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Abstract

We suggest a novel method to determine the joint spectral radius of finite
sets of matrices by validating the finiteness property. It is based on finding
a certain finite tree with nodes representing sets of matrix products. Our
approach accounts for cases where one or several matrix products satisfy the
finiteness property. Moreover, is potentially functional even for reducible sets
of matrices.
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1. Introduction

The concept of the joint spectral radius (JSR) has gained some atten-
tion in recent years. As a generalization of the standard spectral radius,
this characteristic of a set of matrices plays an important role in various
fields of modern mathematics, see e.g. the monograph [Jun09]. First intro-
duced by Rota and Strang in 1960 ([RS60]), the JSR was almost forgotten,
and then rediscovered in 1992 by Daubechies and Lagarias ([DL92]) in the
context of the analysis of refineable functions. In general, the JSR is not
exactly computable [BT00], and even its approximation is NP-hard in some
sense [BN05]. In practice, the situation is as follows: Beyond the analysis of
special cases, the few known algorithms for a potential exact evaluation are
based on establishing the finiteness property (FP), as introduced below, for a
given problem. This approach cannot claim universality because families of
matrices exist1 that do not exhibit the FP. However, to the best of our knowl-
edge, all problems coming from applications have permitted a treatment via
FP so far.

1Non-constructive proofs of this fact can be found in [BM02, BTV03, Koz05], while an
explicit counterexample is given in [HMST11].
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In [GP13, CGSCZ10, GZ09, GZ08, Mae08, Mae00], the FP is established
by the construction of a special norm with certain extremal properties. The
approach suggested here also aims at the FP but is different in the way how
it is verified. Some pros and cons will be discussed in the final section of this
paper.

The idea of a graph-theoretical analysis has proven to be useful before. In
[Gri96], a branch and bound algorithm is used for approximating the JSR,
and in [HMR09], the range of C1-parameters of the four-point scheme is
determined explicitly by considering certain infinite paths in the tree of all
matrix products. Though we adapted some ideas from the latter work, the
trees to be considered in the following are different: Their knots represent
sets of matrices instead of single matrix products. This crucial idea poten-
tially reduces the analysis of infinite sets of products to a study of finite
subtrees. In particular, this aspect facilitates automated verification of the
FP by computer programs.

After introducing some notation, our main results are presented in Sec-
tion 3 and then proven in the subsequent section. Section 5 illustrates our
new method by some model problems but does not comprise numerical tests
since the focus of this work is on theoretical aspects. Some concluding re-
marks can be found in Section 6.

2. Setup

We consider a finite set A = {A1, ..., Am} of matrices in Cd×d. To deal
with products of its elements, we introduce the sets

I0 := {∅}, Ik := {1, . . . ,m}k, I :=
⋃
k∈N0

Ik,

of completely positive index vectors of length k ∈ N0 and arbitrary length,
respectively. By contrast, an index vector may contain also negative entries,
whose special meaning will be explained in the next section.

For k ∈ N, we define the matrix product

AI := Aik · · ·Ai1 , I = [i1, . . . , ik] ∈ Ik. (1)

Otherwise, if k = 0, let A∅ := Id be the identity matrix. The length of the
vector I ∈ Ik is denoted by |I| := k. That is, any index vector I ∈ I encodes
a matrix product AI with |I| factors.

Let ‖ · ‖ denote any norm on Cd, and also the induced matrix norm. The
joint spectral radius (JSR) of A is defined as

ρ̂(A) := lim sup
k→∞

max
I∈Ik
‖AI‖

1
k .
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In particular, if m = 1, then ρ̂(A) = ρ(A1) is the standard spectral radius
(SSR) of A1. Clearly, the JSR is independent of the chosen norm. As shown
in [DL92], upper and lower bounds on ρ̂(A) are given by

max
I∈Ik

ρ(AI)
1
k ≤ ρ̂(A) ≤ max

I∈Ik
‖AI‖

1
k (2)

for any k ∈ N. The set A is said to have the finiteness property (FP), if there
exists a completely positive index vector J ∈ Ik such that equality holds on
the left hand side of the latter display,

ρ(AJ)
1
k = ρ̂(A). (3)

The method suggested here, as well as ideas developed in [GP13, CGSCZ10,
GZ09, GZ08, Mae08, Mae00], are based on verifying (3) for some (more or
less) sophisticated guess J . For instance, a reasonable way is to choose a
possibly large value k, determine

‖AL‖ = max
I∈Ik
‖AI‖ or ‖AL‖ = max

I∈Ik
ρ(AI),

and check the trail of L ∈ Ik for a repeating pattern, defining J . The SSR
as well as the JSR are homogeneous functions, i.e.,

ρ(βAJ) = |β| ρ(AJ), ρ̂(βA) = |β| ρ̂(A), β ∈ C, (4)

where βA := {βA1, . . . , βAm}. Hence, discarding the trivial case ρ(AJ) = 0,
we can scale the family A such that at least one of the dominant eigenvalues
of AJ equals 1, and in particular ρ(AJ) = 1. Equation (3), which has to be
demonstrated, then reads

ρ̂(A) = ρ(AJ) = 1. (5)

3. Main results

In the following, we consider a matrix family A for which the normalized
equation (5) shall be proven. By (2), this is possible only if

ρ(Ai) ≤ 1, i = 1, . . . ,m,

so that we assume this property, throughout. In previous work of Guglielmi
and Protasov [GP13], it is requested that there is only one index vector J ∈ I
(and its cyclic permutations) satisfying it, but in general, this cannot be taken
for granted. To account for this, we base our analysis on the investigation
of a given family of index vectors. This family contains index vectors with
ρ(AJ) = 1, but, for good reasons, we allow also index vectors with ρ(AJ) < 1.
As will be demonstrated by an example in Section 5, such index vectors may
reduce significantly the complexity of the trees to be constructed.
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Definition 3.1. Given matrices A = {A1, . . . , Am}, consider some non-
empty set J = {J1, . . . , Jn} of completely positive index vectors Ji ∈ I.
If

max
J∈J

ρ(AJ) = 1,

then J is called a generator set of A, and each element J ∈ J is called a
generator.

It is our goal to relate properties of generator sets to the equality ρ̂(A) =
1. By (2), existence of a generator set implies ρ̂(A) ≥ 1 so that (5) becomes
equivalent to ρ̂(A) ≤ 1.

In the following, let the set A = {A1, . . . , Am} of matrices and the gen-
erator set J = {J1, . . . , Jn} be fixed. To address products of matrices in A
conveniently, we introduce the sets

K0 := {∅}, K` := {−n, . . . ,−1, 1, . . . ,m}`, K :=
⋃
`∈N0

K`,

of index vectors of length ` ∈ N0 and arbitrary length, respectively. As before,
the length of K ∈ K` is denoted by |K| := `.

Index vectors K ∈ K encode sets of matrix products in the following way:
While single positive indices correspond to singletons, single negative indices
correspond to infinite sets containing special matrix powers,

A` :=

{
{A`} if ` > 0,

{AkJ−` : k ∈ N0} if ` < 0.

Defining products of sets as sets of products, i.e., P ·Q := {PQ : P ∈ P , Q ∈
Q}, let

AK := Ak` · · · Ak1 , K = [k1, . . . , k`] ∈ K`,

for ` ∈ N, and A∅ := {Id}. This definition is similar to (1), but AI is a
single matrix, while AK is always a set, even if K ∈ I is completely positive.
In this case, AK = {AK} is a singleton, while otherwise, it is typically2 a
denumerable set.

We need some more notations and definitions: Concatenation of vectors
P ∈ Ki and S ∈ Kj is denoted by

[P, S] := [p1, . . . , pi, s1, . . . , sj] ∈ Ki+j.

2For instance, if all eigenvalues of the matrices AJ happen to be 0, then AK is finite
even if K is not completely positive.
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Powers indicate concatenation of an index vector with itself,

K1 := K, K`+1 := [K`, K].

If K = [P, S], then P is a prefix and S is a suffix of K. The sets of prefixes
and suffixes of K ∈ K are denoted by

P(K) := {P : K = [P, S] for some S},
S(K) := {S : K = [P, S] for some P},

respectively.

Example. Let J1 = [1, 2] be a generator for the set A = {A1, A2} of
matrices. For K = [1, 1,−1, 1, 2], we obtain

AK = {A2A1(A2A1)
kA2

1 : k ∈ N0}.

P = [1, 1,−1] ∈ P(K) is a prefix and S = [1, 2] ∈ S(K) is the complementary
suffix of K. In this special case, we observe that AK ⊂ AP , what might be
surprising at first sight. This phenomenon where a set of matrix products is
completely covered by that of a prefix will play a prominent role below.

In a natural way, the set K of index vectors can be given the structure of
a directed tree, denoted by T : The elements of K are the nodes, the empty
vector ∅ is the root, and an edge is connecting the parent node P with the
child node C if and only if C = [P, i] for some index i ∈ K1.

Definition 3.2. A node K ∈ K is called

• positive or negative if so is the suffix i when writing K = [P, i].

• 1-bounded if ‖AK‖ := sup{‖A‖ : A ∈ AK} ≤ 1.

• covered if there exists a prefix P ∈ P(K) such that AK ⊂ AP , and the
complementary suffix S is completely positive and not empty.

Typically, covered nodes appear in the following situation: Let P = [P ′, `]
be a negative node, i.e., ` < 0. Then its descendant K = [P, J−`] is covered
since

A[`,J−`] = AJ−` · A` = {Ak+1
J−`

: k ∈ N0} ⊂ {AkJ−` : k ∈ N0} = A`.

The example above is constructed in exactly this way.
The following theorem provides a sufficient condition for establishing the

JSR of a family of matrices. This condition is based on properties of a finite
subtree of T and thus can be verified (though not falsified) numerically or
analytically in finite time.
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Theorem 3.3. Let A = {A1, . . . , Am}. If there exists a generator set J and
a finite subtree T∗ ⊂ T such that

• the root ∅ of T∗ has exactly m positive children,

• every leaf of T∗ is either 1-bounded or covered,

• every other node of T∗ has either exactly m positive children or an
arbitrary number of negative children,

then ρ̂(A) = 1.

Positive children of the root ∅ are demanded merely to simplify forth-
coming arguments. Negative children, though useless in practice, would be
equally fine from a theoretical point of view.

The approach suggested in [GP13] assumes irreducibility of the family A
and is successful if and only if, possibly after scaling, this family has a spectral
gap at 1, as defined below. The class of problems decidable by Theorem 3.3
is actually larger: First, Theorem 3.5 shows that a tree of the requested form
exists always if A has these properties. Choosing an appropriate norm, this
case is in fact trivial because the nodes of the tree can all be chosen to be
completely positive, i.e., no infinite sets of matrices have to be employed.
Second, an example in Section 5 shows that it is possible to establish the
JSR of families which do not have a spectral gap at 1. Also irreducibility is
not assumed.

The two properties mentioned above, namely irreducibility and the spec-
tral gap at 1, mean the following: The first one concerns a possible reduction
of dimensionality. The family A = {A1, . . . , Am} is called irreducible if the
matrices A1, . . . , Am have no common nontrivial invariant subspace. If A
is reducible, JSR computation can be split into lower-dimensional problems
until irreducibility is attained, see [Jun09], Proposition 1.5. The second one
concerns separation of spectral radii in the set of matrix products. Given a
single generator J , ρ(AJ) = 1 immediately implies ρ(AI) = 1 for any index
vector I which is a cyclic permutation of a power of J . A spectral gap at 1
means that the SSR of no other product matrix can come close to 1. More
precisely, we define:

Definition 3.4. The matrix family A has a spectral gap at 1 if there is
exists a completely positive index vector J with ρ(AJ) = 1 such that

• there is q < 1 such that
ρ(AI) ≤ q (6)

for any product AI , unless I = ∅ or I = [S, Jr, P ] for some r ∈ N0 and
some partition [P, S] = J of J ,

6



• the Jordan normal form Λ of AJ is

Λ := V −1AJV =

[
1 0
0 Λ∗

]
, ρ(Λ∗) < 1. (7)

In this case, J is called a dominant generator.

Since A is finite, the JSR can be characterized also by

ρ̂(A) = lim sup
k→∞

max
I∈Ik

ρ(AI)
1
k .

Therefore, a spectral gap at 1 implies ρ̂(A) = 1.
Following [Els95], Lemma 4, an irreducible set A with ρ̂(A) = 1 is product

bounded. That is, there exists a constant cA such that ‖AI‖ < cA for all
I ∈ I. An algorithm for computing an admissible constant can be found in
[Pro96]. If, in addition, A has a dominant generator J , we may scale the
matrix V in (7) such that its columns vj and the columns wi of W := V −t

satisfy ‖w1‖2 = 1 and ‖vj‖2 ≤ c−1A , j ≥ 2, where the constant cA is taken
with respect to the Euclidean norm ‖ · ‖2. Now, we define the matrix norm

‖A‖V := max
j

∑
i

|wt
iAvj|

as the standard 1-norm of the transformed matrix W tAV . At least with
respect to this norm, the implication of Theorem 3.3 is in fact an equivalence:

Theorem 3.5. Let A be irreducible with spectral gap at 1. Using the norm
‖ · ‖V , there exists a subtree T∗ ⊂ T according to the specifications of The-
orem 3.3. Moreover, all nodes in this tree can be requested to be completely
positive.

4. Proofs

4.1. Proof of Theorem 3.3

Below, T∗ is assumed to be a fixed subtree of T according to the condi-
tions of the theorem. Dependencies of variables on T∗ will not be declared
explicitly. The finite set of nodes of T∗ is denoted by K∗, and the union of
all contained matrix products by A∗ :=

⋃
K∈K∗ AK . The corresponding set

of completely positive index vectors is

I∗ := {I ∈ I : AI ∈ A∗}.
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That is, {AI : I ∈ I∗} = A∗ and K∗ ∩ I ⊆ I∗.
The index vectors in K are ordered completely by setting K < K ′ for

|K| < |K ′|, and applying lexicographic order for index vectors of equal length.
To any completely positive index vector I ∈ I \ {∅}, we assign the following
two objects:

• The I∗-maximal prefix

M(I) := argmax (I∗ ∩ P(I))

of I is defined as the longest prefix of I which is contained in I∗.

• The K∗-maximal node

N(I) := max{K ∈ K∗ : AM(I) ∈ AK}

of I is defined as the maximal node in K∗ with the property that the
according set AN(I) contains the product AM(I) corresponding to the
I∗-maximal prefix of I.

We note that, in general, M(I) is not a node of T∗ while N(I) is by definition.
On the other hand, N(I) is generally not a prefix of I. Further, M(I) is
completely positive by definition, coding the singleton {AM(I)}. In contrast,
N(I) may have negative entries, then coding a denumerable set of products
which contains AM(I). If I is a node of T∗, then M(I) = I if and only if I is
completely positive.

Further, for any I ∈ I \ {∅}, the length of the I∗-maximal prefix M(I) is
at least 1 because the first entry of I is necessarily a child of the root of T∗.

Lemma 4.1. If I 6∈ I∗, then its K∗-maximal node N(I) is a 1-bounded leaf
of T∗.

Proof. Let P := M(I) and K := N(I) denote the I∗-maximal prefix and
the K∗-maximal node of I, respectively. First, assume that K has positive
children. Writing I = [i1, . . . , ik] and P = [i1, . . . , i`], we know that `+ 1 ≤ k
because I 6∈ I∗. Since, by assumption, positive children always come as a
complete set of m siblings, K ′ := [K, i`+1] ∈ K∗ is a node of T∗. Consider
the prefix P ′ := [i1, . . . , i`+1] of I. Then

AP ′ = Ai`+1
· AP ∈ Ai`+1

· AK = AK′ ⊂ A∗.

This implies P ′ ∈ I∗, contradicting maximality of the prefix P in I∗.
Second, assume that K has a negative child K ′ = [K, j] for some j < 0.

Since Aj = {AkJ−j : k ∈ N0} contains the identity matrix, we have AP ∈
AK ⊂ AK′ , contradicting maximality of K.
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Third, assume that K is a covered node. Thus, by definition, K = [Q,S]
for some S ∈ I \{∅} and AP ∈ AK ⊆ AQ. By properties of S, Q has positive
children. Again, the argument used in the first part of this proof yields a
contradiction to maximality of the prefix P .

The first two cases imply that the node K is one of the leaves of T∗. These
are either 1-bounded or covered, the latter being excluded by the third case.
�

The I∗-maximal prefix partition P1, . . . , Pr of I ∈ I \ {∅} is characterized
by

I = [P1, . . . , Pr]

P` = M([P`, . . . , Pr]), ` = 1, . . . , r.

Algorithmically, the vectors P` can be determined by a recursive process,
starting from P1 = M(I): Regard the complementary suffix of I respective
to prefix P`. Then P`+1 is its I∗-maximal prefix. The algorithm terminates
finding a I∗-maximal prefix Pr = M(Pr), which implies Pr ∈ I∗. The number
r cannot exceed |I| because I∗-maximal prefixes of non-empty vectors have
length ≥ 1. Lemma 4.1 provides information on the I∗-maximal prefixes
P1, . . . , Pr−1, while the suffix S = Pr is covered by the following result:

Lemma 4.2. There exists a monotone increasing polynomial p : N0 → R,
depending only on A and T∗, such that

‖AS‖ ≤ p(|S|)

for any S ∈ I∗.

Proof. Let B := {A1, . . . , Am, AJ1 , . . . , AJn}. Since ρ(B) ≤ 1 for all B ∈ B,
the entries of powers Br grow at most in a polynomial way. That is, there
exists a monotone increasing polynomial q : N0 → [1,∞) with

‖Br‖ ≤ q(r), B ∈ B, r ∈ N0.

Let h := max{|K| : K ∈ K∗} denote the height of T∗. Then p := qh is
also a monotone increasing polynomial on N0. For S ∈ I∗, the product AS
is member of the set AK for some K = [k1, . . . , k`] ∈ K∗, and thus can be
written as

AS = Br`
` · · ·B

r1
1 ,

where ri ∈ N0, Bi ∈ B, and Bri
i ∈ Aki . The exponents are bounded by

ri ≤ |S|, and the number of factors by ` ≤ h. Hence,

‖AS‖ ≤
∏̀
i=1

‖Bri
i ‖ ≤

∏̀
i=1

q(ri) ≤ q(|S|)` ≤ p(|S|),
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as stated. �

Now, we are prepared to accomplish the proof of Theorem 3.3:

Proof. Let I ∈ Ik be any completely positive index vector, and P1, . . . , Pr
its I∗-maximal prefix partition. Then

AI = APr · APr−1 · · ·AP1 .

For i = 1, . . . , r− 1, [Pi, . . . , Pr] /∈ I∗ and APi ∈ AN([Pi,...,Pr]) by construction.
So,

‖APi‖ ≤ ‖AN([Pi,...,Pr])‖ ≤ 1

due to Lemma 4.1.
A bound on the norm of Pr is given by Lemma 4.2. By monotonicity of

the polynomial p and |Pr| ≤ |I| = k, we obtain

‖AI‖ ≤ p(|Pr|) ≤ p(k).

Hence, by (2),

1 = max{ρ(AJ) : J ∈ J } ≤ ρ̂(A) ≤ k
√
p(k).

As k →∞, the right hand side converges to 1, thus verifying the claim. �

4.2. Proof of Theorem 3.5

Let I := (ik)k∈N denote a sequence of positive indices ik ∈ {1, . . . ,m}.
Adapting notation in the obvious way, we denote prefixes of I by Ik :=
[i1, . . . , ik] ∈ P(I). Further, J∞ := [J, J, . . . ] is the sequence obtained by
infinite repetition of J . If ‖AIk‖ > 1 for all k ∈ N0, then I is called an infinite
path. The following Lemma provides information about the structure of such
a path:

Lemma 4.3. Let J be a dominant generator of the irreducible family A with
spectral gap at 1. Then any infinite path has the form I = [P, J∞] for some
prefix P ∈ I.

Proof. Since A is product bounded, there exists a convergent subsequence
B` := AIk(`) , ` ∈ N0, with limit B∗ := lim`B`. Let λ ∈ N and L`,λ ∈ I such

that
[
Ik(`), L`,λ

]
= Ik(`+λ) for ` ∈ N0. Then

B`+λ = C`,λB`, C`,λ := AL`,λ , ` ∈ N0.

The right hand side of

‖(C`,λ− Id)B∗‖ = ‖C`,λ(B∗−B`)+B`+λ−B∗‖ ≤ cA‖B∗−B`‖+‖B∗−B`+λ‖
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tends to 0. Thus,
lim
`→∞

C`,λB
∗ = B∗.

By assumption, ‖B`‖ > 1 for all ` and hence ‖B∗‖ 6= 0. So, recalling (6), the
upper equality shows that there exists `0 ∈ N such that ρ(C`,λ) > q for all
` ≥ `0. Since J is dominant, we obtain by definition

L`,λ = S`,λJ
r`,λP`,λ, ` ≥ `0,

for partitions [P`,λ, S`,λ] = J . Substituting this representation into [L`,1, L`+1,1] =
L`,2 yields

S`,1J
r`,1P`,1S`+1,1J

r`+1,1P`+1,1 = S`,2J
r`,2P`,2.

This is possible only if P`,1S`+1,1 = J , implying P`,1 = P`+1,1 and S`,1 = S`+1,1.
That is, P`,1 = P`0,1 and S`,1 = S`0,1 for all ` ≥ `0. We recall B0 := AIk(0) and

abbreviate ri := r`0+i,1, P̃ := P`0,1, S̃ := S`0,1 to find

I = [Ik(0), S̃, J
r0 , P̃ , S̃, Jr1 , P̃ , . . . ] = [Ik(0), S̃, J

∞],

and the claim follows with P := [Ik(0), S̃]. �

While the lemma above makes no assumptions concerning the underlying
norm, the next one shows that the V -norm ‖ · ‖V is special.

Lemma 4.4. If A is irreducible with spectral gap at 1, then there is no in-
finite path with respect to the V -norm.

Proof. Assume that there exists an infinite path. According to the previ-
ous lemma, it is given by I = [P, J∞] with J being a dominant generator.
The corresponding limit of matrix products S := limk A[P,Jk] exists because
Λ∞ := limk Λk = diag([1, 0, . . . , 0]) exists. Since ‖AJk‖V = ‖Λk‖1 = 1
for k sufficiently large, P cannot be empty. In this case, we know that
‖A[P,Jk]‖V > 1 and ρ(A[P,Jk]) ≤ q < 1 for all k ∈ N. Hence, ‖S‖V ≥ 1 and

ρ(S) ≤ q. With T := AP , the matrix S̃ := W tSV is given by

S̃ = Λ∞W tTV =


wt

1Tv1 wt
1Tv2 · · · wt

1Tvd
0 0 · · · 0
...

...
...

0 0 · · · 0

 .
Since S and S̃ are similar, we have |wt

1Tv1| = ρ(S̃) = ρ(S) < 1. Further,
recalling ‖w‖2 = 1 and ‖vj‖2 ≤ c−1A , we find |wt

1Tvj| ≤ ‖wt
1‖2 ‖T‖2 ‖vj‖2 < 1

for j ≥ 2. Thus, we obtain the contradiction 1 ≤ ‖S‖V = ‖S̃‖1 < 1. �
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The lemma enables us to prove Theorem 3.5:

Proof. Let T∗ be the largest subtree of T with the following properties: ∅ is
contained as a node, all nodes are completely positive and each 1-bounded
node is a leaf. Assuming that the set K∗ of nodes is infinite, we define
K′ ⊂ K∗ as the set of nodes which are prefix of infinitely many other nodes
in K∗. Then K′ is not empty because the root ∅ belongs to it. Further, if
K ∈ K′, then there exists at least one child [K, k] ∈ K′. That is, the recursion

ik := min{i ∈ I1 : [i1, . . . , ik−1, i] ∈ K′}

defines an infinite path I = (ik)k∈N, contradicting Lemma 4.4. �

5. Examples

In this section, we illustrate some aspects of our method by considering
a simple model problem. Let A = {A1, A2} with

A1 =

[
10
9

1
3

−1
3

0

]
, A2 =

[
0 1

5

√
1− ε

−1
5

√
1− ε 26

25
− ε

]
.

Then ρ(A1) = 1 and ρ(A2) = 1−ε. All trees will be constructed with respect
to the maximum absolute row sum norm ‖ · ‖∞.

For ε = 1
8
, the family A has a dominant generator J = [1], leading to a

finite tree that satisfies the conditions of Theorem 3.3, i.e., ρ̂(A) = 1. The
tree is visualized in Figure 1 (left).

For ε = 0, both matrices A1, A2 have spectral radius 1. Hence, A does
not have a spectral gap at 1. While this case is explicitly excluded in [GP13],
Figure 1 (right) shows the corresponding tree according to Theorem 3.3 with
generators J1 = [1], J2 = [2], thus proving ρ̂(A) = 1 also in this case.

The asserted benefits of generators J with ρ(AJ) < 1 become apparent
when considering small values of ε. For ε = 0.01, the spectral radius of
A2 is 0.99. In principle, it is sufficient to use only the generator J1 = [1],
see Figure 2 (left). However, Figure 2 (right) shows that the depth of the
resulting tree is reduced significantly when using the additional generator
J2 = [2]. This is because the slow decay of norms of matrix powers ‖Ak2‖
is subsumed in the single negative node marked by a triangle. For smaller
values of ε, the effect becomes even more drastic. For instance, ε = 0.001
leads to depth 224 when using a single generator, while the two generators
still yield the same trim pattern shown in Figure 2 (right).
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Figure 1: Tree for ε = 1/8 (left) and ε = 0 (right) according to Theorem 3.3. Colors
and shapes of markers indicate properties of nodes: gray , 1-bounded, white , covered,
square , negative child wrt. generator J1 = [1], triangle , negative child wrt. generator
J2 = [2], black , other.
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Figure 2: Tree for ε = 0.01 using a single generator J1 = [1] (left) and two generators
J1 = [1], J2 = [2] (right).
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6. Conclusion

We have presented an alternative to known algorithms for rigorous certi-
fication of the JSR of a finite set of matrices. It is based on the observation
that existence of a certain finite tree with nodes representing sets of matrix
products implies validity of the FP for a given set of matrices. Such trees
can be searched automatically by computer programs by a variant on depth-
first search. Details of such an algorithm will be presented in a forthcoming
report. We have to acknowledge that the run-time of our current implemen-
tation cannot compete with the impressive results of Protasov, Guglielmi
and others. However, the main advantage of our method is the fact that it
can cope with situations where more than one generator is satisfying the FP.
Even reducibility of the set of matrices is not mandatory, though favorable
in applications. Problems revealing a spectral gap at 1 are guaranteed to be
decidable by our algorithm when choosing the norm appropriately.
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