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Abstract

We prove that all compact operators acting on Lp(R) belong to the
algebra generated by the operator of multiplication by the characteris-
tic function of the positive half-axis and by the convolution operators
with continuous generating function. This result, together with the
similar classical result on the algebra generated by the operators of
multiplication and the singular integral operator, is then used to prove
that certain ideals of compact-like operator sequences in infinite prod-
ucts of Banach algebras are included in the algebra generated by con-
volution and multiplication operators and the finite section projection
sequence.

1 Introduction

In [8], we studied the finite sections method for operators which are com-
posed by operators of multiplication by a piecewise continuous function,
operators of (Fourier) convolution by a piecewise continuous Fourier mul-
tiplier, and by a certain flip operator. This class of operators is extremely
large; some prominent members of this class are Toeplitz plus Hankel op-
erators on Hardy spaces Hp, and Wiener-Hopf plus Hankel operators on
Lebesgue spaces Lp. The techniques we used to attack the stability prob-
lem for these operators were of algebraic nature; for example the stability
of a sequence is equivalent to the invertibility of an associated element in a
suitably constructed Banach algebra (some details will be given below).

∗The authors are grateful to Peter Junghanns for stimulating discussions and for bring-
ing the reference [4] to their attention. They also wish to thank Guida Preto, who read the
manuscript and gave suggestions for its improvement. This work was partially supported
by CEAF-IST, under FCT project PEst-OE/MAT/UI4032/2011.
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At some point in [8] we needed that certain sequences with very special
properties (the sequences of compact type, mentioned in the title of the pa-
per) belong to our algebra and form a closed ideal there. Roughly speaking,
the only reason why we needed these sequences was to be able to factor
them out. That’s why we decided not to spend much time with them; we
just made our algebra a little bit larger by including all desired and needed
sequences by hand. Although this practice was successful, we were not sat-
isfied with it. The question remained if the enlargement of the algebra was
really necessary, or if the needed sequences were already contained in the
smaller original algebra.

Questions of this type occur frequently in operator theory and numerical
analysis. For a concrete example, suppose we are interested in the Fredholm
theory of singular integral operators aI+bS. Here I is the identity operator,
a and b are operators of multiplication by (say, continuous) functions, and
S is the singular integral operator

(SΓu)(x) :=
1

πi

∫
Γ

u(y)

y − x
dy, x ∈ Γ, (1.1)

with the integral understood in the sense of the Cauchy principal value. It
is well-known that this operator is bounded on Lp(Γ) if 1 < p <∞ and if Γ
is the unit circle T in the complex plane C or the real line R, for instance.

Since the Fredholm property of a bounded operator A on Lp(Γ) is equiv-
alent to its invertibility modulo the ideal of the compact operators on Lp(Γ),
and since invertibility is typically studied in algebras which should not be
too large, this leads naturally to the question: Is the ideal of the compact
operators contained in the smallest closed algebra which contains all opera-
tors aI + bS we are interested in? In this setting, the answer is well known
and turns out to be YES, and the following is a prototype of results that we
will meet in this paper.

Theorem 1.1. The ideal of the compact operators on Lp(Γ) is contained
in the smallest closed algebra which contains all singular integral operators
aI + bS with a, b continuous on Γ if Γ = T and continuous on the one point
compactification of Γ if Γ = R.

So we decided to attack the above mentioned problem again, and after
some efforts we were indeed able to show that the original algebra was
already large enough to include all needed sequences. On the way to this
result we will encounter a lot of results in the same spirit, both in the context
of operator theory and of numerical analysis.
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Throughout this paper, we let 1 < p < ∞. Moreover, for a Banach
space X, we denote the Banach algebra of all bounded linear operators on
X by B(X) and the set of the compact operators on X by K(X). If A is a
non-empty subset of B(X) then algA and clos algA stand for the smallest
subalgebra and for the smallest closed subalgebra of B(X) which contain all
operators in A, respectively.

2 On the unit circle T

We start our tour on the unit circle T in the complex plane C. Let PT stand
for the algebra of all trigonometric polynomials on T. We write the elements
of PT as

+∞∑
r=−∞

frt
r, fr ∈ C,

where only a finite number of the fr do not vanish. Throughout what follows
we suppose that α ∈ R is such that

0 <
1

p
+ α < 1. (2.1)

Let Lp(T, α) denote the space of all Lebesgue-integrable functions f on T
with

‖f‖Lp(T,α) :=

(∫
T
|f(t)|p|1− t|αp dt

)1/p

<∞.

Lemma 2.1. The following statements hold:

(i) PT is dense in Lp(T, α).

(ii) The operator

PT : PT → PT,
+∞∑
r=−∞

frt
r 7→

+∞∑
r=0

frt
r

extends to a bounded linear operator on Lp(T, α).

(iii) Let m ∈ Z. The operator

MT
m : PT → PT,

+∞∑
r=−∞

frt
r 7→

+∞∑
r=−∞

frt
r+m

extends to a bounded linear operator on Lp(T, α), the operator of mul-
tiplication by tm.
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Assertions (i) and (ii) are taken from [1, 1.44 and 5.9], whereas (iii) is
evident since |tm| = 1. We denote the extensions of the operators in (ii) and
(iii) by PT and MT

m again and remark that ‖MT
m‖L(Lp(T,α)) = 1 for m ∈ Z.

For u, v ∈ PT, consider the operator

Ku,v : PT → PT, f 7→ 〈f, u〉 v

where 〈f, u〉 :=
∫
T f(t)u(t) dt.

Lemma 2.2. Ku,v ∈ alg
{
PT,M

T
±1

}
for u, v ∈ PT.

Proof. It is sufficient to prove the assertion for u(t) = tk and v(t) = tl, with
k, l ∈ Z. For these u,v and for f ∈ PT, it is

Ku,vf = 〈f, u〉 v =
〈
f,MT

k 1
〉
MT
l 1 =

〈
MT
−kf,1

〉
MT
l 1

which implies that

Ku,v = MT
l K1,1M

T
−k = (MT

1 )lK1,1(MT
−1)k, (2.2)

where 1 refers to the constant function t 7→ 1 on T. Further,

K1,1 = PT −MT
1 PTM

T
−1. (2.3)

The identities (2.2) and (2.3) imply that Ku,v ∈ alg
{
PT,M

T
±1

}
for all k, l ∈

Z, whence the assertion.

Since PT is dense in Lp(T, α) and in (Lp(T, α))∗ = Lq(T,−α), with
1/p + 1/q = 1, by Lemma 2.1, the operators Ku,v, with u, v ∈ PT, span a
dense subset of K(Lp(T, α)). So we conclude from Lemma 2.2 that

Theorem 2.3. K(Lp(T, α)) ⊆ clos alg
{
PT,M

T
±1

}
= clos alg {PT, C(T)I}.

3 From T to R

Given p ∈ (1,∞), we now specify α := 1− 2/p. Note that then

1 < p <∞⇔ 0 < 1/p < 1⇔ 0 < 1− 1/p < 1⇔ 0 < 1/p+ α < 1

for this special value of α. Hence, the pair (p, α) satisfies (2.1). The basic
observation to pass from T to R is given by the following lemma, whose
proof can be found in [3, Chapter 1, Theorem 5.1] and in [5, page 56].
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Lemma 3.1. The operator

B : Lp(R)→ Lp(T, α), (Bϕ)(t) :=
1

t− 1
ϕ

(
i
t+ 1

t− 1

)
(t ∈ T)

is bounded and invertible. Its inverse is given by

B−1 : Lp(T, α)→ Lp(R), (Bψ)(s) :=
2i

s− i
ψ

(
s+ i

s− i

)
(s ∈ R).

Note that similar operators are used in [1, Section 9.1]. The transforma-
tion this last reference leaves the natural orientations of R and T invariant.

Assertion (i) of the following lemma is evident; assertion (ii) is proved in
[5, page 56] and [5, page 56] again, with the difference that the authors of
the first mentioned reference arrive at B−1STB = +SR (with a plus sign).
For that reason, we sketch the proof here.

Lemma 3.2. (i) B−1MT
mB =: MR

m is the operator of multiplication by
the function s 7→ ( s+i

s−i)
m for every m ∈ Z;

(ii) B−1STB = −SR.

Proof. As already mentioned, we only prove the second assertion. First note
that

(B−1STBϕ)(s) =
2i

πi(s− i)

∫
T

ϕ(ix+1
x−1)

(x− 1)(x− s+i
s−i)

dx. (3.1)

We substitute ix+1
x−1 = t, respective x = t+i

t−i , and

dx

dt
=

(t− i)− (t+ i)

(t− i)2
=
−2i

(t− i)2
.

Note that if t moves on R from 0 to +∞, then x moves on T in the clockwise
direction. Since the standard orientation on T is the counter-clockwise one,
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this gives a minus sign. Thus, (3.1) becomes

(B−1STBϕ)(s) =
−2

π(s− i)

∫
R

ϕ(t)

( t+i
t−i − 1)( t+i

t−i −
s+i
s−i)

−2i

(t− i)2
dt

=
4i

π(s− i)

∫
R

ϕ(t)

(t+ i− (t− i))
(
t+ i− (s+i)(t−i)

s−i
) dt

=
4i

π

∫
R

ϕ(t)

(t+ i− (t− i))((t+ i)(s− i)− (s+ i)(t− i))
dt

=
4i

π

∫
R

ϕ(t)

2i(is− it− it+ is)
dt

= − 1

iπ

∫
R

ϕ(t)

t− s
dt = −(SRϕ)(s).

Corollary 3.3. With PΓ := (I + SΓ)/2 and QΓ := (I − SΓ)/2, one obtains

B−1PTB = QR, B−1QTB = PR.

The following is just a translation of the corresponding results on T
stated in Lemmas 2.1 and 2.2 and in Theorem 2.3.

Lemma 3.4. (i) The set PR := B−1PT is dense in Lp(R).

(ii) For u, v ∈ PR the operator Ku,v : PR → PR, f 7→ 〈f, u〉R v belongs to
alg
{
QR,M

R
±1

}
.

(iii) K(Lp(R)) ⊆ clos alg
{
QR,M

R
±1

}
.

Let J : Lp(R) → Lp(R) denote the flip operator (Jf)(t) := f(−t). It is
well known that

JPRJ = QR, JQRJ = PR (3.2)

and easy to check that

(JMR
mJf)(s) =

(
−s+ i

−s− i

)m
f(s) =

(
s+ i

s− i

)−m
f(s),

whence
JMR

mJ = MR
−m for m ∈ Z. (3.3)

Summarizing Lemma 3.4 (iii) and (3.2)-(3.3) we arrive at the next stop of
our tour.

Theorem 3.5. K(Lp(R)) ⊆ clos alg
{
PR,M

R
±1

}
= clos alg

{
PR, C(Ṙ)

}
.

Here, Ṙ stands for the compactification of the real line by one point ∞.
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4 From R to R by Fourier transform

The next step will lead us to a statement which can be viewed as the Fourier-
symmetric version of Theorem 3.5. We define the Fourier transform for
functions in the Schwartz space by

(Fu)(y) =

∫ +∞

−∞
e−2πiyxu(x) dx, y ∈ R, (4.1)

then its inverse is given by

(F−1v)(x) =

∫ +∞

−∞
e2πixyv(y) dy, x ∈ R. (4.2)

It is well known that F and F−1 extend continuously to bounded and unitary
operators on the Hilbert space L2(R), which we denote by F and F−1 again.
Thus, if A is a bounded operator on L2(R), then the composition F−1AF
is well defined, and it is a bounded on L2(R) again.

We call an operator A ∈ B(L2(R)) a p-Fourier multiplier if F−1AFu ∈
Lp(R) whenever u ∈ L2(R) ∩ Lp(R) and there is a constant cp such that
‖F−1AFu‖p ≤ cp‖u‖p for all u ∈ L2(R) ∩ Lp(R). If A owns this property,
then the composition F−1AF extends continuously to a bounded operator
on Lp(R). We denote this extension by AF and call it the Fourier image of
A. For some general facts on these operators, see [8].

It is well known that PR and MR
±1 are p-Fourier multipliers for every p ∈

(1, ∞) (note that the functions s 7→ ( s+is−i)
m have a bounded total variation

on R; so they are Fourier multipliers by Stechkin’n inequality, see [1, 9.3 (e)])
and that PFR is the operator of multiplication by the characteristic function
of [0,∞). It makes thus sense to consider

alg
{
PFR , (MR

±1)F
}

= alg
{
χ+I, (MR

±1)F
}
.

By Lemma 3.4(ii), this algebra contains all operators KF
u,v with u, v ∈ PR

(here we only use the algebraic properties of the mapping A 7→ AF ). Since

KF
u,vϕ = 〈Fϕ, u〉F−1v =

〈
ϕ, F−1u

〉
F−1v = KF−1u, F−1vϕ,

it is KF
u,v = KF−1u,F−1v, and we conclude that

KF−1u,F−1v ∈ alg
{
χ+I, (MR

±1)F
}

for u, v ∈ PR. (4.3)
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It would follow from this line that clos alg
{
χ+I, (MR

±1)F
}

contains all com-
pact operators, if we would know that the span of

{
KF−1u,F−1v : u, v ∈ PR

}
is dense in K(Lp(R)). This, on its hand, would be clear if we would know
that F−1PR is dense in Lp(R), for every p ∈ (1,+∞). We are going to show
this now.

Recall that PR = B−1PR is generated by the functions

s 7→ 1

s− i

(
s+ i

s− i

)m
, m ∈ Z.

The inverse Fourier transforms of these functions can be calculated using
residue calculus (see the theorem in [7, Section 14.2.1]). What results is
that F−1PR consists of all functions of the form

r(t) =

{
e2πtp1(t) if t < 0
e−2πtp2(t) if t ≥ 0

(4.4)

where p1 and p2 are (algebraic) polynomials. The functions in (4.4) are
dense in L1(R) (see [2, Section I.8]). We need the same property for Lp(R)
with p > 1. It is clearly sufficient to prove this for the semi-axes considered
separately.

Lemma 4.1.
{
e−atf(t) : f a polynomial

}
is dense in Lp(R+) for p > 1 and

a > 0.

Proof. The result is essentially stated in [4]. The argument runs as follows.
Rescaling we can assume that a = 1. Because C∞0 is dense in Lp(R+), it
suffices to show that every function in C∞0 can be approximated in the Lp

norm by functions of the form e−tf(t) with f a polynomial. So let u ∈ C∞0 .
Then etu is still in C∞0 . If now Πn denotes the set of all polynomials of
degree less than or equal to n then, by [4, 2.5.32],

inf
p∈Πn

∥∥etu− f∥∥
Lp(R+,e−t)

≤ Cw(etu, 1/
√
n), (4.5)

where w is a (certain) module of continuity introduced in [4]. Since∥∥etu− f∥∥
Lp(R+,e−t)

=
∥∥(etu− f)e−t

∥∥
Lp(R+)

=
∥∥u− e−tp∥∥

Lp(R+)

and w(etu, 1/
√
n) → 0 as n → ∞, the estimate (4.5) indeed implies the

desired density result.

Corollary 4.2. The following holds for every p ∈ (1,∞):
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(i) F−1PR is dense in Lp(R);

(ii) span
{
KF−1u,F−1v : u, v ∈ PR

}
is dense in K(Lp(R)).

We already mentioned that every operator of multiplication by a contin-
uous function a with bounded total variation on R is a Fourier multiplier.
We denote the closure in the norm of B(Lp(R)) of the set of all operators
(aI)F with a of this form by W 0(Cp), in accordance with the notation in [8].
Thus, W 0(Cp) is a closed subalgebra of B(Lp(R)). The following is then an
immediate consequence of the preceding corollary.

Theorem 4.3. It is

K(Lp(R)) ⊆ clos alg
{
χ+I, (MR

±1)F
}

= clos alg
{
χ+I, W 0(Cp)

}
.

This is the end point on the operator theory side of our tour. We would
not like to stop without mentioning that there is a lot of results of the same
spirit in the literature; see, e.g., [1, 9.9] and [6, Proposition 3.3.1].

5 On the side of numerical analysis

Now we turn to the side of numerical analysis. First we introduce an algebra
the role of which is comparable with that of the algebra B(Lp(R)) in operator
theory. Let E denote the set of all bounded functions A : (0,+∞) →
B(Lp(R)), and write Aτ for the value of A ∈ E at τ ∈ (0,+∞). Sometimes
we will also use the notation (Aτ )τ>0 in place of A. Provided with pointwise
defined operations and the norm

‖A‖E := sup
τ∈(0,+∞)

‖Aτ‖B(Lp(Γ)),

E becomes a Banach algebra, and the set G of all functions G ∈ E for
which limτ→∞ ‖Gτ‖ = 0 forms a closed two-sided ideal of E . Every operator
A ∈ B(Lp(R)) gives rise to a constant function τ 7→ A in E which we denote
by A again. The importance of the quotient algebra E/G stems from the
following elementary, but basic, observation: a function A = (Aτ ) ∈ E is
stable in the sense of numerical analysis if and only if the coset A + G is
invertible in E/G (see, for instance, [10, Section 6.2]).

To state our results we need some more notation. For s ∈ R, let
(Vsu)(x) := u(x − s) be the operator of shift by s on Lp(R), and let Us
be the operator of multiplication by the function x 7→ e−2πixs. For τ > 0
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let Pτ denote the operator of multiplication by the characteristic function
of the interval [−τ, τ ], set Qτ := I − Pτ , and define Rτ , Sτ and S−τ by

(Rτu)(x) =


u(τ − x) if 0 < x < τ
u(−τ − x) if −τ < x < 0
0 if |x| > τ

, (5.1)

(Sτu)(x) =


0 if |x| < τ
u(x− τ) if x > τ
u(x+ τ) if x < −τ

, (5.2)

(S−τu)(x) =

{
u(x+ τ) if x > 0
u(x− τ) if x < 0

. (5.3)

These operators are bounded and have norm 1 on every Lp(R). If χ± denotes
the characteristic function of the positive (negative) semi-axis of R, then

χ±Pτ = χ±V±τχ∓V∓τχ± = χ±V±τχ∓V∓τ = V±τχ∓V∓τχ± , (5.4)

χ±Rτ = Jχ∓V∓τχ±I = χ±V±τχ∓J, (5.5)

χ±Sτ = V±τχ±I, (5.6)

χ±S−τ = χ±V∓τ . (5.7)

Further we adopt our earlier notation and let now clos algM stand for the
smallest closed subalgebra of E which contains all sequences in the subset M
of E . (There will be no confusion because if M consists of constant sequences
only, then clos algM also consists of constant sequences and can, hence, be
identified with a subalgebra of B(Lp(R)).)

The sequences in Theorems 5.1, 5.2 and 5.3 below are the “compact type
sequences” addressed to in the title of the paper.

Theorem 5.1. The sequence (K1 +V−τK2Vτ +VτK3V−τ )τ>0 belongs to the
algebra clos alg

{
χ+ ,W 0(Cp), (Pτ )τ>0

}
for K1, K2, K3 ∈ K(Lp(R)).

Proof. Let K ∈ K(Lp(R)). Then K ∈ clos alg
{
χ+I,W 0(Cp)

}
by Theorem

4.3. Hence, and because the operators in W 0(Cp) are shift invariant,

(V−τKVτ )τ>0 ∈ clos alg
{

(V−τχ+Vτ )τ>0, W
0(Cp)

}
= clos alg

{
(χ[−t,+∞))τ>0, W

0(Cp)
}

= clos alg
{

(Pτ + χ+Qτ )τ>0, W
0(Cp)

}
.

Similarly,

(VτKV−τ )τ>0 ∈ clos alg
{

(Vτχ+V−τ )τ>0, W
0(Cp)

}
= clos alg

{
(χ[t,+∞))τ>0, W

0(Cp)
}

= clos alg
{

(χ+Qτ )τ>0, W
0(Cp)

}
,
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which implies the assertion.

Theorem 5.2. Let K1, K2, K3,K4 ∈ K(Lp(R)). Then the sequence

(RτK1Rτ +RτK2S−τ + SτK3Rτ + SτK4S−τ )τ>0

belongs to the algebra clos alg
{
J, χ+ , W 0(Cp), (Pτ )τ>0

}
.

Proof. First consider (RτKRτ )τ>0 with K compact. Write this sequence as

(Rτχ+Kχ+Rτ ) + (Rτχ+Kχ−Rτ ) + (Rτχ−Kχ+Rτ ) + (Rτχ−Kχ−Rτ ).

By (5.5)-(5.7), the latter is equal to

(χ+Vτχ−JKJχ−V−τχ+I) + (χ+Vτχ−JKJχ+Vτχ−I)

+ (χ−V−τχ+JKJχ−V−τχ+I) + (χ−V−τχ+JKJχ+Vτχ−I)
(5.8)

The first and the last sequence in (5.8) are of the form

(χ+VτK1V−τχ+I) and (χ−V−τK2Vτχ−I), (5.9)

with K1 := χ−JKJχ− and K2 := χ+JKJχ+ compact. These sequences are
in

clos alg
{
χ+ ,W 0(Cp), (Pτ )τ>0

}
.

by Theorem 5.1. The second sequence in (5.8) can be written as

(Jχ−V−τχ+KJχ+Vτχ−I) = (Jχ−V−τK3Vτχ−I)

with K3 := χ+KJχ+ compact. Again by Theorem 5.1, this sequence is in

clos alg
{
J, χ+ ,W 0(Cp), (Pτ )τ>0

}
.

Similarly, the third sequence in (5.8) is in this algebra. Thus, the assertion
is proved for the sequences (RτKRτ ). The other sequences can be treated
similarly.

Theorem 5.3. Let K1, K2, K3,K4 ∈ K(Lp(R)). Then the sequence

(RFτ K1R
F
τ +RFτ K2S

F
−τ + SFτ K3R

F
τ + SFτ K4S

F
−τ )τ>0

belongs to the algebra clos alg
{
J, PR, C(Ṙ), (PFτ )

}
.
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Proof. Let K be a compact operator. Again starting from Theorem 3.5,

we get K ∈ clos alg
{
PR, C(Ṙ)

}
and, since the operators in C(Ṙ) commute

with the Us,

(U−sKUs)s>0 ∈ clos alg
{

(U−sPRUs)s>0, C(Ṙ)
}
.

Now, from

U−sPRUs = U−sW
0(χ+)Us = F−1Vsχ+V−sF

= W 0(χ[s,+∞))

= W 0(χ+)W 0(χ(−∞,−s] + χ[s,+∞))

= PRQ
F
s = PR(1− PFs ),

we conclude that (U−sKUs)s>0 ∈ clos alg
{
PR, C(Ṙ), (PFτ )

}
. Similarly, the

sequence (UsKU−s)s>0 belongs to this algebra. We now continue as in the
proof of the previous theorem to get the assertion.

6 Why we need these results

We will now briefly indicate where and why the results of Theorems 5.1, 5.2
and 5.3 are useful.

We say that a bounded function A : (0,+∞) → B(Lp(R)) converges
*-strongly if it converges strongly as t → ∞ and if the adjoint function A∗

(which takes the value A∗t at the point t) converges strongly on the dual
space as τ →∞. The *-strong limit of A is denoted by s-lim*A.

Let {Wt,•}t∈T be a family of algebra automorphisms with the following
properties:

1. 0 ∈ T, and W0,• is the identity automorphism;

2. ‖Wt,•‖ = 1 for every t ∈ T;

3. Wt,•(A)∗ = Wt,•(A
∗) for every A ∈ E and t ∈ T;

4. s-lim*Wt,•(W
−1
s,•(A)) = 0 for every A ∈ E and t 6= s.

Define now F as the set of all functions A ∈ E with the property that,
for every t ∈ T, the function Wt,•(A) converges *-strongly, and set

Wt(A) := s-lim*Wt,•(A).
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The set F is a closed and inverse-closed subalgebra of E that includes the
ideal G, the mappings Wt act as bounded homomorphisms on F , and the
ideal G is in the kernel of each of these homomorphisms [9, Proposition 4.1].
Moreover, the sets

Jt := W−1
t,• (K) + G, (6.1)

where K is the ideal of compact operators, are closed two-sided ideals of F .
The relation between the ideals Jt and the algebra F can be seen as similar
to the relation between K and B(Lp(Γ)).

Given a family of operators in B(Lp(Γ)) and a sequence of projections
Pτ with complementary projections Qτ := I − Pτ such that s-lim*Pτ = I,
one tries to find a suitable family of compatible automorphisms {Wt,•}t∈T
so that it is possible to characterize invertibility in F/G.

If the family of operators belongs to the subalgebra of multiplication and
convolution operators on Lp(R) generated by piecewise continuous functions,
and if Pτ = χ

[−τ,τ ]I, the operator of multiplication by the characteristic
function of the interval [−τ, τ ], then the relevant automorphisms Wt,• are

W0,• : (Aτ ) 7→ (Aτ );

W−1,• : (Aτ ) 7→ (V−τAτVτ );

W1,• : (Aτ ) 7→ (VτAτV−τ )

(see [9]). This simple picture changes if one also wants to consider Hankel
operators. Then it is necessary to include the flip operator (Ju)(x) := u(−x)
into the family of operators. But because the (constant) sequence (J) is not
included in the algebra F defined by the above family of automorphisms, a
more complex construction is necessary.

Instead of considering only automorphisms in E we consider now also a
homomorphism between the algebras E and E2×2 given by as

W1,• : (Aτ ) 7→
([

Rτ
S−τ

]
Aτ
[
Rτ Sτ

])
(6.2)

(see [8]). In this regard note that[
Rτ Sτ

] [ Rτ
S−τ

]
= RτRτ + SτS−τ = Pτ +Qτ = I.

It is also possible to consider the projection PFτ := F−1PτF associated with
the Fourier finite section method. In this case, the homomorphism is defined
as [8]:

WF
1,• : (Aτ ) 7→

([
RFτ
SF−τ

]
Aτ
[
RFτ SFτ

])
. (6.3)
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Summarizing, the results in Section 5 show that the ideal J1 defined by
(6.1) using the inverse of (6.2) applied to K2×2 belongs to the subalgebra
of F generated by the constant sequences of the singular integral operator
and the operators of multiplication by continuous functions, and the non-
constant projection sequence (Pτ ). The same holds in the Fourier-symmetric
setting, that is the ideal J F1 related to (6.3) is generated by convolution op-
erators with continuous symbol by the operator of multiplication by the
characteristic function of the positive half-axis, and by the projection se-
quence (PFτ ).

Note that we have not proved that the ideal G belongs to the algebra
clos alg

{
PC(R),W 0(PCp), J, (Pτ ), (PFτ )

}
. Thus, Theorems 5.2 and 5.3 do

not imply that the ideals J1 and J F1 belong to that algebra. But the ideal G
can be explicitly introduced and then be factored out, because one is usually
interested in invertibility on E/G. In any case, we have

J0/G, J1/G, J F1 /G ⊆ clos alg
{
PC,PCp,J , (Pτ ), (PFτ ),G

}
/G.
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[4] G. Mastroiano and G.V. Milovanovic. Interpolation Processes. Basic
Theory and Application. Springer-Verlag, 2008.
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