial data u0 has to satisfy further assumptions to be introduced later, see
Section 5.

A weak solution u to (1.1) will be constructed in the form u = v + E where
E solves an instationary Stokes system with the boundary data g, and v solves a
type of Navier-Stokes system with additional perturbation terms related to E but
homogeneous Dirichlet data on ∂Ω. Therefore, the problem splits into two almost
independent parts, the construction of E as weak (or very weak) solution of a
Stokes system and the analysis of a perturbed Navier-Stokes system. It is worth
mentioning that the second step needs only very low assumptions on E known
from the theory of very weak solutions (E lies in Serrin’s class Ls0(0, T ;Lq0(Ω)))
and from the classical theorem for weak solutions to satisfy the energy identity
(E ∈ L4(0, T ;L4(Ω))); here the assumptions on g and on u0 in (1.2) are not
explicitly needed.

To be more precise, we have to find first of all a (so-called) very weak solution
of the inhomogeneous Stokes system

Et − ν∆E +∇h = f0, divE = 0

E|∂Ω
= g, E(0) = E0,

(1.3)

see [2]–[6] and, for the case of exterior domains, [7], in Ω × [0, T ) with suitable
data f0 = divF0 and E0; here ∇h means the associated pressure. At first sight,
it seems to suffice to choose f0 = 0, F0 = 0, but for later application it will be
helpful to consider general data f0, F0, see Assumption 1.6 to be used in Corollary
1.7 below. Setting

v = u− E, p̃ = p− h, f1 = f − f0, v0 = u0 − E0 (1.4)

we write (1.1) as a perturbed Navier-Stokes system with homogeneous boundary
data v|∂Ω

= 0

vt − ν∆v + (v + E) · ∇(v + E) +∇p̃ = f1, div v = 0,

v|∂Ω
= 0, v(0) = v0

(1.5)

with the new perturbation terms

(v + E) · ∇(v + E) = div
(
v ⊗ v + (E ⊗ v + v ⊗ E) + E ⊗ E

)
;

2



here E ⊗ v = (Eivj)i,j=1,2,3 denotes the dyadic product of the vector fields E and
v and the divergence is taken columnwise, i.e., divE⊗v =

(∑3
i=1 ∂i(Eivj)

)
j=1,2,3

(= E · ∇v, since divE = 0).
To deal with Leray-Hopf type weak solutions v of (1.5), see Definition 1.1

below, we need that E has the following properties:

E ∈ L4
(
0, T ;L4(Ω)

)
∩ Ls0

(
0, T ;Lq0(Ω)

)
2

s0

+
3

q0

= 1, 2 < s0 <∞, 3 < q0 <∞.
(1.6)

Actually, the condition E ∈ L4
(
0, T ;L4(Ω)

)
in (1.6) is needed for estimates of

the perturbation term E ⊗ E in the space L2
(
0, T ;L2(Ω)

)
, whereas the second

condition E ∈ Ls0
(
0, T ;Lq0(Ω)

)
of Serrin type will help to estimate the terms

v⊗E and E⊗ v. To guarantee (1.6) for the solution E of (1.3) the data f0, g, E0

have to satisfy certain assumptions known from the theory of the very weak
Stokes system, see Sect. 5. However, looking at (1.5), it suffices to assume (1.6)
and v0 ∈ L2

σ(Ω), f1 = divF1, F1 ∈ L2
(
0, T ;L2(Ω)

)
, in order to define Leray-

Hopf type weak solutions of (1.5); later concrete conditions on g, u0, E0 will be
described to satisfy these assumptions, see Sect. 4 and 5.

In this respect, this paper mainly deals with the perturbed Navier-Stokes
system (1.5) rather than with (1.1).

Definition 1.1 Let E satisfy (1.6) and assume v0 ∈ L2
σ(Ω), f1 = divF1, F1 ∈

L2
(
0, T ;L2(Ω)

)
. Then a vector field v on Ω × [0, T ) is a Leray-Hopf type weak

solution of the perturbed Navier-Stokes system (1.5) if the following conditions
are satisfied:
(i) v ∈ L∞loc

(
[0, T );L2

σ(Ω)
)
∩ L2

loc

(
[0, T );W 1,2

0 (Ω)
)
,

(ii) for each test function w ∈ C∞0
(
[0, T );C∞0,σ(Ω)

)
〈v, wt〉Ω,T + ν 〈∇v,∇w〉Ω,T − 〈(v + E)⊗ (v + E),∇w〉Ω,T

= 〈v0, w(0)〉 − 〈F1,∇w〉Ω,T ,
(1.7)

(iii) the energy inequality

1

2
‖v(t)‖2

2 + ν

∫ t

0

‖∇v‖2
2 dτ ≤

1

2
‖v0‖2

2 −
∫ t

0

〈F1 − (v + E)⊗ E,∇v〉 dτ (1.8)

holds for 0 < t < T .

Our first main result reads as follows:

Theorem 1.2 Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C1,1, let f1 = divF1,
F1 ∈ L2

(
0, T ;L2(Ω)

)
, v0 ∈ L2

σ(Ω), and assume that E satisfies (1.6). Then the
perturbed Navier-Stokes system

vt − ν∆v + (v + E) · ∇(v + E) +∇p̃ = f1, div v = 0,

v|∂Ω
= 0, v(0) = v0

(1.9)
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has at least one Leray-Hopf type weak solution v in the sense of Definition 1.1.
Moreover, v satisfies the energy estimate

‖v(t)‖2
2 + ν

∫ t

0

‖∇v‖2
2 dτ ≤ c

(
‖v0‖2

2 +

+
4

ν

∫ t

0

(‖F1‖2
2 + ‖E‖4

4) dτ
)

exp
( c

νs0−1

∫ t

0

‖E‖s0q0 dτ
) (1.10)

for all 0 < t < T ; here c = c(Ω, q0) > 0 means a constant.

Remark 1.3 (i) In view of (1.1), (1.3)–(1.5) and Definition 1.1 u = v + E
is called a Leray-Hopf type weak solution of (1.1) with boundary data u|∂Ω

=

g = E|∂Ω
and initial value u(0) = v0 + E0. In the most general setting of very

weak solutions, cf. [23], [24], these terms are not well-defined separately from
each other and from f , but have to be interpreted in the generalized sense that
v = u − E satisfies v|∂Ω

= 0 and v(0) = v0. For a more concrete situation and
assumptions on g, u0 we refer to Sect. 5.

(ii) The weak solution v in Theorem 1.2 may be modified on a null set of
(0, T ) such that v : [0, T ) → L2

σ(Ω) is weakly continuous. Hence v(0) = v0 is
well-defined, v|∂Ω

= 0 is well-defined for a.a. t ∈ [0, T ) in the sense of traces,
and there exists a distribution p̃ on Ω× (0, T ) such that

vt − ν∆v + (v + E) · ∇(v + E) +∇p̃ = f1.

In Theorem 1.2, cf. [5], there is still missing the so-called strong energy inequality
where the initial time t0 = 0 in (1.8) is replaced by an arbitrary initial time t0. In
fact, as is well known, it is an open problem whether the strong energy inequality
holds for all weak solutions and all t0. Here we will prove the usual strong energy
inequality, i.e. for a.a. t0, following ideas of the seminal paper of T. Miyakawa
and H. Sohr [21]. Since in that proof we have to (construct and) control the
pressure, we need stronger assumptions on the field E.

Theorem 1.4 In the situation of Theorem 1.2 additionally assume that f1 ∈
L2
(
0, T ;L2(Ω)

)
and with exponents 1 < s1 <∞, 2 < q1 <∞

∇E ∈ Ls1
(
0, T ;Lq1(Ω)

)
where

1

2
<

1

q0

+
1

q1

<
5

6
,

1

s0

+
1

s1

< 1. (1.11)

Then the perturbed Navier-Stokes system (1.9) has a weak solution satisfying the
strong energy inequality

1

2
‖v(t)‖2

2 + ν

∫ t

t0

‖∇v‖2
2 dτ ≤

1

2
‖v(t0)‖2

2 −
∫ t

t0

〈F1 − (v + E)⊗ E,∇v〉 dτ (1.12)
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and the strong energy estimate

‖v(t)‖2
2 + ν

∫ t

t0

‖∇v‖2
2 dτ ≤ c

(
‖v(t0)‖2

2 +

+
4

ν

∫ t

t0

(‖F1‖2
2 + ‖E‖4

4) dτ
)

exp
( c

νs0−1

∫ t

t0

‖E‖s0q0 dτ
) (1.13)

for almost all t0 ∈ (0, T ) and all t ∈ (t0, T ).

Remark 1.5 Assume T =∞ and

E ∈ L4
(
0,∞;L4(Ω)

)
∩ Ls0loc

(
[0,∞);Lq0(Ω)

)
, 2 < s0 <∞,

such that
∫ t

0
‖E‖s0q0 dτ is increasing at least linearly as t → ∞; we note that in

this case the proof in Sect. 4 will easily show the existence of a weak solution v
in (0,∞). Then the energy estimate (1.10) yields for the kinetic energy 1

2
‖v(t)‖2

2

only an exponentially increasing bound as t → ∞. This worst case estimate
reflects the fact that nonzero boundary values could imply a permanent flux of
energy through the boundary into the domain.

To avoid the situation described in Remark 1.5 above we consider an assumption
on E known as Leray’s inequality in the context of stationary Navier-Stokes
equations in multiply connected domains:

Assumption 1.6 Let E ∈ L∞
(
0,∞;L4(Ω)

)
satisfy for a.a. t ∈ (0,∞) the con-

dition∣∣∣ ∫
Ω

w1 ⊗ E(t) · ∇w2 dx
∣∣∣ ≤ ν

4
‖∇w1‖2 ‖∇w2‖2 , w1, w2 ∈ W 1,2

0 (Ω) ∩ L2
σ(Ω) .

(1.14)

We recall that in a (multiply connected) exterior domain Ω ⊂ R3 with boundary
components Γ1, . . . ,ΓL (L ∈ N), i.e., ∂Ω =

⋃L
j=1 Γj ∈ C1,1, to any boundary data

g ∈ W 1/2,2(∂Ω) satisfying the restricted flux condition∫
Γj

g ·N do = 0, j = 1, . . . , L,

and any ε > 0 there exists a solenoidal extension Eε ∈ W 1,2(Ω) of g with compact
support in Ω such that∣∣∣ ∫

Ω

wEε · ∇w dx
∣∣∣ ≤ ε ‖∇w‖2

2 for all w ∈ W 1,2
0 (Ω) ∩ L2

σ(Ω). (1.15)
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Corollary 1.7 Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C1,1, let v0 ∈ L2
σ(Ω)

and let
f1 = divF1, F1 ∈ L2

(
0,∞;L2(Ω)

)
. (1.16)

Furthermore, let E satisfy Assumption 1.6. Then the perturbed Navier-Stokes
system (1.9) has a global in time Leray-Hopf type weak solution v satisfying the
energy estimate

‖v(t)‖2
2 + ν

∫ t

0

‖∇v‖2
2 dτ ≤ ‖v0‖2

2 +
2

ν

∫ t

0

(
‖F1‖2

2 + ‖E‖4
4

)
dτ . (1.17)

There are many applications of the two-dimensional Navier-Stokes system
with nonhomogeneous boundary values in optimal control theory since the 2D-
system admits global smooth solutions and uniqueness. For the three-dimensional
case there are only few results on the existence of global or weak solutions.
We mention the existence of local in time strong solutions by A.V. Fursikov,
M.D. Gunzburger and L.S. Hou [12], and results in a scale of Besov spaces by
G. Grubb [17]. The existence of global in time weak solutions is proved by J.-
P. Raymond [22] for boundary data in a fractional Sobolev space on ∂Ω× (0, T )
with derivatives in space and time of fractional order 3/4 for domains with bound-
ary ∂Ω ∈ C3. For first results on global weak solutions of Leray-Hopf type in
bounded domains see R. Farwig, H. Kozono and H. Sohr [8] for time-independent
boundary data and [9], [10] for time-dependent boundary (and even a prescribed
non-zero divergence [9]). The existence of weak, mild and strong time-periodic so-
lutions in a bounded domain with non-zero boundary values constant in time was
recently shown by R. Farwig and T. Okabe [11]. The first result on weak solutions
with nonhomogeneous boundary data in an exterior domain as in Theorem 1.2
was published as part of the proceedings of a conference in Kobe (2009), see [5];
however, the question of weak solutions satisfying the strong energy inequality
was left open.

After introducing some notation and preliminaries in Sect. 2 we construct
approximate solutions (vm), m ∈ N, of the perturbed Navier-Stokes system using
Yosida operators in Sect. 3. The passage to the limit will be performed in Sect.
4 where we prove the existence of weak solutions to the perturbed Navier-Stokes
system and also the strong energy inequality. Finally, in Sect. 5 we discuss the
construction of suitable vector fields E.

2 Preliminaries

Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C1,1, let 0 < T ≤ ∞ and 1 ≤
q, s ≤ ∞ with conjugate exponents 1 ≤ q′, s′ ≤ ∞. We will use standard
notation for Lebesgue spaces (Lq(Ω), ‖ · ‖Lq(Ω) = ‖ · ‖q) and for Bochner spaces
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(
Ls
(
0, T ;Lq(Ω)

)
, ‖ · ‖Ls(0,T ;Lq(Ω)) = ‖ · ‖q,s;T

)
. Here v ∈ Lsloc

(
[0, T );Lq(Ω)

)
means

that v ∈ Ls
(
0, T ′;Lq(Ω)

)
for each finite 0 < T ′ < T . The pairing of functions (or

vector fields) in Ω and Ω × (0, T ) is denoted by 〈·, ·〉 and 〈·, ·〉Ω,T , respectively.
Sobolev spaces are denoted by (Wm,q(Ω), ‖ · ‖Wm,q),m ∈ N, the corresponding
trace space by (Wm−1/q,q(∂Ω), ‖ · ‖Wm−1/q,q) when 1 < q <∞. The dual space to
W 1−1/q′,q′(∂Ω) is denoted by W−1/q,q(∂Ω), the corresponding pairing is 〈·, ·〉∂Ω.
Concerning smooth functions we need the spaces C∞0 (Ω), C∞0,σ(Ω) = {v ∈ C∞0 (Ω) :
div v = 0}, and in the context of very weak solutions

C2
0,σ(Ω) = {w ∈ C2(Ω) : divw = 0, suppw compact in Ω, w = 0 on ∂Ω},

see Sect. 5. Note that W 1,q
0 (Ω) := C∞0 (Ω)

‖·‖W1,q , with dual space denoted by
W−1,q′(Ω), and that Lqσ(Ω) := C∞0,σ(Ω)

‖·‖q . By w ∈ C∞0 ([0, T );C∞0,σ(Ω)), the space
of test functions in Definition 1.1, we mean that w ∈ C∞0 ([0, T ) × Ω) satisfies
divxw = 0 for all t ∈ [0, T ) (taking the divergence with respect to x ∈ Ω).

For 1 < q <∞ let Pq : Lq(Ω)→ Lqσ(Ω) be the Helmholtz projection and let

Aq = −Pq∆ : D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lqσ(Ω) ⊂ Lqσ(Ω)→ Lqσ(Ω)

denote the Stokes operator. For −1 ≤ α ≤ 1 its fractional powers Aαq : D(Aαq )→
Lqσ(Ω) are well-defined injective, densely defined closed operators; for 0 ≤ α ≤ 1
we know that D(Aq) ⊆ D(Aαq ) ⊆ Lqσ(Ω) and the range R(Aαq ) is dense in Lqσ(Ω);
finally, (Aαq )−1 = A−αq for −1 ≤ α ≤ 1. In particular, one has

‖A1/2u‖q ≤ c‖∇u‖q, 1 < q <∞, (2.1)

‖∇u‖q ≤ c‖A1/2u‖q, 1 < q < 3, (2.2)

with constants c = c (q,Ω) > 0; for A = A2, one has ‖A1/2v‖2 = ‖∇v‖2 for v ∈
D(A1/2). Moreover, we note the following embedding estimates (with constants
c = c(q,Ω) > 0):

‖v‖γ ≤ c‖Aαv‖q, 0 ≤ α ≤ 1

2
, 1 ≤ q < 3, 2α +

3

γ
=

3

q
, v ∈ D(Aα) (2.3)

‖Aαv‖2 ≤ ‖Av‖α2 ‖v‖1−α
2 , 0 ≤ α ≤ 1, v ∈ D(A) (2.4)

‖v‖q ≤ ‖v‖β6‖v‖
1−β
2 ≤ c‖∇v‖β2‖v‖

1−β
2 , 2 ≤ q ≤ 6, β =

3

2
− 3

q
, v ∈ W 1,2

0 (Ω)

(2.5)

Recall that −Aq generates a bounded analytic semigroup {e−tAq : t ≥ 0} on
Lqσ(Ω) satisfying the estimate

‖Aαq e−tAqv‖q ≤ c t−α‖v‖q, 0 ≤ α ≤ 1, t > 0, v ∈ Lqσ(Ω) (2.6)

with a constant c = c (q,Ω) > 0 and c = 1 if q = 2.
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The Stokes operator Aq has the property of maximal regularity: For all 1 <
s, q <∞ and f ∈ Ls

(
0, T ;Lq(Ω)

)
the instationary Stokes system

vt + νAqv = Pqf, v(0) = 0

has a unique solution v ∈ C0
(
[0, T );Lq(Ω)

)
such that vt, Aqv ∈ Ls

(
0, T ;Lqσ(Ω)

)
and v satisfies the a priori estimate

‖vt‖q,s;T + ‖νAqv‖q,s;T ≤ c‖f‖q,s;T . (2.7)

This solution has the representation

v(t) =

∫ t

0

e−ν(t−τ)AqPqf(τ) dτ. (2.8)

Moreover, there exists a pressure p ∈ L1
loc(Ω× (0, T )) such that

vt − ν∆v +∇p = f

and ‖∇p‖q,s;T ≤ c‖f‖q,s;T . When 1 < q < 3, then there exists a unique pressure
function p ∈ Ls

(
0, T ;Lq∗(Ω)

)
where 1

q∗
= 1

q
− 1

3
and

‖p‖q∗,s;T ≤ c‖∇p‖q,s;T ≤ ‖f‖q,s;T . (2.9)

In (2.7), (2.9) the constant c = c(Ω, q, s) > 0 is independent of f , T and ν.
To find approximate solutions of the Navier-Stokes system in Sect. 3 we need

Yosida’s approximation operators

Jm =
(
I +

1

m
A1/2

)−1

, m ∈ N,

where I denotes the identity on L2
σ(Ω). The following properties are well-known:

‖Jmv‖2 ≤ ‖v‖2,
∥∥∥ 1

m
A1/2Jmv

∥∥∥
2
≤ ‖v‖2,

lim
m→∞

Jmv = v for all v ∈ L2
σ(Ω),

‖∇Jmv‖2 ≤ ‖∇v‖2 for all v ∈ W 1,2
0 (Ω) ∩ L2

σ(Ω) = D(A1/2);

(2.10)

for the proof of the last inequality we use that ‖A1/2v‖2 = ‖∇v‖2 and the commu-
tativity of Jm with A1/2. Moreover, since Aqu = A2u for u ∈ D(Aq)∩D(A2), the
family of Yosida operators is also bounded uniformly in m ∈ N on Lqσ(Ω)∩L2

σ(Ω)
with respect to ‖ · ‖q, 1 < q <∞.

For these and further properties of the Stokes operator and Yosida’s approx-
imation we refer e.g. to [14], [15], [20] and [25].
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3 The approximate system

As in the classical case of vanishing Dirichlet data our proof rests on three steps:
(1) an approximation procedure yielding a sequence of solutions, (vm), (2) an
energy estimate for vm with bounds independent of m ∈ N to show that each
vm exists on the maximal interval of existence, [0, T ), and (3) weak and strong
convergence properties of a suitable subsequence of (vm) to construct a weak
solution of the Navier-Stokes equation. Here we have to take into account that
for an exterior domain, compact Sobolev embeddings do hold only for bounded
subdomains Ω′ ⊂ Ω.

For step (1) we use the Yosida approximation procedure in (1.9) yielding the
approximate perturbed Navier-Stokes system

vt − ν∆v + (Jmv + E) · ∇(v + E) +∇p̃ = f1, div v = 0

v|∂Ω
= 0, v(0) = v0

(3.1)

where v0 ∈ L2
σ(Ω), f1 = divF1, F1 ∈ L2

(
0, T ;L2(Ω)

)
, and E satisfies (1.6).

Definition 3.1 A vector field

v = vm ∈ L∞loc

(
[0, T );L2

σ(Ω)
)
∩ L2

loc

(
[0, T );W 1,2

0 (Ω)
)

(3.2)

is called a (Leray-Hopf type) weak solution of (3.1) if the relation

−〈v, wt〉Ω,T + ν〈∇v,∇w〉Ω,T − 〈(Jmv + E)⊗ (v + E),∇w〉Ω,T

= 〈v0, w(0)〉 − 〈F1,∇w〉Ω,T
(3.3)

is satisfied for every w ∈ C∞0
(
[0, T ;C∞0,σ(Ω)

)
and the energy inequality

1

2
‖v(t)‖2

2 + ν

∫ t

0

‖∇v‖2
2 dτ ≤

1

2
‖v0‖2

2 −
∫ t

0

〈F1 − (Jmv + E)⊗ E,∇v〉 dτ, (3.4)

0 ≤ t < T , holds.

Lemma 3.2 Let v0 ∈ L2
σ(Ω), f1 = divF1, F1 ∈ L2

(
0, T ;L2(Ω)

)
, and E satisfying

(1.6) be given. Then there exists some T ′ = T ′(ν, v0, F1, E,m) ∈ (0,min(1, T )]
such that (3.1) has a unique weak solution v = vm on Ω× (0, T ′).

Proof In the proof of this local existence result we assume without loss of gener-
ality that ν = 1.

Let v = vm be a solution of (3.1) on Ω × (0, T ′), 0 < T ′ ≤ 1. Hence v is
contained in the space

XT ′ := L∞
(
0, T ′;L2

σ(Ω)
)
∩ L2

(
0, T ′;W 1,2

0 (Ω)
)
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with

‖v‖XT ′ := ‖v‖2,∞;T ′ + ‖A
1
2v‖2,2;T ′ <∞.

Note that an element v ∈ XT ′ satisfies v ∈ Ls
(
0, T ′;Lq(Ω)

)
for all 2

s
+ 3

q
= 3

2
and

the estimate ‖v‖q,s,T ′ ≤ c‖v‖XT ′ with a constant c = c(Ω, q) > 0.
Then we obtain for any 0 < T ′ ≤ min(1, T ), using Hölder’s inequality, the

properties (2.3) - (2.5) and (2.10) the following estimates for (Jmv+E)⊗ (v+E)
with some constant c = c(Ω) > 0:

‖Jmv ⊗ v‖2,2;T ′ ≤ ‖Jmv‖6,4;T ′ ‖v‖3,4;T ′ ≤ c ‖A1/2Jmv‖2,4;T ′ ‖v‖XT ′

≤ cm ‖v‖2,4;T ′ ‖v‖XT ′ ≤ cm (T ′)1/4 ‖v‖2
XT ′

,

‖E ⊗ v‖2,2;T ′ ≤ ‖E‖q0,s0;T ′ ‖v‖( 1
2
− 1
q0

)−1,( 1
2
− 1
s0

)−1,T ′ ≤ c ‖E‖q0,s0;T ′ ‖v‖XT ′

‖Jmv ⊗ E‖2,2;T ′ ≤ ‖E‖q0,s0;T ′ ‖Jmv‖( 1
2
− 1
q0

)−1,( 1
2
− 1
s0

)−1,T ′ ≤ c ‖E‖q0,s0;T ′ ‖v‖XT ′ .

Since ‖E ⊗ E‖2,2;T ′ ≤ ‖E‖2
4,4;T ′ , we proved the estimate

‖(Jmv + E)⊗ (v + E)‖2,2;T ′

≤ cm(T ′)1/4 ‖v‖2
XT ′

+ ‖E‖2
4,4;T ′ + c ‖E‖q0,s0;T ′ ‖v‖XT ′ .

(3.5)

With the definition

F̂1(v) = F1 − (Jmv + E)⊗ (v + E)

we write the system (3.1) in the form

vt −∆v +∇p = div F̂1(v), div v = 0

v = 0 on ∂Ω, v(0) = v0

.

Since v0 ∈ L2
σ(Ω) and F̂1(v) ∈ L2

(
0, T ′;L2(Ω)

)
, we apply classical L2-results

[25, Ch. IV] on weak solutions of the instationary Stokes system to get that
v ∈ C0

(
[0, T ′);L2

σ(Ω)
)
and satisfies the fixed point relation v = FT ′(v) in XT ′ ;

here (
FT ′(v)

)
(t) = e−tAv0 +

∫ t

0

A
1
2 e−(t−τ)AA−

1
2P2div F̂1(v)(τ) dτ ; (3.6)

see [25, III.2.6] concerning the operator A−
1
2P2div. Moreover, v satisfies even an

energy equality for t ∈ [0, T ′) instead of the energy inequality (3.4), and, by (3.5),
the energy estimate

‖FT ′(v)‖XT ′ ≤ a ‖v‖2
XT ′

+ b ‖v‖XT ′ + d (3.7)
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where

a = cm(T ′)1/4, b = c ‖E‖q0,s0;T ′ , d = c
(
‖v0‖2 + ‖E‖2

4,4;T ′ + ‖F1‖2,2;T ′) (3.8)

with constants c > 0 independent of v,m and T ′.
By analogy, we get for two elements v1, v2 ∈ XT ′ the estimate

‖FT ′(v1)−FT ′(v2)‖XT ′

≤ c ‖v1 − v2‖XT ′
(
m(T ′)1/4

(
‖v1‖XT ′ + ‖v2‖XT ′

)
+ ‖E‖q0,s0;T ′

)
≤ ‖v1 − v2‖XT ′

(
a (‖v1‖XT ′ + ‖v2‖XT ′ ) + b

)
.

(3.9)

Up to now, to derive (3.7), (3.9), we considered a given solution v = vm ∈ XT ′ of
(3.1).

In the next step, we solve the fixed point problem v = FT ′(v) in XT ′ . Assum-
ing the smallness condition

4 a d+ 2 b < 1 (3.10)

we easily see that the quadratic equation y = ay2 + by+d has a minimal positive
root y1 which also satisfies 2ay1 + b < 1. Hence, under the assumption (3.10),
FT ′ maps the closed ball BT ′ = {v ∈ XT ′ : ‖v‖XT ′ ≤ y1} into itself. Moreover,
(3.9), (3.10) imply that FT ′ is a strict contradiction on BT ′ . Now Banach’s
Fixed Point Theorem yields the existence of a unique fixed point v = vm ∈ BT ′

of FT ′ . This solution is a weak solution of the approximate perturbed Navier-
Stokes system (3.1). Moreover, v satisfies an energy identity, cf. (3.15) below,
and v ∈ C0

(
[0, T ′);L2

σ(Ω)
)
.

To satisfy the smallness assumption (3.10) (for fixed m ∈ N), it suffices in
view of (3.8) to choose T ′ ∈ (0,min(1, T )) sufficiently small.

Finally, we show that the solution just found, v = vm, which is unique in BT ′ ,
is even unique in XT ′ . Indeed, consider any solution ṽ ∈ XT ′ of (3.1). Then there
exists 0 < T ∗ ≤ min(1, T ′) such that ‖ṽ‖XT∗ ≤ y1, and the estimate (3.9) with
T ′ replaced by T ∗ ∈ (0,min(1, T )) implies that

‖v − ṽ‖XT∗ = ‖FT ∗(v)−FT ∗(ṽ)‖XT∗ ≤ (2ay1 + b)‖v − ṽ‖XT∗ .

Since 2ay1 + b < 1, we conclude that v = ṽ on [0, T ∗]. When T ∗ < T ′, we repeat
this step finitely many times to see that v = ṽ on [0, T ′].

To prove that the approximate solution v = vm does not exist only on an
interval [0, T ′) where T ′ = T ′(ν, v0, F1, E,m), but on [0, T ), and to pass to the
limitm→∞, we need a global (in time) and uniform (inm ∈ N) energy estimate
of vm.

Lemma 3.3 Let v = vm, m ∈ N, be a weak solution of the approximate perturbed
Navier-Stokes system (3.1) on some interval [0, T ′) ⊆ [0, T ) where v0 ∈ L2

σ(Ω),
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f1 = divF1, F1 ∈ L2
(
0, T ;L2(Ω)

)
, and let E satisfy (1.6). Then v satisfies the

energy estimate

‖v(t)‖2
2 + ν‖∇v‖2

2,2;t

≤
(
‖v0‖2

2 +
4

ν
‖F1‖2

2,2;t +
4

ν
‖E‖4

4,4;t

)
exp

( c

νs0−1
‖E‖s0q0,s0;t

) (3.11)

for all t ∈ [0, T ′) where c = c(Ω, q0) > 0 is a constant.

Proof In view of the energy inequality (3.4) we have to estimate the crucial term∫ t
0
〈(Jmv + E) ⊗ E,∇v〉Ω dτ . By Hölder’s inequality, (2.3)–(2.5) and (2.10), we

get∣∣∣ ∫ t

0

〈(Jmv)⊗ E,∇v〉 dτ
∣∣∣ ≤ ∫ t

0

‖Jmv‖( 1
2
− 1
q0

)−1‖E‖q0 ‖∇v‖2 dτ

≤ c

∫ t

0

‖Jmv‖α2 ‖∇Jmv‖1−α
2 ‖E‖q0 ‖∇v‖2 dτ (3.12)

≤ c

∫ t

0

‖v‖α2 ‖E‖q0 ‖∇v‖2−α
2 dτ

where α = 1− 3
q0

= 2
s0
, cf. (2.5). Hence, by Young’s inequality,

∣∣∣ ∫ t

0

〈(Jmv)⊗ E,∇v〉 dτ
∣∣∣ ≤ ν

8
‖∇v‖2

2,2;t +
c

νs0−1

∫ t

0

‖v‖2
2 ‖E‖s0q0 dτ (3.13)

with a constant c = c(q0,Ω) > 0. Moreover,∣∣∣ ∫ t

0

〈E ⊗ E,∇v〉 dτ
∣∣∣ ≤ ∫ t

0

‖E‖2
4 ‖∇v‖2 dτ ≤

ν

8
‖∇v‖2

2,2;t +
2

ν
‖E‖4

4,4;t ; (3.14)

the term
∫ t

0
〈F1,∇v〉Ω dτ is treated similarly. Inserting these estimates into (3.4)

we are led to the estimate

‖v(t)‖2
2 + ν‖∇v‖2

2,2;t ≤ ‖v0‖2
2 +

4

ν
‖E‖4

4,4;t +
4

ν
‖F1‖2

2,2;t +
c

νs0−1

∫ t

0

‖v‖2
2 ‖E‖s0q0 dτ.

Then Gronwall’s Lemma proves (3.11).

Lemma 3.4 Under the assumptions of Lemma 3.2 for every m ∈ N there exists a
unique weak solution v = vm of (3.1) on [0, T ). This solution v ∈ C0([0, T );L2

σ(Ω))
satisfies in addition to the energy inequality (3.4) the (strong) energy identity

1

2
‖v(t)‖2

2+ν

∫ t

t0

‖∇v‖2
2 dτ =

1

2
‖v(t0)‖2

2 −
∫ t

t0

〈F1 − (Jmv + E)⊗ E,∇v〉 dτ

(3.15)
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for all t0 ∈ [0, T ) and t0 < t < T , and it holds

1

2

d

dt
‖v(t)‖2

2 + ν‖∇v(t)‖2
2 = −〈F1 − (Jmv + E)⊗ E,∇v〉 (t) (3.16)

in the sense of distributions on [0, T ).

Proof Let [0, T ∗) ⊆ [0, T ) be the largest interval of existence of v = vm, and
assume that T ∗ < T . Since v ∈ C0([0, T ∗);L2

σ(Ω)), we find 0 < T0 < T ∗ arbitrar-
ily close to T ∗ with v(T0) ∈ L2

σ(Ω) which will be taken as initial value at T0 in
(3.1) in order to extend v beyond T0. Since the length δ of the interval of exis-
tence [T0, T0 +δ) of this unique extension depends only on ‖v(T0)‖2 and ‖F1‖2,2;T ,
‖E‖4,4;T , ‖E‖q0,s0;T by Lemma 3.2, we see that v can be extended beyond T ∗ in
contradiction with the assumption.

Since v = vm in Lemma 3.2 satisfies an energy identity instead of only an
energy inequality, v = vm will satisfy the strong energy equality (3.15) on [0, T ).
Since both integrands in (3.15) are L1-functions, the corresponding integrals are
absolutely continuous in t; hence we get the differential identity (3.16) in the
sense of distributions.

4 Proofs of Theorems 1.2, 1.4 and of Corollary 1.7

Theorem 1.2 will be proved by extracting a suitable (weakly) convergent sub-
sequence of (vm), the sequence of approximate solutions on [0, T ) constructed
above, and by passing to the limit. Let 0 < T ′ ≤ T be finite. By (3.11) we find
a constant c = c(T ′) > 0 such that

‖vm‖2,∞;T ′ + ‖∇vm‖2,2;T ′ ≤ c for all m ∈ N. (4.1)

Hence there exists a subsequence of (vm) which for simplicity will again be denoted
by (vm) with the following properties:

There exists a vector field v ∈ L∞(0, T ′;L2
σ(Ω)) ∩ L2(0, T ′;H ′0(Ω)) such that

for each bounded subdomain Ω′ ⊂ Ω and for each 0 < T ′ < T :

vm
∗
⇀ v in L∞(0, T ′;L2

σ(Ω)) (weakly∗)
vm ⇀ v in L2(0, T ′;H1

0 (Ω)) (weakly)
vm → v in L2(0, T ′;L2(Ω′)) (strongly)

vm(t)→ v(t) in L2(Ω′) for a.a. t ∈ [0, T ) (strongly)

(4.2)

The third property is based on compactness arguments just as for the classical
Navier-Stokes system and needs the boundedness of the underlying domain. In-
deed, concerning the crucial strong convergences (4.2)3,4, we use a sequence of
increasing bounded subdomains Ωk ⊂ Ω such that

⋃
k Ωk = Ω, find for each Ωk
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a suitable subsequence of (vm) such that (4.2) holds for Ω′ = Ωk and, finally,
apply a typical diagonal argument. Property (4.2)4 is a well-known consequence
of the strong convergence in L2(0, T ′;L2(Ω′)). A similar diagonal argument for
subsequences is used to get (4.2)3 for any T ′.

Moreover, for all t ∈ [0, T ) and almost all τ ∈ (0, T )

‖∇v‖2,2;t ≤ lim inf
m→∞

‖∇vm‖2,2;t,

‖v(τ)‖2 ≤ lim inf
m→∞

‖vm(τ)‖2.
(4.3)

For the proof of (4.3)2 we first get that ‖v(τ)‖L2(Ω′) ≤ lim infm→∞ ‖vm(τ)‖L2(Ω)

for each bounded subdomain Ω′ ⊂ Ω using (4.2)4 and then apply Fatou’s Lemma.
By Hölder’s inequality, (4.1) and (4.2) we also conclude (after extracting a further
subsequence again denoted by (vm)) that

vm ⇀ v in Ls2(0, T ′;Lq2(Ω)), 2
s2

+ 3
q2

= 3
2
, 2 ≤ s2, q2 <∞

vmvm ⇀ vv in Ls3(0, T ′;Lq3(Ω)), 2
s3

+ 3
q3

= 3, 1 ≤ s3, q3 <∞
vm · ∇vm ⇀ v · ∇v in Ls4(0, T ′;Lq4(Ω)), 2

s4
+ 3

q4
= 4, 1 ≤ s4, q4 <∞

(4.4)

When passing to the limit in the weak formulation (3.3) only some terms in
〈(Jmvm + E) ⊗ (vm + E),∇w〉Ω,T ′ need a special consideration. Concerning the
crucial term Jmvm ⊗ vm we first note that

Jmvm − vm = −Jm
( 1

m
A1/2vm

)
→ 0 in L2(0, T ′;L2(Ω));

hence, as m→∞, by (4.4)1 and Hölder’s inequality

Jmvm ⊗ vm − v ⊗ v = (Jmvm − vm)⊗ vm + vm ⊗ (vm − v) + (vm − v)⊗ v
→ 0 in L2(0, T ′;L1(Ω′)) .

(4.5)
Proceeding similarly with all other terms we prove that v is a weak solution of
the perturbed Navier-Stokes system satisfying Definition 1.1 (i), (ii).

It remains to show that v satisfies the energy inequality (1.8). To this aim
we consider the energy equality (3.15) for vm and t0 = 0. By (4.3) and (4.2)4

the first three terms in (3.15) pose no problems for m → ∞ (for a.a. t > 0).
The same holds true for the terms 〈F,∇vm〉 and 〈E ⊗ E,∇vm〉. To treat the
remaining term we have to prove that∫ t

0

〈(Jmvm)⊗ E,∇vm〉 dτ →
∫ t

0

〈v ⊗ E,∇v〉 dτ as m→∞. (4.6)

Since C∞0 ((0, t) × Ω) is dense in Ls0
(
0, t;Lq0(Ω)

)
and E ∈ Ls0

(
0, t;Lq0(Ω)

)
, it

suffices to show (4.6) for any smooth Ẽ and that the sequence ((Jmvm)∇vm) is
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bounded in Ls′0(0, t;Lq′0(Ω)). Indeed, for Ẽ ∈ C∞0 ((0, t)× Ω)∫ t

0

(
〈Jmvm ⊗ Ẽ,∇vm〉 − 〈v ⊗ Ẽ,∇v〉

)
dτ

= −
∫ t

0

〈Jmvm ⊗ vm − v ⊗ v,∇Ẽ〉 dτ → 0 as m→∞

due to (4.5). Moreover,

‖(Jmvm) · ∇vm‖q′0,s′0;t ≤ ‖∇vm‖2,2;t ‖Jmvm‖( 1
q′0
− 1

2
)−1,( 1

s′0
− 1

2
)−1;t (4.7)

is uniformly bounded in m ∈ N by (4.1) and since 2( 1
s′0
− 1

2
) + 3( 1

q′0
− 1

2
) = 3

2
.

Summarizing the previous ideas we proved (4.6) for a.a. t > 0. However,
since v(t) is weakly continuous in L2(Ω), the result easily extends to all t > 0.
Now the proof of Theorem 1.2 is complete.

To show the strong energy estimate, we do need further a priori estimates of
(vm) and in particular of the corresponding pressure functions provided the data
f1 = divF1 and E has better properties. We follow the ideas of T. Miyakawa and
H. Sohr [21] and decompose the solution into several parts vm =

∑5
j=1w

(j)
m where

w
(1)
m and a corresponding pressure p(1)

m is a solution of the instationary Stokes
system

∂tw
(1)
m − ν∆w(1)

m +∇p(1)
m = f1, divw(1)

m = 0,

w(1)
m |∂Ω

= 0, w(1)
m (0) = v0.

(4.8)

Moreover, for given vm, let fj = f
(j)
m , 2 ≤ j ≤ 5, be defined by

f2 = −Jmvm ·∇E, f3 = −E ·∇E, f4 = −Jmvm ·∇vm, f5 = −E ·∇vm, (4.9)

and let (wj, pj) =
(
w

(j)
m , p

(j)
m

)
, 2 ≤ j ≤ 5, be the solution of the Stokes system

∂twj − ν∆wj +∇pj = fj, divwj = 0,

wj|∂Ω
= 0, wj(0) = 0.

(4.10)

Lemma 4.1 Assume f1 ∈ L2(0, T ;L2(Ω)), v0 ∈ L2
σ(Ω), and let E satisfy (1.6)

as well as

∇E ∈ Ls1(0, T ;Lq1(Ω)) where
1

2
<

1

q0

+
1

q1

<
5

6
,

1

s0

+
1

s1

< 1, (4.11)

with exponents 1 < s1 < ∞, 2 < q1 < ∞. Then for almost all t0 ∈ (0, t) we get
the following results on solutions (wj, pj), 1 ≤ j ≤ 5, of (4.8) and (4.10).
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(i) System (4.8) has a weak solution (w1, p1) = (w
(1)
m , p

(1)
m ) satisfying for each

ε ∈ (0, T ) ∫ T

ε

(
‖∂tw1‖2

2 + ‖νAw1‖2
2 + ‖∇p1‖2

2 + ‖p1‖2
6

)
dτ

≤ Cε

(
‖v0‖2

2 +

∫ T

0

‖f1‖2
2 dτ

) (4.12)

with a constant Cε > 0 independent of m, ν, T and f1, v0.

(ii) For j = 2, . . . , 5 there are exponents 1 < γj <∞, 1 < ρj < 2 with 2
γj

+ 3
ρj
< 5

and 1
ρ∗j

:= 1
ρj
− 1

3
to be described in the proof below such that system (4.10)

has a solution (wj, pj) =
(
w

(j)
m , p

(j)
m

)
satisfying the estimate∫ T

0

(
‖∂twj‖γjρj +‖νAwj‖γjρj +‖∇pj‖γjρj +‖pj‖

γj
ρ∗j

)
dτ ≤ C

∫ T

0

‖fj‖γjρj dτ ; (4.13)

here C > 0 is a constant independent of m, ν, T and fj.

Proof (i) The unique solution of (4.8) has the representation

w1(t) = e−tA2v0 +

∫ t

0

e−ν(t−τ)A2P2f1(τ) dτ .

Then classical L2-estimates easily yield the assertion; for a related estimate see
[21, (3.17), (3.17’)]. Moreover, using the Helmholtz projection P2, there exists
a pressure p(1)

m , cf. [21, Lemma 3.2], defined by ∇p(1)
m = −(I − P2)

(
∂tw

(1)
m −

ν∆w
(1)
m − f1

)
. Hence ∇p(1)

m ∈ L2(ε, T ;L2(Ω)) and ∇p(1)
m satisfies (4.12). Since

∇p(1)
m (τ) ∈ L2(Ω) for a.a. τ ∈ (0, T ), we may even determine a unique function

p
(1)
m (τ) ∈ L6(Ω) such that p(1)

m ∈ L2(ε, T ;L6(Ω)) with norm bounded by the right
hand-side of (4.12) uniformly in m ∈ N.

(ii) Assume for a moment that fj ∈ Lγj
(
0, T ;Lρj)

)
for any 1 < γj < ∞,

1 < ρj < 3. Then the maximal regularity estimate (2.7), (2.9) for the Stokes
system in an exterior domain yields the existence of a unique solution (wj, pj) of
(4.10) satisfying∫ T

0

(
‖∂twj‖γjρj + ‖νAwj‖γjρj + ‖∇pj‖γjρj + ‖pj‖

γj
ρ∗j

)
dτ ≤ C

∫ T

0

‖fj‖γjρj dτ

with a constant C > 0 independent of the data. Hence (4.13) will be proved, but
it remains to show that fj ∈ Lγj

(
0, T ;Lρj)

)
for suitable exponents γj, ρj.

Consider f2 = −Jmvm ·∇E and let 1
ρ2

= 1
2

+ 1
q1
, γ2 = s1. Obviously 1 < ρ2 < 2

and 2
γ2

+ 3
ρ2

=
(

2
s1

+ 3
q1

)
+ 3

2
< 5 since 2

s1
+ 3

q1
< 7

2
. Then by Hölder’s inequality

‖f2‖ρ2,γ2;t ≤ ‖Jmvm‖2,∞;t‖∇E‖q1,s1;t .
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For an estimate of f3 = −E · ∇E we need the assumption 1
ρ3

:= 1
q0

+ 1
q1
> 1

2

to get ρ3 < 2. Then by Hölder’s inequality

‖f3‖ρ3,γ3;t ≤ ‖E‖q0,s0;t‖∇E‖q1,s1;t ;

here 1
γ3

= 1
s0

+ 1
s1
∈ (0, 1) by assumption and 2

γ3
+ 3
ρ3

=
(

2
s0

+ 3
q0

)
+
(

2
s1

+ 3
q1

)
< 9

2
< 5.

Concerning f4 we note that (4.7) may be rewritten in the form

‖f4‖( 1
q

+ 1
2

)−1,( 1
s

+ 1
2

)−1;t ≤ ‖∇vm‖2,2;t ‖Jmvm‖q,s;t

where 2 ≤ s ≤ ∞, 2 ≤ q ≤ 6 satisfying 2
s

+ 3
q

= 3
2
are arbitrary. Choosing any

q ∈ (2, 6) we find exponents γ4, ρ4 such that 1 < ρ4 < 2.
Since E ∈ L4

(
0, T ;L4(Ω)

)
we get by analogy to the estimate of f4 that

‖f5‖4/3,8/7;t ≤ ‖∇vm‖2,2;t ‖E‖4,8/3;t ≤ Ct‖∇vm‖2,2;t ‖E‖4,4;t .

Now the proof of the Lemma is complete.

We note that the assumption 1 < ρj < 2 in Lemma 4.1 is not needed to get
(4.13) (here 1 < ρj < 3 suffices), but in the proof of Theorem 1.4 below.

Proof of Theorem 1.4 To prove the strong energy inequality choose a cut-off
function ϕ ∈ C∞0 (R3; [0, 1]) such that ϕ(x) = 1 for |x| ≤ 1, and let ϕN(x) =
ϕ(x/N), N ∈ N. Then we write the equation for vm in the form

∂tvm − ν∆vm +∇Pm =
5∑
j=1

fj, div vm = 0

together with initial and boundary value conditions, where the fj’s are defined
in (4.9), vm, Pm can be written in the form

vm =
5∑
j=1

wj, wj = w(j)
m , Pm = p1 +

5∑
j=2

pj, pj = p(j)
m ,

and where (vj, pj) have the properties as described in Lemma 4.1. Now we test
the equation for vm, see (3.3), with vmϕN on (t0, t)× Ω to get

1

2
〈vm, ϕNvm〉(t) + ν

∫ t

t0

〈∇vm, ϕN∇vm〉 dτ

=
1

2
〈vm, ϕNvm〉(t0) +

∫ t

t0

〈f1, ϕNvm〉 dτ

+

∫ t

t0

〈Jmvm ⊗ E,∇(vmϕN)〉 dτ +

∫ t

t0

〈E ⊗ E,∇(ϕNvm)〉 dτ

−ν
∫ t

t0

〈(∇ϕN) · ∇vm, vm〉 dτ +
1

2

∫ t

t0

〈|vm|2, (Jmvm + E) · (∇ϕN)〉 dτ

+
5∑
j=2

∫ t

t0

〈vm · (∇ϕN), pj〉 dτ −
∫ t

t0

〈ϕNvm,∇p1〉 dτ.

(4.14)
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Next we pass to the limit m→∞ and then N →∞ in each term.
Obviously, for almost all t > t0, using (4.2)3,4 and Fatou’s Lemma, the left-

hand side terms in (4.14) obey the estimate

1

2
‖v(t)‖2

2 +

∫ t

t0

‖∇v‖2
2 dτ

≤ lim inf
N→∞

lim inf
m→∞

(1

2
〈vm, ϕNvm〉(t) +

∫ t

t0

〈∇vm, ϕN∇vm)〉 dτ
)
.

The next four terms will yield in the limit the missing terms in the energy
inequality. By (4.2)4, for almost all t0 ∈ (0, T ), the norm 1

2
〈vm, ϕNvm〉(t0) con-

verges to 1
2
‖v(t0)‖2

2. Evidently,
∫ t
t0

(f1, ϕNvm) dτ converges to
∫ t
t0
〈f1, v〉 dτ due to

(4.2)1. For the term involving Jmvm⊗E we conclude as in the proof of (4.6) that∫ t

t0

〈Jmvm ⊗ E,∇(vmϕN)〉 dτ →
∫ t

t0

(v ⊗ E,∇(vϕN)) dτ as m→∞.

Then, for N → ∞, we get that the integral
∫ t
t0
〈v ⊗ E, (∇v)ϕN〉 dτ converges to∫ t

t0
〈v⊗E,∇v〉 dτ , cf. the proof of (4.7); the remaining integral involving v(∇ϕN)

we estimate as follows:∣∣∣ ∫ t

t0

〈v ⊗ E, (∇ϕN)v〉 dτ
∣∣∣ ≤ c‖∇ϕN‖∞

∫ t

t0

‖E‖4‖v‖2
8/3 dτ

≤ c‖∇ϕN‖∞
∫ t

t0

‖E‖4‖v‖5/4
2 ‖∇v‖

3/4
2 dτ

≤ C

N
‖E‖4,4;t‖∇v‖3/4

2,1;t → 0

(4.15)

as N →∞.
Since E ∈ L4(0, t;L4(Ω)) and vm ⇀ v, ∇vm ⇀ ∇v in L2

(
0, t;L2(Ω)

)
,∫ t

t0

〈E ⊗ E,∇(ϕNvm)〉 dτ →
∫ t

t0

〈E ⊗ E,∇(ϕNv)〉 dτ as m→∞;

the latter integral converges to
∫ t
t0
〈E ⊗ E,∇v〉 dτ as N → ∞, since the term∫ t

t0
〈E ⊗ E, v∇ϕN〉 dτ is easily seen to vanish for N →∞.
Now it suffices to show that the remaining terms in (4.14) converge to 0 as

m→∞ and then N →∞. Indeed,∣∣∣ ∫ t

t0

〈(∇ϕN) · ∇vm, vm〉 dτ
∣∣∣ ≤ ‖∇ϕN‖∞‖vm‖2,2;t‖∇vm‖2,2;t ≤

c

N
→ 0.

Furthermore, since ‖Jmvm‖3 ≤ c‖vm‖3 ≤ c‖vm‖1/2
2 ‖∇vm‖

1/2
2 , we see that∣∣∣ ∫ t

t0

〈|vm|2, Jmvm · (∇ϕN)〉 dτ
∣∣∣ ≤ c‖∇ϕN‖∞

∫ t

t0

‖vm‖3/2
2 ‖∇vm‖

3/2
2 dτ → 0.
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The integral
∫ t
t0
〈|vm|2, E · (∇ϕN)〉 dτ is easily seen to converge to 0 using an

estimate as in (4.15)
For the next terms Ij :=

∫ t
t0
〈vm · (∇ϕN)pj〉 dτ , pj = p

(j)
m , 2 ≤ j ≤ 5, we use

(4.13), i.e., that ∫ T

0

‖p(j)
m ‖

γj
ρ∗j
dτ ≤ c

∫ T

0

‖fj‖γjρj dτ ≤ C

is bounded uniformly in m ∈ N by a constant C ∈ (0,∞); here 1 < ρ∗j < 6 since
1 < ρj < 2, 2 ≤ j ≤ 5. By Hölder’s inequality, with an r = rj ∈ [2, 6],

|〈vm · (∇ϕN), p
(j)
m 〉| ≤ ‖vm‖r‖p(j)

m ‖ρ∗j‖∇ϕN‖(1− 1
r
− 1
ρ∗
j

)−1

≤ ‖vm‖
3
r
− 1

2
2 ‖∇vm‖

3
2
− 3
r

2 ‖p(j)
m ‖ρ∗j‖∇ϕN‖( 4

3
− 1
r
− 1
ρj

)−1 .

Here 4
3
− 1

r
− 1

ρj
< 1

3
provided 1

r
+ 1

ρj
> 1; since 1 < ρj < 2, this can be achieved

for an adequate r = rj ∈ [2, 6] to be chosen below. This condition is needed to
conclude that ΦN := ‖∇ϕN‖( 4

3
− 1
r
− 1
ρj

)−1 → 0 as N → ∞. Now we proceed with
the estimate ∣∣Ij∣∣ ≤ CΦN

∫ t

t0

‖∇vm‖
3
2
− 3
r

2 ‖p(j)
m ‖ρ∗j dτ

≤ ΦN

(∫ t

t0

‖∇vm‖
γ′j(

3
2
− 3
r

)

2 dτ
)1/γ′j‖p(j)

m ‖ρ∗j ,γj ;t

where γ′j > 1 is the conjugate exponent to γj. By Lemma 4.1 the sequence(
‖p(j)

m ‖ρ∗j ,γj ;t) is bounded uniformly in m ∈ N. Moreover, γ′j(
3
2
− 3

r
) < 2 which is

equivalent to 2
γj
≤ 1

2
+ 3

r
; for an r > 2 sufficiently close to 2 this can be achieved

for any γj > 1. This proves that Ij converges to 0 as N →∞.
Finally, concerning the term

∫ t
t0
〈ϕNvm,∇p1)〉 dτ , p1 = p

(1)
m , we conclude from

(4.12) that we may extract a (diagonal) subsequence from
(
∇p(1)

m

)
converging

weakly in L2
loc

(
0, T ;L2(Ω)

)
to some gradient field ∇P1. Then (4.2)3 implies that∫ t

t0

〈ϕNvm,∇p(1)
m 〉 dτ →

∫ t

t0

〈ϕNv,∇P1〉 dτ as m→∞.

The latter term converges to
∫ t
t0

(v,∇P1) dτ as N → ∞; this integral vanishes
since v is solenoidal and a formal integration by parts can be justified.

Summarizing the previous results we get the energy estimate for v, for almost
t0 ∈ (0, T ) and for almost all t ∈ (t0, T ). However, due to the weak continuity of
v(·) in L2

σ(Ω) the energy estimate even holds for all t ∈ (t0, T ).

Proof of Corollary 1.7 Since the proof will be based on a differential inequality
rather than on Gronwall’s Lemma applied to an integral inequality we have to
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consider the sequence of approximate solutions (vm) first of all. By the differential
equation (3.16) for v = vm we get the estimate

1

2

d

dt
‖vm(t)‖2

2 + ν‖∇vm(t)‖2
2 ≤ (‖F1‖2 + ‖E‖2

4)‖∇vm‖2 + 〈(Jmvm)E,∇vm〉

where the last term due to Assumption 1.6 can be estimated as follows:

|〈(Jmvm)E,∇vm〉| ≤
ν

4
‖∇(Jmvm)‖2‖∇vm‖2 ≤

ν

4
‖∇vm‖2

2.

Then Young’s inequality and an absorption argument lead to the estimate

d

dt
‖vm(t)‖2

2 + ν‖∇vm(t)‖2
2 ≤

2

ν
(‖F1‖2

2 + ‖E‖4
4)(t) (4.16)

for a.a. t ≥ 0 yielding

‖vm(t)‖2
2 + ν

∫ t

0

‖∇vm‖2 dτ ≤ ‖v0‖2
2 +

2

ν
(‖F1‖2

2,2;∞ + ‖E‖4
4,4;∞). (4.17)

Hence vm is uniformly bounded on (0, T ) for all T <∞ with a bound independent
of m ∈ N. By the pointwise convergence property (4.2)4 and Fatou’s Lemma v(t)
satisfies the same bound, first of all for a.a. t ≥ 0, but due to its weak continuity
property in L2(Ω) even for all t ≥ 0.

5 Construction of the vector field E

To apply Theorem 1.2 and Corollary 1.7 and to find solutions u of the Navier-
Stokes system (1.1) in the form u = v+E we have to construct a suitable vector
field E solving (1.3); the solution should satisfy the assumptions (1.6) to apply
Theorem 1.2 and (1.14) to apply Corollary 1.7, respectively.

First we consider very weak solutions E of (1.3), see [7], for suitable data g, E0

and f0. For their definition we introduce the space of initial values, J q,s
σ (Ω), by

J q,s
σ (Ω) =

{
u0 ∈ D(Aq′)

′ : ‖u0‖J q,sσ
=
(∫ ∞

0

‖Aqe−τAq(A−1
q Pqu0)‖sq dτ

) 1
s
<∞

}
.

(5.1)
Here, D(Aq′) is equipped with the homogeneous norm ‖Aqu‖q, u ∈ D(Aq′), and
the term A−1

q Pqu0 for u0 ∈ D(Aq′)
′ denotes the unique element u∗ ∈ Lqσ(Ω) such

that 〈u∗, ϕ〉 = 〈A−1
q Pqu0, ϕ〉 = 〈u0, Pq′A

−1
q′ ϕ〉 for all ϕ ∈ R(Aq′).

Proposition 5.1 Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C1,1, let 0 <
T ≤ ∞ and let 1 < q, r, s <∞ satisfy 1

3
+ 1

q
= 1

r
. Assume that f0 = divF0,

F0 ∈ Ls
(
0, T ;Lr(Ω)

)
, g ∈ Ls

(
0, T ;W− 1

q
,q(∂Ω)

)
(5.2)
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and E0 ∈ J q,s
σ (Ω). Then the Stokes system (1.3) has a unique very weak solution

E ∈ Ls
(
0, T ;Lq(Ω)

)
(5.3)

in the sense that for all test functions w ∈ C1
0

(
[0, T );C2

0,σ(Ω)
)

−〈E,wt〉Ω,T − ν〈E,∆w〉Ω,T = 〈E0, w(0)〉 − 〈F0,∇w〉Ω,T − 〈g,N · ∇w〉∂Ω,T

divE = 0 in Ω× (0, T ), E ·N = g ·N on ∂Ω× (0, T ).

(5.4)

This solution satisfies the a priori estimate

‖νE‖q,s;T ≤ c (‖F0‖r,s;T + ‖νg‖Ls(0,T ;W−1/q,q(∂Ω)) + ‖ν1−1/su0‖J q,sσ
) (5.5)

with a constant c = c(s, q,Ω) > 0 independent of T, ν and of the data.

Proof The result is proved in [7, Theorem 1.4] where ∂Ω ∈ C2,1 was assumed.
However, the result also holds when ∂Ω ∈ C1,1 only; see a remark in [6, §1.3] on
the extension of results in [3], [4] to this case when Ω is bounded.

For more details on very weak solutions we refer to [1]–[6] and [23], [24]. Note
that Serrin’s condition 2

s
+ 3

q
= 1 is not needed in the linear theory.

Corollary 5.2 Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C1,1, let 0 < T ≤ ∞
and let 1 < q0, r0, s0 <∞ satisfy 2

s0
+ 3
q0

= 1, 1
3
+ 1
q0

= 1
r0
. Assume that f0 = divF0,

F0 ∈ Ls0
(
0, T ;Lr0(Ω)

)
∩ L4

(
0, T ;L

12
7 (Ω)

)
,

g ∈ Ls0
(
0, T ;W

− 1
q0
,q0(∂Ω)

)
∩ L4

(
0, T ;W− 1

4
,4(∂Ω)

)
,

E0 ∈ J q0,s0
σ (Ω) ∩ J 4,4

σ (Ω) .

(5.6)

Then the inhomogeneous Stokes system (1.3) has a unique very weak solution E
satisfying (1.6), i.e.

E ∈ Ls0
(
0, T ;Lq0(Ω)

)
∩ L4

(
0, T ;L4(Ω)

)
, (5.7)

and the a priori estimate

‖νE‖q0,s0;T + ‖νE‖4,4;T ≤ c
(
‖F0‖r0,s0;T + ‖F0‖ 12

7
,4;T

+ ‖νg‖
Ls0 (0,T ;W

− 1
q0
,q0 (∂Ω))

+ ‖νg‖
L4(0,T ;W−

1
4 ,4(∂Ω))

+ ‖ν1−1/s0u0‖J q0,s0σ
+ ‖ν3/4u0‖J 4,4

σ

) (5.8)

with a constant c = c(q0, r0, s0,Ω) > 0 independent of T, ν and of the data.
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Proof We apply Proposition 5.1 with the exponents s0, q0, r0 and 4, 4, 12
7
. Since

the very weak solution E of (1.3) in [7] is constructed in a finite number of steps
where each of them yields the same result for s0, q0, r0 and for 4, 4, 12

7
, it is easily

seen that the unique solution E satisfies (5.7), (5.8).

Remark 5.3 (i) In the case s0 = 8, q0 = 4 and T finite the Ls0(Lq0)-conditions
in (5.6) imply the L4(L4)-conditions; then (5.6)-(5.8) simplify considerably.

(ii) For the system (1.1) consider data f = divF , F ∈ L2(0, T ;L2(Ω)), u0 ∈
L2
σ(Ω) and boundary data g as in (5.6)2. Then solve (1.3) with data f0 = 0,

E0 = 0 and g to get a (unique) very weak solution E satisfying (5.7) and the a
priori estimate

‖E‖q0,s0;T + ‖E‖4,4;T ≤ c
(
‖g‖Ls0 (0,T ;W−1/q0,q0 (∂Ω)) + ‖g‖L4(0,T ;W−1/4,4(∂Ω))

)
.

Next, by Theorem 1.2, we find a weak solution v of the perturbed Navier-Stokes
system (1.9) with data f1 = f = divF , F1 = F , and v0 = u0 satisfying (1.8),
(1.10). Then u = v + E is a weak solution of (1.1) split into a weak and a very
weak part, v and E.

(iii) To apply Theorem 1.4 we need E (as in (ii) above) to satisfy (1.11),
i.e., ∇E ∈ Ls1

(
0, T ;Lq1(Ω)

)
where 1

s0
+ 1

s1
< 1 and 1

2
< 1

q0
+ 1

q1
< 5

6
. Since

by assumption also q1 > 2, these conditions imply that 2
s1

+ 3
q1
< 7

2
. In view of

scaling properties, Sobolev embedding estimates and the assumptions (1.6) on E
this condition is relatively weak; actually, (1.6) would lead to the much stronger
integrability condition of ∇E with exponents satisfying 2

s1
+ 3

q1
= 2 or = 9

4
.

In the second part of this Section we consider the Assumption 1.6. Suppose
that the domain Ω ⊂ R3 is exterior to L ∈ N bounded domains Ωj with boundary
components Γj ∈ C1,1, 1 ≤ j ≤ L, such that Ω = R3 \

⋃L
j=1 Ωj and ∂Ω =⋃L

j=1 Γj ∈ C1,1. Further, let the boundary data g with g(t) ∈ W 1
2
,2(∂Ω) for a.a.

t ∈ (0, T ) satisfy the restricted flux condition∫
Γj

g(t) ·Ndo = 0, 1 ≤ j ≤ L. (5.9)

Then, due to a construction in [18], there exists a compactly supported solenoidal
extension E = Eε ∈ W 1,2(Ω) of g for a.a. t ∈ (0, T ) satisfying (1.15) (for arbitrary
but fixed ε > 0 and for a.a. t). However, we do need also an estimate of E and
Et in terms of g and gt, respectively.

Proposition 5.4 Let Ω ⊂ R3 be an exterior domain as above and let the bound-
ary function

g ∈ L∞
(
0,∞;W 1/2,2(∂Ω)

)
, gt ∈ L∞

(
0,∞;W−1/2,2(∂Ω)

)
(5.10)

22



satisfy the restricted flux condition (5.9). Then there exists an extension

E ∈ L∞
(
0,∞;W 1,2(Ω)

)
, Et ∈ L∞

(
0,∞;W−1,2(Ω)

)
(5.11)

of g supported in a neighborhood of ∂Ω, satisfying inequality (1.14), and the a
priori estimate

‖E‖L∞(0,∞;W 1,2(Ω)) ≤ c ‖g‖
L∞(0,∞;W

1
2 ,2(∂Ω))

‖Et‖L∞(0,∞;W−1,2(Ω)) ≤ c ‖gt‖L∞(0,∞;W−
1
2 ,2(∂Ω))

(5.12)

with a constant c = c(Ω) > 0.

Proof We follow the ideas of E. Hopf [18] as described in [13, 16] to find an
extension E of g written as the curl of a suitable vector potential and defined by
a bounded linear operator g 7→ E.

Ignoring t ∈ (0, T ) for a moment we consider g ∈ W 1/2,2(∂Ω) satisfying the
restricted flux condition as in (5.9). Then we use the theory of very weak solu-
tions, see [3]–[6], to find a solution uj ∈ L2(Ωj), 1 ≤ j ≤ L, of the stationary
Stokes system

−∆uj +∇pj = 0, div uj = 0 in Ωj, u = g on ∂Ωj (5.13)

for each hole Ωj, 1 ≤ j ≤ L. By definition

−〈uj,∆w〉Ωj + 〈g,N · ∇w〉∂Ωj = 0 for all w ∈ C2
0,σ(Ωj)

div uj = 0 in Ωj, uj ·N = g ·N on ∂Ωj,

and [4, Theorem 3] yields the existence of a unique very weak solution uj satisfying
the a priori estimate

‖uj‖2,Ωj ≤ c ‖g‖W−1/2,2(∂Ωj) ;

here the necessary compatibility condition 〈g,N〉Γj = 0 is fulfilled due to (5.9)
for each j. Finally, we choose a ball of radius R such that

⋃L
j=1 Ωj ⊂ BR and

consider the annular domain A = BR\
⋃L
j=1 Ωj. We find a unique very weak

solution uA ∈ W 1,2(A) of the Stokes system

−∆uA +∇pA = 0, div uA = 0 in A, u|Γj = g, 1 ≤ j ≤ L, u|∂BR(0)
= 0;

note that the compatibility condition 〈g,N〉⋃
j Γj = 0 is satisfied by (5.9) and that

‖uA‖2,A ≤ c ‖g‖W−1/2,2(∂Ω).
Since g ∈ W 1/2,2(∂Ω) ⊂ W−1/2,2(∂Ω), the very weak solutions uj, uA con-

structed so far are also weak solutions, and, in particular, uj ∈ W 1,2(Ωj) and
‖uj‖W 1,2(Ωj) ≤ c ‖g‖W 1/2,2(∂Ωj); for this regularity argument see [4, Remarks 2(1)].
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Next we define u on R3 by u = uj in Ωj, 1 ≤ j ≤ L, u = uA in A and u = 0
in R3\A. Obviously, supp u ⊂ BR, u ∈ W 1,2(R3), div u = 0 in R3, and u satisfies
the estimates

‖∇u‖2 ≤ c ‖g‖W 1/2,2(∂Ω),

‖u‖2 ≤ c ‖g‖W−1/2,2(∂Ω).
(5.14)

Let us construct a vector potential ψ ∈ W 2,2(R3) of u satisfying

u = rotψ, ‖ψ‖2 ≤ c ‖u‖L2(BR), ‖∇ψ‖2 + ‖∇2ψ‖2 ≤ c ‖u‖W 1,2(R3). (5.15)

Indeed, we consider the equation

rot (rotψ) = rotu, divψ = 0 in R3.

Such a solution can be explicitly represented as

ψ(x) =

∫
R3

Γ(x− y) rot yu(y) dy =

∫
R3

K(x− y)× u(y) dy,

where Γ(x) = 1
4π
|x|−1 and K(x) = ∇Γ(x). Since div u = 0, we easily see that u =

rotψ. Moreover, since K(x) ≤ c|x|−2, the Hardy-Littlewood-Sobolev inequality
implies that

‖ψ‖2 ≤ c‖u‖L6/5(R3) = c‖u‖L6/5(BR) ≤ c‖u‖L2(BR).

Finally, since ∇K defines a Calderón-Zygmund kernel, we get the last two esti-
mates in (5.15).

Summarizing (5.14), (5.15) we get that

‖∇ψ‖2 + ‖∇2ψ‖2 ≤ c ‖g‖W 1/2,2(∂Ω)

‖ψ‖2 ≤ c ‖g‖W−1/2,2(∂Ω)

(5.16)

with a constant c = c(Ω) > 0. Moreover, the map g 7→ ψ is linear.
In the next step we define the vector field E = Eε by E = rot (θεψ) where

θ = θε ∈ W 1,∞(R3) is a carefully chosen cut-off function with support in an ε-
neighborhood of ∂Ω and ε > 0 will be chosen below. Following [16, pp. 288-290]
or [26, Ch. II, §1] for pointwise estimates of θε and E we get for all w1, w2 ∈
W 1,2

0,σ (Ω) the estimates |〈w1 ⊗ E,∇w2〉Ω| ≤ ‖w1 ⊗ E‖2‖∇w2‖2 and with χε =
χsupp θε and d(x) = dist (x, ∂Ω)

‖w1 ⊗ E‖2
2 ≤ c

∫
Ω

|w1|2
( ε

d(·)
|ψ|+ |∇ψ|χε

)2

dx

≤ c ε2

(∫
Ω

∣∣∣ w1

d(·)

∣∣∣2dx) ‖ψ‖2
∞ + c ‖w1‖2

6‖∇ψ‖2
6‖χε‖2

6

≤ c ‖∇w1‖2
2 ‖ψ‖2

H2(R3) (ε2 + ‖χε‖2
6);
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here ε > 0 may be chosen arbitrarily small and is related to the size of supp θε
which shrinks when ε → 0. Hence (1.14) can be fulfilled for a.a. fixed t > 0 in
the sense that

|〈w1 ⊗ E,∇w2〉| ≤
ν

4
‖∇w1‖2 ‖∇w2‖2, w1, w2 ∈ W 1,2

0 (Ω) ∩ L2
σ(Ω) . (5.17)

Furthermore, since 〈E,ϕ〉Ω = 〈θεψ, rotϕ)〉Ω for all ϕ ∈ W 1,2
0 (Ω) we get by (5.16)2

the estimate
‖E‖W−1,2(Ω) ≤ c ‖g‖

W−
1
2 ,2(∂Ω)

. (5.18)

In the final step we define E(·) satisfying (1.14) and (5.11). Given g ∈
L∞(0,∞;W

1
2
,2(∂Ω)) fulfilling (5.9) for a.a. t > 0 we find by the previous ar-

guments for a.a. t > 0 a vector field E(t) = rot (θψ(t)) satisfying (5.17) and, due
to (5.16),

‖E(t)‖W 1,2(Ω) ≤ c ‖g(t)‖
W

1
2 ,2(∂Ω)

for a.a. t ∈ (0, T ).

Hence E ∈ L∞
(
0,∞;W 1,2(Ω)

)
, and (5.12)1, (1.14) are easy consequences. Since

the map g 7→ E is linear and gt ∈ L∞
(
0,∞;W−1/2,2(∂Ω)

)
, the previous ar-

guments, the method of difference quotients and (5.18) also imply that Et ∈
L∞
(
0,∞;W−1/2,2(∂Ω)

)
and that (5.12)2 holds.

Now Proposition 5.4 is completely proved.

To apply Proposition 5.4 to the Navier-Stokes system (1.1) via Theorem 1.2 we
have to consider the Stokes system (1.3) for E more closely. In this setting where
E has already been defined by the boundary data g we have to determine f0 and
E0 in (1.3). Let h ≡ 0 so that by the construction in the proof of Proposition 5.4

f0 = Et − ν∆E, E = rot (θψ),

which may be written also in the form f0 = divF0. By (5.12) we easily get that
F0 ∈ L∞

(
0,∞;L2(Ω)

)
and that

‖F0‖2,∞;∞ ≤ c
(
‖Et‖L∞(0,∞;W−1,2(Ω)) + ‖νE‖L∞(0,∞;W 1,2(Ω))

)
≤ c

(
‖gt‖L∞(0,∞;W−

1
2 ,2(∂Ω))

+ ‖νg‖
L∞(0,∞;W

1
2 ,2(∂Ω))

)
.

(5.19)

Moreover, the properties of E, Et and a classical interpolation result imply that
E ∈ C0

(
[0,∞);L2(Ω)

)
, the initial value E0 = E(0) ∈ L2(Ω) is well-defined and

there exists a constant c > 0 such that

‖E0‖2 ≤ c
(
‖E‖L∞(0,∞;W 1,2(Ω)) + ‖Et‖L∞(0,∞;W−1,2(Ω))

)
≤ c

(
‖g‖

L∞(0,∞;W
1
2 ,2(∂Ω))

+ ‖gt‖L∞(0,∞;W−
1
2 ,2(∂Ω))

)
.

(5.20)

Furthermore, divE0 = 0 and E0|∂Ω
= g(0) where g(0) is well-defined in L2(∂Ω).

Now we are ready to state our final result.
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Corollary 5.5 Let Ω ⊂ R3 be an exterior domain with boundary ∂Ω ∈ C1,1

and boundary components Γj, 1 ≤ j ≤ L. Assume that f = divF , F ∈
L2
(
0,∞;L2(Ω)

)
, u0 ∈ L2

σ(Ω) and that g satisfies (5.10) and the restricted flux
condition (5.9). Then the Navier-Stokes system (1.1) has a global weak solution
u = v + E where E satisfies (5.11), (5.12) and

‖v(t)‖2
2 + ν

∫ t

0

‖∇v‖2
2 dτ ≤ ‖v0‖2

2 +
c

ν

∫ t

0

(
‖F1‖2

2 + ‖E‖4
4

)
dτ .

Here F1 = F + F0 satisfies (5.19), v0 = u0 − E0 where E0 is subject to (5.20).
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