
An algorithmic framework for 0/1-QIP solvers
(extended abstract) ?

T. Ederer2, U. Lorenz1, T. Opfer2, J. Wolf2
{ederer,opfer,wolf}@mathematik.tu-darmstadt.de,

ulf.lorenz@fst.tu-darmstadt.de

1Fluid Systems Technology, Technische Universität Darmstadt, Germany
2Institute of Mathematics, Technische Universität Darmstadt, Germany

Abstract. Quantified linear programs (QLPs) are linear programs with
variables being either existentially or universally quantified. The integer
variant (QIP) is PSPACE-complete, and the problem is similar to games
like chess, where an existential and a universal player have to play a
two-person-zero-sum game. We present the algorithmic concepts of our
solver Yasol which solves multistage 0/1-QIPs to optimality with up to
several hundred existential and two dozens of universal variables. Being
a mixture of a QSAT solver and a branch&cut IP-solver, Yasols opens a
new category of quantifier-extended IP solvers.

1 Introduction

Mixed-integer linear programming (MIP) [1] is the state-of-the art technique for
computer aided optimization of real world problems. Nowadays, we are able to
solve large MIPs of practical size, but companies observe an increasing danger of
disruptions, which prevent them from acting as planned. One reason is that input
data for a given problem is often assumed to be deterministic and exactly known
when decisions have to be made, but in reality they are often afflicted with some
kinds of uncertainties. Examples are flight and travel times, throughput-time, or
arrival times of externally produced goods. Thus, there is a need for planning and
deciding under uncertainty. Uncertainty, however, often pushes the complexity
of problems that are in P or NP, to the complexity class PSPACE [2]. There-
fore, NP-complete integer programs are not suitable to model these problems
anymore. Prominent solution paradigms for optimization under uncertainty are
Stochastic Programming [3], Robust Optimization [4,5], Dynamic Programming
[6], Sampling [7] and others, e.g. LP-based approximation techniques [8,9,10].

Relatively unexplored are the abilities of linear programming extensions for
PSPACE-complete problems. In this context, Subramani introduced the notion
of quantified linear programs (QLPs) [11]. Quantified Linear (Integer) Program-
ming (QIP) obviously gives the opportunity to combine traditional linear pro-
gramming formulations with some uncertainty bits. From our point of view it
? Research partially supported by German Research Foundation (DFG), Lo 1396/2-1
and SFB 805

is therefore a highly interesting object for algorithmic research. The expressive
power of QIPs allows to model many existing PSPACE complete problems as
e.g. QSAT. A model for the two person parlor games Gomoku [12] and connect-6
(QIP) were built, as well as the optimal outline of a booster station (QMIP, quan-
tified mixed integer program)1, and an optimization problem in airline industry
(QIP) is in preparation. However, modeling is not the topic of this paper.

The currently best practical way to solve e.g. the small booster example is
to build a so called deterministic equivalent program [13] (DEP) and to solve
the resulting MIP. We investigate the limitations of the deterministic equivalents
which motivate us to build an integrated solver that does not build or exam-
ine a deterministic equivalent program. Consequently, we care for the following
research questions concerning the multistage QIP optimization problem.

Is it possible to compete with solvers like Cplex, Gurobi or Scip when they
solve the DEPs of QIPs? There are several rationales for it. Firstly, building
the deterministic equivalent program takes exponential time because there are
exponentially many scenarios in the number of universal variables. If we solve
LP-relaxed subproblems with the dual simplex algorithm, the total process might
take double exponential time in its worst case. From the viewpoint of complexity,
this sounds inadequate for a PSPACE-complete problem. Secondly, all current
MIP-solvers walk through a B&B tree and examine millions of search nodes
when the instance is large enough. Why should it be impossible to go through
the corresponding AND/OR search graph of QIPs with a similar amount of time?
However, the situation is far less simple. The success of MIP modeling bases on
the fact that the hardness of the problem does not come up in many practice
models. Thus it can be doubted that the theoretically possible double exponential
running time will be observable. When we additionally aim at 20 to 30 universal
variables (i.e. 220 to 230 scenarios), the hardness also does not necessarily show
up in the DEP. Moreover, for fundamental reasons, the traditional cut&branch
techniques cannot be directly transferred to QIP solution algorithms. And also
for the branch&cut mechanism, it is not clear, which of the known cutting planes
for IPs can be transferred into the quantified field. They are mainly designed
to cut away some pieces of the LP relaxation, approximating the convex hull of
all integer points. However, they do possibly not even touch the set of points
which belong to solution spaces of QIPs. The second question then is how such
a search procedure can be organized.

For ease of computation, we only consider 0/1 QIPs in the remainder of
this paper. Nevertheless, all the techniques described can be applied to any
QIP containing 0/1 variables. The rest of this paper is organized as follows.
In section 2.1 we recapture some important results from QLP theory. Section
2.2 then deals with the three major ingredients of our solution algorithm: the
reasoning mechanism known for SAT-solvers, the Alphabeta game tree search

1 for reviewer: we provide supplementary material on this webpage:
http://www3.mathematik.tu-darmstadt.de/index.php?id=2001. E.g. the booster
example.

2

algorithm, and dual information of ordinary LPs. Section 3 is the experimental
result section and at the end, we give an outlook for further investigations.

2 Quantified Linear Programming (QLP), and Quantified
Linear Integer Programming (QIP)

In this subsection, we recapture the major definitions within the context of Quan-
tified Linear Programs, beginning with the continuous problem. The latter gives
several polyhedral insights which are important to note also for the engineering
of integer algorithms. The most important points are a) the QLP can be written
in DEP form and can therefore be decomposed and solved with Bender’s decom-
position, b) the solution space is polyhedral and all points in that polyhedron
may be geometrically far away from the optimal LP or IP point. Moreover, we
introduce the additional feature of a objective function for QLPs and QIPs, in
analogy to conventional mathematical programming.

2.1 The continuous QLP problem

Definition 1 (Quantified Linear Program) Let there be a vector of n vari-
ables x = (x1, . . . , xn)

T ∈ Qn, lower and upper bounds l ∈ Zn and u ∈ Zn
with li ≤ xi ≤ ui , a coefficient matrix A ∈ Qm×n, a right-hand side vector
b ∈ Qm and a vector of quantifiers Q = (Q1, . . . ,Qn)T ∈ {∀,∃}n, let the term
Q ◦ x ∈ [l, u] with the component wise binding operator ◦ denote the quantifica-
tion vector (Q1x1 ∈ [l1, u1], . . . ,Qnxn ∈ [ln, un])

T such that every quantifier Qi
binds the variable xi ranging over the interval [li, ui]. We call (Q, l, u, A, b) with

Q ◦ x ∈ [l, u] : Ax ≤ b (QLP)

a quantified linear program (QLP).

Each maximal consecutive subsequence of Q consisting of identical quantifiers is
called a quantifier block – the corresponding subsequence of x is called a variable
block. The i-th quantifier block is denoted by Qi ∈ {∀,∃}, likewise xi denotes the
corresponding variable block.The total number of blocks less one is the number
of quantifier changes.
A QLP instance is interpreted as a two-person zero-sum game between an ex-
istential player setting the ∃-variables and a universal player setting the ∀-
variables. Each fixed vector x ∈ [l, u], that is, when the existential player has
fixed the existential variables and the universal player has fixed the universal
variables, is called a game. If x satisfies the linear program Ax ≤ b, we say the
existential player wins, otherwise he loses and the universal player wins. The
variables are set in consecutive order according to the variable sequence. Conse-
quently, we say that a player makes the move xk = z, if he fixes the variable xk
to the value z. At each such move, the corresponding player knows the settings
of x1, . . . , xk−1 before taking his decision xk.

3

In [14] it was shown that the solution space of a QLP with n variables forms
a polytope in Rn, which is included in the polytope induced by the constraint set
Ax ≤ b as shown in Figure 1. This insight implies that, in general, a cut&branch
approach is not target leading. E.g., in Fig. 1, it can be observed that all points
belonging to any solutions (dark region) are far away from an optimal LP re-
laxation solution, when we assume that the optimization aim is maximizing x1.
It was furthermore shown that it suffices to inspect the bounds of the univer-
sal quantified variables in order to check whether a winning policy does exist
[14]). Thus, in order to answer the question whether the existential player can
certainly win the game, it is sufficient to analyze so called strategies, and as a
consequence, QLPs can be solved with the help of DEPs.

Definition 2 (Strategy) A strategy S = (V,E, c) is an edge-labeled finite ar-
borescence with a set of nodes V = V∃ ∪̇ V∀, a set of edges E and a vector of
edge labels c ∈ Q|E|. Each level of the tree consists either of only nodes from
V∃ or only of nodes from V∀, with the root node at level 0 being from V∃. The
i-th variable of the QLP is represented by the inner nodes at depth i − 1. Each
edge connects a node in some level i to a node in level i + 1. Outgoing edges
represent moves of the player at the current node, the corresponding edge labels
encode the variable allocations of the move. Each node v∃ ∈ V∃ has exactly one
child, and each node v∀ ∈ V∀ has as two children, with the edge labels being the
corresponding upper lower and upper bounds.

A path from the root to a leaf represents a game of the QLP and the sequence
of edge labels encodes its moves. A strategy is called a winning strategy if all
paths from the root node to a leaf represent a vector x such that Ax ≤ b. This
terminology is also very similarly used in game-tree search [15].

Example 1 The QLP

∃x1 ∈ [0, 1] ∀x2 ∈ [0, 1] ∃x3 ∈ [0, 1] : 0 −1 −1
−1 1 1
2 2 0

x1x2
x3

 ≤
−11

3


has two quantifier changes. Figure 1 shows a visualization of the constraint poly-
hedron restricted to the unit cube. A simple rule-based description of the win-
ning strategy is as follows. ‘Choose x1 ∈ [0, 12], then choose x3 apt to x2, e.g.
x3 = 1− x2.’ The highlighted solution space visualizes the set of all games with
a definite winning outcome for the existential player. Figure 2 shows a winning-
strategy for the existential player.

Further details can be taken from [14] 2. If there is more than one winning
strategy for the existential player, it can be reasonable to search for a certain
2 or, corrected and better presented in a working paper, submitted to journal. Please,
find a link at http://www.mathematik.tu-darmstadt.de/preprint.php?id=2650

4

0
x1

x2

x3

Fig. 1: Constraint polyhedron

∀

∃

∀

∃

x1=0.5

x2=1.0x2=0.0

x3=1.0 x3=0.5

−1.0≤−1.0
0.5≤1.0
1.0≤3.0

−1.5≤−1.0
1.0≤1.0
3.0≤3.0

Fig. 2: Winning Strategy

(the ’best’) one. We therefore modify the problem to include a linear objective
function as shown in the following (where we note that transposes are suppressed
when they are clear from the context to avoid excessive notation).

Definition 3 (QLPs/QIPs with Objective Function) Let Q ◦ x ∈ [l, u] :
Ax ≤ b be given as in Definition 1 with the variable blocks being denoted by Bi.
Let there also be a vector of objective coefficients c ∈ Qn. We call

z = min
B1

(c1x1 +max
B2

(c2x2 +min
B3

(c3x3 +max
B4

(. . .min
Bm

cmxm))))

Q ◦ x ∈ [l, u] : Ax ≤ b

a QLP/QIP with objective function (for a minimizing existential player).

Note that the variable vectors x1, ..., xi are fixed when a player minimizes
or maximizes over variable block Bi+1. Consequently, we deal with a dynamic
multistage decision process, similar as it is also known from multistage stochastic
programming [3] 3.

2.2 Quantified Integer Programming

As with linear programs and integer programs, we can restrict the variables
of a QLP to a discrete domain. To the best of out knowledge, no practically
useful solver for Quantified Mixed Integer Linear Programming is available at the
moment, not even when we restrict the domains of all integer variables to 0 and
1 and allow continuous variables only in the last stage with existential variables.
Up to now, the only practical way to solve e.g. our small booster station example
was to build a so called deterministic equivalent program [16,13] and to solve
the resulting MIP, even when all variables are binary.

We investigate the limits of this technique in the field of quantified linear
programs, and our aim is to construct an integrated algorithm which does not
need to examine a deterministic equivalent program. Yasol, the ideas of which
are presented in this paper, proceeds in two phases as described in subsection
2.2 in order to find optimal solutions of 0/1-QIP instances.
3 for reviewer: further details can be found in a working paper at
http://www.mathematik.tu-darmstadt.de/preprint.php?id=2660

5

– Phase 1: Determine the instance’s feasibility, i.e. whether the instance has
any solution at all. If it has any solution, present it. During this phase, Yasol
acts like a QBF solver [17] with some extra abilities.

– Phase 2: Go through the solution space and find the provable optimal solu-
tion.

Algorithm 1: Function alphabeta(int d, int a, int b) // A basic alphabeta
algorithm with LP relaxation based bounding
1 if all variables are fixed then return objective value ; // leaf reached
2 val[0] := 0; val[1] := 1; // standard polarity
3 x_i := getNextBranchingVariable(); // phase dependent
4 if instance has objective and a dual bound is desired then
5 sample the universal variables;
6 adjust the LP, solve it, and extract a branching variable or a cut;

end
7 probe(. . .) ; // cf. [18]
8 if x_i is an existential variable then score := −∞;
9 else score := +∞;

10 for val_ix from 0 to 1 do // search actually begins ...
11 if level_finished(t) then // leave marked recursion levels
12 if x_i is an extistential variable then return score ;
13 else return −∞ ;

end
14 assign(x_i, val[val_ix], ...);
15 v := alphabeta(d-1, fmax(a, score), b);
16 unassign(x_i);
17 if x_i is an existential variable then
18 if v > score then score := v; // existential player maximizes
19 if score ≥ b then return score ;

else
20 if v < score then score := v;
21 if score ≤ a then
22 Explore the Quantified LP relaxation;
23 return score;

end
end

end
24 return score;

In the following, we describe a rudimentary 0/1-QIP-solver that is based on
an alphabeta algorithm with boolean constraint propagation, non-chronologic
backtracking and restarts as known from QSAT [17] solving on the one hand,
and on the generation of cutting planes with the help of the LP-dual on the
other hand. We start with the description of the second phase. The alphabeta
algorithm replaces the DPLL algorithm because the latter is less suited for opti-
mization problems with an objective function. It walks through the search space
recursively and fixes variables to 0 or 1 when going into depth or relaxes the
fixations again when returning from a subtree.

6

A QIP allows at least two natural relaxations. One could relax the integrality
or the universal property of some variables. After all, relaxing both results in
an ordinary LP which gives us the opportunity to cut off parts of the search
tree with the help of dual information, i.e. dual bounds or cutting planes for
the original program. Algorithm 1 shows a basic alphabeta algorithm with the
ability of non-chronologic back-jumping with the help of dual information, i.e.
by solving an LP-relaxation, cf. lines 4-6 and 11-13 of Algorithm 1. The idea
is quite old and goes back to Benders and has been described already in the
seventies [19]. For a long time it has been thought that these cuts are too weak
for driving the search. However, since in [18] the technique has been improved in
combination with an implication graph, the cuts can often be made quite sparse.

Algorithm 2: The local repetition loop which extends the basic algorithm
with conflict analysis and learning; replaces line 15 in Algorithm 1
1 repeat
2 if level_finished[t] then // leave the recursion level
3 unassign(x_i);
4 if x_i is an existential variable then return score;

else return −∞ ;
end

5 if propagate(confl, confl_var, confl_partner, false) // unit prop. [17]
then

6 if x_i is an existential variable then
7 v = alphabeta(t+1, lsd-1, fmax(a, score), b);
8 if v > score then score := v;
9 if score ≥ b then break;

else
10 v := alphabeta(t+1, lsd-1, a, fmin(score, b));
11 if v < score then score := v;
12 if score ≤ a then break;

end
else

13 add reason, i.e. a constraint, to the database ; // [17]
14 if limit of conflicts reached then initiate restart ; // cf. [20]
15 returnUntil(out_target_dec_level) ; // set level_finished(...)
16 if x_i is an existential variable then return score;
17 else return −∞ ;

end
until there is a backward implied variable;

In principle, this works as follows. Let max{ct1x1 + ct2x2|A1x1 + A2x2 ≤
b;x1, x2 ∈ {0, 1}} be the optimization problem and let x1 be the part of the
x-vector that has temporarily been fixed by the alphabeta depth first search.
Then, free universal variables are sampled and the variable bounds of them are
set to 0 or 1 in the LP. The sampling is useful because every choice of the
universal variables leads to a relaxation of the original subproblem. The LP-
relaxation with some fixed variables gives us an upper bound on the objective
value or, if the LP is already infeasible, a dual ray that is used to construct a new

7

constraint for the original system of constraints. The dual of the LP-relaxation
has the form min{πt(b−A1x1|At2π ≥ c2;π ≤ 0)} and the Farkas lemma leads to
the feasibility cut (πt)(b−A1x1) ≤ 0. This feasibility cut describes a subset of the
fixed variables one of which must be changed from 1 to 0 or vice versa. The cut
is added to the database of cuts on the integer side. No cuts are added to the LP.
The new cut possibly indicates that the search process can be directly continued
several recursion levels above the current level. In this case, the superfluous levels
are marked as finished - in Algorithm 1 that is indicated by level_finished(t)
- and the alphabeta procedure breaks out of all loops and walks up the search
tree with the help of the lines 11 to 13. A further important design decision for
every solver is which branching variables is selected and whether the zero or the
one assignment of this variable is preferred first. Concerning this issue during
the second phase, we refer to [18].

Still missing, however, is the opportunity to propagate implied variables and
to organize backward implications as SAT solvers or modern IP solvers like
Scip [18] perform them. The non-chronologic backtracking is realized with the
help of Algorithm 2, which replaces line 15 of Algorithm 1. In fact, there is
a loop around the alphabeta procedure call which is walked through as long
as backward implied variables occur deeper in the search tree. The procedure
propagate(.) performs the implication of variables. In the context of boolean
formulae, this process works identically with unit propagation. In more general
constraints, further implications or bound propagations can be implied. The
method addReasonCut(.) implements the learning algorithm as used by SAT
solvers and modern IP-solvers. With the help of the original and the learnt con-
straints, the algorithm implicitly maintains an implication graph as described
in [18]. The implication graph is additionally used to strengthen the new con-
straints learnt in Algorithm 1, ll. 11-13. Because it is more convenient to deal
with feasibility cuts than with objective cuts, an artificial constraint is contained
in the IP-constraint database as well as in the LP relaxation, i.e. the objective
with the best known solution value at right hand side.

[a,inf]

v

[a‘ > a, inf]

u

w

r

Fig. 3: Evolution of α and β

There are two differences to ordinary IP-
solving which are worth to be considered. The
given procedure can only deliver a globally
valid constraint while in some parts of the
search tree, a locally valid constraint being de-
rived from the α bound, is desired. This is the
first difference.

Thus, when a search node v is entered
there are three different bounds which can be
used for cutting off the search subtree. Firstly,
there is the value of the current best solution,
which gives a global bound, let us call it z. Additionally, there are α and β. If
we find a solution better then β, the search can leave v. If the LP-relaxation
optimal value zr ≤ z, a new global cut can be derived and added to the con-
straint database. Last but not least, if z ≤ zr < α, a local cut can be generated

8

that is not supplied to the database. However, and this is the second difference
to ordinary IP-solving, it can be used to compute a back-jump level in the tree,
where it must be considered not to cross a universal node.

Fig. 3 shows an example. Starting from the existential node u with alphabeta
window [a,∞], the universal node r is reached. After the left branch of the
existential node w is completed, node v can be reached with the window [a′,∞]
with a′ > a. A conflict analysis at v may result with the insight ’in order to
increase the value at the root node, the parent of v must branch to the right and
this is implied already in w’. In this case, a back jump to w is possible. If the
conflict analysis results in the insight ’... and this is implied already in node u’,
the search can proceed in node r, but not in u, because the right branch of r might
not be irrelevant. The fact that the solver cannot cross the node u is relevant,
as we could observe that the solver sometimes is stuck at universal nodes. In
contrast to an IP-solver that computes the DEP, our solver has LP-information
for only one scenario at a time. Therefore, there is line 22 in Algorithm 1. The
QLP-relaxation attenuates the described effect.

During the first phase, the algorithm does not use the LP relaxations and
proceeds more like a QBF solver as described in [17]. The alphabeta search rou-
tine is embedded in an outer loop and restarts are controlled by the number of
conflicts and the Luby-Sequence [20], where we use 128 as the Luby-unit. Espe-
cially SAT solvers tend to an increasing rate of restarts [21]. The determination
of the next branching variable is determined with the help of two statistical val-
ues, i.e. p_activityx and n_activityx. These two parameters describe how often
a variable x has been involved into a conflict when it was temporarily fixed to
0 or 1. Whether the chosen variable is set to 0 or to 1 first, is also determined
with the help of these statistical values plus some randomization which hinders
the search process from being stuck in a local area of the search tree.

3 Computational results
In this section, we report on computational experiments undertaken in order to
show the effectivity of the algorithm described in the previous section. Depending
on the type of test instances, i.e. QFB or 0/1-QIP with objective, we competed
with Cplex solving a DEP and with Depqbf, one of the leading QBF-solvers. In
the context of 0/1-QIPs, we passed on the QBF-solver and took into additional
consideration Gurobi and Scip. Our own prototype is called Yasol, which cur-
rently utilizes the Cplex LP-solver as a subroutine. In order to keep a certain
fairness, also Scip has been compiled with the Cplex LP solver. Therefore, the
underlying LP solver should not influence the results. All experiments were done
on PCs with Intel i7 (3.6 GHz) processors and 64 GB RAM. All computations
were limited to one thread, all other parameters were left at default.

3.1 Results for QBF
At the current state, our solver Yasol can solve QSAT instances reasonable well.
This can be taken from the tables 1 and 2. Quaffle, Cube and Depqbf are high
end QBF solvers that were downloaded from the Internet. Cplex (V 12.5.0.1)
and Gurobi (V 5.5) are two of the leading MIP solvers and DEP Cplex and

9

DEP Gurobi operate with the corresponding MIP solvers on the deterministic
equivalents of the QBF instances which have been translated from boolean for-
mulae format to MIP format. Scip (V 3.0.1) is the best open-source MIP solver
at the current time. The first test collection, cf. Table 1, consists of 389 instances
with only a small number of universal variables. We see that the DEP approach
works surprisingly well. Cplex could solve 307 of the instances, not less then
Depqbf, one of the best QBF solvers. Yasol, our own solver solves 10 percent
less instances, but at least as many as Scip. Each program got a maximum of 5
minutes solution time for each instance.

DEP cplex DEP Gurobi DEP Scip Yasol Quaffle Cube Depqbf
Time 29596s 31960s 41704s 36091s 28053s 29877s 26764s

#solved 307/389 300/389 271/389 277/389 303/389 299/389 307/389

Table 1: Computational Results on QBF

The presented time is taken as the sum of all solution times for the instances
punishing a non-solved instance with 300 seconds.

The ranking changes when we increase the test set and examine test instances
with an increasing number of universal variables. On a test collection of 797
instances, taken from the qbflib.org, Depqbf solves 674 instances, Yasol 584,
but the DEP approach collapses. Cplex can solve only 478. Each program got
a maximum of 10 minutes solution time for each instance. Again, the solution
time consists of the sum of all individual solution times for a specific program.
Not solving the instance was punished with 600 seconds. Table 2 shows the

univ. var. Depqbf DEP cplex Yasol
1-5 Time 44243s 42286s 69275

#solved 306/373 313/373 264/373
6-10 Time 1810s 1314s 3125s

#solved 38/41 39/41 36/41
11-15 Time 8242s 22862s 15083s

#solved 84/97 65/97 79/97
16-20 Time 2757s 79301s 12922s

#solved 166/170 61/170 156/170
21+ Time 26858s 50017sa 49523s

#solved 80/116 0/116 49/116
Σ Time 83910s 195780s 149928s
Σ #solved 674/797 478/797 584/797

Table 2: Computational Results

a the small number is due to aborting, Cplex could
not solve the instances with 64GB memory

Gurobi Cplex Yasol Scip
air04 25 11 117 33
air05 14 13 2698 11
mitre 1 1 2 5
p0033 0 0 0 0
p0201 0 0 6 0
p0282 0 0 1 0

cap6000 1 1 3600 2
harp2 37 19 3600 262
lseu 0 0 16 0

p0548 0 0 605 0
nw04 2 110 3600 23

mod008 0 0 151 0

Table 3: 0/1-IPs, taken
from miplib.zib.de

number of solved instances grouped by the number of universal variables. We see
that the DEP approach becomes more and more unalluring, the more universal
variables come into play. Experimental results draw a similar picture when we
examine 0/1-QIPs with objective. In order to examine the effects, we picked out

10

the 0/1 IPs from the miplib test set. Compared with the MIP solvers Cplex,
Scip and Gurobi, Yasol performs poor as can be taken from table 3.

We generated quantified instances with the help of the lseu and the p0282
instances as follows. Firstly, a certain amount of the IP-variables was converted
to universal ones. Then, at randomly chosen positions, the universal variable
blocks were incorporated, such that the universal blocks do not overlap. One
additional instance, an encoding of a game position of the connect-6 game could
not be solved by any of the solvers. We also applied this procedure to the other
0/1-IP instances, but they were trivially infeasible in the sense that our QLP-
solver could detect this unfeasibility in short time.

3.2 Results for QIP
Gurobi Cplex Yasol Scip

p0282 2x7A (5) 2 (42) 2 (28) 2 (0) 2 (52)
p0282 2x8A (10) 2 (162) 2 (113) 2 (1) 2 (379)
lseu 10x1A (4) 4 (5) 4 (6) 3 (165) 4 (163)
lseu 5x2A (5) 5 (6) 5 (5) 3(145) 4 (104)
lseu 1x10A (5) 5 (22) 5 (8) 4 (158) 4 (293)
lseu 11x1A (4) 4 (13) 4 (12) 3 (43) 4 (333)
lseu 1x11A (7) 7 (63) 7 (21) 4 (124) 4 (337)
lseu 12x1A (3) 3 (80) 3 (31) 2 (53) 0 (-)
lseu 6x2A (5) 5 (41) 5 (26) 5 (74) 2 (307)
lseu 4x3A (1) 1 (407) 1 (40) 0 (-) 0 (-)
lseu 3x4A (7) 7 (84) 7 (36) 7 (99) 2 (565)
lseu 7x2A (5) 5 (249) 5 (185) 5 (122) 0 (-)
connect6 - - - -

Table 4: 0/1-QIPs, generated from lseu
and p0282

Finally, table 4 shows the results on
modified instances, where up to 16 of
the variables are converted to univer-
sal ones. In the first column, we see
the name of the IP base instance, the
number of universal variable blocks
with their lengths, and the number of
instances of this kind in brackets. E.g.
’lseu 7x2A (5)’ describes 5 instances
with 14 universal variables, grouped
into 7 pieces with 2 universal variables
in each block. The other cells describe,
which solver has solved how many of the instances within 600 seconds and, in
brackets, the average number (i.e. the sum divided by the number of instances)
of used seconds on the solved instances. E.g. Yasol has solved three of the four
’lseu 10x1A’ instance and it spent 494 seconds on the four solved ones, and of
course 600s on the missed one. We interpret the table in such a way that an
increasing number of universal variables increases the difficulties of DEP based
solvers for the solution process. Yasol seems to have by far less difficulties with
the universal variables, however, has huge improvement potential concerning its
existential variable handling.

4 Conclusion
In this paper, we investigated for the domain of 0/1-QIPs with objective, in how
far a direct search approach can compete with building a DEP and solving it
with state-of-the-art MIP solvers. On some of instances, the prototypical imple-
mentation in the solver Yasol could solve 0/1-QIPs up to optimality, being even
faster than the best commercial solvers on the corresponding DEPs. The next
step is to integrate further IP-programming techniques and to utilize conflict
graphs and cliques in the sense of [22]. Moreover, it is to be examined, in how
far well known cutting planes (e.g. [23]) can be incorporated into the search
process and proven to be useful.

11

References

1. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc.,
New York, NY, USA (1986)

2. Papadimitriou, C.: Games against nature. J. of Comp. and Sys. Sc. (1985) 288–301
3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer

Series in Operations Research and Financial Engineering. Springer (July 1997)
4. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Uni-

versity Press (2009)
5. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable

robustness, linear programming recovery, and railway applications. Robust and
online large-scale optimization (2009) 1–27

6. Bellmann, R.: Dynamic programming. Princeton University Press (1957)
7. Kleywegt, A., Shapiro, A., Homem-De-Mello, T.: The sample average approxi-

mation method for stochastic discrete optimization. SIAM Jour. of Opt. (2001)
479–502

8. König, F., Lübbecke, M., Möhring, R., Schäfer, G., Spenke, I.: Solutions to real-
world instances of pspace-complete stacking. Proc. ESA’07 729–740

9. Megow, N., Vredeveld, T.: Approximation results for preemtive stochastic online
scheduling. ESA 2006 14th Annual European Symposium on Algorithms (2006)

10. Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: The
power of lp-based priority schedules. Journal of ACM 46(6) (1999) 924–942

11. Subramani, K.: On a decision procedure for quantified linear programs. Annals of
Mathematics and Artificial Intelligence 51(1) (2007) 55–77

12. Ederer, T., Lorenz, U., Opfer, T., Wolf, J.: Modeling games with the help of
quantified integer linear programs. In Herik, H., Plaat, A., eds.: Advances in
Computer Games. Volume 7168 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2012) 270–281

13. Ederer, T., Lorenz, U., Martin, A., Wolf, J.: Quantified linear programs: A com-
putational study. In: Part I. ESA’11, Springer (2011) 203–214

14. Lorenz, U., Martin, A., Wolf, J.: Polyhedral and algorithmic properties of quanti-
fied linear programs. In: Part I. ESA’10, Springer (2010) 512–523

15. Pijls, W., de Bruin, A.: Game tree algorithms and solution trees. Theor. Comput.
Sci. 252(1-2) (2001) 197–215

16. Birge, J., Louveaux, F.: Intro. to Stochastic Programming. Springer (’97)
17. Zhang, L.: Searching for truth: techniques for satisfiability of boolean formulas.

PhD thesis, Princeton, NJ, USA (2003)
18. Achterberg, T.: Constraint Integer Programming. PhD thesis, Berlin (2007)
19. Johnson, E., Suhl, U.: Experiments in integer programming. Discrete Applied

Mathematics 2(1) (1980) 39 – 55
20. Audemard, G., Simon, L.: Refining restarts strategies for sat and unsat. In:

Proceedings of the 18th international conference on Principles and Practice of
Constraint Programming. CP’12, Berlin, Heidelberg, Springer (2012) 118–126

21. Haim, S., Heule, M.: Towards ultra rapid restarts. Technical report, UNSW and
TU Delft (2010)

22. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving
integer programming problems. European Journal of Operational Research 121(1)
(2000) 40–55

23. Andreello, G., Caprara, A., Fischetti, M.: Embedding 0, 1/2-cuts in a branch-and-
cut framework: A computational study. INFORMS J. on Computing 19(2) (2007)
229–238

12

