
WORKING PAPER:
Solving Multistage Quantified Linear

Optimization Problems with the Alpha-Beta
Nested Benders Decomposition

Ulf Lorenz1 and Jan Wolf2

1Fluid Systems Technology, Technische Universität Darmstadt, Germany
ulf.lorenz@fst.tu-darmstadt.de

2Institute of Mathematics, Technische Universität Darmstadt, Germany
wolf@mathematik.tu-darmstadt.de

Abstract. Quantified linear programs (QLPs) are linear programs (LPs)
with variables being either existentially or universally quantified. QLPs
are convex multistage decision problems on the one side, and two-person
zero-sum games between an existential and a universal player on the
other side. Solutions of feasible QLPs are so called winning strategies
for the existential player that specify how to react on moves - certain
fixations of universally quantified variables - of the universal player to
certainly win the game. To find a certain best one among different win-
ning strategies, we propose the extension of the QLP decision problem by
an objective function. To solve the resulting QLP optimization problem,
we exploit the problem’s hybrid nature and combine linear programming
techniques with solution techniques from game-tree search. As a result,
we present an extension of the Nested Benders Decomposition algorithm
by the αβ-heuristic and move-ordering, two techniques that are success-
fully used in game-tree search to solve minimax trees. We furthermore
exploit solution information from QLP relaxations obtained by quantifier
shifting. The applicability is examined in an experimental evaluation.

Keywords: Quantified Linear Programming, Optimization under Uncertainty,
Nested Benders Decomposition, Game-Tree Search

1 Introduction

Nowadays, we are able to solve large mixed-integer programs (MIPs) of practical
size, but companies observe an increasing danger of disruptions, which prevent
them from acting as planned. One reason is that input data for a given problem
is often assumed to be deterministic and exactly known when decisions have
to be made, but in reality they are often afflicted with some kinds of uncer-
tainties. Examples are flight and travel times, throughput-time, or arrival times
of externally produced goods. Thus, there is a need for planning and deciding
under uncertainty. Prominent solution paradigms for optimization under uncer-
tainty are Stochastic Programming [8], Robust Optimization [3, 16], Dynamic
Programming [2], Sampling [13], the use of Markov-Chains [26] and other LP-
based techniques [15, 18, 19].

Uncertainty, however, often pushes the complexity of problems that are in P
or NP, to the complexity class PSPACE. Also many optimization problems un-
der uncertainty are PSPACE-complete [20] and therefore, NP-complete integer
programs are not suitable to model these problems anymore. Relatively unex-
plored are the abilities of linear programming extensions for PSPACE-complete
problems. In this context, Subramani introduced the notion of quantified lin-
ear programs (QLPs) [23–25]. While it is known that quantified linear inte-
ger programs (QIPs) are PSPACE-complete, the exact complexity class of their
QLP-Relaxations is unknown in general. The idea of our research is to explore
the abilities of linear programming techniques when being applied to PSPACE-
complete problems and their combination with techniques from other fields. In
this paper we show how the problem’s hybrid nature of being a two-person zero-
sum game on the one hand, and being a convex multistage decision problem
on the other hand, can be utilized to combine linear programming techniques
with techniques from game-tree search. To our best knowledge, a combination
of techniques from these two fields has not been done before.

Solutions of feasible QLPs are so called winning strategies for the existen-
tial player that specify how to react on moves - certain fixations of universally
quantified variables - of the universal player to certainly win the game. However,
if there are several winning strategies, one might wish to find a certain (the
best) one with respect to some kind of measure. We therefore propose an exten-
sion of the QLP decision problem by the addition of a linear objective function,
which tries to minimize the objective function with respect to the maximum
possible loss that can result from the universal player’s possible decisions. To
solve the resulting QLP optimization problem, we propose an extension of the
Nested Benders Decomposition algorithm as presented in [11]. Solving a QLP
with this algorithm can be interpreted as solving a tree of linear programs by
passing information among nodes of the tree, and for the special case of QLPs
with an objective function, the way these information are passed is similar to
the minimax principle as it is known from game-tree search. This allows to inte-
grate the concept of αβ-cuts in combination with move-ordering, as used in the
αβ-Algorithm to solve minimax trees, which are used to represent two-person
zero-sum games. We furthermore introduce a new cut based on the solution of

2

certain kinds of QLP relaxations resulting from quantifier shifts. The applicabil-
ity of this approach is examined in an experimental evaluation, where we solve
a set of QLPs that were generated from the well-known NETLIB test set. This
test set contains real world LP instances of practical size, and the resulting QLPs
can be interpreted as robust versions of the corresponding LP instances.

The rest of this paper is organized as follows. In Section 2, we formally de-
scribe the QLP optimization problem and its lower and upper bound relaxation
based on quantifier shifting, followed by an explanation of the Nested Benders
Decomposition approach in Section 3. Section 4 introduces the concepts of game-
tree search and afterwards, in Section 5, we show how these techniques can be
embedded into our existing algorithmic framework. We proceed with an experi-
mental evaluation in Section 6 and end up with a conclusion in Section 7.

2 The Problem Statement: Quantified Linear Programs
(QLPs)

Within this paper, we intend to concentrate on quantified linear programs (QLPs),
as they were introduced in [25, 23], and in-depth analyzed in [17, 11]. We follow
the notation as presented in [17] and briefly review the main results. Afterwards
we show how a linear objective function can be incorporated into the concept
of Quantifies Linear Programming and present certain kinds of QLP relaxations
that result when the variable order is changed.

2.1 QLP Decision Problems

Definition 1 (Quantified Linear Program). Let there be a vector of n variables
x = (x1, . . . , xn)

T ∈ Qn, lower and upper bounds l ∈ Zn and u ∈ Zn with
li ≤ xi ≤ ui , a coefficient matrix A ∈ Qm×n, a right-hand side vector b ∈ Qm
and a vector of quantifiers Q = (Q1, . . . ,Qn)T ∈ {∀,∃}n, let the term Q ◦ x ∈
[l, u] with the component wise binding operator ◦ denote the quantification vector
(Q1x1 ∈ [l1, u1], . . . ,Qnxn ∈ [ln, un])

T such that every quantifier Qi binds the
variable xi ranging over the interval [li, ui]. We call (Q, l, u, A, b) with

Q ◦ x ∈ [l, u] : Ax ≤ b (QLP)

a quantified linear program (QLP).

Note that existential-only quantification results in conventional linear pro-
grams: The notation ∃ ◦ x ∈ [l, u] : Ax ≤ b can be verbalized as ”There exist
variables in the range which satisfy the given constraints“.

We denote the quantification vector Q ◦ x ∈ [l, u] as quantification sequence
Q1x1 ∈ [l1, u1] . . . Qnxn ∈ [ln, un]. In a similar manner, we denote Q as a
quantifier sequence Q1 . . . Qn and x as a variable sequence x1 . . . xn. Each
maximal consecutive subsequence of Q consisting of identical quantifiers is called
a quantifier block – the corresponding subsequence of x is called a variable block.
The i-th quantifier block is denoted by Qi ∈ {∀,∃}, and likewise xi denotes

3

the corresponding variable block. The total number of blocks less one is the
number of quantifier changes. Let I be the (ordered) index set of x and let
I∃ := {i ∈ I : Qi = ∃} and I∀ := {i ∈ I : Qi = ∀} be (ordered) subsets with
respect to a specific quantifier. That is, xI∃ and xI∀ denote the (ordered) sets of
existentially quantified, and respectively, universally quantified variables of the
vector x. For convenience, we generally omit the letter I and write x∃ for xI∃
and x∀ for xI∀ .

We interpret each QLP instance as a two-person zero-sum game between an
existential player setting the ∃-variables and a universal player setting the ∀-
variables. Each fixed vector x ∈ [l, u], that is, when the existential player has fixed
the existential variables and the universal player has fixed the universal variables,
is called a game. If x satisfies the linear program Ax ≤ b, we say the existential
player wins, otherwise he loses and the universal player wins. The variables are
set in consecutive order according to the quantification sequence. Consequently,
we say that a player makes the move xk = z, if he fixes the variable xk to
the value z. At each such move, the corresponding player knows the settings
of x1, . . . , xk−1 before taking his decision xk. In the context of answering the
question whether the existential player can certainly win the game, we use the
term policy.

Definition 2 (Policy). Given a QLP (Q, l, u, A, b) with Q ◦ x ∈ [l, u] : Ax ≤
b. An algorithm that fixes all existential variables xi with the knowledge, how
x1, . . . , xi−1 have been set before, is called a policy.

Observe that a policy can be represented as a set of computable functions
of the form xi = fi(x1, . . . , xi−1) for all existentially quantified variables xi. A
policy is called a winning policy if these functions ensure that the existential
player wins all games that can result from this policy, independently of the
universal player’s moves.

Definition 3 (QLP Decision Problems). Given a QLP, the decision problem
“Is there a winning policy for the existential player?” is called the QLP Decision
Problem.

In this paper we concentrate on QLPs since they are relaxations of QIPs
(quantified integer programs with x ∈ Z), which are known to be PSPACE-
complete. It has been shown that the QLP problem with only one quantifier
change is either in P (when the quantification begins with existential quantifiers
and ends with universal ones) or coNP-complete (when the quantification begins
with universal quantifiers and ends with existential ones) [25]. In [17] it was
shown that the solution space of a QLP with n variables forms a polytope in
Rn, which is included in the polytope induced by the constraint set Ax ≤ b
as shown in Figure 1. It was furthermore shown that it suffices to inspect the
bounds of the universal quantified variables in order to check whether a winning
policy does exist (cf. [25] and with a completely different proof in [17]).

Example 1. The QLP

∃x1 ∈ [1, 6] ∀x2 ∈ [1, 2] : x1 + x2 ≤ 6 ∧ x2 − x1 ≤ 0

4

has the following graphical representation of bounding box (dashed lines) and
constraints (solid lines). We say a solution to this problem is a move for the

0 x1

x2

Fig. 1: Polyhedral QLP solution space

existential player such that he wins the game regardless of the universal player’s
reaction, or rather, the set of games (x1, x2)T which can result from the existen-
tial player’s decision (black line segment in the figure below), e.g. the output of
a winning policy. The set of all solutions, i.e. the set of ‘existential sticks’ fitting
in the specified trapezoid, is called the solution space (filled rectangle). In this
example, we see that it indeed suffices to analyze discrete points (filled dots) to
find a solution. Note that the order in the quantification sequence is crucial.

The fact that it suffices to check the bounding values of the universally quan-
tified variables in order to answer the question whether the existential player can
certainly win the game, can be exploited in terms of asking whether a winning
strategy for the existential player does exist.

Definition 4 (Strategy). A strategy S = (V,E, c) is an edge-labeled finite ar-
borescence with a set of nodes V = V∃ ∪̇ V∀, a set of edges E and a vector of
edge labels c ∈ Q|E|. Each level of the tree consists either of only nodes from
V∃ or only of nodes from V∀, with the root node at level 0 being from V∃. The
i-th variable of the QLP is represented by the inner nodes at depth i − 1. Each
edge connects a node in some level i to a node in level i + 1. Outgoing edges
represent moves of the player at the current node, the corresponding edge labels
encode the variable allocations of the move. Each node v∃ ∈ V∃ has exactly one
child, and each node v∀ ∈ V∀ has as two children, with the edge labels being the
corresponding upper lower and upper bounds.

A path from the root to a leaf represents a game of the QLP and the sequence
of edge labels encodes its moves. A strategy is called a winning strategy if all
paths from the root node to a leaf represent a vector x such that Ax ≤ b. This
terminology is also very similarly used in game-tree search [21].

Example 2. The QLP

∃x1 ∈ [0, 1] ∀x2 ∈ [0, 1] ∃x3 ∈ [0, 1] :

5

 0 −1 −1
−1 1 1
2 2 0

x1x2
x3

 ≤
−11

3


has two quantifier changes. Figure 2 shows a visualization of the constraint poly-
hedron restricted to the unit cube. Since this example is rather small, we can guess
a winning strategy for the existential player from the picture: ‘Choose x1 ∈ [0, 12],
then choose x3 apt to x2, e.g. x3 = 1 − x2.’ The highlighted solution space vi-
sualizes the set of all games with a definite winning outcome for the existential
player. Figure 4 shows a winning-strategy for the existential player.

0
x1

x2

x3

Fig. 2: Solution space of Example 2

∀

∃

∀

∃

x1=0.5

x2=1.0x2=0.0

x3=1.0 x3=0.5

−1.0≤−1.0
0.5≤1.0
1.0≤3.0

−1.5≤−1.0
1.0≤1.0
3.0≤3.0

Fig. 3: Winning Strategy Example 2

Remark 1. According to the results from [17] each QLP can be re-written to the
effect that all universally quantified variables are binary. Since we can w.l.o.g.
add dummy variables to the problem, we can assume a strictly alternating quan-
tifier sequence with an existentially quantified variable at the start and at the
end, when this is needed for simplicity.

2.2 QLP Optimization Problems

If there is more than one winning strategy for the existential player, it can be
reasonable to search for a certain (the ’best’) one. We can therefore modify the
problem to include a linear objective function as shown in the following (where
we note that transposes are suppressed when they are clear from the context to
avoid excessive notation).

Definition 5 (QLPs with Objective Function). Let Q ◦ x ∈ [l, u] : Ax ≤ b be
given as in Definition 1 with the variable blocks being denoted by Bi. Let there

6

also be a vector of objective coefficients c ∈ Qn. We call

z = min
B1

(c1x1 +max
B2

(c2x2 +min
B3

(c3x3 +max
B4

(. . .min
Bm

cmxm)))))

Q ◦ x ∈ [l, u] : Ax ≤ b
(QLP*)

a QLP with objective function (for a minimizing existential player (c.f. Remark
1)).

Note that the variable vectors x1, ..., xi are fixed when a player minimizes or
maximizes over variable block Bi+1. Consequently, it is a dynamic multistage
decision process, similar as it is also known from multistage stochastic program-
ming [8]. However, whereas in the latter an expected value is minimized, in our
case we try to minimize the possible worst case (maximum loss) scenario that
can result from the universal player’s decisions.

As we will show in Lemma 1, the above formulation is equivalent to the
following formulation

min{k | (∃,Q) ◦ (k, x) ∈ [l, u] : Ax ≤ b ∧ cTx ≤ k} (QLP**)

where the objective function is pushed into the constraint system and used to
restrict an auxiliary existentially quantified variable k ∈ Q, which is placed in
front of the QLP and which shall be minimized. This means, that similar as
it is the case in traditional linear programming, the objective function can be
encoded in the constraint system.

Lemma 1. A strategy S is a winning strategy for QLP∗ with objective function
value z, if an only if S is also a winning strategy for QLP∗∗ where k = z holds.

Proof. Let S0 be a winning strategy for QLP∗∗ with k being minimal. From
this follows that for each possible game xS0 of S0 the inequality cTxS0 ≤ k is
satisfied at all leafs of S0. However, since k is minimal at least one leaf satisfies
cTxS0 = k as depicted in Figure 7. The universal player can chose the path in
S0, but whatever he does, the existential player will certainly win the game and
he will achieve an objective function value of at least k. To reach exactly k, the
universal player must chose the path that leads to a leaf of S0 where cTxS0 = k.
Obviously, the minimax value of a strategy is equal to the maximum value at
the leafs of a min strategy (c.f. [21]), and therefore k = z.

Conversely let S1 be a winning strategy for QLP∗ and let

z = min
B1

(c1xS11 +max
B2

(c2xS12 +min
B3

(c3xS13 +max
B4

(. . .min
Bm

cS1xm)))))

Therefore S1 consist of a set of games such that for each game xS1 of S1

AxS1 ≤ b and cTxS1 ≤ z at all leafs of S1. Because the existential player mini-
mizes the objective function, there must be at least one leaf in S1 with cTxS1 = z.
Therefore z is also minimal for QLP∗∗ and z = k.

7

∃

∀

∃

∀

∃

∀
cT xS0

1

k cT xS0
m

k cT xS0
m1

=k cT xS0
n

k

=k

≤k

kk

k

k

Fig. 4: Winning strategy S

In the following we use the abbreviation min cTx for the objective function
and denote by

min{cTx | Q ◦ x ∈ [l, u] : Ax ≤ b}

a quantified linear program with objective function.

Definition 6 (QLP Optimization Problems). Given a QLP with objective func-
tion, the problem “Is it feasible? If yes, what is the best objective value of the
existential player’s winning strategies?” is called QLP Optimization Problem.

Note, that to find the existential player’s optimal objective value, it is not
enough to fix the universal players variables to their worst-case values regarding
the objective function. For clarification, consider the following program:

min{−x1 − 2x2 | ∀x1 ∈ [0, 1] ∃x2 ∈ [0, 1] : x1 + x2 ≤ 1}

Judging from the objective function the universal player should fix x1 = 0,
but this results in a better objective value for the existential player than forcing
the existential player to fix x2 = 0 in the constraint system. However, it still
suffices to inspect only the bounding values of the universally quantified variables
(c.f. Lemma 2).

Lemma 2. For each universally quantified variable xi in QLP∗∗, it suffices to
inspect the bounds li and ui. Moves of the universal player in the range li < xi <
ui do not increase k.

8

Proof. Let S be a winning strategy for

Q ◦ x ∈ [l, u] : Ax ≤ b ∧ cTx ≤ k.

Let w.l.o.g. all universally quantified variables be binary. Let furthermore k be
minimal for the QLP and let cTx = k in exactly one leaf of S as depicted in
Figure 5.

∃

∀

∃

∀

∃

x1=x1

x2=1x2=0
x2=

kS0
=max cT xS0

1

≤k ,... ,cT xS0
n

≤k  kS1
=max cT xS1

1

=k ,... ,cT xS1
n

≤k 

S0 S1

xS0
1

xS0
2

xS0
n

xS1
1

xS1
1

xS1
n

∀

Fig. 5: Winning strategy S with sub strategies S0 and S1

After the first move of the existential player where he fixes the first variable
to x0 = x0, the winning strategy S splits up into two sub strategies S0 and S1.
These are winning strategies for the remaining moves of the existential player
when the universal player fixes the next universally quantified variable x2 to the
lower bound x2 = 0 or to the upper bound x2 = 1. Let kS0

be the corresponding
maximal value cTx ≤ k that can result at the leafs from all possible games
xS0 = (x0, 0, x2, . . . , xn) of S0 and kS1

be the same value with respect to S1 as
depicted in Figure 5. Then it holds that max{kS0 , kS1} = k. If the universal
player is allowed to chose an xi = α with 0 ≤ α ≤ 1 (e.g. x2 = α as in
Figure 5), we can construct a winning strategy Sα from S0 and S1 for any α
and it holds that for all possible resulting games xSα , the corresponding values
cT (x0, xSα) are less than k. To compute Sα, the existential player can compute

9

xα for any possible move sequence of the universal player by setting variable
xαi = αxS0

i + (1− α)xs1i . Then, for all possible games xα in Sα holds:

Axα = α(Ax0) + (1− α)(Ax1) ≤ αb+ (1− αb) = b

cTxα = α(cTx0) + (1− α)(cTx1) = αk0 + (1− α)k1 < k.

Lemma 2 follows using induction over the number of universally quantified vari-
ables.

2.3 QLP Relaxations by Quantifier Shifting

The order of the elements in the quantification vector Q ◦ x ∈ [l, u] is crucial,
because it determines the sequence in which the variables must be fixed by the
two players. However, changing the order in the quantification sequence can
yield interesting information about the original problem. In this context, the
two special cases when the universal quantified variables are shifted to the end
of the quantification sequence, and respectively, when they are shifted to the
front are of high interest.

Given a general quantified linear program

z = min{cTx | Q ◦ x ∈ [l, u] : Ax ≤ b} (QLP∃∀...∀∃)

with Q consisting of m quantifier blocks Q = (∃1,∀2,∃3, . . . ,∀m−1,∃m) and
the first and last block consisting of existentially quantified variables (c.f. Re-
mark 1). Accordingly the variable vector x consists of m variable blocks x =
(x1, x2, x3, . . . , xm−1, xm).

When all universally quantified variables are shifted to the front of the quan-
tification vector

z∀∃ = min{cTx | Q∀∃ ◦ (x∀, x∃) ∈ [l, u] : Ax ≤ b} (QLP∀∃)

with Q∀∃ = (∀2, . . . ,∀m−1,∃1, . . . ,∃m) and x∃ = (x1, x3, . . . , xm) and x∀ =
(x2, . . . , xm−1), then the universal player must fix all universally quantified vari-
ables x∀ before the existential player must fix the existentially quantified vari-
ables x∃.

Accordingly, in the case when all universal quantifiers are shifted to the end
of the quantification vector

z∃∀ = min{cTx | Q∃∀ ◦ (x∃, x∀) ∈ [l, u] : Ax ≤ b} (QLP∃∀)

with Q∃∀ = (∃1, . . . ,∃m,∀2, . . . ,∀m−1) and x∃ = (x1, x3, . . . , xm) and x∀ =
(x2, . . . , xm−1), then the existential player must fix all existentially quantified
variables x∃ before the universal player must fix all universally quantified vari-
ables x∀.

This means, in the case of QLP∀∃ it suffices to find for any possible fixation
x∀ of the universally quantified variables, a fixation x∃ of the existentially quan-
tified variables such that Ax ≤ b. In the case of QLP∃∀ in contrast, we must find

10

one single fixation x∃ of the existentially quantified variables such that Ax ≤ b
holds for all possible fixations x∀ of the universally quantified variables. Judg-
ing from the viewpoint of game playing, the latter is of course much harder to
achieve for the existential player.

While the complexity of QLP∃∀...∀∃ is unknown in general, it was shown that
QLP∀∃ is in P and that QLP∀∃ is coNP-complete [25]. Furthermore, the follow-
ing relationships with respect to the feasibility and infeasibility of QLP∃∀...∀∃,
QLP∃∀, and QLP∀∃ hold:

1. If QLP∀∃ is infeasible for any fixed vector of universally quantified variables
x∀, then also QLP∃∀...∀∃ is infeasible and x∀ is a certificate of infeasibility.

2. If QLP∀∃ is feasible for every fixed vector of universally quantified variables
x∀ and z∗∀∃ is the optimal value of the worst-case scenario, then for any
feasible solution of QLP∃∀...∀∃ with objective function value z holds, that
z∗∀∃ ≤ z, and thus, z∗∀∃ is a also lower bound for the optimal solution z∗ of
QLP∃∀...∀∃.

3. If QLP∃∀ is feasible with solution x∃, then also QLP∃∀...∀∃ is feasible, and
x∃ is a certificate of feasibility.

4. If QLP∃∀ is feasible with z∗∃∀ being the corresponding optimal objective
function value, then for any feasible solution of QLP∃∀...∀∃ with objective
function value z holds, that z ≤ z∗∃∀, and thus, z∗∃∀ is also an upper bound
for the optimal solution z∗ of QLP∃∀...∀∃

The correctness of these relationships are easy to see and do not need an formal
proof, it suffices to take the following into account:

1. If there is any move sequence x∀ for the universal player in QLP∀∃, such
that A(x∀, x∃) ≤ b is not feasible for any x∃, then the same move sequence
will also lead to infeasibility of QLP∃∀...∀∃ (Note that the inversion of the
argument is not correct).

2. If QLP∀∃ is feasible with z∗∀∃ being the optimal value of the worst-case sce-
nario, then the optimal solution z∗ of QLP∃∀...∀∃ can not get smaller than
z∗∀∃ because the corresponding worst-case scenario is also part of QLP∃∀...∀∃.
Apart from that, z∗ can become a sight worse than z∗∀∃ because in QLP∃∀...∀∃
some variable fixations of the existential player most hold for more than one
scenario, whereas for QLP∀∃ the opposite is the case.

3. QLP∃∀ is solved with the help of the gaming argument as presented in [25].
Therefore, the constraint system Ax ≤ b is converted into a modified con-
straint system where the universal player has replaced all variables xi from
the set x∀ by the worst case for the existential player between li and ui in-
equality by inequality and also in the objective function. The modified con-
straint system does not longer contain any universally quantified variables
and can be solved with standard linear programming algorithms to obtain
the solution x∃. This solution is also a solution for QLP∃∀...∀∃ because all
variables xi from the set x∀ must still be chosen between li and ui, however

11

not worst case for the existential player inequality by inequality but rather
with one single fixation for all constraints in Ax ≤ b for each variable x from
the set x∀ .

4. The optimal solution z∗ of QLP∃∀...∀∃ cannot exceed z∗∃∀ because all const
raints of QLP∃∀ are also part of QLP∃∀...∀∃. However, because the universal
player may not choose his variables worst case for the existential player
inequality by inequality but rather with one single fixation for each variable
xi from the set x∀ for all constraints in Ax ≤ b, some of the constraints in
QLP∃∀...∀∃ get weakened with respect to their counterparts in QLP∃∀.

In Section 5 we describe how these information can be exploited in the solution
process of the Nested Benders Decomposition algorithm.

3 Nested Benders Decomposition (NBD)

The first algorithm to solve QLP decisions problems was proposed by Subra-
mani [25] and relies on variable elimination techniques. Existentially quantified
variables x∃ are eliminated using the well known Fourier-Motzkin elimination
method, universally quantified variables x∀ are eliminated using a clever gam-
ing argument. However, the algorithm has double-exponential runtime, because
at each elimination step of an existentially quantified variable the number in-
equalities can grow from m to (m2)

2. Another approach based on decomposition
techniques was proposed in[11] and tested in a detailed computational study.
This algorithm is the basis for the algorithmic extension proposed in this paper.

The algorithm uses decomposition techniques to solve an implicit reformula-
tion of a QLP, which we call a deterministic equivalent problem (DEP), and that
does not longer contain universally quantified variables. The concept is similar to
the notion of deterministic equivalence as it is known from stochastic program-
ming (cf. [8]) in the context of multistage stochastic linear programs (MSSLPs).
There, using the assumption of a finite time horizon and a discrete probability
space, the resulting scenario tree is encoded into a DEP by replicating the LP
for each possible scenario (possible path of events). Additionally, it is required
that decisions must not depend on future events (nonanticipativity).

The DEP of a QLP instance can be constructed in a similar way, however,
instead of encoding the scenario tree of randomly arising scenarios, we encode the
decision tree of the universal player, which results from the series of all possible
upper and lower bound combinations of the variables x∀ as determined by the
quantification sequence Q∀ ◦ x∀ ∈ [l∀, u∀]. Nodes at stage t are decision points
where the existential player has to fix variables, e.g. by solving a linear program,
with respect to all previous moves (x1, . . . , xt−1). Arcs of the tree represent
moves of the universal player when he fixes his variables to the corresponding
lower and upper bounds.

Figure 6 a) shows the universal player’s decision tree for a QLP with alter-
nating quantification sequence ∃x1 ∈ [l1, u1] ∀x2 ∈ [l2, u2] ∃x3 ∈ [l3, u3] ∀x4 ∈
[l4, u4] ∃x5 ∈ [l5, u5]. The tree is similar to the strategy of a QLP where the
moves of the existential player have not been fixed.

12

∃ ∃ ∃∀ ∀

x3

x2=l

x5

x2=u

x4=l

x4=u

x1

x3

x5

x5

x5

x4=u

x4=l
Game1

Game2

Game3

Game4

a) Universal Player Decision Tree

A3

A3
'

A3
' '

A3
' ' '

A2

A2

A2
'

A2
'

A1

A1

A1

A1

b) DEP Matrix Structure

Fig. 6: Deterministic Equivalent Linear Program

Figure 6 b) shows the resulting DEP matrix structure using compact variable
formulation, which implicitly satisfies the nonanticipativity property because all
nodes in the three that share a common history also have the same set of decision
variables up to that point. The resulting DEP grows exponentially with the
number of universally quantified variables of the corresponding QLP, but the
special block structure of the matrix can be exploited by the Nested Benders
Decomposition (NBD) algorithm. The NBD algorithm is a recursive application
of the well-known Benders Decomposition principle [6] and is widely used in the
Stochastic Programming community to solve MSSLPs [22, 7].

To illustrate how the Benders Decomposition algorithm works to solve QLPs,
we consider w.l.o.g. the DEP that results from a QLP with quantification se-
quence ∃x1 ∈ [0, u1]∀x2 ∈ [1, 1]∃x3 ∈ [0, u3] and an objective functionmin cT1 x1+
cT3 x3. Let the constraint system A1x1+A2x2+A3x3 ≤ b contain the upper bound
u1 of x1 and u3 of x3. Since the ∀-variable x2 ∈ [1, 1] is a fixed variable, the DEP
consists of a single game where the corresponding right hand side b′ results from
b′ = b−A2x2 with x2 = 1. The resulting DEP looks as follows:

Z = min cT1 x1 + cT3 x3
s.t. A1x1 +A3x3 ≤ b′

x1 ≥ 0, x3 ≥ 0

Applying Benders Decomposition, the decision variables of the DEP are
stage-wise partitioned and then decomposed into a restricted master problem
(RMP) that contains the first-stage variable x1, and one subproblem (SP) that
contains the second-stage variable x3. The corresponding dual SP (DSP) has
the property that the solution space does not longer depend on the value of x1,
regardless whether it is feasible or infeasible for the SP. The SP and its DSP can
be written as follows:

13

SP (x1) = min cT3 x3
s.t. A3x3 ≤ b′ −A1x1

x3 ≥ 0

DSP (x1) = max πT (b′ −A1x1)
s.t. AT3 π ≤ c3

π ≤ 0

For a non-optimal x1 obtained by the solution of the RMP, which can be
empty at the beginning, the following two cases can happen. It the SP is feasible,
the solution of the DSP is bounded and located at an extreme point of its
solution space. If the SP is infeasible, the solution of the DSP is unbounded,
which corresponds to an extreme ray of its solution space. Using these dual
information, two different types of cutting planes - called Benders cuts - can be
added to the RMP to cutoff the last x1 in the next solution of the RMP.

1. feasibility cut : (πjr)(b′ − A1x1) ≤ 0, if the DSP(x1) is unbounded, where πjr
is the vector that corresponds to the extreme ray j.

2. optimality cut : (πip)(b′ −A1x1) ≤ q, if the DSP(x1) is bounded, where πip is
the vector that corresponds to the extreme point i.

Since the DSP can only have finitely many extreme points and extreme rays,
the RMP can be written as follows, where q is an auxiliary variable used to
approximate the objective function value of the SP:

RMP = min cT1 x1 + q
s.t. (πj

r)(d−A1x1) ≤ 0 ∀j ∈ J
(πi

p)(d−A1x1) ≤ q ∀i ∈ I
x1 ≥ 0

This reformulation is equivalent to the initial DEP, however, there can be
exponentially many extreme rays and extreme points and not all of them are
needed to find the optimal solution. Therefore, the algorithm starts with I and
J being empty, and computes cuts in an iterative process until an optimal so-
lution is found or infeasibility is detected. In the latter case also the DEP and
the corresponding QLP are infeasible. The optimal solution is found, if for a
given candidate optimal solution (x∗1, q

∗), called proposal, also the SP(x∗1) has
an optimal solution with value q(x∗1) and the optimality condition q(x∗1) = q∗

is satisfied. If this is the case, the algorithm stops. Otherwise a feasibility or
optimality cut is added to the RMP, which is then re-solved again to obtain
a new proposal. In each iteration where the SP is feasible, cTx∗1 + q∗ yields a
lower bound for the initial problem, while cTx∗1 + q(x∗1) yields an upper bound.
The difference between these bounds gets smaller, and if it becomes less than a
predefined ε, the algorithm also terminates.

If there are k universally quantified variables, then there are 2k games and
therefore 2k subproblems are solved in each iteration, each yielding a cut that is
added to the RMP. The min-max property of the objective function is achieved,
because all optimality cuts that result from the subproblems restrict the same

14

auxiliary variable q. For the computation of the upper bound, the maximum over
all subproblems from the last iteration is used. For multistage QLPs resulting
from a quantifier string ∃∀∃∀...∀∃, Benders Decomposition can be recursively
applied, which is known as Nested Benders Decomposition. Solving the DEP of
a multistage QLP can be illustrated as solving a tree of linear programs that
are attached to the nodes of the decision tree of the universal player. The tree is
traversed forwards and backwards multiple times, with information being passed
between adjoined nodes of the tree. A node at stage t passes proposals for the
variables from the root up to stage t to its immediate descendants at stage t+1
and cuts to its immediate ancestor at stage t− 1.

The algorithm has been implemented and tested in a detailed computational
study with instances that were generated from existing LP and IP test sets [11].

4 Game-Tree-Search and the αβ-Algorithm

The term, minimax tree describes one of the most important data structures
that allows computers to play two-person zero-sum games such as tic-tac-toe,
checkers, chess, go, etc. Nodes of the tree are decision points for the players and
are therefore subdivided in min and max nodes. Nodes from different stages are
connected with branches, leaf nodes are end positions of the game and can be
evaluated as a win, lose, or draw using the rules of the game. Often, a specific
score from the max player’s point of view is computed with the help of a weight-
ing function and assigned to a leaf to represent how good or bad the sequence
of moves from the root to the leaf is. With a complete game-tree, it is possible
to solve the game with the MiniMax -Algorithm, which therefore fills the inner
node values of the tree bottom-up starting with the evaluated values at the leafs.
Nodes that belong to the max player get the maximum values of their succes-
sors, while nodes for the min player get the minimum. Figure 7a) illustrates this
behavior.

While the MiniMax-Algorithm must evaluate the entire game-tree to com-
pute the root value, the αβ-Algorithm [14, 1, 21] prunes away branches that can-
not influence the final result. Therefore, it maintains two values, α and β, which
represent the minimum score that the max player is sure to gain at least until
that point in the tree, and the maximum score of the min player respectively. If
the evaluation of a position where the min player has to move becomes less than
α, the move needs not to be further explored, since a better move has already
been found. The same holds, if at a position where the max player has to choose
his move, the evaluation provides a value that is greater than β. Figure 7b)
illustrates this behavior, the dashed subtrees were not visited. The left one due
to a β-cutoff, the subtree on the right hand due to an α-cutoff.

Whereas the order in which the nodes of the tree are evaluated does not care
for the MiniMax-Algorithm, it is of particular importance for the performance
of the αβ-Algorithm. The best moves need to be evaluated first in order to find
strong α and β values as soon as possible. Figure 7b) illustrates this, without
swapping the subtrees under the first successor of the root on the left side, the β-

15

 7 6 2 5 4 0 4

457

4

min

max

6

6

6

6

a) MiniMax Game-Tree

 6 2 5 4 0 4

45

min

max

6

6

6

6

5

7

7

=−∞
=∞

move sort

=−∞
=∞

=−∞
=∞

=6
=∞

=−∞
=6

7

=−∞
=6

=6
=∞

=6
=∞

=6
=∞

=6
=5

5

b) αβ-Algorithm

Fig. 7: MiniMax Game-Tree and αβ-Algorithm

cutoff would not have occurred. If the best moves are searched first, the runtime
of the αβ-Algorithm is only O(

√
bd) where d is the depth of the tree and b is the

number of possible moves at each node. The MiniMax-Algorithm has a runtime
of O(bd).

5 The αβ-Nested Benders Decomposition (αβ-NBD)

Solving a multistage QLP with the NBD algorithm can be illustrated as solving
a tree of linear programs that are attached to the nodes of the universal player’s
decision tree. The tree is traversed multiple times and information in form of
proposals and cuts are passed between nodes of the tree.

If a node vi at stage t ∈ {0, . . . , T} receives a new proposal xt−1 from its
parent at stage t − 1, the subtree rooted at vi is solved to optimality, or until
the nodal linear program attached to vi becomes infeasible. After feasibility of
the subtree is established, the upper and lower bounds of vi converge at each
iteration and for the optimal objective function value zi holds Lzi ≤ zi ≤ Uzi until
the values coincide at the end, and vi passes zi and the corresponding optimality
cut to its parent at stage t−1. After an iteration where node vi passed its current
proposal xt to its direct successors vj ∈ J at stage t + 1, and all of them were
feasible with zj denoting the corresponding optimal objective function values,
then vi’s upper bound computes as Uzi = cTxt + maxj∈J zj . This is equal to
the minimax principle, the existential player tries to minimize the nodal lp with
respect to the worst-case move of the universal player, which is the subproblem
with the maximal objective function value.

The current maximal value αi = maxk∈K zk of some successors vk ∈ K ⊂ J
of node vi can be used in a similar manner as α in the αβ-Algorithm, since
it denotes the minimum value, the maximizing player (the universal one) will
at least obtain at node vi. αi can be passed to the remaining nodes from the
set L = J\K and each node vl can stop computing its exact optimal objective
function value after it determines feasibility and its upper bound Uzl becomes

16

less than or equal to αi. Nevertheless, if a proposal xt and an αi is passed from
a node vi to one of its direct successors vk ∈ K, the entire subtree rooted at
vk must at least be traversed once to determine feasibility and thus to obtain a
valid upper bound Uzk . However, we can first solve the relaxation QLP∃∀ where
all universally quantified variables are shifted to the end of the quantification
sequence and the variables are fixed accordingly to the current moves. If it is
feasible with optimal objective function value z∃∀k also the subtree rotted at vk
is feasible and z∃∀k is an upper bound for zk. It holds Lzk ≤ zk ≤ z∃∀k and if
z∃∀k is less than or smaller than αi the subtree rooted at node vk needs not to
be inspected, because one of vk’s siblings already passed back a worse solution.

We can also integrate a value analogously to β that depicts the maximum
value the minimizing player will gain for sure at a specific node vi at stage t. The
value βi = Uzi −cTtxt results from the upper bound from the last iteration minus
the objective function part of the nodal lp after cuts have been added and the lp
was resolved. βi can be passed to all successors vj ∈ J at stage t+1 together with
the new proposal xt. If a node vj is feasible with respect to the current proposal
xt and its lower bound Lzj is greater than or equal to βi, it can stop computing
its exact optimal objective function value because a better solution has already
been found in the previous iteration. The lower bound Lzj = cTxt+1+qt+1 results
from the objective function part cTxt+1 of the nodal lp at node vj , qt+1 is an
approximation variable for the objective function part of the remaining stages.

Algorithm 1 illustrates the recursive application of the αβ-NBD algorithm in
C-like style. The parameters of the function Qtj(vj , x

t−1
i , bt(ωj), α

t−1
i , βt−1i) are

a node vj of the universal player decision tree at stage t, the set of proposals
xt−1 of all existentially quantified variables from stage 0 to t− 1 and the vector
bt(ωj). The latter results from the original vector bt of stage t after the universally
quantified variables fixations of the universal player that correspond to node vj
are substituted into the constraint system and carried to the right-hand-side.
We call the set of moves of the universal player that correspond to a node vj a
scenario and denote it by ωj . At the root node the algorithm is initialized with
an empty x-vector, the original right-hand-side b0, α and β are set to negative
infinity and positive infinity. Substituting the proposal xt−1i into the nodal lp of
node vj yields the restricted master problem of vj , which is denoted by RMPtj . If
vj is a leaf node, the RMPtj is solved and depending on whether it is infeasible or
feasible, the corresponding dual extreme ray πtr,j is passed back to its ancestor
vi at stage t − 1, or the optimal objective function value cTtxtj + qtj and the
corresponding dual extreme point πtp,j respectively, as depicted in lines 2-6. If
vj is an inner node the relaxation QLP∃∀, where the variables that correspond
to the current moves of both player are accordingly fixed, is solved as shown in
lines 7-10. If the relaxation is feasible and the optimal objective function value
z∃∀ is less then or equal to αt−1i , the algorithm directly passes back z∃∀ and the
corresponding dual extreme point πtp,j . Otherwise, further nodes in the subtree
must be visited as shown in lines 11-31. Therefore the RMPtj is solved and if it
is infeasible, the corresponding dual extreme ray πtr,j is passed back to node vi.
If it is feasible, the solution yields a new lower bound Lzj and a proposal xtj that

17

is passed to all direct successors vk ∈ K of node vj as shown in lines 15-24. If a
subproblem at a node vk is infeasible, the corresponding dual extreme ray (πt+1

r,k)
is used to compute a feasibility cut, otherwise the corresponding dual extreme
point πt+1

p,k is used to compute an optimality cut and αi is updated. The cuts are
added to RMPtj to cut off the current proposal xtj in the next iteration.

Algorithm 1: Function Qtj(vj , x
t−1
i , bt(ωj), α

t−1
i , βt−1i)

1 Lz
j = −∞, Uz

j = +∞, αj = −∞, βj = +∞;
2 if vj is leaf node then
3 Solve RMPt

j = min{cTtxtj + qtj |Atxtj ≤ bt(ωj)− T t−1xt−1
i , xtj ≥ 0};

4 if RMP t
j is infeasible then return πt

r,j ;
5 return cTtxtj + qtj and πt

p,j ;
6 end
7 if vj is an inner node then
8 Solve the relaxation z∃∀ = QLP∃∀ with xt−1 being fixed in QLP∃∀;
9 if QLP∃∀ is feasible and z∃∀ ≤ αt−1

i then return z∃∀ ; // deep α-cutoff
10 end
11 while |Uz

j − Lz
j | ≥ ε do

12 Solve RMPt
j = min{cTtxtj + qtj |Atxtj ≤ bt(ωj)− T t−1xt−1

i , xtj ≥ 0};
13 if RMP t

j is infeasible then return πt
r,j ; // infeasible master problem

14 Lz
j = cTtxtj + qtj ; // update lower bound

15 forall the nodes vk ∈ K from the set of direct successors of node vj do
16 Solve SPk(x

t
j) = Qt+1

k (vk, x
t
j , b

t+1(ωk), α
t
j , β

t
j);

17 if SPk(x
t
j) is infeasible then

18 add feasibility cut: (πt+1
r,k)T (bt+1(ωk)− T txt) ≤ 0 to RMPt

j ;
19 end
20 if SPk(x

t
j) is feasible with objective function value q(xt) then

21 add optimality cut: (πt+1
p,k)T (bt+1(ωk)− T txt) ≤ qt to RMPt

j ;
22 if q(xt) > αt−1

i then αt
j = q(xt)

23 end
24 end
25 if SPk(x

t
j) is feasible for all vk ∈ K then

26 Uz
j = ctxtj +maxk∈K

[
Qt+1(xtj , b

t+1(ω), αt
j , β

t
j)
]
;

27 if Uz
j ≤ αt−1

i then return Uz
j and πp,j ; // α-cutoff

28 if Lz
j ≥ βt−1

i then return Uz
j and πp,j ; // β-cutoff

29 βt
j =Uz

j − cTtxtj
30 end
31 end
32 return cTtxtj + qtj and πp,j ;

If all nodes vk ∈ K were solved with respect to the current proposal and
none of them was infeasible, vj ’s upper bound is updated and the algorithms
checks whether an α-cutoff or a β-cutoff occurred. In this case the current upper

18

bound Uzj and the corresponding dual extreme point πtp,j of RMPtj is passed
back. Otherwise βtj is updated and while the difference of the bounds does not
exceed an predefined ε, the algorithm proceeds with the next iteration in line 13
by resolving RMPtj .

As in the case of the αβ-Algorithm, the order in which the nodes of the
tree are solved is also an important issue in the αβ-NBD algorithm. Whereas
the αβ-Algorithm uses heuristics, our algorithm organizes the order in which
nodes are visited based on information from previous iterations. To obtain strong
bounds as soon as possible, the successor of a node vi that provided the worst-
case sub solution in the previous iteration, is visited first in the next iteration,
speculating that it will again provide a strong α-bound. However, many other
sorting criterions are possible.

Since any NBD implementation has to deal with a number of details, which
can substantially effect the overall performance, we briefly sketch the most im-
portant design decisions of our implementation. Before a subproblem is solved,
it has to be loaded into the LP solver. As resolving is usually much faster than
solving it from scratch, having one LP for each node of the tree might lower the
computational time required. However, due to memory constraints, this is not
possible for larger problems. We therefore decided to share LPs for all nodes at
the same stage of the tree, since those problems only differ in their right-hand
sides, apart from cuts being generated during the solution process.

To have a good warm-start behavior we store for each node all cuts from
previous iterations and the last base, which is then used as starting base when
the node is revisited in a later iteration. To benefit from the proposed game-tree
techniques and because it is the most successful approach to traverse a game-tree,
we decided to apply a depth-first-search to traverse instead of a breadth-first-
search, which is more commonly used in the stochastic programming community.
If a particular problem is feasible, it is an arbitrary decision in which direction to
move, an optimality cut can be passed up the tree, or the new proposal down the
tree. We use the fast-forward method [7, 12], where new proposals are generated
as long as possible and cuts are only passed back, when an optimal solution for
the nodal linear program is found or the problem becomes infeasible.

When solving a MSSLP, there are two common ways to create optimality
cuts. One way is summing up the weighted dual variables for each subproblem
forming one optimality cut, whereas the other way is to disaggregate optimality
cuts by placing one cut for each subproblem in the corresponding master. The
latter is called multicut and was suggested by Birge and Louveaux [9]. We use
a hybrid scheme and only add the optimality cut of the current worst-case sub-
solution to the master. Tests showed that this is clearly faster than adding all
optimality cuts in an iteration because the nodal LPs stay small. Furthermore,
before each new cut is added, we apply a check that detects if the cut is redundant
or if it makes an existing cut redundant itself. To avoid iterations with slow
progress at the beginning, we use an advanced start procedure to get a good
proposal for the first iteration of the αβ-NBD algorithm by solving the QLP
relaxation QLP∀∃, where all scenario interdependencies are dropped.

19

6 Computational Results

In the following we present the results of our experimental evaluation. All tests
were run on a Intel i7-3820 CPU with 3.60GHz and 64GB RAM, the algorithmic
framework has been implemented in C++ using the LP Solver CPLEX 12.5 to
solve nodal linear programs. Since yet no real-world QLP instances do exist in the
literature, we decided to use existing LP instances from the well-known NETLIB
Library 1 and convert them to QLPs. In the absence of real-world problems, this
approach seems obvious since many NETLIB instances were used as basis in
many computational studies in the context of Stochastic Programming[12, 10, 7]
where they were converted to MSSLPs. Also in Robust Optimization they were
studied [4, 5], and in the latter it was shown that even the feasibility properties
can be severely affected by only small perturbations of the data. Randomly
adding blocks of universally quantified variables as described in [11] can therefore
be interpreted as inserting some kinds of uncertainties, that are controlled by an
adversary.

For our tests we took LP instances with a maximum number of 500 variables
and constraints and generated QLPs with 10, 15, and 18 universally quantified
variables. For each new universally quantified variable xi ∈ [0, 1], we randomly
added matrix coefficients from the interval [−1, 1] with a density of 25%. We fur-
thermore varied the number of ∀-quantifier blocks to 1, 2 and 5 and distributed
them equally in the QLP. This results in twostage and multistage QLP instances
and nine different test sets. Since our aim in this paper is to show the efficiency
of the αβ-heuristic combined with move-ordering to find optimal worst-case so-
lutions, we think that it makes sense to require QLP instances for these tests
to be feasible, leading to the decision to drop infeasible QLP instances from the
experimental tests. However, for each of the nine test sets, we were able to gen-
erate twelve QLP instances that accomplished to the properties as mentioned
above, and that were feasible at the same time. To ensure comparability, the
QLPs result from the same twelve original LP instances for each of the nine
test sets. The original instances from the Netlib Library are: AFIRO, ISRAEL,
KB2, RECIPELP, SC105, SC205, SC50A, SC50B, SCAGR25, SCAGR7, and
SCTAP1. For each QLP instance, the corresponding DEP was computed using
the compact-variable representation and stored in the CPLEX LP file format.
Since our test set contains QLP optimization problems, the algorithm presented
by Subramani was not used for the experimental tests, because its elimination
procedure does not support an objective function.

Table 1 shows the summed up results solving each of the test sets with the
standard NBD algorithm, the αβ-NBD algorithm, and when solving the cor-
responding DEPs with CPLEX. Column 1 contains the number of universally
quantified variables followed by the number of blocks of universally quantified
variables in column 2. Column 3 contains the solution times when the corre-
sponding DEPs are solved with CPLEX running with standard settings and its
preprocessor enabled. Columns 4 and 5 show the solution times and the number

1 http://www.netlib.org/lp/

20

of LPs that were solved using the standard NBD algorithm. Column 6 and 7
show the same numbers when αβ-cuts and the move sort heuristic are used.

CPLEX NBD αβ-NBD
∀-Vars ∀-Blocks Time (s) Time (s) LPs solved Time (s) LPs solved

10 1 84,00 23,99 238.598 9,00 136.211
10 2 55,00 17,99 243.513 11,99 97.925
10 5 32,99 36,00 591.495 15,12 194.668
15 1 16.326,00 501,74 5.544.158 214.00 3.129.341
15 2 15.251,00 444,03 5.875.887 113,79 1.181.629
15 5 11.085,11 745,78 12.733.826 196,99 2.253.480
18 1 >172800.00 3075,00 40.807.572 2557,24 35.805.290
18 2 >172800.00 3476,55 65.290.954 867,00 11.558.028
18 5 >172800.00 7028,00 138.049.182 2649,99 24.277.839

Table 1: Computational Results

The results show that the even the standard NBD algorithm implementation
is clearly faster than solving the DEP in most cases, especially with an increasing
number of universally quantified variables. This is due to the exponential growth
of the DEP with an increasing number of universally quantified variables in the
corresponding QLP. Note that for solving the DEP, the solution times decrease
with an increasing number of quantifier blocks, because in split-variable formu-
lation and equally distributed quantifier blocks, the resulting DEPs get smaller.
For the NBD algorithm the opposite is the case because there is an increasing
effort for tree traversal (e.g. saving bases and cuts, restoring bases and cuts, ...).
When we additionally use the αβ-heuristic and move sort, we observe notable
time savings up to about 75% compared to the standard implementation as we
can e.g. see in the second last row of Table 1. The extended algorithm was able
to reduce the number of subproblems that had to be solved from 65.290.954 to
11.558.028, resulting in a reduction of the solution time from 58 minutes to 15
minutes. The effect becomes stronger with an increasing number of stages and we
observed time-savings of 63.5% on average for multistage QLPs. However, even
in the twostage case, move-ordering alone leads to a performance gain of and
45%. These results show the high potential of combining techniques from game-
tree search with the Nested Benders Decomposition approach and motivate a
further research in this direction.

7 Summary

In the course of this paper we considered Quantified Linear Programs (QLPs)
and proposed an extension by a linear objective function. To solve the resulting
QLP optimization problem, we showed how its hybrid nature of being a two-
person zero-sum game on the one side, and being a convex multistage decision

21

problem on the other side, can be used to combine linear programming tech-
niques with solution techniques from game-tree search. We therefore extended
the Nested Benders Decomposition algorithm by αβ-cuts and move-ordering,
two techniques that are used in the αβ-Algorithm to evaluate minimax trees.
We furthermore showed how QLP relaxations that result from quantifier shifting
can be used to improve the cutting mechanism. We showed the applicability in
an experimental evaluation, where we solved some QLP optimization problems,
which were generated from the NETLIB test set. The results showed a speedup
of up to 75% compared to the standard Nested Benders Decomposition imple-
mentation without these techniques. These results are promising and motivate
a further research in this direction.

References

1. Field programmable logic and application, 14th international conference , fpl
2004, leuven, belgium, august 30-september 1, 2004, proceedings. In J. Becker,
M. Platzner, and S. Vernalde, editors, FPL, volume 3203 of Lecture Notes in Com-
puter Science. Springer, 2004.

2. R. Bellmann. Dynamic programming. Princeton University Press, 1957.
3. A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton

University Press, 2009.
4. A. Ben-tal and A. Nemirovski. Robust solutions of linear programming problems

contaminated with uncertain data. Mathematical Programming, 88:411–424, 2000.
5. A. Ben-Tal and A. Nemirovski. Robust optimization ? methodology and applica-

tions. Mathematical Programming, 92(3):453–480, 2002.
6. J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik, 4(1):238–252, Dec. 1962.
7. J. R. Birge, C. J. Donohue, D. F. Holmes, and O. G. Svintsitski. A parallel

implementation of the nested decomposition algorithm for multistage stochastic
linear programs. Math. Program., 75:327–352, November 1996.

8. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer
Series in Operations Research and Financial Engineering. Springer, July 1997.

9. J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage stochastic
linear programs. European Journal of Operational Research, 34(3):384–392, March
1988.

10. M. Dempster and R. Thompson. Parallelization and aggregation ofnested
benders decomposition. Annals of Operations Research, 81:163–188, 1998.
10.1023/A:1018996821817.

11. T. Ederer, U. Lorenz, A. Martin, and J. Wolf. Quantified linear programs: A
computational study. In Proceedings of the 18th annual European conference on
Algorithms: Part I, ESA’11, pages 203–214, Berlin, Heidelberg, 2011. Springer-
Verlag.

12. H. I. Gassmann. Mslip: A computer code for the multistage stochastic linear
programming problem. Mathematical Programming, 47(1 - 3):407–423, May 1990.

13. A. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approx-
imation method for stochastic discrete optimization. SIAM Jour. of Opt., pages
479–502, 2001.

14. D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Artif. Intell.,
6(4):293–326, 1975.

22

15. F. König, M. Lübbecke, R. Möhring, G. Schäfer, and I. Spenke. Solutions to real-
world instances of pspace-complete stacking. Proc. ESAÃŢ07, pages 729–740.

16. C. Liebchen, M. Lübbecke, R. Möhring, and S.Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. Robust and
online large-scale optimization, pages 1–27, 2009.

17. U. Lorenz, A. Martin, and J. Wolf. Polyhedral and algorithmic properties of quan-
tified linear programs. In Proceedings of the 18th annual European conference on
Algorithms: Part I, ESA’10, pages 512–523, Berlin, Heidelberg, 2010. Springer-
Verlag.

18. N. Megow and T. Vredeveld. Approximation results for preemtive stochastic online
scheduling. ESA 2006 14th Annual European Symposium on Algorithms, 2006.

19. R. Möhring, A. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of lp-based priority schedules. Journal of ACM, 46(6):924–942, 1999.

20. C. Papadimitriou. Games against nature. J. of Comp. and Sys. Sc., pages 288–301,
1985.

21. W. Pijls and A. de Bruin. Game tree algorithms and solution trees. Theor. Comput.
Sci., 252(1-2):197–215, 2001.

22. A. Ruszczyński. Parallel decomposition of multistage stochastic programming
problems. Math. Program., 58:201–228, February 1993.

23. K. Subramani. Analyzing selected quantified integer programs. Springer, LNAI
3097, pages 342–356, 2004.

24. K. Subramani. Tractable fragments of presburger arithmetic. Theor. Comp. Sys.,
38(5):647–668, Sept. 2005.

25. K. Subramani. On a decision procedure for quantified linear programs. Annals of
Mathematics and Artificial Intelligence, 51(1):55–77, 2007.

26. L. Zhang, H. Hermanns, F. Eisenbrand, and D. Jansen. Flow faster: Efficient
decision algorithms for probabilistic simulations. Logical Methods in Computer
Science, 4(4), 2008.

23

