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Abstract We evaluate the economic competitiveness of dedicated and flexible form-
ing technologies under various trends of demand. A taxonomy is developed to cate-
gorize these demands depending on time resolution and level of uncertainty. Further,
the influence of external, technology independent factors is investigated. Discrete op-
timization and dynamic programming are employed to find the optimal technology
selection for each demand scenario. This work is motivated by the current situation
of forming companies, where unexpected variations in demand can heavily affect the
profitability of production technologies.
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1 Introduction

In the last two decades production technology is more and more affected by turbulent
company surroundings. Product life cycles are shortening and the number of product
variants is increasing [9]. This is triggered by an increasing speed of technological
progress, customer demands for individualized products as well as global produc-
tion [26]. The possibility to quickly exchange information and low transport times
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Fig. 1 Variant development for passenger vehicles [15]

strengthen the influence of global competition [26]. As a consequence of the short-
ening product life cycle, process life cycle and equipment life cycles diverge, which
results in a challenge for process and equipment planning [19]. While the number
of product variants is increasing, sales volumes are heavily fluctuating and hardly
predictable [9]. Figure 1 displays the development of variants considering the exam-
ple of passenger cars. While in the sixties only three variants were available today
a broad number niche vehicles exists. For the future a further increase to between
forty and fifty variants is expected [27]. Figure 2 shows sales volumes of some exem-
plary SUVs. It becomes apparent that the sales volumes are subject to high fluctuation
which makes forecasting difficult and often inaccurate.

Besides uncertainties of the sales market a broad range of other influence factors
exists. Varying prices, qualities and availabilities of raw materials and semi-finished
products represent uncertainties of resources. Varying process characteristics e.g. due
to wear as well as the qualification level of employees are influence factors that sub-
stantially result from inside the company. Environmental influence factors are e.g.
changes in the legislation or in certification standards which can affect the demand
for specific products or the processes a company may employ [20].

Forming technology as a branch of production technology is usually focused on
mass production. The according production methods and processes are characterized
by a very high productivity and utilization of material. With regard to the emerging
shortage of energy and raw material forming technology provides the prerequisites to
serve mass markets, as they are emerging in e.g. India or China, in an efficient way.
On the other hand, the highly specialized processes require high invests in machines,
high development efforts for tools as well as large set-up times. This hinders a quick
response to changing market requirements such as changing products, product vari-
ants or lot sizes. As a consequence in the past many forming companies focused on
a narrow product spectrum and few customers. A survey among the members of the
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Fig. 2 Sales figures for suburban vehicles [15]

industrial association of sheet metal forming companies in Germany showed that the
average revenue per customer is two million Euro. At average 80% of the revenues
are made with 17.3% of the customers. 81% of the sheet metal forming companies
are depending on customers from the automotive branch.1

Against the background of the described market developments the forming indus-
try is now confronted with the challenge to master the turbulent market surrounding
and to simultaneously remain its high productivity and efficiency. Flexible production
systems provide an approach to meet this challenge. According to Slack, flexibility is
defined as the bandwidth of conditions at which a system can be operated [23]. These
may allow the cost efficient adaption of production lot sizes as well as adaptions of
the product spectrum or quality. Accordingly, the economic evaluation of investments
in flexible production systems considering uncertainty is crucial.

2 Evaluation of investment opportunities under uncertainty

In the following a short overview of evaluation methods for investments is given.
These are evaluated in regard to their adequacy for the economic assessment of flex-
ible and dedicated machines in a forming company. This usually faces a two stage
problem. It has to consider a strategic as well as an operational aspect making invest-
ment decisions. On the one hand it has to identify the optimal machine and on the

1 The survey was conducted by the Institute of Production Engineering and Forming Machines of the
Technische Universität Darmstadt in cooperation with the German industrial association of sheet metal
forming companies. The survey was returned form 33 companies representing a sample of more than 5%
of the industry.
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other hand it has to find the optimal employment for its machine portfolio. Thereby,
information which is gathered after the time of the initial investment has to be con-
sidered. Technical interdependencies between varying influence factors, such as the
demand, and the systems possibilities to react have to be considered.

The discounted cash flow (DCF) method is a standard for the evaluation of in-
vestments under uncertainty [11]. The net present value (NPV) of an investment is
calculated using a risk free discount rate. To consider uncertainty a risk premium is
added to the risk free rate lowering the net present value. Hence, probability distribu-
tions are reduced to a single figure often oversimplifying a risk evaluation. Further,
the DCF method does not consider a company’s option to react after an investment
has been made. DCF assumes the passive commitment to an operation strategy, which
is made at the time of the investment. Information that is gathered after the time of
the initial investment is not regarded. This often leads to an undervaluation of the
NPV [28]. Thus, the standard DCF method is not suitable for analyzing investments
in uncertain markets. The internal rate of return (IRR) is the discount rate which
results in a NPV of zero. To consider uncertainty, future payments can be adjusted
by a risk premium. As a modification of the NPV method the IRR exhibits similar
disadvantages as those described for the DCF.

In the real option approach, evaluation methods for financial options are applied
to investments in production facilities [16]. In case of demand modeling, the value
of the investment depending on the demand structure is defined as an underlying.
The possibility to act after the time of the initial investment is represented in the
model by the possibility to exercise or abandon an option [3]. Abele et al. [1] proved
that the real option can be applied to value the flexibility of production machines.
Different types of production system flexibility such as machine or routing flexibility
can be represented by different types of options and modeling strategies [4]. The
Black and Scholes Model is commonly employed for option pricing which assumes
a geometric Brownian motion of the underlying [17]. This is, however, not adequate
for many investment situations of production companies. The demand for a product
may depend on unexpected occurences such as the outcome of an election, which
cannot be sufficiently described by only considering an expected value and a standard
deviation. Real option modeling using decision trees on the other hand may not be
suitable for the calculation of complex problems.

The standard methods described above do not consider technical aspects. Against
the described background, optimization under uncertainty may constitute a beneficial
extension. A model can be developed which reflects technical production conditions.
Hence, pay-offs need not be estimated, but can be calculated considering varying
influence factors. In particular, the optimal solution of such a model does not only
consist of a selection of machines from a given portfolio, but also of an optimal uti-
lization strategy for these machines in every considered market scenario. Thereby, it
can be assured that the flexibility potential of each machine is optimally exploited.
Furthermore, uncertainty can be handled in different ways, e.g. by optimizing an ex-
pectation value or by doing a worst case analysis. Adaptions to the model are straight-
forward, which allows for later changes of the target functions or the consideration
of enhanced technical aspects as well as market conditions.
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3 Problem Statement

In the context of increasingly uncertain markets and the recent development of flex-
ible production systems, there is a need to study the worth of flexibility for an in-
vestment. Some authors have already investigated this problem, e.g., Gupta et al.
[13] modeled a two-stage stochastic program to find the optimal mix of dedicated
and flexible manufacturing capacities, and Van Mieghem [25] studies the optimal
investment in flexible manufacturing capacity based on several market parameters.
However, these approaches are fairly theoretical. In this paper, we present a similar,
but more practice-oriented mathematical model to support the investment decision
between dedicated machines and flexible production systems, and verify this model
in a case study with a realistic machine portfolio.

The basic assumption of our investigation is that a company wants to establish
a new product or enter a new market. Assuming it has no capable process chains
or the existing ones are working at full capacity, the company has to invest in one
or several new machines. Thereby, it has to ensure that the investment ammortizes
over a certain period of time, and, if possible, a worthwhile profit should remain.
However, the company faces a market with unknown price structures, unclear costs
of production and uncertain customer demands. Which technology option – cheaper
dedicated machines or a more costly and more flexible production system – is the
best investment? To answer this question, we must formalize a) the properties and
costs of the production technologies, b) the market characteristics and the customer
demand and c) our assumptions on the course of actual production.

The value of a flexible investment may heavily depend on the customer demand.
To that end, our idea is to identify the best investment decision for every possible
demand trend. Of course, we have to concentrate on a restricted feature set of the
demand distribution, but we do not think that a few individual parameters such as
the mean value or the variance of the demand suffice to base a purchase decision on.
That means we have to find a satisfying compromise between versatility and compu-
tational overhead. Therefore, we classify possible demand models by their degree of
abstraction.

Table 1 shows a taxonomy of market demands for a varying time resolution and
levels of uncertainty. The left column of the demand distributions shows how the bor-
der cases of a constant and a very fluctuating deterministic demand trend translate
to the realm of discrete time periods: On the one hand, a fixed demand spans over
several time periods, which corresponds to the use case where operational decisions
are carried out much faster than the demand can vary. On the other hand, it may be
necessary to adjust each production step to a recent change in the demand level. In
practice, a realistic demand distribution will usually have some properties of both
cases, i.e. the demand will change perceptibly over time, but rather slow compared to
operational control. The right column shows the stochastic equivalents of those cases.
Here we have the additional complication, that the demand can only approximately
be predicted, such that the exact value has to be observed near-term. To simplify the
stochastic case in detail, we can assume without loss of generality that each observed
demand attains one of finitely many discrete values and stays constant for the remain-
ing period.
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Table 1 Taxonomy of market demands
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In the long-term production planning often only the deterministic case is con-
sidered. On top of that, a specific demand trend is often solely presumed. In the
following, we are interested in multiple demand patters as in the discrete and coarse
time resolution. We call the grid indicated by gray bars the deterministic demand
grid (DDG) and all possible demand patterns that can possibly result from it will
be evaluated. Afterwards, fluctuating demand scenarios are investigated employing
the stochastic demand grid (SDG) on the same time level, i.e., patterns of the DDG
where each demand level in itself is uncertain.

4 Model Formulation

As a preliminary step, we present a mixed-integer linear program (MIP) [22] for a
deterministic version of the specified problem. That is, we formulate an extension
of a single-product single-machine model [5, 6] with multiple technology variants
to find the best investment decision given fixed market parameters and an upfront
known demand. Thereafter, we discuss how the model can be extended further to
handle uncertain market parameters. We denote index sets and model parameters
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as uppercase letters, whereas indices and model variables are depicted as lowercase
letters.

4.1 A deterministic mixed-integer program

Let Dt be the (exactly) anticipated customer demand for each time period t ∈ T =
{1, . . . ,n}. The production is required to satisfy this demand and can be conducted by
some technology variants m ∈M = {1, . . . ,k} (which may either be dedicated system
or technology options of a flexible system, depending on the parameter set) with
corresponding lot sizes Lm. Production of a machine m in time period t is indicated
by binary variables zt,m.

Excess products (which may result from unsuitable lot sizes or deliberate prepro-
duction) can be stored intermediately. They are remembered by the integer variables
st (for the stock taken over from period t to period t +1). The stock may in principle
be arbitrarily large, however, it causes stock holding costs CH per product and time
period (cf. equation 14). If the demand cannot be satisfied by the current production,
it must be taken from the current stock.

st = st−1 + ∑
m∈M

Lm · zt,m−Dt ∀ t ∈ T (1)

A machine can only produce if it has been set up beforehand, but it can only be
set up if it has been bought. We call a machine that has been set up ready and use the
binary variables rt,m as indicators. Consequently, bm are buying indicators.

zt,m ≤ rt,m, rt,m ≤ bm ∀ t ∈ T, m ∈M (2)

We require that exactly one machine must be ready at each time period, which is
a nontrivial assumption with some implications: On the one hand, at times individual
machines may have to be ready without producing – however, that is indiscriminative
since it does not cause any additional costs (cf. equation 14). On the other hand, two
machines cannot produce at the same time. In case of a flexible production system
this is an obvious requirement, because setting up different tools is mutually exclu-
sive. For dedicated machines this restriction is motivated by the machine’s integration
into the production process – the simultaneous operation of several identical tools in
a process chain is usually regarded as impractical because of synchronization and
maintenance issues and therefore avoided.

∑
m∈M

rt,m = 1 ∀ t ∈ T (3)

The need for machine setups is indicated by the binary variables wt,m, which
describe if machine m undergoes a change from not being ready in time period t−1
to being ready in time period t. This binary product of two readyness indicators can
be reformulated as a set of three linear constraints.

wt,m ≤ rt,m

wt,m ≤ 1− rt−1,m

wt,m ≥ rt,m− rt−1,m

∀ t ∈ T, m ∈M (4)
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The initial investment i is composed of the basic technology costs C0 (at least for
the flexible system) and the indiviual costs CI

m of all necessary machines.

i =C0 + ∑
m∈M

CI
m ·bm (5)

The cash flow in every time period results from the selling price P of products
delivered to the customer less several expenses, which consist of the stock holding
costs (CH ), variable costs of the products (CV

m), fix costs for each machine and (CF
m),

and costs for switching between machines (CS
m). Note that a machine being ready

does not contribute any significant costs on top of it’s fix costs.

ft =P ·Dt −CH · st − ∑
m∈M

CV
m ·Lm · zt,m

− ∑
m∈M

CF
m ·bm− ∑

m∈M
CS

m ·wt,m
∀ t ∈ T (6)

We seek a combination of investment decision and production strategy to max-
imize the net present value, i.e. the profit resulting from the present values (with
respect to the interest rate R) of all cashflows ft after the investment is payed off. Of
course, the project should be rejected in practice if the optimal objective value was
negative – however, we do not require this with an additional model constraint.

maximize NPV =−i+ ∑
t∈T

ft
(1+R)t (7)

The net present value is a linear function of several amounts of money and there-
fore a very suitable objective function for a linear program. Also, if we are interested
in internal rate of return, we can avoid formulating a nonlinear objective function by
iteratively solving this model with varying interest rate R instead.

4.2 Inclusion of Uncertainty

A general shortcoming of linear programs like the presented one is that the input
parameters are static, which amounts to the necessity to make exact predictions about
the future, e.g. about customer demands or selling prices. However, one cannot avoid
or prevent uncertainties of these parameters in practice and thus has to live with a
high risk of misjudging the model input. This hurdle can be overcome with modern
techniques for optimization under uncertainty, such as stochastic programming [18]
or quantified programming [10]. We do not give a formal description, but present the
more intuitive deterministic equivalent program (DEP) [7], i.e. an exponentially large
MIP which has the same first-stage solution as the stochastic version of our original
MIP.

Suppose we want to consider a seldom varying demand, i.e. it is usually constant
but may change at the beginning of each year to one of several possible values. This
results in a total of |S |= #demands #years scenarios (at least if the number of possi-
ble values does not differ between years). Let each scenario have the probability of



Assessment of Flexibility in Forming Technology 9

occurence pσ . On the contrary, operating decisions can be made on a much smaller
scale, e.g. once a day. If we assume all scenarios to be equally likely, the DEP for this
problem takes the following form:

maximize

NPV =−i+ ∑
σ∈S

pσ ·∑
t∈T

f σ
t

(1+R)t (8)

subject to
i =C0 + ∑

m∈M
CI

m ·bm (9)

sσ
t = sσ

t−1 + ∑
m∈M

Lm · zσ
t,m−Dσ

t ∀ σ ∈S , t ∈ T (10)

zσ
t,m ≤ rσ

t,m, rσ
t,m ≤ bm ∀ σ ∈S , t ∈ T, m ∈M (11)

∑
m∈M

rσ
t,m = 1 ∀ σ ∈S , t ∈ T (12)

wσ
t,m ≤ rσ

t,m

wσ
t,m ≤ 1− rσ

t−1,m

wσ
t,m ≥ rσ

t,m− rσ
t−1,m

∀ σ ∈S , t ∈ T, m ∈M (13)

f σ
t =P ·Dσ

t −CH · sσ
t − ∑

m∈M
CV

m ·Lm · zσ
t,m

. . . − ∑
m∈M

CF
m ·bm− ∑

m∈M
CS

m ·wσ
t,m

∀ σ ∈S , t ∈ T (14)

”nonanticipativity constraints controlling the time resolution” (15)

The changes to the determinstic program mainly consist in upper indices σ travers-
ing the set of scenarios S . One distinguishes between the so-called first-stage vari-
ables b (the buying indicator) and i (the investment costs), which have to take the
same value regardless which scenario will occur in the future, and so-called second-
stage variables, which are duplicated for each possible scenario. Since most variables
are second-stage, the DEP has nearly |S | as many variables and |S | as many con-
straints as the original program.

The given formulation without nonanticipativity constraints2 would imply that the
scenarios are completely decoupled. However, this amounts to an oracle, which can
predict the demand for all coming years at once, right after the machines have been
purchased. A more realistic assumption would be a less omniscient oracle, which can

2 The model already includes some nonanticipativity since the first-stage variables take the same value
over all scenarios. However, the given compact-view formulation avoids introducing explicit constraints,
as opposed to a split-variable formulation [24].
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only predict the demand for a single year at the beginnning of each year, without
knowing anything about the more distant future. One can achieve this formulation by
adding more constraints to the DEP, which force some scenario-duplicates of decision
variables to be equal, e.g. zσ1

t,m = zσ2
t,m if the demand trends Dσ1 and Dσ2 do not differ

before the time period t.
Note that market parameters like the selling price and the stock holding costs are

not incorporated as uncertain quantities. We investigate how different combinations
of these parameters influence the optimal investment decision, thus it is instrumental
to iteratively solve several models with varying determinstic values for these param-
eters. Of course, we thereby assume that they can be easier predicted and are more
long-term consistent than the actual customer demand.

5 Solution Approach

The presented MIP has a moderate amount of several thousand variables and con-
straints, and poses no challenge to sophisticated MIP solvers [14] on modern hard-
ware. However, we are going to analyze the influence of various market parameters
and demand trends on the optimal investment decision. This approach is tremen-
dously time-consuming: As to market parameters, we consider various combinations
of selling prices, stock holding costs and interest rates. For each fixed market, we
compare all yearly-varying demand trends for five discrete demand levels and five
years, resulting in 55 = 3125 customer demands. At this point, there are so many
individual MIPs to solve, that the overall computation time makes our analysis in-
tractable. To make matters worse, the stochastic case with three possible demand
levels in each year results in a DEP with approximately 35 = 243 as many variables
and constraints as the original MIP, moving the required computation time out of our
reach. Therefore, we had to introduce further simplifications.

A reasonable way to reduce solution times is to decompose the problem into a
master problem and suitable subproblems. Since the master problem has to be solved
for roughly a million instances, we need to eliminate as much computational over-
head as possible in the subroutines. An interesting observation regarding the deter-
minstic MIP is that for fixed variables b and i (that is, for a fixed investment decision)
all remaining variables are indexed over the time periods, and the only constraints
linking variables of different time periods apply to discrete variables of neighbour-
ing time periods. Thus, the problem structure suggests dynamic programming [8] to
preprocess the optimal production strategy for fixed purchase decisions, fixed market
parameters and fixed demand. The idea works out as follows:

Recall that the investment decision has been fixed and suppose time has already
elapsed till the last time periods. (It does not matter for this argument if the past
production has been optimal or not.) For the last production decision we have to
cope with the currently ready technology variant and with the current stock, but no
other variables of the original problem affect, what the best production decision for
this time period is. (Note that even though the initial amount of money depends on
the previous production, the following decision does not.) Now, we can compute a
mapping φt(rt−1,st−1,Dt , . . .) which specifies the best course of production for each
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possible initial situation, the current demand and the usual model parameters. Given
such a mapping for the last time period, we can reuse it for the second to last time
periods, since we now know the follow-up costs of the residual situation the current
production decision causes. In the first time period, the initial stock is empty and no
machine is ready yet. Therefore, one has to make a single production decision based
on the costs that this decision causes in the following time periods.

Thus, we now have a two-step process of computing a decision mapping and then
resolving the involved costs. The memory needed to save φ is quite high, but grows
only linearly with the number of days processed. The number of intermediate com-
putations is quadratic in the number of technology variants, stock items and demand
levels, but does not depend on the number of time periods. Note that in the original
problem, the number of demand trends grew polynomially with the number of time
periods and exponentially with the number of demand levels. Even though the sub-
problems are still time-consuming, we could cut down the overall computation time
by a substantial amount. However, the arguments hold only in the determinstic case
– for the stochastic version, we had to solve an additional problem.

At each turn of the year, we assumed the demand may change to one of many
possible values. Similar to the transition from a MIP to a DEP, the increase in com-
putational overhead is considerable. We can avoid this penalty by adding the addi-
tional assumption that the stock is not carried between years. (It does not matter if we
force the stock to be used up or if we allow a clearance sale to a reduced price.) This
allows us to decouple the processing of individual years completely, which not only
saves the stochastic overhead, but also reduces the memory usage of the individual
dynamic programs. In terms of the DEP, this stock clearing amounts to trivializing all
nonanticipativity constraints (c.f. equation 15) after the purchase nonanticipiativity:
Since the optimal production strategy does no longer depend on the production in
previous years, there is no real advantage in knowing the exact demand more than a
year in advance.

6 Case Study: Flexibility in Forming Technology

Until now, the notion of dedicated and flexible production systems is still very vague.
In the following, we give a concrete example of a modern flexible production sys-
tem and apply the developed optimization model to assess it’s benefit compared to
comparable dedicated machines.

In different areas of manufacturing such as assembly and chipping, various con-
cepts for flexible production are state of the art. However, machines are either de-
signed for mass production of a limited product spectrum or specialized for small
batch production with predefined tool movement. Especially in forming technology,
machines are either capable to cover a wide demand spectrum or to produce product
variants in an economic way. The driven degrees of freedom (DoFs) for the relative
movement of work piece and tool are analyzed in the following classification (cf.
fig. 3) [12]. It becomes apparent, that with a rising number of DoFs equipment, prod-
uct and process flexibility increases meanwhile demand flexibility decreases. Ma-
chines with a large number of DoFs are downward compatible but their drive systems
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Fig. 3 Forming process classification by used degrees of freedom [12]

are limited in their productivity. For this reason the total flexibility in terms of adap-
tion to changing market conditions is very restricted [21].

In order to resolve this conflict, it is necessary to develop new technologies which
provide the called total flexibility. According to the introduced classification accord-
ing to the number of DoF it is required to establish forming systems which provides
a high quantity of DoF and offers concurrently the suppression of selected DoF if
required. Thereby productive and flexible processes can be realized on a single ma-
chine without the investment for other production systems in case of change overs.
An example for a machine that provides the described possibilities is the so called
3D ServoPress, which will be described in the following. The assembly and the lever
system of a prototype of this machine are displayed in figure 4.

The 3D Servo Press consists of three independent lever systems which are star-
shaped arranged in a 120◦ angle to each other. In the center of the machine two spin-
dles are located which are connected to each lever system. The design of the lever
systems enables a way bound operation of the machine with the eccentric drives, a
force bound mode with the spindles as well as a combination of the two different
operation modes. Implementing the two different operation modes in one machine is
an approach to enable highly productive process with the way bound drive as well as
flexible ram movements with the force bound drive. The applied actuators are servo
motors which are capable to perform a predefined ram motion including for exam-
ple a stand still at the lowest ram position the so called bottom dead center. This
characteristic can be used to adapt the motion profile of the ram to the process re-
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Fig. 4 Prototype of the 3D Servo Press [12]

quirements and to implement for instance joining processes into the process chain.
The star-shaped arrangement of the lever systems enables the 3D Servo Press to per-
form an enlarged movement spectrum of the ram compared to conventional presses.
Examples for flexible processes using these characteristics are presented by Groche
et al. [12].

In order to compare conventional forming machines, which are dedicated for a
limited process spectrum and solely provide a single technology with the 3D Servo
Press as a multi-technology machine with an increased production spectrum, various
technology options were developed to produce a selected work piece. Therefore, in-
fluences on the production process and the selection of the technology option such as
demand scenarios affecting the cost effectiveness of the developed production pro-
cesses are analyzed.

The different production steps as well as the required semi-finished parts and
the work piece are shown in figure 5. Dependent on the current demand situation
respectively the demand forecast, the shown technology options have their individual
economic advantages. In case of a prototype production or small batch series, the
first technology option is economical superior to the second and the third option. The
shown orbital forming process uses a tube as a semi-finished part and the tube is
formed by an operation with 3 DoF before it is removed by an ejector. This process
is characterized by a low investment in the production system but high costs for the
semi-finished part as well as high production cycle times. The second technology
option is often applied for medium lot sizes. The costs for the semi-finished part are
comparable to the orbital forming process. Investments for the production system
including machine and tool as well as the setup-costs are higher than for the first
process but the cycle time is less. The cycle times of the third technology option are
comparable to the second one. The investments for the production system are the
highest among the shown options. The semi-finished part is in this case a part of solid
material, which reduces the material

Using conventional production systems for the shown technology options, differ-
ent production systems with various technological specifications would be required.
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Fig. 5 Example technology options for socket production [2]

In case of changing demand situations, a change-over between different technology
options is essential to ensure an economical production and to meet the customer’s
demand. A change-over between conventional machines is attended by the invest-
ment for the machine itself and tools which are necessary to perform the forming
operations [2].

Due to the above described technological specifications the 3D Servo Press is
capable to perform all shown technology options. For the different technology options
solely new tools are required. Investments in new machines to cover various demand
ranges are not necessary.

6.1 Example Data Set

We focus on just three technology variants: orbital forming, direct tubular impact
extrusion and backward can extrusion. These variants have increasingly higher in-
vestment costs, fix costs and setup costs, but also much larger lot sizes and therefore
lower variable costs. As a rule of thumb, the latter technology variants compensate
for their expensive investment and operation if only the overturn is sufficiently high.
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Table 2 Comparison of the production technologies

production costs in e

# technology variant lot size variable costs setup costs

1 orbital forming 960 1.20 25
2 tubular impact extrusion 24000 1.00 170
3 backward can extrusion 28800 0.80 315

Table 3 Investment costs for machines and tools

investment costs in e fix costs in e

# technology variant dedicated flexible dedicated flexible

1 orbital forming 600000 10000 1320 120
2 tubular impact extrusion 850000 60000 1680 480
3 backward can extrusion 1000000 110000 1800 600

basic technology 900000 1200

Table 2 shows an overview of some examplary capacities and costs, which are chosen
comparable to real production systems. We assume that all values in this table do not
differ between the dedicated machines and the flexible technology.

The acquisitions of dedicated and flexible technologies follow two different philoso-
phies, which are summarized by table 3. In the case of dedicated production systems,
each technology variant is resembled by a corresponding machine that can essentially
be purchased and used as is. For example, if one needs the technology variants 1 and
3, the investment costs sum up to 1.6Me. In the case of flexible production, one needs
to pay a basic cost for the flexible framework even before any technology variant is
selected. Together with the required tool for a production technology, the investment
costs are therefore always higher than their dedicated equivalent. However, the basic
technology is a one-time investment regardless of the number of desired technology
variants. Thus, the total investment for the flexible system with technology variants
1 and 3 boils down to 1.02Me, which is less than for the dedicated counterpart.
This amounts to the flexible production system being a reasonable investment if the
flexibility of multiple technology variants is inevitably needed.

7 Computational Results

With the given machines, we determined for all possible demand patterns and for
different market parameters which technology investment is economically advanta-
geous. Selling prices were varied between 0.5e and 10e, holding costs between
0.01e and 0.1e and the interest rate between 1% and 10%. Depending on the choice
of objective function (NPV or IRR), we will see that some details differ, but the over-
all insights are very similar. On a side note, many general observations are surpris-
ingly in line with the theoretical predictions of Van Mieghem [25], despite his rather
different model assumptions. First of all, we analyze the results for deterministic de-
mand trends.
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7.1 Optimal investment decisions for predictable demand trends

For each fixed combination of selling price, holding costs and interest rate, there are
3125 demand patterns in total. We can summarize the results for these patterns by
computing a “flexibility ratio“, i.e. we determine the fraction of all demand patterns
where the flexible technology with any combination of tools leads to a better NPV
than all combinations of dedicated machines would. Note that when comparing dif-
ferent NPVs, the product selling price can essentially be ignored, since the optimal
production strategy does not depend on it. We must only ensure the price is high
enough that the investment becomes profitable over the given time period.

Figure 6 shows the fraction of flexible technology investments as as function of
holding costs and interest rate. The darker and higher the surface, the more attrac-
tive is the flexible technology compared to it’s conventional alternatives. The choice
between dedicated and flexible technologies seems to strongly depend on the cost of
storage. This seems reasonable, because in general, flexible technologies are better
at adapting their production to the current demand, which results in less products
to store on average. The interest rate on the other side seems to be less important
(the given ranges). At least, one can note a slight decrease of the flexible fraction
for increasing interest rate, and this trend goes on for even larger interest rates. This
is plausible, since a high interest rate suggests that far-future gains and losses are
negligible compared to near-future ones, i.e. a dedicated machine for the near-future
demand is a reasonable investment.

Since changes between realistic interest rates have nearly no influence on the in-
vestment decisions, now we compare the NPV-optimal investment decisions to IRR-
optimal ones. Thereby, the interest rate ceases to be a market parameter, but instead
the selling price becomes relevant, since it affects the ratio between overall profit and
investment cost. As a rule of thumb, the NPV might be a good objective function
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to maximize the returned capital of a single project, while an IRR-optimal purchase
decision might render the project more attractive for investors. From an academical
point of view, we find it interesting to compare both results.

Figure 7 shows the number of IRR-optimal technology selections as a function
of selling price and storage costs. The gray surface depicts the ratio of dedicated ma-
chines, whereas the black surface depicts the flexible machines’ ratio. The shadow
gives the difference of both curves: The darker it is, the more beneficial is a flexible
investment. We see that the ratio of dedicated machines approaches 100% if the sell-
ing price is high and the storage costs are low. However, the ratio of flexible machines
increases with falling selling prices and rising storage costs, and they even become
economically advantageous on average.

Similar to the NPV-optimal investment, high storage costs force both technologies
to adapt their production to the current demand. Otherwise, storage costs and capital
lockup effects hurt the companies’ profit. The influence of the selling price can be
attributed to the internal rate of return’s tendency to favor lower initial investments –
if the products can be sold for a high price, the losses of missing flexibility become
irrelevant compared to the overall profit. Summarizing, a criterion for choosing the
flexible technology seems to be low profit margins.

In the following, we analyze the influence of the demand pattern. One might ar-
gue that it would have been completely sufficient to compare statistical properties of
the demand trend. Therefore, let’s compare the best investment decisions for demand
trends with specific mean values and standard deviations. Figure 8 (top) shows the
fraction of demand trends with the flexible machine being the best choice as a func-
tion of the average demand. The black line depicts the combined fraction over all
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Fig. 8 Technology selection as functions of the demand average and variance

market parameters and the gray line is an example for a fixed selling price and storage
cost. If the average demand is very high or very low, then the dedicated technology
is apparently by far the best choice. In both cases, the demand is nearly constant,
which is exactly what the dedicated machines are designed for. The flexible technol-
ogy takes its highest ratio at an demand mean value of about 1000 units per day. This
is reasonable, since demand trends in this category cannot completely be satisfied by
the smallest dedicated machine (the demand has to be higher than its lot size in about
1-2 years) and the other dedicated machines cause high stock holding costs and cap-
ital lockup effects. Flexible technologies can show their strengths in such transition
regions.
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Figure 8 (bottom) shows the flexible technologies’ fraction as a function of the
demand standard deviation. In the same way as before, the black line is the collective
result over all selling prices and storage costs, and the gray line is an example for fixed
market parameters. We see that the fraction of flexible machines decreases when the
deviation of demand levels approaches zero. This finding is in line with the constant
demand trends of the previous figure. For nonzero standard deviation of the demand
trend, it seems overall as though a higher variance implies a higher fraction of flexible
machines, but the tendency is weak. Thus, the demand standard deviation is no good
indicator for an investment decision, even though it is in widespread use as a measure
of volatility.

We have seen that the mean value and standard deviation of the demand trend can
be utilized as a rough indicator for the investment decision. However, which tech-
nology is the best investment for a given demand cannot be derived from these pa-
rameters alone. We can conclude this from figure 9. For fixed selling prices and fixed
storage costs, it shows a selection of demand trends with a fixed mean value and a
fixed standard deviation, i.e. a set of demand trends which cannot be distinguished in
the previous figures. The trends are grouped by their best technology choice. We do
not see any relevant characteristic based on which one could have manually grouped
them this way. We can summarize the results of our investigation as follows: If the
product margins are high or the demand is more or less constant, a dedicated ma-
chine might be preferred. If the product margins are low, a flexible production system
should be favored in most cases. However, these are only statistical arguments, so to
not take chances, an investor might be better of to optimize the investment decision
for his individual demand forecast. Anyway, we saw that for moderate product mar-
gins and nontrivial demand trends, there’s nothing else for it but to assess the possible
investment alternatives in consideration of the given market situation.
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7.2 Optimal investment decisions for uncertain demand trends

Now we discuss the results for uncertain demand scenarios. Remember that each de-
mand of the five-year demand trend can be one level higher or lower than expected
with a probability of 25% each. An optimal solution regarding the expected objective
value (i.e., an average-case analysis) is certainly the most relevant result for practical
investment decisions under uncertainty, but it might be interesting to also consider a
worst-case analysis. So instead of choosing the technology option which maximizes
the return rate in average, we are also interested in the technology option which max-
imizes the worst possible return rate. That means, this technology option is able to
cope with unexpected changes in the prospected demand and to guarantee a certain
minimal return rate.

Figure 10 shows the changes to the flexible technology fraction compared to the
deterministic case (figure 6). Black bars indicated the fraction’s increase for average-
case-optimal investments and gray bars for worst-case-optimal investments. Appa-
rantly, the flexible technology becomes more appealing if the customer demand can-
not completely be predicted. In detail, hedging against unexpected demand fluctu-
ations seems to be an even better argument for investing in a flexible technology
than maximizing expected profits. While the interest rate again shows only a slight
influence on the statistical outcome, high storage costs favor a large increase of the
already high fraction. Note however that there is a irregularity at 0.08e and 0.09e,
which is caused by a change in the optimal tool selection for several demand trends.
Such effects depend on the actual costs and lot sizes of the production move to other
market parameters if we vary the input data.

Figure 11 shows the change of the number of flexible technology selections com-
pared to figure 7 when optimizing the expected IRR. Again, no production is pos-
sible for very low selling prices. The first impression is that the flexible technology
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becomes more attractive at low selling prices and high storage costs, i.e. at market
parameters where it already was advantageous. However, it’s ratio decreases further
in parameter regions where the dedicated machines have been the better investment in
the determinstic case. That means, even though stochastic demand makes the problem
“harder”, the decision between both technology options becomes “easier“.

Figure 12 shows the new number of technology selections as compared to fig-
ure 7. For the majority of market parameters, there is clearly a best technology option
for almost all possible demand trends. There is only in a small gap with middle-
sized profit margins, where the actual demand pattern seems to have an influence on
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the investment decision. Note that this region of equally-likely investments for both
technology options has moved to higher profit margins compared to the result for
deterministic demands.

That there are still some market parameters where dedicated machines cause a
higher worst-case return rate than a flexible technology essentially means, that they
generate sufficiently high profits such that accepting possible losses by an uncer-
tain demand is preferable to the flexible technology’s higher upfront costs. At mar-
ket parameters, where the flexible technology is worst-case optimal but not the best
average-case choice, the investor should evaluate the actual risk of demand fluctua-
tions and try to enhance his demand forecast. In the case of doubt, he can invest in
the flexible technology, thereby accepting lower expected profits for secureness.

To support this interpretation, figure 13 shows a measure for the risk of each tech-
nology’s investment. (In this illustation, the axes are reversed to depict all bars.) The
investment decision for this plot is based on an average-case optimization for the
IRR, i.e., the amount of black or respectively gray bars can be deduced by comparing
the figures 7 and 9. On the vertical axis, the span of possible return rates which can
result from fluctuations in the prospected demand pattern is given as percentage devi-
ation from the expected internal rate of return. Near the gap between both technology
options, the bars differ by approximately 10% of the expected IRR – regardless of
the actual market parameters. This has an interesting implication: Even if the flexible
technology provides only a slightly better expected profit on average, in particular it
also assures that the profit will not fluctuate as much in the future.
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8 Conclusions

Our goal was to evaluate the economic competitiveness of dedicated and flexible pro-
duction systems under various market parameters. A taxonomy has been developed
to categorize demand trends depending on time resolution and level of uncertainty.
We developed a mathematical model in order to determine the optimal technology in-
vestment by taking the production strategy into account. Input data for this model are
a machine portfolio, given market scenarios, and demand patterns according to the
mentioned taxonomy. To solve the model, conventional integer programming tech-
niques can be applied, but by decomposing the problem and using a dynamic pro-
gramming algorithm, we could speed up the solution process significantly.

The model has been verified by means of a case study from the field of forming
technology comparing dedicated forming machines with the flexible 3D Servo Press.
The results can be summarized as follows: If the demand trend does not vary over
time, a dedicated machine can be employed. If preproduction is disadvantageous
because of high stock holding costs or capital lockup effects, a flexible production
system is more appropriate. The choice between dedicated and flexible technologies
becomes easier if the demand trend is uncertain and this effect becomes stronger in
a worst-case analysis. Even if dedicated machines provide a higher expected return
of investment, the flexible technology promises a smaller risk regarding undesirable
demand fluctuations. Regardless of the choice of NPV or IRR as objective function,
the statistical results about the influence of uncertainty are still valid.

References

1. E. Abele, T. Liebeck, and A. Wörn. Measuring flexibility in investment deci-
sions for manufacturing systems. CIRP Annals-Manufacturing Technology, 55
(1):433–436, 2006.

2. J. Avemann, SO Schmitt, T. Ederer, U. Lorenz, and P. Groche. Analysis of mar-
ket demand parameters for the evaluation of flexibility in forming technology.
Enabling Manufacturing Competitiveness and Economic Sustainability, pages
458–463, 2012.

3. M. Benaroch and R.J. Kauffman. Justifying electronic banking network expan-
sion using real options analysis. Mis Quarterly, pages 197–225, 2000.

4. J. Bengtsson. Manufacturing flexibility and real options: A review. International
Journal of Production Economics, 74(1):213–224, 2001.

5. G.R. Bitran and H. Matsuo. Approximation formulations for the single-product
capacitated lot size problem. Operations Research, pages 63–74, 1986.

6. N. Brahimi, S. Dauzere-Peres, N.M. Najid, and A. Nordli. Single item lot sizing
problems. European Journal of Operational Research, 168(1):1–16, 2006.

7. C.C. Carøe and R. Schultz. Dual decomposition in stochastic integer program-
ming. Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1996.

8. T.H. Cormen, C.E. Leiserson, R.L. Rivert, and C. Stein. Introduction to algo-
rithms. The MIT press, 2001.



24 Ederer · Avemann · Schmitt

9. G. Da Silveira, D. Borenstein, and F.S. Fogliatto. Mass customization: Literature
review and research directions. International journal of production economics,
72(1):1–13, 2001.

10. T. Ederer, U. Lorenz, A. Martin, and J. Wolf. Quantified linear programs: a
computational study. Algorithms–ESA 2011, pages 203–214, 2011.

11. J. Graham and C. Harvey. How do cfos make capital budgeting and capital
structure decisions? Journal of Applied Corporate Finance, 15(1):8–23, 2002.

12. P. Groche, M. Scheitza, M. Kraft, and S. Schmitt. Increased total flexibility by 3d
servo presses. CIRP Annals-Manufacturing Technology, 59(1):267–270, 2010.

13. D. Gupta, Y. Gerchak, and J.A. Buzacott. The optimal mix of flexible and ded-
icated manufacturing capacities: Hedging against demand uncertainty. Interna-
tional Journal of Production Economics, 28(3):309–319, 1992.

14. J.T. Linderoth and A. Lodi. Milp software. Wiley Encyclopedia of Operations
Research and Management Science, 5:3239–3248, 2010.

15. T.P.K. Meichsner. Migrationskonzept für einen modell-und variantenflexiblen
Automobilkarosseriebau. PZH, Produktionstechn. Zentrum, 2007.
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