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Abstract

We consider the theory of very weak solutions of the stationary Stokes system with nonhomoge-
neous boundary data and divergence in domains of half space type, such as Rn

+, bent half spaces
the boundary of which can be written as the graph of a Lipschitz function, perturbed half spaces
as local, but possibly large perturbations of Rn

+, and in aperture domains. The proofs are based
on duality arguments and corresponding results for strong solutions in these domains which
have to be constructed in homogeneous Sobolev spaces. In addition to very weak solutions we
also construct corresponding pressure functions in negative homogeneous Sobolev spaces.
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1 Introduction

Let us consider the stationary Stokes equations for an incompressible fluid

−ν∆u+∇p = f = div F in Ω,
divu = k in Ω,

u = g on ∂Ω,
(1)

with unknown velocity u and pressure p in a domain Ω ⊂ Rn, external force density f and viscosity
ν = 1. It will prove to be convenient later on to write the external force density in divergence form
f = div F . Note that we include nonzero divergence data k. The boundary condition u|∂Ω = g
generalizes the well-known no-slip condition. The main goal of this paper is to set up a notion of
a special class of solutions, the very weak solutions, for unbounded domains of half space type.

The concept of very weak solutions was first introduced by H. Amann [1], [2] for the nonsta-
tionary case and elaborately investigated by R. Farwig, G. P. Galdi, C. G. Simader, H. Sohr and
H. Kozono [5, 6, 7, 8, 15] in the case of bounded and exterior domains, and F. Riechwald [19, 20]
for arbitrary unbounded domains. Very weak solutions are solutions to (1) with data of low reg-
ularity, which are not differentiable except for the existence of the divergence and do not have
finite kinetic energy in general. The main advantage of considering very weak solutions is the fact
that this concept furnishes us with unique solvability even of nonlinear Navier-Stokes systems in a
bounded or exterior domain Ω under Serrin’s condition 2

s + 3
q = 1 for the exponents of the solution

u ∈ Ls(0, T ;Lq(Ω)). One problem in the case of unbounded domains is to ensure the existence of
a unique strong solution of an auxiliary Stokes problem, since there is a duality correspondence
between strong and very weak solutions, as pointed out by K. Schumacher [21, 22]. Therefore, in
this paper we extend a known result on strong solutions for the half space and prove an analogous
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result for the bent half space by using perturbation arguments and for the perturbed half space via
a localization method. Moreover, we consider very weak solutions for aperture domains where the
flux of the fluid through the aperture must be prescribed to ensure uniqueness.

We will use some common notation and terminology. The definitions of the different types of
domains are as follows:

• Rn is the whole space, and Rn+ := {(x1, . . . , xn) ∈ Rn : xn > 0} is the (upper) half space

• a bent half space is a domain of the form Hω = {x = (x′, xn) ∈ Rn : xn > ω(x′)}, where
ω : Rn−1 → R is a Lipschitz continuous function in W 2,1

loc (Rn−1), such that the gradient
∇′ω = (∂1, . . . , ∂n−1)ω is bounded in Rn−1.

• a perturbed half space is a domain of class C1,1 such that Ω\B = Rn+\B for some open ball
B.

• an aperture domain is a domain of class C1,1 such that Ω ∪B = Rn+ ∪Rn− ∪B for some open
ball B = BR(0) ⊂ Rn of radius R and center 0, where

Rn− := {x ∈ Rn : xn < −d}

for some d > 0. Since Ω is connected, we may choose a smooth (n− 1)-dimensional manifold
S ∈ Ω ∩ B such that Ω\S consists of two disjoint perturbed half spaces Ω+ and Ω− with
S = ∂Ω+ ∩ ∂Ω− and Ω = Ω+ ∪ S ∪ Ω−.

Let Ω ⊂ Rn be one of the unbounded domains considered above. We define the space of test
functions

C2
0,σ(Ω) = {w ∈ C2(Ω) : div w = 0, supp w compact in Ω, w|∂Ω = 0},

and formally test the Stokes system (1) with w ∈ C2
0,σ(Ω) to get the identities

−(u,∆w) = −〈g,N · ∇w〉∂Ω − (F,∇w) for all w ∈ C2
0,σ(Ω),

div u = k in Ω, u ·N = g ·N on ∂Ω.
(2)

Here, N denotes the exterior normal vector on ∂Ω.
This motivates the following definition, giving a precise meaning to all the terms in (2). Note

that due to the unboundedness of the domains considered, we have to work with homogeneous
Sobolev spaces and respective dual and trace spaces. In particular, the data on the boundary

lie in the space Ẇ
− 1
q
,q

(∂Ω) with corresponding norm ‖·‖−1/q,q,∂Ω. Moreover, in the main results

we construct the pressure in the space Ŵ−1,q(Ω) with corresponding norm ‖·‖−1,q. For an exact
definition of the functions spaces we refer to Chapter 2.

Definition 1.1. Let n ≥ 2, Ω ⊂ Rn be a half space, a bent half space, a perturbed half space or an
aperture domain. Let furthermore 1 < r < q <∞, r < n, with 1

n + 1
q = 1

r . Then for given data

F ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ Ẇ−
1
q
,q

(∂Ω), (3)

we call a vector field u ∈ Lq(Ω) a very weak solution to (1) if it satisfies the identities (2).

Note that all terms are well defined in their respective sense. In particular, N ·∇w ∈ Ẇ
1
q
,q′

(∂Ω)
for every q ∈ (1,∞). The two last identities of (2) are obtained by testing the equation div u = k
with some scalar-valued ψ ∈ C1

0 (Ω), yielding the variational problem

−(u,∇ψ) = (k, ψ)− 〈g, ψN〉∂Ω. (4)

Since N · ∇w has a vanishing normal component on ∂Ω for functions w from the (solenoidal)
test space C2

0,σ(Ω), we cannot recover the information of the normal component of g via the term
〈g,N · ∇w〉∂Ω.
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With these definitions in mind, the main goal of this paper is to find sufficient conditions to
prove existence and uniqueness of very weak solutions to (1) with data specified in Definition 1.1.
The two main results read as follows.

Theorem 1.2. Assume that one of the following conditions holds.

(i) Half space: n ≥ 2, n
n−1 < q <∞, and Ω = Rn+.

(ii) Bent half space: n ≥ 3, n−1
n−2 < q <∞, and Ω = Hω such that ω satisfies the conditions

‖∇′ω‖∞ ≤ K and ‖∇′2ω‖Ln−1(Rn−1) ≤ K or ‖| · |∇′2ω‖∞ ≤ K, (5)

where the constant K = K(n, q) > 0 is determined in Theorem 3.2.1.

(iii) Perturbed half space: n ≥ 3, n
n−2 < q <∞, and Ω ⊂ Rn is a perturbed half space.

Let 1 < r < n satisfy 1
n + 1

q = 1
r . Then for given data F , k and g as in Definition 1.1, there exists

a unique very weak solution u ∈ Lq(Ω) to (1). This solution satisfies the estimate

‖u‖q ≤ c
(
‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)
(6)

with c = c(n,Ω, q) > 0. Moreover, there exists a pressure p ∈ Ŵ−1,q(Ω) such that −∆u +∇p = f
in the sense of distributions and such that (u, p) satisfy the estimate

‖u‖q + ‖p‖−1,q ≤ c
(
‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)
(7)

with c = c(n,Ω, q) > 0.

The second result deals with aperture domains. In such domains one observes the interesting
effect that the usual boundary condition u|∂Ω = 0 is not sufficient to guarantee uniqueness of the
solution, but has to be completed by the additional flux condition φ̂(u) = α, see (55) below for the
definition of φ̂(u).

Theorem 1.3. Let n ≥ 3, n
n−2 < q < ∞, and let r satisfy 1

n + 1
q = 1

r . Let furthermore Ω ⊂ Rn
be an aperture domain. Then for all α ∈ C and for given data F , k and g as in Definition 1.1,
there exists a unique very weak solution u ∈ Lq(Ω) to (1) with φ̂(u) = α. This solution satisfies the
estimate

‖u‖q ≤ c
(
‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω + |α|

)
(8)

with c = c(n,Ω, q) > 0. Moreover, there exists a distribution p such that −∆u + ∇p = f in the
sense of distributions.

The proofs of Theorem 1.2 and 1.3 are based on duality arguments. Therefore, corresponding
results for strong solutions in homogeneous Sobolev spaces have to be established.

This paper is organized as follows. The function spaces used in this paper are introduced
in Chapter 2, alongside some of their properties. In particular we characterize the trace spaces
of homogeneous Sobolev spaces in domains of half space type. The main results of this paper
and the corresponding results for strong solutions are proven in the Sections 3.1, 3.2, 3.3 and 3.4
dealing with the half space, the bent half space, the perturbed half space and the aperture domain,
respectively.
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2 Preliminaries

2.1 Function Spaces

Let Ω ⊂ Rn be an arbitrary domain. As subspaces of Ck(Ω), k ∈ N0, we consider the space of
k-times differentiable functions with compact support in Ω denoted by Ck0 (Ω) as well as Ck0 (Ω) =
{u|Ω : u ∈ Ck0 (Rn)} and Ck(Ω) = {u|Ω : u ∈ Ck(Rn)}. The dual space of the space of test functions
C∞0 (Ω) is the space of distributions C∞0 (Ω)′. Duality pairing will be denoted by 〈·, ·〉Ω, where the
index may be omitted if there is no danger of confusion.

Now let 1 ≤ q ≤ ∞ and let q′ = q
q−1 be its Hölder conjugate. Then Lq(Ω) and Wα,q(Ω), α ≥ 0,

are the usual Lebesgue and Sobolev(-Slobodeckĭı) spaces with norms ‖ · ‖Lq(Ω) = ‖ · ‖q,Ω = ‖ · ‖q
and ‖ · ‖Wα,q(Ω), respectively. For 1 ≤ q < ∞ and α > 0, the spaces Wα,q

0 (Ω) denote the closure
of C∞0 (Ω) with respect to the norm ‖ · ‖Wα,q(Ω). The dual space of Wα,q

0 (Ω) will be denoted by

W−α,q
′
(Ω). The pairing

∫
Ω uv dx will be referred to by (u, v)Ω, if uv ∈ L1(Ω).

Furthermore, u ∈ Lqloc(Ω) indicates that u ∈ Lq(Ω′) for all bounded domains Ω′ ⊂⊂ Ω, i.e.,
for all Ω′ ⊂ Ω′ ⊂ Ω, and u ∈ Lqloc(Ω) specifies that u ∈ Lqloc(Ω ∩ B) for any ball B. Finally, for a
bounded domain Ω′, we define

Lq0(Ω′) = {u ∈ Lq(Ω′) :

∫
Ω′
u dx = 0}.

In the context of the Navier-Stokes equations, the concept of homogeneous Sobolev spaces
appears naturally when considering unbounded domains. For m ≥ 0 and 1 ≤ q < ∞, they are
defined as

Ẇm,q(Ω) = {u ∈ Lqloc(Ω̄) : Dαu ∈ Lq(Ω), |α| = m}.

Note that by Ehrling’s lemma [12], for each u ∈ Ẇm,q(Ω) it holds that u ∈ Wm,q
loc (Ω) and for

locally Lipschitzian domains Ω even u ∈ Wm,q
loc (Ω̄). We can turn Ẇm,q(Ω) into a separable (and

for 1 < q < ∞ reflexive) Banach space [16], if we identify two functions differing at most by a
polynomial of degree m− 1 and endow the space with the norm

‖u‖Ẇm,q(Ω) =

( ∑
|α|=m

∫
Ω
|Dαu|q dx

) 1
q

. (9)

Consider now the space Ŵm,q(Ω) defined as the completion of C∞0 (Ω) in the norm (9). Note
that Ẇm,q(Ω) and Ŵm,q(Ω) do not coincide in general [11], see also Lemma 3.4.1 below for aperture
domains. However, they do coincide for a large class of unbounded domains, including the whole
space and the half space, as well as perturbed and bent half spaces [10].

The dual space of Ŵ 1,q(Ω) is denoted by Ŵ−1,q′(Ω) = (Ŵ 1,q(Ω))∗ and is endowed with the
norm

‖γ‖Ŵ−1,q′ (Ω) = sup
06=w∈C∞0 (Ω)

| 〈γ,w〉 |
‖∇w‖q

.

We have the following lemma.

Lemma 2.1.1. Let 1 < q < ∞, n ≥ 2 and let Ω be the half space, a perturbed half space, an
aperture domain or the whole space. Then Ŵ 1,q(Ω) is the closure of W 1,q(Ω) ∩ Ŵ−1,q(Ω) with
respect to the norm ‖∇ · ‖q.

Proof. First observe that W 1,q
c (Ω) = {γ ∈ W 1,q(Ω) : supp γ compact in Ω} is a dense subset of

Ŵ 1,q(Ω), since C∞0 (Ω) is a dense subset of Ŵ 1,q(Ω) and C∞0 (Ω) ⊂ W 1,q
c (Ω) ⊂ Ŵ 1,q(Ω). Unfortu-

nately, W 1,q
c (Ω) is not a subset of the dual space Ŵ−1,q(Ω), where we identify γ ∈ W 1,q

c (Ω) with
the functional

〈γ, ·〉 : v 7→
∫

Ω
γv dx, v ∈ C∞0 (Ω),
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and extend it to all v ∈ Ŵ 1,q′(Ω) if 〈γ, ·〉 is continuous with respect to ‖∇ · ‖q′ . Nevertheless, this

continuity is guaranteed for all γ ∈W 1,q
c (Ω) with

∫
Ω γ dx = 0 due to Poincaré’s inequality.

Thus, it is left to show that the elements of W 1,q
c (Ω) with vanishing mean form a dense subspace

of W 1,q
c (Ω) with respect to the gradient norm. It suffices to construct a sequence (γ̃k) ⊂ W 1,q

c (Ω)
with ‖∇γ̃k‖q → 0 and

∫
Ω γ̃k dx = 1 for all k ∈ N, since then for every γ ∈ W 1,q

c (Ω) with mean∫
Ω γ dx =: Mγ , the sequence (γk)k∈N, γk := γ −Mγ γ̃k, converges towards γ with respect to ‖∇ · ‖q

and we have
∫

Ω γk dx = 0 for all k ∈ N. In the case of the half space, a sequence of functions with
the desired properties is given by the cone functions βk : Ω→ R defined via βk(x) = 1

knβ
(
x
k

)
, where

β(r) = n(n+1)
κn

(1 − r)+ and κn = 1
2

∫
∂B1(0) dσ is the surface of the half unit sphere ∂B1(0) ∩ Ω. In

fact, we get

∫
Ω
βk dx =

∫
Ω
β dx = n(n+ 1)

1∫
0

(1− r)rn−1 dr = n(n+ 1)

[
rn

n
− rn+1

n+ 1

]1

0

= 1

and for the gradient norm ‖∇βk‖q = k−1−n+n/q‖∇β‖q → 0 as k →∞, which proves the assertion.
Similarly, one shows the assertion for domains of perturbed half space type, aperture domains and
the whole space.

2.2 Traces of Homogeneous Sobolev Spaces

If Ω is locally Lipschitzian and ∂Ω ∩ B 6= ∅ for an open ball B, then for every u ∈ Ẇ 1,q(Ω) ⊂
W 1,q(Ω ∩ B), 1 < q < ∞, there is a well-defined trace Γ(u) ∈ W 1−1/q,q(∂(Ω ∩ B)) (modulo R).
However, if ∂Ω is noncompact, finiteness of the norm of Γ(u) on the whole of the boundary cannot
be concluded, though. For an unbounded domain of half space type Ω we introduce the notion

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) :=

(∫
∂Ω

∫
∂Ω

|Γ(u)(x)− Γ(u)(y)|q

|x− y|n−2+q
dσx dσy

) 1
q

, (10)

where dσx and dσy are the surface measures with respect to x and y, respectively, and where we
integrate only over those x, y ∈ ∂Ω with |x− y| < d

2 whenever x ∈ ∂Ω± and y ∈ ∂Ω∓ in the case of

an aperture domain. Moreover, we introduce the space Ẇ 1−1/q,q(∂Ω) = Ẇ 1/q′,q(∂Ω) consisting of
all functions for which (10) is finite. Identifying two functions that differ only by a constant, (10)
even defines a norm on Ẇ 1/q′,q(∂Ω) and turns this space into a Banach space [16]. Its dual space
will be denoted by Ẇ−1/q′,q′(∂Ω), the corresponding norm by ‖ · ‖−1/q′,q′,∂Ω.

The following theorem largely due to Kudryavtsev [17], [18] characterizes the space Ẇ 1/q′,q(∂Ω)
as the desired trace space.

Theorem 2.2.1. Let n ≥ 2, 1 < q < ∞ and let Ω ⊂ Rn be the half space, a bent half space, a
perturbed half space or an aperture domain.

(i) For every u ∈ Ẇ 1,q(Ω) the trace Γ(u) is well defined and belongs to Ẇ 1/q′,q(∂Ω). Furthermore,
the trace estimate

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) ≤ c‖u‖Ẇ 1,q(Ω) (11)

holds true for a constant c = c(Ω, q) > 0.

(ii) For every ū ∈ Ẇ 1/q′,q(∂Ω), there exists u ∈ Ẇ 1,q(Ω) such that Γ(u) = ū and

‖u‖Ẇ 1,q(Ω) ≤ c‖ū‖Ẇ 1/q′,q(∂Ω) (12)

with a constant c = c(Ω, q) > 0.

5



Proof. For the assertion concerning the half space, see [17, 18].
For a bent half space Hω where ‖∇′ω‖∞ <∞ it holds for every measurable function v on ∂Hω∫

∂Hω

|v| dσx =

∫
∂Rn+

v(x′, ω(x′))
√

1 + |∇′ω|2 dx′

≤ c
∫
∂Rn+
|v(x′, ω(x′))| dx′ = c

∫
∂Rn+
|ṽ(x̃′, 0)| dx̃′,

(13)

for some constant c = c(n, q, ω) > 0; here we used the transformation (x′, xn−ω(x′)) := x̃ = (x̃′, x̃n)
and the definition ṽ(x̃) = v(x). Furthermore, since ω is a Lipschitz function, we have that

|x′ − y′|n−2+q ≤ |x′ − y′|n−2+q + |ω(x′)− ω(y′)|n−2+q ≤ c|x′ − y′|n−2+q,

with c > 0 depending on the Lipschitz constant of ω. This implies for u ∈ Ẇ 1,q(Hω) that

c1‖Γ̃(u)‖Ẇ 1/q′,q(∂Rn+) ≤ ‖Γ(u)‖Ẇ 1/q′,q(∂Hω) ≤ c2‖Γ̃(u)‖Ẇ 1/q′,q(∂Rn+)

for some constants c1, c2 > 0. Using the notation ∇̃ = (∇̃′, ∂̃n) for the differential operator acting
on the variable x̃ ∈ Rn+, we obtain ∇w = (∇̃ − (∇̃′ω, 0)∂̃n)w̃ and the estimate

c1‖∇̃ũ‖Lq(Rn+) ≤ ‖∇u‖Lq(Hω) ≤ c2‖∇̃ũ‖Lq(Rn+),

cf. also (34), (35) below. Hence (11) and (12) hold due to the half space result and Γ̃(u) = Γ(ũ),
and

‖Γ(u)‖Ẇ 1/q′,q(∂Hω) ≤ c‖Γ̃(u)‖Ẇ 1/q′,q(∂Rn+)

= c‖Γ(ũ)‖Ẇ 1/q′,q(∂Rn+) ≤ c‖ũ‖Ẇ 1,q(Rn+)

≤ c‖u‖Ẇ 1,q(Hω).

(14)

By analogy, for ū ∈ Ẇ 1,q(Hω)

‖u‖Ẇ 1,q(Hω) ≤ c‖ũ‖Ẇ 1,q(Rn+)

≤ c‖Γ(ũ)‖Ẇ 1/q′,q(∂Rn+) = c‖ũ‖Ẇ 1/q′,q(∂Rn+)

= c‖˜̄u‖Ẇ 1/q′,q(∂Rn+) ≤ c‖ū‖Ẇ 1/q′,q(∂Hω).

(15)

To show the assertion concerning the perturbed and the aperture domain let us first sharpen
the result in the case of a bent half space Hω. Let ū ∈ Ẇ 1/q′,q(∂Hω) have compact support in ∂Hω.
Then for every δ > 0 there is an extension uδ ∈ Ẇ 1,q(Hω) with Γ(uδ) = ū that vanishes outside
of a layer of width δ and satisfies the estimate (12) with a constant c = c(Hω, q, δ) > 0. This may
be seen by the following consideration. Take a cut-off function ϕδ ∈ C∞0 (Rn) with ϕδ|Σ = 1 for
Σ ⊂ ∂Hω containing supp ū and ϕδ(x) = 0 for dist(x, ∂Hω) ≥ δ. Denote by u ∈ Ẇ 1,q(Hω) an
extension of ū as in (ii) satisfying (12). Then uδ = uϕδ has compact support, fulfils Γ(uδ) = ū and
satisfies the estimate

‖uδ‖Ẇ 1,q(Hω) ≤ ‖ϕδ∇u‖q,Hω + ‖u∇ϕδ‖q,G
≤ c(‖u‖Ẇ 1,q(Hω) + ‖u‖q,G),

(16)

where G ⊂ Hω is an open, bounded domain containing supp uδ. But since ū = 0 on a subset
Λ ⊂ ∂Hω ∩G with positive measure, ‖u‖q,G ≤ c‖u‖Ẇ 1,q(Hω) by the Poincaré inequality and thus

‖uδ‖Ẇ 1,q(Hω) ≤ c‖u‖Ẇ 1,q(Hω) ≤ c‖ū‖Ẇ 1/q′,q(∂Hω). (17)
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Now we turn our focus to the perturbed half space Ω. Let B = B0 be a ball with center 0 such
that Ω\B = Rn+\ B. Then choose open balls B1, . . . , Bm ⊂ Rn satisfying

Ω ⊂ (Rn+\B) ∪
m⋃
j=1

Bj , (18)

and cut-off functions ϕ0, . . . , ϕm ∈ C∞(Rn) defining a partition of unity such that ϕ0 = 1 outside
of some open ball B′ with B ⊂ B′, ϕ0 = 0 in a neighbourhood of B, supp ϕj ⊂ Bj for 1 ≤ j ≤ m
and

∑m
j=0 ϕj = 1 in Ω. Since Γ(ϕju) = ϕj |∂Ω · Γ(u) for u ∈ Ẇ 1,q(Ω), we have to control only those

ϕj with Bj ∩ ∂Ω 6= ∅, say, for j = 1, . . . ,m′. Furthermore, due to the regularity of the boundary of
Ω, we find for each 1 ≤ j ≤ m′ with Bj ∩ ∂Ω 6= ∅ a function ωj ∈ C1,1(Rn−1) of compact support
such that with the bent half space Hj = Hωj

Bj ∩ Ω ⊂ Hj , Bj ∩ ∂Ω ⊂ ∂Hj ; (19)

we have tacitly rotated and translated the coordinate system depending on j. Finally, let H0 =
Rn+. It should be understood, that if Bj ∩ ∂Ω is empty, then we may assume Bj ⊂ Ω. Given

ū ∈ Ẇ 1/q′,q(∂Ω) and ϕ ∈ C∞(Rn) such that either ϕ or 1− ϕ has compact support we have

‖ϕū‖Ẇ 1/q′,q(∂Ω) ≤ c(‖ū‖Ẇ 1/q′,q(∂Ω) + ‖ū‖q,Σ) (20)

with an open and bounded Σ ⊂ ∂Ω containing supp ϕū or supp (ū − ϕū), respectively. This
follows easily from ‖ū‖Ẇ 1/q′,q(∂Ω) ≤ c‖ū‖Ẇ 1/q′,q(Σ) for functions with compact support in Σ and a

truncation lemma, see [3, Lemmata 5.1., 5.3.], as well as from the triangle inequality applied to
ϕū = ū− (1− ϕ)ū in Ẇ 1/q′,q(∂Ω). But then, with the partition of unity considered above, denote
for ū ∈ Ẇ 1/q′,q(∂Ω) the extension of ϕj ū to the bent half space Hj by uj . Now, if one chooses the
extensions to vanish in a δ-neighborhood of Hj , it follows due to the smoothness of the boundary
of Ω that u =

∑m
j=0 uj is an extension of ū satisfying

‖u‖Ẇ 1,q(Ω) ≤
m′∑
j=0

‖uj‖Ẇ 1,q(Hj)

(17)

≤ c
m′∑
j=0

‖Γ(uj)‖Ẇ 1/q′,q(∂Hj)
= c

m′∑
j=0

‖ϕj ū‖Ẇ 1/q′,q(∂Hj)

(20)

≤ c(‖ū‖Ẇ 1/q′,q(∂Ω) + ‖ū‖q,∂G),

where G ⊂ Ω is a bounded domain as above such that ϕ0 = 1 outside of G. Since ū ∈ Ẇ 1/q′,q(∂Ω)
is defined only up to a constant, we assume that

∫
∂G ū dσ = 0. Then, by the Poincaré inequality

for Sobolev-Slobodeckĭı spaces (see e.g. [13, Theorem 2.6]) we have ‖ū‖q,∂G ≤ c‖ū‖Ẇ 1/q′,q(∂G) ≤
c‖ū‖Ẇ 1/q′,q(∂Ω) with a constant c = c(G,Ω, q) > 0.

For the converse direction, we immediately see by (20) and the Poincaré inequality that

‖ϕjΓ(u)‖Ẇ 1/q′,q(∂Ω) ≤ c‖Γ(ϕju)‖Ẇ 1/q′,q(∂G) ≤ c‖Γ(ϕju)‖Ẇ 1/q′,q(∂Hj)

and thus by (14)

‖Γ(u)‖Ẇ 1/q′,q(∂Ω) ≤ c
m′∑
j=0

‖Γ(ϕju)‖Ẇ 1/q′,q(∂Hj)

≤ c
m′∑
j=0

‖ϕju‖Ẇ 1,q(Hj)

≤ c(‖u‖Ẇ 1,q(Ω) + ‖u‖q,B′∩Ω)

(21)
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with c = c(n, q,Ω) > 0. Since u ∈ Ẇ 1,q(Ω) is defined only up to a constant, we can assume that∫
B′∩Ω u dx = 0. This gives ‖u‖q,B′∩Ω ≤ c‖u‖Ẇ 1,q(Ω) for some constant c > 0.

A similar procedure as the one used for the perturbed half space yields the assertion for the
aperture domain, if one chooses open balls B = B0, B1, . . . , Bm ⊂ R such that

Ω ∪B = Rn+ ∪ Rn− ∪B, Ω ⊂ ((Rn+ ∪ Rn−)\B) ∪
m⋃
j=1

Bj ,

and cut-off functions ϕ+, ϕ−, ϕ1, . . . , ϕm ∈ C∞(Rn) defining a partition of unity with supp ϕj ⊂ Bj
for 1 ≤ j ≤ m and ϕ± = 1 in Ω±\B′ for some open ball B′ with B ⊂ B′, ϕ± = 0 in a neighborhood
of B and in Ω∓. The condition |x− y| < d

2 in the integral norm is crucial in our context to exclude
mixed terms coming from the upper and lower part of the boundary far away from the origin. In
fact, without this condition one cannot expect (20) to be valid for ϕ±, since neither ϕ± nor 1−ϕ±
has compact support. But if we do impose the condition, we may write

‖ϕ±ū‖Ẇ 1/q′,q(∂Ω) = ‖ϕ±ū‖Ẇ 1/q′,q(Σ) +

∫
Σ

∫
(∂Ω\Σ)∩{|x−y|< d

2
}

|ϕ±(x)ū(x)|q

|x− y|n−2+q
dy dx,

with Σ ⊂ ∂Ω containing the support of ϕ±. Because 0 < δ ≤ |x − y| < d
2 , the second term

of the right hand side can be estimated by c‖ϕ±ū‖q,Σ. Since ϕ±ū = 0 on a subset Λ ⊂ Σ of
positive measure, we get by Poincaré’s inequality ‖ϕ±ū‖Ẇ 1/q′,q(∂Ω) ≤ ‖ϕ±ū‖Ẇ 1/q′,q(Σ) and a cut-off

argument on Σ yields (20).
It should be noted, that these results do not depend on the choice of the partition of unity.

This is because the respective norms ϕ‖ · ‖Ẇ 1/q′,q(∂Ω) and ψ‖ · ‖Ẇ 1/q′,q(∂Ω) corresponding to different

partitions of unity (ϕj)0≤j≤m and (ψk)0≤k≤` are equivalent, which can be seen by considering for
every j

‖ϕj ū‖Ẇ 1/q′,q(∂Ω) =
∥∥∑̀
k=0

ψkϕj ū
∥∥
Ẇ 1/q′,q(∂Ω)

≤
∑̀
k=0

‖ψkϕj ū‖Ẇ 1/q′,q(∂Ω) =
∑̀
k=0

‖ϕj(ψkū)‖Ẇ 1/q′,q(∂Ω)

≤ c
∑̀
k=0

‖ψkū‖Ẇ 1/q′,q(∂Ω).

(22)

This proves Theorem 2.2.1.

The considerations above motivate the notation u|∂Ω := Γ(u), ‖u‖Ẇ 1/q′,q(∂Ω) := ‖Γ(u)‖Ẇ 1/q′,q(∂Ω)

and Ẇ 1,q
0 (Ω) := {u ∈ Ẇ 1,q(Ω) : u|∂Ω = 0}.

3 Very Weak Solutions

3.1 Very Weak Solutions in the Half Space

In order to prove Theorem 1.2 in the case of a half space, we introduce a generalization of Definition
1.1 of very weak solutions. Therefore, we generalize a result by Farwig and Sohr [10] concerning
the strong Stokes system

−∆w −∇ψ = v in Ω
∇divw = ∇γ in Ω
w|∂Ω = 0 on ∂Ω,

(23)

where Ω = Rn+ or Ω = Rn, and the boundary condition is not needed when Ω = Rn. The latter
case will be of interest in the proof of Theorem 3.3.1.
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Theorem 3.1.1. Let n ≥ 2, 1 < q < ∞ and let Ω = Rn+ or Ω = Rn. Then for every v ∈ Lq(Ω),

γ ∈ Ŵ 1,q(Ω), there exists a solution (w,ψ) ∈ Ŵ 2,q(Ω)× Ŵ 1,q(Ω) of (23) satisfying

‖∇2w‖q + ‖∇ψ‖q ≤ c (‖v‖q + ‖∇γ‖q) (24)

with c = c(n, q) > 0. The pressure ψ is unique up to a constant and the velocity field w is

(i) unique up to a linear polynomial a+Ax, where a ∈ Cn and A ∈ Cn,n, if Ω = Rn, and

(ii) unique up to a linear term bxn, where b ∈ Cn, if Ω = Rn+.

If 1 < q < n and 1
n + 1

r = 1
q then we may single out a special solution by the condition ∇w ∈ Lr(Ω)

(and up to the additive constant a ∈ Cn if Ω = Rn).

Proof. The proof for data v ∈ Lq(Ω) and γ ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω) in [10] uses an approximation
procedure of the generalized resolvent problem where the equation −∆w − ∇ψ = v in (23) is
replaced by λw −∆w − ∇ψ = v with λ → 0+. Now let v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω). In view of
Lemma 2.1.1 there exists a sequence (γi) ⊂ W 1,q(Ω) ∩ Ŵ−1,q(Ω) such that ‖∇(γ − γi)‖q → 0 as
i→∞. To each (v, γi) corresponds a solution (wi, ψi) ∈ Ŵ 2,q(Ω)× Ŵ 1,q(Ω) satisfying the estimate
(24). This ensures, that both (wi) and (ψi) are Cauchy sequences in their respective spaces and
hence converge to some w ∈ Ŵ 2,q(Ω) and ψ ∈ Ŵ 1,q(Ω). The pair (w,ψ) actually solves the system
(23), because

‖ −∆w +∇ψ − v‖q ≤ ‖ −∆(w − wi)‖q + ‖∇(ψ − ψi)‖q + ‖ −∆wi +∇ψi − v‖q
≤ ‖∇2(w − wi)‖q + ‖∇(ψ − ψi)‖q → 0

as i → ∞; by analogy, we get ∇divw = ∇γ. Furthermore (w,ψ) is easily seen to satisfy the a
priori estimate (24).

Concerning uniqueness, it suffices to consider a solution (w,ψ) ∈ Ŵ 2,q(Ω) × Ŵ 1,q(Ω) to (23)
with data v = 0 ∈ Lq(Ω) and γ = 0 ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω). Since this case has already been
investigated in [10], the proof is complete.

Now we introduce homogeneous Sobolev spaces Ŷ 2,q(Ω) and Ŷ 2,q
σ (Ω) related to the domain of

the Laplacian and the Stokes operator for the system (23), respectively, i.e., the space of solutions

Ŷ 2,q(Ω) = {w ∈ Ŵ 2,q(Ω) : w = 0 on ∂Ω} (25)

and

Ŷ 2,q
σ (Ω) := {w ∈ Ŵ 2,q(Ω) : ∇divw = 0, w = 0 on ∂Ω}. (26)

If 1 < q < n, we include the condition ∇u ∈ Lr(Ω), 1
n + 1

r = 1
q , to single out a unique function;

e.g.,
Ŷ 2,q(Ω) = {w ∈ Ŵ 2,q(Ω) : ∇w ∈ Lr(Ω), w = 0 on ∂Ω}. (27)

All spaces are endowed with the norm ‖∇2 · ‖q. Their dual spaces will be denoted by

Ŷ −2,q′(Ω) := Ŷ 2,q(Ω)∗ and Ŷ −2,q′
σ (Ω) := Ŷ 2,q

σ (Ω)∗,

respectively. Evidently, analogous spaces are well defined Banach spaces when Ω ⊂ Rn is a bent or
perturbed half space. In the case of an aperture domain Ω and 1 < q < n, we will have to add the
no-flux condition φ̂(w) = 0 in the definition of Ŷ 2,q

σ (Ω) (see Section 3.4 below).
The following definition follows a generalization of the concept of very weak solutions due to

Schumacher [21, 22], see also [9].
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Definition 3.1.2. Let n ≥ 2, 1 < q <∞, let Ω = Rn+ be the half space and let F ∈ Ŷ −2,q
σ (Ω),K ∈

Ŵ−1,q(Ω) be given. Then u ∈ Lq(Ω) is called a very weak solution of the Stokes problem with data
F ,K if

−(u,∆w) = 〈F , w〉 , w ∈ Ŷ 2,q′
σ (Ω),

−(u,∇ψ) = 〈K, ψ〉 , ψ ∈ Ŵ 1,q′(Ω).
(28)

Remark 3.1.3. (i) Given u ∈ Lq(Ω) and setting 〈F , w〉 := −(u,∆w) and 〈K, ψ〉 := −(u,∇ψ),
one readily sees that any vector field u ∈ Lq(Ω) is a very weak solution of the Stokes problem
with suitable data. Thus, one cannot define boundary values of solutions in this abstract
setting.

(ii) For n
n−1 < q <∞ and given data F , k and g as in Definition 1.1, F and K defined via

〈F , w〉 := −(F,∇w)− 〈g,N · ∇w〉∂Ω , w ∈ Ŷ 2,q′
σ (Ω),

〈K, ψ〉 := (k, ψ)− 〈g, ψN〉∂Ω , ψ ∈ Ŵ 1,q′(Ω)
(29)

yield elements in Ŷ −2,q
σ (Ω) and Ŵ−1,q(Ω), respectively. This can be seen easily by the embed-

dings Ŵ 1,q′(Ω) ⊂ Lr′(Ω), Ŷ 2,q′
σ (Ω) ⊂ Ŵ 1,r′(Ω) and the estimate

‖ψN‖Ŵ 1/q,q′ (∂Ω) ≤ c‖ψ‖Ŵ 1/q,q′ (∂Ω) ≤ c‖∇ψ‖q′ ,

which is due to Theorem 2.2.1; note that 1 < q′ < n and 1
n + 1

r′ = 1
q′ . Consequently

| 〈F , w〉 | ≤ ‖F‖r‖∇w‖r′ + ‖g‖Ŵ−1/q,q(∂Ω)‖N · ∇w‖Ŵ 1/q,q′ (∂Ω)

≤ c(‖F‖r + ‖g‖Ŵ−1/q,q(∂Ω))‖∇
2w‖q′

and

| 〈K, ψ〉 | ≤ ‖k‖r‖ψ‖r′ + ‖g‖Ŵ−1/q,q(∂Ω)‖ψN‖Ŵ 1/q,q′ (∂Ω)

≤ c(‖k‖r + ‖g‖Ŵ−1/q,q(∂Ω))‖∇ψ‖q′

with constants c = c(n, q) > 0, respectively. Thus, the norms may be estimated by

‖F‖
Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω) ≤ c(‖F‖r + ‖k‖r + ‖g‖Ŵ−1/q,q(∂Ω)). (30)

Theorem 3.1.4. Let Ω = Rn+ be the half space, 1 < q < ∞ and F ∈ Ŷ −2,q
σ (Ω), K ∈ Ŵ−1,q(Ω).

Then the problem (28) has a unique very weak solution u ∈ Lq(Ω) satisfying

‖u‖q ≤ c(‖F‖Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω)), (31)

where c = c(n, q) > 0 is a constant.

Proof. Let v ∈ Lq
′
(Ω) be a vector field. Then in view of Theorem 3.1.1 there exists a unique

solution w ∈ Ŷ 2,q′
σ (Ω), ψ ∈ Ŵ 1,q′(Ω) of the system

−∆w −∇ψ = v, div w = 0 in Ω, w = 0 on ∂Ω (32)

depending linearly on v and satisfying the estimate

‖∇2w‖q′ + ‖∇ψ‖q′ ≤ c ‖v‖q′ ,
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where c = c(n, q) > 0 is a constant. Therefore, and due to the duality of Lebesgue spaces, an
element u ∈ Lq(Ω) is uniquely defined via the relation

(u, v) = 〈F , w〉+ 〈K, ψ〉 ∀v ∈ Lq′(Ω),

satisfying

|(u, v)| ≤ ‖F‖
Ŷ −2,q
σ (Ω)

∥∥∇2w
∥∥
q′

+ ‖K‖Ŵ−1,q(Ω) ‖∇ψ‖q′
≤ c(‖F‖

Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω)) ‖v‖q′ ,

and thus verifying the estimate (31). Indeed, u is a very weak solution of the system (28): Let

w ∈ Ŷ 2,q′
σ (Ω) and ψ ∈ Ŵ 1,q′(Ω) be arbitrary test functions and define v = −∆w −∇ψ. Then, by

definition of u,
−(u,∆w)− (u,∇ψ) = (u, v) = 〈F , w〉+ 〈K, ψ〉 .

Thus, u satisfies (28).
Now let u ∈ Lq(Ω) be a very weak solution to the data F = 0, K = 0. Then for all v ∈ Lq′(Ω),

v = −∆w −∇ψ, where w ∈ Ŷ 2,q′
σ (Ω) and ψ ∈ Ŵ 1,q′(Ω) are the unique solution of (32),

(u, v) = −(u,∆w)− (u,∇ψ) = 〈F , w〉+ 〈K, ψ〉 = 0.

Consequently u = 0. This completes the proof.

We are now in the position to prove Theorem 1.2.

Proof of Theorem 1.2 (i). Given data as in Definition 1.1 and functionals F and K as in Remark
3.1.3 (ii), one may apply Theorem 3.1.4 to receive a unique very weak solution u ∈ Lq(Ω). The
estimate (6) follows from (31) and (30).

In order to show that there exists a pressure p ∈ Ŵ−1,q(Ω), let γ ∈ Ŵ 1,q′(Ω). Then by
Theorem 3.1.1, there exists w ∈ Ŷ 2,q′(Ω) with divw = γ in Ŵ 1,q′(Ω) and we have the estimate
‖∇2w‖q′ ≤ c‖∇γ‖q′ . Define p ∈ Ŵ−1,q(Ω) via

〈p, γ〉 = 〈p,divw〉 := −(u,∆w) + (F,∇w) + 〈g,N · ∇w〉∂Ω, γ ∈ Ŵ 1,q′(Ω).

Note that p is well-defined: For w1, w2 ∈ Ŷ 2,q′(Ω) with divw1 = divw1 we have that w1 − w2 ∈
Ŷ 2,q′
σ (Ω) is solenoidal and consequently 〈p, divw1〉 = 〈p,divw2〉, because u is a very weak solution

to the data F and g. Obviously, estimate (7) is fulfilled and −∆u + ∇p = divF in the sense of
distributions.

3.2 Very Weak Solutions in the Bent Half Space

The main result concerning very weak solutions in bent half spaces follows as in the case of a half
space, once one is able to ensure existence and uniqueness of strong solutions.

Theorem 3.2.1. Let n ≥ 3, 1 < q < n−1 and ω ∈ C0,1(Rn−1)∩W 2,1
loc (Rn−1) such that for simplicity

ω(0′) = 0. Then there exists a constant K = K(n, q) > 0 such that if ω satisfies (5), then for all
v ∈ Lq(Hω) and γ ∈ Ŵ 1,q(Hω) there exists a strong solution (w,ψ) ∈ Ŷ 2,q(Hω)×Ŵ 1,q(Hω) of (23)
satisfying the estimate

‖∇2w‖q + ‖∇ψ‖q ≤ c (‖v‖q + ‖∇γ‖q) (33)

with a constant c = c(ω, n, q) > 0.
The pressure is unique up to a constant. Furthermore, the velocity field w is unique up to a

linear term Ax, where A ∈ Cn,n and A(x′, ω(x′)) = 0. In particular, if ω is nonlinear, the velocity
field w is unique. If however ω is a linear transformation, say, ω(x′) = d′T · x′ with d′ ∈ Rn−1,
then w is unique up to a vector field of the form Ax where A = an⊗ (−d′T , 1) with a column vector
an ∈ Cn. By the condition ‖∇w‖r <∞, where 1

n + 1
r = 1

q , we may single out a special solution.
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Proof. We will transform the problem into a problem on Rn+ and use a classical perturbation
argument. Let the transformation φ : Hω → Rn+ be defined via x = (x′, xn) 7→ x̃ = (x̃′, x̃n) :=
φ(x) = (x′, xn − ω(x′)). Note that φ is a bijection and that

Dφ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

− ∂ω
∂x1

− ∂ω
∂x2

· · · 1

 ,

ensuring that the Jacobian of φ is equal to 1. Define for a function w on Hω a function w̃ on Rn+
via w̃(x̃) = w(x). Using the notations ∂̃i, ∇̃ = (∇̃′, ∂̃n), ∆̃ and d̃iv for the respective differential
operators acting on the variables x̃ ∈ Rn+, we obtain the relations

∂iw =
(
∂̃i − (∂iω)∂̃n

)
w̃, i = 1, . . . , n− 1

∆w(x) =
(
∆̃ + |∇′ω|2∂̃2

n − 2(∇′ω, 0) · (∇̃∂̃n)− (∆′ω)∂̃n
)
w̃(x̃)

∇ψ(x) =
(
∇̃ − (∇′ω, 0)∂̃n

)
ψ̃(x̃)

div w(x) =
(
d̃iv− (∇′ω, 0) · ∂̃n

)
w̃(x̃).

(34)

Therefore, the norm estimates

‖w‖Lq(Hω) = ‖w̃‖Lq(Rn+)

‖∇w‖Lq(Hω) ≤ (1 + ‖∇′ω‖∞)‖∇̃w̃‖Lq(Rn+)

‖∇2w‖Lq(Hω) ≤ c(1 + ‖∇′ω‖∞)2‖∇̃2w̃‖Lq(Rn+) + c‖(∇′2ω)∂̃nw̃‖Lq(Rn+)

(35)

hold with a constant c > 0. In (35)3 we still need an estimate of the term ‖(∇′2ω)∂̃nw̃‖q by second
order derivatives of w̃. For simplicity, let u = ∂nw̃ so that u ∈ Ŵ 1,q(Rn+). Since C∞0 (Rn+) is dense

in Ŵ 1,q(Rn+), it suffices to consider u ∈ C∞0 (Rn+). By the Sobolev embedding theorem, there exists
a constant c > 0, such that for all x̃n > 0

‖u(·, x̃n)‖Ls(Rn−1) ≤ c‖∇̃′u(·, x̃n)‖Lq(Rn−1),

where s > q is defined via 1
n−1 + 1

s = 1
q . If ‖∇′2ω‖Ln−1(Rn−1) ≤ K, then we get by Hölder’s inequality

‖(∇′2ω)u‖qLq(Rn+) ≤ c
∞∫

0

dx̃n

∫
Rn−1

|∇′2ω|q|u(·, x̃n)|q dx′

≤ c‖∇′2ω‖q
Ln−1(Rn−1)

∞∫
0

‖u(·, x̃n)‖q
Ls(Rn−1)

dx̃n

≤ cK‖∇̃′u‖qLq(Rn+).

(36)

On the other hand, consider the weighted inequality ‖|· |−1ϕ‖q ≤ q
(n−1)−q‖∇ϕ‖q for ϕ ∈ C∞0 (Rn−1),

see [16], Section II.5, formula (5.3). Then, with the second condition ‖| · |∇′2ω‖∞ ≤ K, we get for
u ∈ C∞0 (Rn+) and for each x̃n > 0

‖| · |−1u(·, x̃n)‖Lq(Rn−1) ≤ c‖∇̃′u(·, x̃n)‖Lq(Rn−1),
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which yields the estimate

‖(∇′2ω)u‖qLq(Rn+) ≤ c
∞∫

0

dx̃n

∫
Rn−1

|(| · |∇′2ω)|q | | · |−1u(·, x̃n)|q dx′

≤ c‖| · |∇̃′2ω‖q∞

∞∫
0

‖∇̃′u(·, x̃n)‖q
Lq(Rn−1)

dx̃n

≤ cK‖∇̃′u‖qLq(Rn+).

(37)

Hence in both cases we get in (35)3 the estimate

‖(∇′2ω)∂nw̃‖qLq(Rn+) ≤ cK‖∇̃
′∂nw̃‖qLq(Rn+). (38)

Consider now the spaces

X := Ŷ 2,q(Hω)× Ŵ 1,q(Hω), X̃ := Ŷ 2,q(Rn+)× Ŵ 1,q(Rn+),

Y := Lq(Hω)× Ŵ 1,q(Hω), Ỹ := Lq(Rn+)× Ŵ 1,q(Rn+).

These spaces, if equipped with the norms

‖(w,ψ)‖X = ‖∇2w‖q + ‖∇ψ‖q, ‖(v, γ)‖Y = ‖(v,∇γ)‖q,

and by analogy, X̃ , Ỹ equipped with similar norms ‖ · ‖X̃ , ‖ · ‖Ỹ , are obviously Banach spaces. In
view of Theorem 3.1.1, we know that the operator

S̃q : X̃ → Ỹ, S̃q(w̃, ψ̃) = (−∆̃w̃ − ∇̃ψ̃,−d̃iv w̃)

is an isomorphism. Consider now the analogously defined operator Sq : X → Y. By the relations
(34), this operator decomposes into

Sq(w,ψ)(x) = S̃q(w̃, ψ̃)(x̃) + R̃q(w̃, ψ̃)(x̃)

with a remainder R̃q : X̃ → Ỹ defined via

R̃q(w̃, ψ̃) =
(
− |∇′ω|2∂̃2

nw̃ + 2∇′ω · ∇̃′∂̃nw̃) + (∆′ω)∂̃nw̃ + (∇′ω, 0)∂̃nψ̃ , ∇′ω · ∂̃nw̃′
)
.

Employing the estimate (38) and the isomorphism property of S̃q we get that

‖R̃q(w̃, ψ̃)‖Ỹ ≤ k‖S̃q(w̃, ψ̃)‖Ỹ
with a constant k = k(n, q,K), where we can choose the bound K of ∇′ω and of ∇′2ω or | · |∇′2ω
for given n and q in (36) or (37), respectively, small enough such that

k <
1

‖S̃−1‖L(Ỹ,X̃ )‖S̃‖L(X̃ ,Ỹ)

.

Now, for arbitrary ṽ ∈ Lq(Rn+) and γ̃ ∈ Ŵ 1,q(Rn+), we want to apply the Banach Fixed Point

Theorem to the map N : X̃ → X̃ defined via

N(w̃, ψ̃) = S̃−1
q (ṽ, γ̃)− S̃−1

q (R̃q(w̃, ψ̃)),

because a fixed point (w̃, ψ̃) of the map N satisfies S̃q(w̃, ψ̃) + R̃(w̃, ψ̃) = (ṽ, γ̃), i.e., (w̃, ψ̃) is a
solution to (23). Actually, N is a contraction map, since

‖N(w̃1, ψ̃1)−N(w̃2, ψ̃2)‖X̃ = ‖S̃−1
q (R̃q(w̃1 − w̃2, ψ̃1 − ψ̃2))‖X̃

≤ ‖S̃−1
q ‖L(Ỹ,X̃ )‖R̃q(w̃1 − w̃2, ψ̃1 − ψ̃2)‖Ỹ

≤ k‖S̃−1
q ‖L(Ỹ),X̃ ‖S̃q(w̃1 − w̃2, ψ̃1 − ψ̃2)‖Ỹ

≤ k‖S̃−1
q ‖L(Ỹ,X̃ )‖S̃q‖L(X̃ ,Ỹ)‖(w̃1 − w̃2, ψ̃1 − ψ̃2)‖X̃
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and k‖S̃−1
q ‖L(Ỹ,X̃ )‖S̃q‖L(X̃ ,Ỹ) < 1. Thus, S̃q + R̃q is an isomorphism from X̃ to Ỹ and hence Sq is

an isomorphism from X to Y. Finally,

‖(w,ψ)‖X ≤ c1‖(w̃, ψ̃)‖X̃ ≤ c2‖S̃q(w̃, ψ̃)‖Ỹ
≤ c3‖(S̃q + R̃q)(w̃, ψ̃)‖Ỹ ≤ c4‖Sq(w,ψ)‖Y , (39)

with constants c1, c2, c3, c4 > 0 depending on ω, n, q.
To prove the assertion about the uniqueness, let (w,ψ) ∈ Ŷ 2,q(Hω) × Ŵ 1,q(Hω) be a solution

of (23) with data v = 0 and γ = 0. By the above consideration, (w,ψ) = S−1
q (0, 0) = (0, 0) ∈

Ŷ 2,q(Hω)× Ŵ 1,q(Hω) and thus ∇ψ = 0, whereas ∇2w = 0 and hence w = Ax+ b with A = (ai,j) ∈
Cn,n, b ∈ Cn. By the boundary condition and ω(0′) = 0 we get b = 0 and A(x′, ω(x′)) = 0 for all
x′ ∈ Rn−1, which is equivalent toa1,1 · · · a1,n−1

...
. . .

...
an,1 · · · an,n−1


 x1

...
xn−1

 = −

a1,n
...

an,n

ω(x′), x′ ∈ Rn−1. (40)

If ω is a nonlinear map, so is −ai,nω for each i = 1, . . . , n with ai,n 6= 0, which contradicts the
linear left-hand side. Hence, for every i = 1, . . . , n we have ai,n = 0, and the i-th line of (40) gives
us ai,j = 0 for all j = 1, . . . , n− 1. Thus A = 0.

Now let ω be a linear transformation, i.e., ω(x′) = d′T · x′ with some d′ ∈ Rn−1. Then (40)
implies that A = an ⊗ (−d′T , 1) where an ∈ Cn denotes the nth column vector of A. Finally, since
1 < q < n − 1, we define q < r < ∞ via 1

n + 1
r = 1

q , and by Sobolev’s imbedding theorem there
exists a constant matrix W0 ∈ Rn,n such that ‖∇w −W0‖r <∞. This completes the proof.

Remark 3.2.2. (i) In Theorem 3.2.1 with a linear ω, there always exists a unique solution whose
gradient has finite norm in Lr, 1

n + 1
r = 1

q . This assertion also holds true for the unique
solutions in the case of a nonlinear ω. Actually, revising the proof and substituting the spaces
Ŷ 2,q by Ŷ 2,q ∩ Ẇ 1,r in the definition of X and X̃ , respectively, we obtain for given data
v ∈ Lq(Hω) and γ ∈ Ŵ 1,q(Hω) a unique solution wr ∈ Ŷ 2,q(Hω) ∩ Ẇ 1,r(Hω) ⊂ Ŷ 2,q(Hω).
Then by uniqueness of w, we get wr = w and thus ‖∇w‖r <∞.

(ii) If in Theorem 3.2.1 additionally f ∈ Ls(Hω) and g ∈ Ŵ 1,s(Hω) for some 1 < s < n − 1
and K ≤ min{K(n, q),K(n, s)}, then ‖∇2w‖s < ∞ and ‖∇ψ‖s < ∞. Indeed, the same
procedure as in the proof of the theorem yields a solution (ws, ψs) ∈

(
Ẇ 2,q(Hω)∩Ẇ 2,s(Hω)

)
×(

Ŵ 1,q(Hω) ∩ Ŵ 1,s(Hω)
)

and by the uniqueness of the solution (w,ψ) we get w = ws up to a
linear polynomial and ψ = ψs up to a constant.

(iii) An interesting special case of a bent half space is a “smooth” cone. In this case ω(x′) =
α(1 + |x′|2)1/2 − α, and it is readily seen, that for |α| ≤ K, i.e., for smooth cones with
aperture angle close to π, Theorem 3.2.1 may be applied with the condition ‖| · |∇′2ω‖∞ ≤ K.
Since ω is a nonlinear map, we get a unique solution in the case of a cone.

The results about the strong solutions on the bent half space enable us to prove existence and
uniqueness of very weak solutions in an analogous way as in the half space case, that is, the same
argument as in the proof of Theorem 3.1.4 furnishes us with the following result.

Theorem 3.2.3. Let n ≥ 3, n−1
n−2 < q < ∞ and F ∈ Ŷ −2,q

σ (Ω), K ∈ Ŵ−1,q(Ω), where Ω = Hω is
a bent half space. Then there exists a constant K = K(n, q) > 0 such that if ‖∇′ω‖∞ ≤ K and
if ‖∇′2ω‖Ln−1(Rn−1) ≤ K or ‖| · |∇′2ω‖∞ ≤ K, the problem (28) has a unique very weak solution
u ∈ Lq(Ω) satisfying

‖u‖q ≤ c(‖F‖Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω)), (41)

where c = c(Ω, q) > 0 is a constant.

The part of Theorem 1.2 concerning bent half spaces now follows easily.
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3.3 Very Weak Solutions in the Perturbed Half Space

Again, due to the duality arguments already pointed out in the previous sections, it suffices to
investigate the corresponding strong solutions. In order to prove the result on strong solutions in
the perturbed half space, we want to use the localization method as described in Subsection 2.2.
We choose open balls B1, . . . , Bm ⊂ Rn satisfying (18) and nonnegative functions ϕ0, . . . , ϕm ∈
C∞(Rn) such that ϕ0 = 1 outside of some ball B′ with B ⊂ B′, ϕ0 = 0 in a neighbourhood of B,
supp ϕj ⊂ Bj for 1 ≤ j ≤ m and

∑m
j=0 ϕj = 1 in Ω. Finally, due to the regularity of the boundary

of Ω, we find for each 1 ≤ j ≤ m with Bj ∩ ∂Ω 6= ∅ a function ωj ∈ C1,1(Rn−1) of compact support
and a corresponding bent half space Hj = Hωj satisfying (19). By choosing a sufficiently large
number of balls Bj , such that the support of the corresponding ωj is sufficiently small, we get that

‖∇′ωj‖∞ ≤ min{K(n, q),K(n, s1), . . . ,K(n, sk(q))},
‖| · |∇′2ω‖∞ ≤ min{K(n, q),K(n, s1), . . . ,K(n, sk(q))},

(42)

for a finite number of parameters q, sk, 1 ≤ k ≤ k(q), to be determined in the proof of Theorem
3.3.1 below.

Theorem 3.3.1. Let n ≥ 3, 1 < q < n/2. Then for all v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω) there exists a
solution (w,ψ) ∈ Ẇ 2,q(Ω)× Ŵ 1,q(Ω) of (23) satisfying the estimate

‖∇2w‖q + ‖∇ψ‖q ≤ c (‖v‖q + ‖∇γ‖q) (43)

with a constant c = c(Ω, n, q) > 0. The pressure is unique up to a constant. Furthermore, the
velocity field w is unique up to a linear term Ax, where A ∈ Cn,n. In particular, if Ω 6= Rn+, the
velocity field w is unique.

Proof. We will first prove the assertion about the uniqueness. Therefore, let (w,ψ) ∈ Ẇ 2,q(Ω) ×
Ŵ 1,q(Ω) solve (23) for homogeneous data v = 0, γ = 0. Now let 0 ≤ j ≤ m, where ϕj is a cut-off
functions of type Hj , cf. (19) (in the case of cut-off functions of type Rn and Rn+ we proceed in an
analogous way). Then, with a suitable constant cj ∈ R to be determined below, (ϕjw,ϕj(ψ − cj))
satisfies the local equations

−∆(ϕjw)−∇(ϕj(ψ − cj)) = vj

∇div (ϕjw) = ∇γj ,
(44)

where

vj = −(∇ϕj)(ψ − cj)− 2(∇ϕj)∇w − (∆ϕj)w

∇γj = (∇ϕj)(∇w) + (∇2ϕj) · w.
(45)

Since all terms on the right-hand side of (45) have compact support, vj ∈ Ls(Hj) and γj ∈ Ŵ 1,s(Hj)
for each s ∈ (1, q]. Hence, by the regularity results in Remark 3.2.2 and the compactness of
the supports of ∇ϕj , every (ϕjw,ϕjψ) ∈ Ŵ 2,s(Hj) × Ŵ 1,s(Hj) and summation over j yields
(w,ψ) ∈ Ẇ 2,s(Ω)×Ŵ 1,s(Ω), 1 < s ≤ q. Moreover, by Sobolev’s embedding theorem∇w, ψ ∈ Lr(Ω)
for all sufficiently small r > n

n−1 and w ∈ Lρ(Ω) for all sufficiently small ρ > n
n−2 .

We need to extend the interval of admissible exponents s from (1, s0], s0 = q, to (1, n − 1).
Therefore, define s1 > q by 1

n + 1
s1

= 1
q , which is possible, since q < n

2 < n. Then Sobolev’s

imbedding theorem yields for a bounded C1,1-domain Gj containing Ω ∩ supp∇ϕj (and G0 ⊃
(G \B) ∩ Rn+, see §2.2)

‖(∇ϕj)∇w‖s1,Hj ≤ c‖∇w‖s1,Gj ≤ c‖∇w‖1,q,Gj <∞,
‖(∆ϕj)w‖s1,Hj ≤ c‖∇w‖q,Gj ≤ c‖∇w‖1,q,Gj <∞,

‖(∇ϕj)(ψj − cj)‖s1,Hj ≤ c‖ψj − cj‖s1,Gj ≤ c‖∇ψ‖1,q,Gj <∞,
(46)
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where cj = 1
|Gj |

∫
Gj
ψ dx. Hence vj ∈ Ls1(Hj), and a similar argument shows that γj ∈ Ŵ 1,s1(Hj).

Now, if s1 < n−1, Remark 3.2.2 together with (42) yields (ϕjw,ϕjψ) ∈ Ŵ 2,s1(Hj)×Ŵ 1,s1(Hj), and
summation over j gives us (w,ψ) ∈ Ŵ 2,s1(Ω)×Ŵ 1,s1(Ω). If however s1 ≥ n−1, we may replace s1 by
any s1 ∈ (s0, n−1) and apply Remark 3.2.2 and (42) to obtain (ϕjw,ϕjψ) ∈ Ŵ 2,s1(Hj)×Ŵ 1,s1(Hj)
and thus (w,ψ) ∈ Ŵ 2,s1(Ω) × Ŵ 1,s1(Ω). In any case, repeating this procedure a finite number of
times we receive exponents q < s1 < . . . < sk < n − 1 such that sk is arbitrarily close to n − 1.
Summarizing, we get (w,ψ) ∈ Ŵ 2,s(Ω) × Ŵ 1,s(Ω) for every 1 < s < n − 1 and by Sobolev’s
imbedding theorem

∇w, ψ ∈ Lr(Ω) for all
n

n− 1
< r < n(n− 1), w ∈ Lρ(Ω) for all

n

n− 2
< ρ <∞.

Unfortunately, this argument needs the smallness assumption (42) for s arbitrarily close to
n− 1. But actually, we do need this argument only for s < 2 defined by 1

n + 1
2 = 1

s and for s close
to n

3 where ∇2w ∈ Ls(Ω) implies w ∈ Ln+ε(Ω) for ε > 0 sufficiently small. In the first case when
1
n + 1

2 = 1
s we have ∆w ∈ Ls(Ω), ∇w ∈ L2(Ω) and w ∈ Ls′(Ω), the latter because of 2

n + 1
s′ = 1

s .
Therefore, we may test (23) with w and write

0 = −
∫

ΩR

∆w · w dx−
∫

ΩR

∇ψ · w dx

=

∫
ΩR

|∇w|2 dx−
∫
∂Ω′R

(
w · ∂w

∂n
+ ψw · n

)
dσ,

(47)

where ΩR = Ω ∩ BR and ∂Ω′R = ∂ΩR\∂Ω, because w|∂Ω = 0. Moreover, the integral over ψdiv w
vanishes, since ∇div w = 0 and the constant div w lies in L2(Ω).

Next we want to show that the boundary integrals in (47) vanish, if a suitable sequence of radii
(Ri)i∈N tends to infinity. First observe that for any function f ∈ L1(Ω) there exists a sequence of
radii (Ri)i∈N with Ri →∞ for i→∞ such that∫

∂Ω′Ri

|f | dσ ≤ cR−1
i → 0. (48)

Due to the regularity of w and ψ already shown, we know that w ∈ Ln+ε(Ω) and ∇w, ψ ∈
L

n
n−1

+ε(Ω) for any small ε > 0. Hence for sufficiently small ε > 0 we find θε > n such that
1

n+ε + 1
n
n−1

+ε + 1
θε

= 1. By Hölder’s inequality we thus get∫
∂Ω′R

∣∣∣∣w · ∂w∂n

∣∣∣∣ dσ ≤ cRn−1
θε ‖w‖n+ε,∂Ω′R

‖∇w‖ n
n−1

+ε,∂Ω′R
, (49)

where c1/θε = 1
2 |∂B1(0)|; an analogous estimate holds for the integral

∫
∂Ω′R
|ψw · n|dσ. But since

|w|n+ε + |∇w|
n
n−1

+ε + |ψ|
n
n−1

+ε ∈ L1(Ω), we find by (48) a sequence of radii (Ri)i∈N with Ri →∞
for i→∞ such that

‖w‖n+ε,∂Ω′Ri
≤ cR

− 1
n+ε

i , ‖∇w‖ n
n−1

+ε,∂Ω′Ri
+ ‖ψ‖ n

n−1
+ε,∂Ω′Ri

≤ cR
− 1

n
n−1+ε

i .

Now it follows that due to θε > n the right-hand side of (49) tends to zero as Ri → ∞. The
analogous result holds for

∫
∂Ω′R
|ψw · n|dσ.

Summing up, we get in virtue of (47) by Lebesgue’s Theorem that
∫

Ω |∇w|
2 dx = 0 for all n ≥ 3

and thus by the boundary condition w = 0. This leads immediately to ∇ψ = 0. The uniqueness
part is proven.

The existence of the solution and the estimate follow by the unique solvability of the corre-
sponding resolvent problem [10, Theorem 1.2] via an approximation procedure for the resolvent
parameter λ → 0+. Therefore, let v ∈ Lq(Ω) and for the moment γ ∈ W 1,q(Ω) ∩ Ŵ−1,q(Ω). Let
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(λi)i∈N ⊂ R+ be a sequence with λi → 0 as i → ∞. By virtue of the unique solvability of the
resolvent problem, we receive corresponding solutions (wi, ψi) ∈ (W 2,q(Ω) ∩W 1,q

0 (Ω)) × Ŵ 1,q(Ω)
with

sup
i∈N
‖(λiwi,∇2wi,∇ψi)‖q ≤ c(‖v‖q + ‖∇γ‖q + sup

i∈N
|λi| ‖γ‖Ŵ−1,q(Ω)) <∞.

Therefore there exists a subsequence (which we will denote with index i again), such that we have
the weak convergences

λiwi ⇀ Φ in Lq(Ω),

∇2wi ⇀ w̃ in Lq(Ω),

∇ψi ⇀ ψ̃ in Lq(Ω).

(50)

Moreover, by the compact embedding Ŵ 1,q(Ω′) ⊂ Lq0(Ω′) for any compact Ω′ ⊂ Ω of class C0,1 we

find constants ci and linear polynomials ai +Aix, such that wi − (ai +Aix) converges in W 1,q
loc (Ω)

to some w ∈ W 1,q
loc (Ω) with ∇2w = w̃ and ψi − ci converges locally in Lq(Ω) to some ψ ∈ Lqloc(Ω)

with ∇ψ = ψ̃. Then for any smooth ϕ ∈ C∞0 (Ω)∫
Ω

(λiwi) · ∇2ϕ dx = λi

∫
Ω

(∇2wi)ϕ dx→ 0 ·
∫

Ω
w̃ϕ dx = 0, i→∞

by (50). This ensures that ∇2Φ = 0 and even Φ = 0, since Φ ∈ Lq(Ω). But then, the weak
convergences (50) assure that −∆w −∇ψ = v and ∇div w = ∇γ. Moreover, we get (43) by

‖∇2w‖q + ‖∇ψ‖q ≤ lim inf
i→∞

(
‖λiwi‖q + ‖∇2wi‖q + ‖∇ψi‖q

)
≤ lim

i→∞
c
(
‖v‖q + ‖∇γ‖q + |λi|‖γ‖−1,q

)
≤ c
(
‖v‖q + ‖∇γ‖q

)
.

(51)

Concerning the trace w|∂Ω, we know that wi|∂Ω = 0 for all i ∈ N and thus ai +Aix|∂Ω converges in

W
1−1/q,q
loc (∂Ω) – and therefore componentwise – to some a+Ax|∂Ω. Now consider w̃ := w−(a+Ax) ∈

W 2,q
loc (Ω). Then ‖∇2w̃‖q = ‖∇2w‖q and (w̃, ψ) ∈ W 2,q

loc (Ω)× Ŵ 1,q(Ω) is a solution of (23) with the

desired properties for γ ∈W 1,q(Ω) ∩ Ŵ−1,q(Ω).
Now let v ∈ Lq(Ω) and γ ∈ Ŵ 1,q(Ω). In view of Lemma 2.1.1 there exists a sequence (γi) ⊂

W 1,q(Ω)∩ Ŵ−1,q(Ω), such that ‖∇(γ − γi)‖q → 0 as i→∞. To each (v, γi) corresponds a solution
(wi, ψi) ∈ Ẇ 2,q(Ω) × Ŵ 1,q(Ω) satisfying the estimate (43). This ensures, that both (wi) and (ψi)
are Cauchy sequences in their respective spaces and hence converge to some w ∈ Ẇ 2,q(Ω) and
ψ ∈ Ŵ 1,q(Ω). The pair (w,ψ) actually solves the system (23) and satisfies the a priori estimate
(43). The proof is complete.

Remark 3.3.2. If in the situation of Theorem 3.3.1 we have additionally v ∈ Ls(Ω) and γ ∈
Ŵ 1,s(Ω) for some 1 < s < n

2 , then ‖∇2w‖s <∞ and ‖∇ψ‖s < ∞. The construction of a solution

(ws, ψs) ∈ (Ŵ 2,q(Ω) ∩ Ŵ 2,s(Ω)) × (Ŵ 1,q(Ω) ∩ Ŵ 1,s(Ω)) follows analogously to the construction in
the proof. Then the uniqueness assertion of Theorem 3.3.1 yields (ws, ψs) = (w,ψ).

From Theorem 3.3.1 we deduce analogously to the proof of Theorem 3.1.4 the result on very
weak solutions in the perturbed half space in the abstract setting.

Theorem 3.3.3. Let n ≥ 3, n
n−2 < q < ∞ and F ∈ Ŷ −2,q

σ (Ω), K ∈ Ŵ−1,q(Ω), where Ω is a
perturbed half space. Then the problem (28) has a unique very weak solution u ∈ Lq(Ω) satisfying

‖u‖q ≤ c(‖F‖Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω)), (52)

where c = c(Ω, q) > 0 is a constant.

This directly implies the assertion of Theorem 1.2 in case of a perturbed half space.
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3.4 Very Weak Solutions in the Aperture Domain

In the case of an aperture domain, the two function spaces Ẇ 1,q(Ω) and Ŵ 1,q(Ω) do not necessarily
coincide. In fact, we have the following characterization [11, Lemma 3.1].

Lemma 3.4.1. Let Ω ⊂ Rn, n ≥ 2, be an aperture domain.

(i) Suppose 1 < q < n and let r ∈ ( n
n−1 ,∞) be defined via 1

n+ 1
r = 1

q . Then for every ψ ∈ Ẇ 1,q(Ω)
there are constants ψ± ∈ C such that ψ − ψ± ∈ Lr(Ω±) and

‖ψ − ψ+‖Lr(Ω+) + ‖ψ − ψ−‖Lr(Ω−) + |ψ+ − ψ−| ≤ c‖∇ψ‖q.

Thus, the map [·] : Ẇ 1,q(Ω)→ C, [ψ] = ψ+ − ψ− is a continuous linear functional and

Ŵ 1,q(Ω) = {ψ ∈ Ẇ 1,q(Ω) : [ψ] = 0}.

Suppose ϕ0 is a smooth funtion with ϕ0 = 1 on Ω+\B and ϕ0 = 0 on Ω−\B. Then each ψ ∈
Ẇ 1,q(Ω) has the unique decomposition ψ = ψ0 + [ψ]ϕ0 with ψ0 ∈ Ŵ 1,q(Ω), ‖∇ψ0‖q ≤ c‖∇ψ‖q
and

Ẇ 1,q(Ω) = Ŵ 1,q(Ω)⊕ {Kϕ0 : K ∈ C}

is a direct sum.

(ii) Suppose q ≥ n. Then Ẇ 1,q(Ω) = Ŵ 1,q(Ω).

It is convenient to think of ϕ0 ∈ C∞(Ω) as a function satisfying

ϕ0(x) =

{
1 for x ∈ Ω+

0 for x ∈ Ω−\B
and

∫
B∩Ω−

ϕ0 dx = 0. (53)

Then ϕ0 ∈ Ẇ 1,q′(Ω) for all 1 < q′ < ∞. Moreover, for all u ∈ Lq(Ω) with u · N |∂Ω = 0 and
div u = 0, we have for the flux φ(u) through the aperture of Ω

φ(u) :=

∫
S
u ·N dσ = −

∫
Ω
u · ∇ϕ0 dx. (54)

Here, u ·N |∂Ω can only be defined locally as an element of W
− 1
q
,q

(Σ) with Σ ⊂ Ω bounded. The
flux integral

∫
S u ·N dσ thus has to be understood in the sense of evaluation of the functional u ·N |S

at 1 ∈W
1
q
,q′

(S), see [11] for details. Identity (54) motivates the definition of the generalized flux

φ̂(u) := −
∫
Ω

u · ∇ϕ0 dx, u ∈ Lq(Ω). (55)

We have the following result on the strong solutions, which is mainly due to Farwig and Sohr
[4, 11].

Theorem 3.4.2. Let Ω ⊂ Rn, n ≥ 3, be an aperture domain and let v ∈ Lq(Ω), γ ∈ W 1,q(Ω) ∩
Ŵ−1,q(Ω), 1 < q < n

2 . Furthermore let r, ρ be defined via 1
n + 1

r = 1
q and 2

n + 1
ρ = 1

q , respectively.

(i) For every α ∈ C there is a unique solution (w,ψ) ∈ Lqloc(Ω)×Ẇ 1,q(Ω) with ‖∇2w‖q+‖∇w‖r+

‖w‖ρ <∞ of (23) and φ̂(w) = α. Moreover,

‖w‖ρ + ‖∇w‖r + ‖∇2w‖q + ‖∇ψ‖q ≤ c(‖v‖q + ‖∇γ‖q + |α|) (56)

for some c = c(n, q,Ω), where the term |
〈
γ, ϕ0

〉
| must be added to the right-hand side of (56)

if 1 < q ≤ n
n−1 . Moreover [ψ] is a linear functional of v, γ and α.
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(ii) For every β ∈ C there is a unique strong solution (w,ψ) of (23) with [ψ] = β. Moreover

‖w‖ρ + ‖∇w‖r + ‖∇2w‖q + ‖∇ψ‖q ≤ c(‖v‖q + ‖∇γ‖q + ‖γ‖Ŵ−1,q(Ω) + |β|), (57)

where c = c(n, q,Ω) > 0, and φ̂(w) is a linear functional of v, γ and β.

Remark 3.4.3. (i) Since w ∈ Lρ(Ω), ∇w ∈ Lr(Ω), we get by Lemma 3.4.1 ‖w‖ρ ≤ c‖∇2w‖q
and thus w ∈ Ŷ 2,q(Ω).

(ii) The estimate (57) may be improved. As shown by Franzke [14], the term ‖γ‖Ŵ−1,q(Ω) on the
right-hand side is not needed.

(iii) Denote by w0 the solution corresponding to the data v = 0, γ = 0 and α = 1. Then w0 ∈ Lq(Ω)
for all n

n−1 < q < ∞, see [4, Lemma 3.3.]. This lower bound is sharp: Assume w0 ∈ Lq(Ω)

for some 1 < q ≤ n
n−1 and choose ϕk ∈ C∞0 (Ω) with ‖∇ϕk‖q′ → ‖∇ϕ0‖q′ as k →∞, which is

possible in virtue of Lemma 3.4.1 (ii). Then we get the contradiction

0 = 〈γ, ϕ0〉 = lim
k→∞
〈γ, ϕk〉 = lim

k→∞
−
∫

Ω
w0 · ∇ϕk dx = φ̂(w0) = 1.

Proof of Theorem 3.4.2. If one neglects the statement about the regularity of w ∈ Lρ(Ω) itself,
the interval of admissible exponents can be even extended to 1 < q < n. In this formulation, the
theorem has been proven in [11, Corollary 2.4] for the case n

n−1 < q < n and in [4, Theorem 1.4]
for the case 1 < q ≤ n

n−1 . The proofs rely on the unique solvability of the corresponding resolvent
problem [4, Theorem 1.2] via an approximation procedure of the resolvent parameter λ → 0+.
However, if we restrict ourselves to 1 < q < n

2 , we get by Sobolev’s embedding theorem wλ ∈ Lρ(Ω)
for each λ > 0, where wλ is the corresponding solution to the resolvent problem with parameter λ.
This regularity then carries over to the solution w, being the weak limit of a subsequence of the
wλ.

Theorem 3.4.4. Let Ω ⊂ Rn+ be an aperture domain, q > n
n−2 and F ∈ Ŷ −2,q

σ (Ω), K ∈ Ŵ−1,q(Ω),

α ∈ C. Then the problem (28) has a unique very weak solution u ∈ Lq(Ω) satisfying φ̂(u) = α.
This solution satisfies the estimate

‖u‖q ≤ c(‖F‖Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω) + |α|), (58)

where c = c(n, q) > 0 is a constant.

Proof. The arguments follow the proof of Theorem 3.1.4. Define u ∈ Lq(Ω) via

(u, v) = 〈F , w〉+ 〈K, ψ0〉+ α[ψ] for v ∈ Lq′(Ω),

where w ∈ Ŷ 2,q′
σ (Ω), ψ ∈ Ẇ 1,q′(Ω) is the unique solution to (32) with φ̂(w) = 0, and ψ0 = ψ− [ψ]ϕ0.

Then Lemma 3.4.1 and (56) yield the estimate

|(u, v)| ≤ ‖F‖
Ŷ −2,q
σ (Ω)

∥∥∇2w
∥∥
q′

+ ‖K‖Ŵ−1,q(Ω) ‖∇ψ0‖q′ + |α|‖∇ψ‖q′

≤ c(‖F‖
Ŷ −2,q
σ (Ω)

+ ‖K‖Ŵ−1,q(Ω) + |α|) ‖v‖q′ ,

for some constant c = c(Ω, q) > 0. Since ∇ϕ0 ∈ Lq
′
(Ω) decomposes in the above sense with

w = 0, ψ0 = 0 and ψ = −ϕ0, the flux condition φ̂(u) = −(u,∇ϕ0) = α is automatically fulfilled.

Furthermore, u actually solves the problem (28), since for test functions w ∈ Ŷ 2,q′
σ (Ω), ψ ∈ Ŵ 1,q′(Ω),

we have [ψ] = 0 and thus

−(u,∆w)− (u,∇ψ) = 〈F , w〉+ 〈K, ψ〉.

Uniqueness may be seen by considering a very weak solution u ∈ Lq(Ω) to the data F = 0, K = 0
and α = 0. Then (u, v) = −(u,∆w)− (u,∇ψ0)− (u, [ψ]∇ϕ0) = 〈F , w〉+ 〈K, ψ0〉+ α[ψ] = 0 for all
v ∈ Lq′(Ω) and thus u = 0. The proof is complete.
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Now, we may prove Theorem 1.3.

Proof of Theorem 1.3. It still remains to prove the assertion about the pressure. Consider test
functions w ∈ C∞0,σ(Ω). In the sense of distributions we thus have 〈div F + ∆u,w〉 = 0. Then de
Rham’s argument [23, Chapter I, Proposition 1.1], yields a distribution p ∈ C∞0 (Ω)′ with div F +
∆u = ∇p.

Remark 3.4.5. (i) Note that a similar construction as in the proof of Theorem 1.2 for the
functional p fails here, as we cannot derive from Theorem 3.4.2, that each γ ∈ Ŵ 1,q′(Ω) can
be written in the form

γ = divw, w ∈ Ŷ 2,q′(Ω) with φ̂(w) = 0. (59)

The no-flux condition is crucial here, as otherwise the pressure p will not be well-defined.
However, this problem may be resolved for n ≥ 4, n

n−1 < q′ < n
2 . In that case, estimate (56)

may be used without the term |〈γ, ϕ0〉| on the right-hand side, and thus (59) is ensured due
to Lemma 2.1.1. So for n

n−2 < q < n, it still holds true that p ∈ Ŵ−1,q(Ω).

(ii) Defining a concept similar to the pressure drop in the situation of strong solutions seems out
of reach, as p itself is not contained in any function space anymore. Thus our setting is too
coarse to reflect local phenomena.
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