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1 Introduction

Optimal control of radiative heat transfer (RHT) is a challenging task due to the high complexity of the
underlying partial differential equations. For solving this problem more efficiently there exist various
approximation concepts, which reduce the numerical effort significantly while representing the main
physical behavior [5,6,9,12,19–21].

In the publications [3, 4] we consider an SP1-approximation with Nν frequency bands to describe the
cooling process of glass during manufacturing. The objective functional takes into account not only the
tracking of the glass temperature and a regularization of the control, but also a minimization of mean
internal stresses, special treatment at final time and a regularization of the control slope.

This work is devoted to the analysis of this model and the resulting optimal control problem. A detailed
examination of the so called gray scale model with Nν = 1 is published by R. Pinnau in [15]. In [18]
by A. Schulze the analytical background of a basis-transformed Nν -band model is discussed. We build
the following work on results achieved in Reference [15], Reference [18] and some recent work of R.
Pinnau and O. Tse for a simplified natural convection-radiation model [16]. We augment the analytical
studies to the needs of the considered SP1-Nν -band model and an objective which includes:

• tracking of the glass temperature to a desired spatially constant profile

• minimization of the L2-norm of the glass temperature gradients

• special treatment of these two terms at final time

• Tikhonov regularization of the control and its time derivative.

The optimal control problem, including the SP1 Nν -band model and the considered objective is defined
in Section 2. The analytical studies including an index analysis, existence and uniqueness of the state,
existence of an optimal control and existence of the reduced derivatives are presented in Section 3. In
Section 4 we finally formulate the optimality systems.

2 The Optimal Control Problem

One important step in glass manufacturing is the cooling of the hot and already formed glass down to
room temperature. Because the quality of the final product depends highly on the temperature evolu-
tion within the glass during the cooling process, there is the need to control the behavior of the glass
temperature. To this end, the hot glass is cooled within a furnace, which is preheated in the beginning.
Choosing an optimal course for the temperature reduction within the oven, the temperature evolution
within the glass can be influenced in such a way that the resulting product is of high quality. Within this
setting it is reasonable to consider the furnace temperature and hence the control as spatially constant.

2.1 The Objective

To determine an appropriate optimal control, it is essential to formulate a sound objective. In the context
of glass cooling one important aim is to force the glass temperature function T as close as possible to
a desired temperature profile Td . Such a profile, for which good performance of the involved chemical
processes is known, is generally given by engineers. A common approach is to choose the tracking
function for the glass temperature spatially constant in order to enforce a homogeneous cooling with
small temperature gradients. This is necessary to reduce internal stresses and avoid cracks within the
glass. Note that, because the cooling is controlled at the boundary only, such a guiding function can only
be approached but generally not reached within the entire domain. To be able to reduce internal stresses
independently of the temperature tracking, we also consider objective functionals that include an integral
mean of the glass temperature gradient ∇T . Furthermore, it is desirable to pay certain attention to the
glass temperature and its gradient at the final time. Especially in the context of the continuous adjoint
calculus, such a term is of great importance, since it affects the initial values of the adjoint systems.
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Finally, the objective has to include a regularization of the control. To this end, we consider a tracking
of the control itself and a minimization of the time derivative of u. The first term can either be used
to search an optimal control close to a preferable profile or to minimize the manufacturing costs. The
second term can be introduced to avoid unphysical fast changes within the furnace temperature. An
objective functional that meets all the requirements stated above can be defined by

J(y, u) :=
1

2

∫ te

0





T − Td







2

L2(Ω) dt +
1

2

∫ te

0

δg(t)‖∇T‖2
L2(Ω)

dt +
δe

2





(T − Td)(te)






2

L2(Ω)

+
δge

2
‖∇T (te)‖2

L2(Ω)
+

1

2

∫ te

0

δu(t)(u− ud)
2dt +

1

2

∫ te

0

δd(t)(∂tu)
2dt, (1)

with spatial domain Ω, process interval (0, te), glass temperature distribution T (x , t), desired glass tem-
perature distribution Td(x , t), furnace temperature (control) u(t), guideline for the control ud(t) and
the positive weights δg(t), δe, δge, δu(t), and δd(t), that are either constants or functions in L2(0, te).

To account for the operation interval of the furnace, it is important to restrict the control u to the
feasible set

Uad := {u ∈ L2(0, te;R) : ulow(t)≤ u(t)≤ uup(t),∀t ∈ [0, te]}, (2)

with lower bound ulow(t) and upper bound uup(t).

2.2 The Glass Cooling Model

To model the cooling process itself, it is an important observation, that because of the high temperatures
that occur especially at the beginning of the cooling process, the direction- and frequency-dependent
thermal radiation field and the spectral radiative properties of semi-transparent glass play a dominant
role. In the following we describe radiation by the mean radiative intensities φi(x , t), (x , t) ∈ Ω×[0, te],
i = 1, . . . , Nν , where we discretize the semi-transparent region of the continuous frequency spectrum
into Nν bands [νi−1,νi], i = 0, . . . , Nν and formally set νNν :=∞ and ν−1 := 0. On each of the bands we
interpret frequency dependent quantities as constants and define the frequency-independent mean

B(i)(v ) :=

∫ νi

νi−1

B(v ,ν)dν , i = 0, . . . , Nν , (3)

of the Planck function B(v ,ν). Then, the SP1-Nν -band approximation of the full RHT equation is given by
the following system of space-time dependent partial differential algebraic equations of mixed parabolic-
elliptic type in Nν + 1 components y := (T,φ1, . . . ,φNν )

T ,

∂t T − kc∆T −
Nν
∑

i=1

1

3
�

σi +κi
�∆φi = 0, (4)

−
ε2

3
�

σi +κi
�∆φi =−κiφi + 4πκiB

(i) (T ) , i = 1, . . . , Nν , (5)

with boundary and initial conditions

kcn · ∇T +
Nν
∑

i=1

1

3
�

σi +κi
�n · ∇φi =

hc

ε
(u− T )+

+
απ

ε

�

na

ng

�2
�

B(0) (u) −B(0) (T )
�

+
a1

ε

Nν
∑

i=1

�

4πB(i) (u)−φi

�

, (6)

ε2

3
�

σi +κi
�n · ∇φi = a1ε

�

4πB(i) (u)−φi

�

, i = 1, . . . , Nν , (7)

T (x , 0) = T0 (x) . (8)
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and with glass temperature T (x , t), (x , t) ∈ Ω × [0, te], furnace temperature u(t) ∈ Uad , boundary
condition coefficient a1 = 1.149e−1 and piecewise constant scattering and absorption coefficients σi
and κi, i = 1, . . . , Nν .

The Optimal Control Problem

The optimal control problem can now be formulated as follows:

min
u∈Uad

J(y, u) such that (4)-(8) hold. (9)

3 Analysis of the Optimal Control Problem

Given the space-time cylinder Q := Ω× (0, te) and its spatial boundary Σ := ∂Ω× (0, te), with convex,
bounded domain Ω ∈ Rd , d = 1,2, 3 and sufficiently smooth Lipschitz boundary ∂Ω, see [15, Remark
1.4], we define the following spaces

U := L2(0, te;R), (10)

W := L2(0, te; H1(Ω)), (11)

X := {w ∈W : ∂t w ∈W ∗}, (12)

Y := [X ×W Nν ]∩ [L∞(Q)]Nν+1, (13)

V := Y × U , (14)

Z :=W Nν+1× L2(Ω). (15)

In the following we refer to U as space of controls or control space, to Y as space of states or state
space, and to Z as space of adjoint states or adjoint space. Furthermore, we identify the dual space
W ∗ = L2(0, te; H1(Ω))∗ with L2(0, te; (H1)∗(Ω)) and the dual adjoint space Z∗ = (W Nν+1 × L2(Ω))∗ with
[W ∗]Nν+1 × L2(Ω). Note, that especially in three spatial dimensions it is not sufficient to consider the
more general space X ×W Nν instead of Y := [X ×W Nν ] ∩ [L∞(Q)]Nν+1 as the space of states. This is
due to the fact that the non-linear terms on the boundary are not necessarily integrable, see [10], and
therefore it is not guaranteed that the state operator e(y, u) is well defined. For the Nν -band model the
non-linear state operator e := (e0, . . . , eNν+1) : V → Z∗, for all ξ ∈W , is given by

〈e0(y, u),ξ〉W∗,W := 〈∂t T,ξ〉W∗,W + kc(∇T,∇ξ)L2(Q)+
Nν
∑

i=1

1

3(σi +κi)
(∇φi,∇ξ)L2(Q) (16)

+
hc

ε
(T − u,ξ)L2(Σ)+

απ

ε

�

na

ng

�2

(B(0)(T )− B(0)(u),ξ)L2(Σ)

+
a1

ε

Nν
∑

i=1

(φi − 4πB(i)(u),ξ)L2(Σ)

〈ei(y, u),ξ〉W∗,W :=
ε2

3(σi +κi)
(∇φi,∇ξ)L2(Q)+κi(φi − 4πB(i)(T ),ξ)L2(Q) (17)

+ a1ε(φi − 4πB(i)(u),ξ)L2(Σ), i = 1, . . . , Nν

and

eNν+1 := T (0)− T0. (18)
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3.1 Index Analysis

In this subsection we state the following two definitions and determine the corresponding differential
indices for the presented SP1-Nν -band glass cooling model.

Definition 3.1 Let a generalized class of PDAEs of the form

H(x , t, v ,∇v )∂tv (x , t) =∇ · (D(x , t, v ,∇v )∇v (x , t)) + F(x , t, v ,∇v ), (19)

be given. If the matrix H is regular, the differential time index d t
idx of the PDAE (19) is defined to be zero.

If H is singular d t
idx is the minimum number of times, that all or part of the PDAE (19) must be differentiated

with respect to t in order to obtain ∂tv as a continuous function of x , t and v . This function may include
partial differential operators in x , see [11,13,14].

To be able to define the differential spatial index we consider the transformed PDAE

H̄∂t v̄ −∇ · (D̄∇v̄ ) = F̄ , (20)

which is quasi-linear with respect to the second spatial derivatives, by defining

D̄ = S0DS−1
1 =

�

Im 0
0 0

�

∈ Rn×n, (21)

H̄ = S0HS−1
1 , F̄ = S0FS−1

1 , and v̄ = S1v (22)

with constant and regular matrices S0, S1 ∈ Rn×n. For more details we refer to [13].

Definition 3.2 Let a generalized class of PDAEs of form (19) be given. If the matrix D is regular, the
differential spatial index d x

idx of the PDAE (19) is defined to be zero. If D is singular, d x
idx is the minimum

number of times, that the quasi-linear PDAE (20) must be differentiated with respect to x in order to obtain

V̄ :=
�

∆ū1, . . . ,∆ūm,∇ūn−m, . . . ,∇ūn
�

(23)

as a continuous function of x , t, v̄ , ∂t v̄ and ∇v̄1, . . . ,∇v̄m, see [13].

To apply these definitions we exploit the semi-explicit structure of the underlying PDAEs. Alternatively,
one can also follow the proof of Lemma 2 in [13] and augment the examination to the case where F
in (19) may depend non-linearly on the solution y , to be able to handle the Planck function B and the
non-linearity T 4, see also [2].

To show that the SP1-Nν -band system has a differential time index of one d t
idx = 1, we consider the

abstract formulation

∂t T = f̃ (T,Φ), (24)

0= g(T,Φ) (25)

with Φ := (φ1, . . . ,φNν )
T and show

0= ∂t g(T,Φ)
⇔ 0= ∂T g · ∂t T + ∂Φg · ∂tΦ

⇔ 0= ∂T g · f̃ + ∂Φg · ∂tΦ, (26)

is uniquely solvable for ∂tΦ.
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In the following Section we show that the state system is uniquely solvable. Under the assumption
of suitable differentiation properties, this solution is also a solution of (26). Then, uniqueness of this
solution follows from continuous invertibility of ∂φ g, with

∂Φg =

















κ1−
ε2

3(σ1+κ1)
∆ 0 . . . 0

0
. . .

...
...

. . . 0

0 · · · 0 κNν −
ε2

3(σNν+κNν )
∆

















. (27)

Furthermore, because of the regular diffusion matrix D it has the differential spatial index d x
idx = 0.

3.2 Existence and Uniqueness of the State

To be able to reduce the SP1-Nν -band based glass cooling problem to its control component, we first have
to show that there exists a unique solution y of the state system (4)-(8).

As presented in [15] for the gray scale model, for the Nν -band model it is also possible to employ
the fixed point theorem of Leray-Schauder (see e.g. [7, Theorem 10.6]) and the Stampacchia truncation
method to show the existence of uniformly bounded states. Uniqueness is then shown in a second step
by contradiction.

Existence.
Let Ω ⊂ Rd , d = 1,2, 3, be a bounded domain with Lipschitz boundary and let u ∈ Uad ⊂ U and

T0 ∈ L∞(Ω) be given. To apply the theorem of Leray-Schauder, for the case of the Nν -band model a
suitable fixed point mapping is given by

G : L2(Q)× [0, 1]→ L2(Q), (w,σ) 7→ G(w,σ) = T, (28)

with w ∈ L2(Q) and σ ∈ [0,1] fulfilling the auxiliary problem

∂t T −∇ · (kc∇T ) = σ
Nν
∑

i=1

∇ ·
�

1

3(σi +κi)
∇φi

�

(29)

−ε2∇ ·
�

1

3(σi +κi)
∇φi

�

+κiφi = 4πκiB
(i)([w]T ,T ), i = 1 . . . , Nν (30)

with boundary conditions

hc

ε
T + kcn · ∇T +

απ

ε

�

na

ng

�2

B(0)(T ) = σ

 

hc

ε
u+

απ

ε

�

na

ng

�2

B(0)(u)

!

(31)

a1εφi +
ε2

3(σi +κi)
n · ∇φi = a1ε4πB(i)(u), i = 1 . . . , Nν (32)

T (0, x) = σT0, in L2(Ω), (33)

and the cut-off operator

[w]T ,T =







T , w ≥ T
w, T > w ≥ T
T , w < T .

(34)
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Since the Nν + 1 equations of the auxiliary problem decouple, we can show existence and uniqueness of
T and φi, i = 1, . . . , Nν separately and conclude that the fix point mapping (28) is well defined. To show,
that each equation (30) has a unique solution φi we employ Lax-Milgram’s lemma, see e.g. [8, Lemma
1.8]. Therefore, we define a1(y, v ) = F1(v ), with

a1(y, v ) =
ε2

3(σi +κi)
(∇y,∇v )L2(Q)+κi(y, v )L2(Q), F1(v ) = (4πκiB

(i)([w]T ,T ), v )L2(Q). (35)

Obviously, the mapping a1 is a bilinear form. Boundedness of a1 follows by the trace theorem, see [8,
Theorem 1.2.1] and V-coercivity is shown by Poincaré’s inequality. Then, Lax-Milgram’s lemma can be
applied.

Remark 3.3 Since a1 is symmetric the existence of a unique solution also follows directly from Riesz repre-
sentation theorem.

Identifying the space L2(0, te; (H1)∗(Ω)) with W ∗ = L2((0, te); (H1)(Ω))∗ and observing that
∑Nν

i=1∇ ·
�

1
3(σi+κi)

∇φi

�

∈W ∗, the uniqueness of T ∈ X follows from [17, Theorem 10.3]. To this end, we define
∂t y = A(t)y + f2(t), with y(0) = y0 and

−(A(t)y, v ) = a2(t, y, v ) = kc(∇y,∇v )L2(Ω), f2(t) = σ
Nν
∑

i=1

∇ ·
�

1

3(σi +κi)
∇φi

�

. (36)

We consider the Gelfand triple H1(Ω)⊂ L2(Ω)⊂ (H1)∗(Ω). Because A(t) ∈ L(H1(Ω), (H1)∗(Ω)) depends
continuously on t ∈ [0, te], because the parameterized quadratic form a2(t, y, v ) satisfies the coercivity

condition and because
∑Nν

i=1∇ ·
�

1
3(σi+κi)

∇φi

�

∈ W ∗ [15], uniqueness of T ∈ X follows from [17,
Theorem 10.3].

With G (28) compact (shown analogously to [15]), and w bounded in L2(Q) for all (w,σ), which
satisfy w = G(w,σ), the Leray-Schauder fixed point theorem proofs, that the mapping G(·, 1) has a fixed
point. Because the solution (T,φ1, . . . ,φNν ) is uniformly bounded with

T =min
�

inf
t∈(0,te)

u(t), inf
x∈Ω

T0(x)
�

, (37)

T =min

�

sup
t∈(0,te)

u(t), sup
x∈Ω

T0(x)

�

, (38)

φ
i
= 4πB(i)(T ), i = 1, . . . , Nν , (39)

φ i = 4πB(i)(T ), i = 1, . . . , Nν , (40)

Gronwall’s lemma shows that every fixed point of G(·, 1) is a solution of the state equation (16)-(18).
Hence, there exists at least one solution (T,φ1, . . . ,φN ) ∈ Y .
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Uniqueness.
In the following paragraph uniqueness of the state is shown by contradiction. Therefore, we assume,

that there exist two solutions y1 := (T1,φ1,1, . . . ,φNν ,1), y2 := (T2,φ1,2, . . . ,φNν ,2) ∈ Y . Then, the
difference ŷ := (T̂ , φ̂1, . . . , φ̂Nν ) := y1− y2 is a solution of

∂t T̂ −∇ ·
�

kc∇T̂
�

−
Nν
∑

i=1

∇ ·
�

1

3
�

σi +κi
�∇φ̂i

�

= 0, (41)

−ε2∇ ·
�

1

3
�

σi +κi
�∇φ̂i

�

=−κiφ̂i + 4πκi

�

B(i)(T1)− B(i)(T2)
�

, i = 1, . . . , Nν , (42)

kcn · ∇T̂ +
Nν
∑

i=1

1

3
�

σi +κi
�n · ∇φ̂i

=−
hc

ε
T̂ −

απ

ε

�

na

ng

�2
�

B(0)(T1)− B(0)(T2)
�

−
a1

ε

Nν
∑

i=1

φ̂i, (43)

ε2

3
�

σi +κi
�n · ∇φ̂i =−a1εφ̂i, i = 1, . . . , Nν , (44)

T̂ (x , 0) = 0. (45)

To show T̂ = 0 and φ̂i = 0, i = 1, . . . , Nν , we first test each of the Nν equations of (42) with the
corresponding difference φ̂i. After integration by parts we get

ε2

3(σi +κi)
‖∇φ̂i‖2

L2(Q)
+κi‖φ̂i‖2

L2(Q)
≤ 4πκi

�

B(i)(T1)− B(i)(T2)
�

, φ̂i)L2(Q), i = 1, . . . , Nν . (46)

Using the Cauchy-Schwarz inequality and the fact that ‖φ̂i‖L2(Q) ≤ ‖φ̂i‖W we get

‖φ̂i‖W ≤ ch1‖B(i)(T1)− B(i)(T2)‖L2(Q), (47)

ch1 > 0. Substituting B(i)(T1) by its Taylor expansion at T2 we can modify the difference of the right hand
side as follows

B(i)(T1)− B(i)(T2) = B(i)(T2+ T̂ )− B(i)(T2) (48)

= B(i)(T2) +
∞
∑

j=1

1

j!
(∂T )

jB(i)(T2)T̂
j − B(i)(T2) (49)

=
1

2
T̂



∂T B(i)(T2) +
∞
∑

j=0

1

j!
(∂T )

( j+1)B(i)(T2)T̂
j



 (50)

=
1

2
T̂
�

∂T B(i)(T2) + ∂T B(i)(T1)
�

= ch2 T̂ , (51)

with 0≤ ch2 <∞, because of the continuity and the monotonicity of the Planck function B(i). This gives

‖φ̂i‖W ≤ ch3‖T̂‖L2(Q), ch3 > 0. (52)

Second, we test (41) with T̂ (t), where we substitute

∇ ·
�

1

3
�

σi +κi
�∇φ̂i

�

=
κi

ε2 φ̂i −
4πκi

ε2

�

B(i)(T1)− B(i)(T2)
�

,
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and account for the monotonicity of the Planck function which implies that

 

απ

ε

�

na

ng

�2
�

B(0)(T1)− B(0)(T2)
�

, T̂ (t)

!

L2(Ω)

> 0.

After some minor transformations we get

1

2
∂t‖T̂ (t)‖2

L2(Ω)
+ kc‖∇T̂ (t)‖2

L2(Ω)
≤

Nν
∑

i=1

κi

ε
(φ̂i(t), T̂ (t))L2(Ω) ≤

Nν
∑

i=1

κi

ε
|(φ̂i(t), T̂ (t))L2(Ω)|. (53)

Using the Cauchy-Schwarz inequality and (52) we finally have

1

2
∂t‖T̂ (t)‖2

L2(Ω)
+ kc‖∇T̂ (t)‖2

L2(Ω)
≤

Nν
∑

i=1

κi

ε
‖φ̂i(t)‖L2(Ω)‖T̂ (t)‖L2(Ω) ≤ c‖T̂ (t)‖2

L2(Ω)
, (54)

for all t ∈ (0, te). Analogously to [15] we can now use Gronwall’s Lemma to deduce

‖T̂ (t)‖L2(Ω) = 0 for all t ∈ (0, te). (55)

Hence, we have T̂ = 0 a.e. in Q and consequently φ̂i = 0, i = 1, . . . , Nν , a.e. in Q, which finally shows
uniqueness of the state.

The Reduced Problem

Based on existence and uniqueness of uniformly bounded states, we can post the reduced optimal control
problem as follows:

min
u∈Uad

Ĵ(u) := J(y(u), u) :=
1

2

∫ te

0





T − Td







2

L2(Ω) dt +
1

2

∫ te

0

δg(t)‖∇T‖2
L2(Ω)

dt

+
1

2
δe





(T − Td)(te)






2

L2(Ω)+
1

2
δge‖∇T (te)‖2

L2(Ω)

+
1

2

∫ te

0

δu(t)(u− ud)
2dt +

1

2

∫ te

0

δd(t)(∂tu)
2dt,

where y(u) ∈ Y satisfies e(y(u), u) = 0. (56)

3.3 Existence of an optimal control

Showing that the considered objective functional (1) is

A1. of separated type,

A2. twice continuously Fréchet differentiable with locally Lipschitz continuous second derivative,

A3. radially unbounded with respect to u for every y ∈ Y ,

A4. bounded from below,

A5. weakly lower semi-continuous,
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the existence of a minimizer (y∗, u∗) ∈ Y × U and finally that of an optimal control u ∈ U can be shown
analogously to [15]. Therefore, in this subsection we only sketch the proof, and show that the considered
objective fulfills the assumptions A1-A5.

Given a minimizing sequence (yk, uk)k∈N ∈ Y × U , radially unboundedness of J with respect to u,
boundedness of (‖yk‖Y )k∈N (see (37)) and Sobolev’s embedding theorem [1] imply that there exist
subsequences, such that

uk + u∗ weakly in U , (57)

Tk + T ∗ weakly in W, (58)

∂t Tk + ∂t T
∗ weakly in W ∗, (59)

(φi)k +φ
∗
i weakly in W, i = 1, . . . , Nν , (60)

for k→∞. Weak lower semi-continuity of J implies

J(y∗, u∗) = inf
Y×U

J(y, u)> 0. (61)

Uniform boundedness of the control u and the state y , Sobolev’s embedding theorem and Aubin’s lemma
finally show that for the minimizer (y∗, u∗) = (T ∗,φ∗1, . . . ,φ∗Nν ), the state systems

e(y∗, u∗) = 0 ∈ Z∗ (62)

holds, which implies the existence of at least one optimal control u. Note, that generally such an optimal
control is not unique, because the set of states given by the constraint e is not convex.

In the following, we show that the objective functional (1) fulfills the five assumptions made above.

A1. Separation.
Obviously, the considered objective functional (1) can be separated into two parts, such that

J(y, u) = J1(y) + J2(u) (63)

with

J1(y) =
1

2

∫ te

0





T − Td







2

L2(Ω) dt +
1

2

∫ te

0

δg(t)‖∇T‖2
L2(Ω)

dt

+
δe

2





(T − Td)(te)






2

L2(Ω)+
δge

2
‖∇T (te)‖2

L2(Ω)
, (64)

J2(u) =
1

2

∫ te

0

δu(t)(u− ud)
2dt +

1

2

∫ te

0

δd(t)(∂tu)
2dt. (65)

A2. Fréchet differentiability.
Being of quadratic type the considered objective is two times Fréchet differentiable. The first derivative

is given by

〈∂(y,u)J(y, u), (s, d)〉V ∗,V = 〈∂y J1(y), s〉Y ∗,Y + 〈∂uJ2(u), d〉U∗,U , (66)

with

〈∂y J1(y), s〉Y ∗,Y =
∫

Q

(T − Td)sdxdt +

∫

Q

δg(t)∇T∇sdxdt

+δe

∫

Ω

(T − Td)(te)δ(te)sdx +δge

∫

Ω

∇T (te)δ(te)∇sdx , (67)

〈∂uJ2(u), d〉U∗,U =
∫ te

0

δu(t)(u− ud)ddt +

∫ te

0

δd(t)∂tu∂t ddt, (68)
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where δ represents the Dirac delta function. The second derivative is given by

〈∂(y,u)(y,u)J(y, u)(s1, d1), (s2, d2)〉V ∗,V = 〈∂y y J1(y)s1, s2〉Y ∗,Y + 〈∂uuJ2(u)d1, d2〉U∗,U , (69)

with

〈∂y y J1(y), s〉Y ∗,Y =
∫

Q

s1s2dxdt +

∫

Q

δg(t)∇s1∇s2dxdt

+δe

∫

Ω

δ(te)s1δ(te)s2dx +δge

∫

Ω

δ(te)∇s1δ(te)∇s2dx , (70)

〈∂uuJ2(u), d〉U∗,U =
∫ te

0

δu(t)d1d2dt +

∫ te

0

δd(t)∂t d1∂t d2dt. (71)

A3. Radially unboundedness.
Since ‖u‖U →∞ implies J2(u)→∞ and J1 ≥ 0 for every y by definition, we can show that ‖u‖U →∞

also implies J(y, u)→∞ for every y . Hence, the considered objective functional is radially unbounded
with respect to u.

A4. Boundedness from below.
By definition the objective functional is always greater or equal to zero and hence bounded from below.

A5. Weak lower semi-continuity.
By definition, for a Banach space X , any continuous, convex functional F : X → R is weakly lower

semi-continuous, e.g. [8]. Continuity is obvious and also convexity

J(ωy1+ (1−ω)y2,ωu1+ (1−ω)u2)≤ωJ(y1, u1) + (1−ω)J(y2, u2). (72)

y1, y2 ∈ Y, u1, u2 ∈ U and ω ∈ [0,1] can easily be shown by using the quadratic structure of J with
respect to y and u.

3.4 Existence of reduced gradient and reduced Hessian

To show that the reduced derivatives

∇Ĵ(u) =∇uJ(y, u) +∇ue∗(y, u)ξ ∈ U , (73)

and

Ĵ ′′(u)su = ∂uuJ(y, u)su+ ∂uue∗(y, u)ξsu+ ∂ue∗(y, u)w+ ∂uy J(y, u)sy + ∂uy e∗(y, u)ξsy , (74)

are well defined, it has to be shown, that the mapping y : U → Y , u 7→ y(u) is continuously Fréchet
differentiable with derivative

y ′(u) =−∂y e−1(y, u)∂ue(y, u). (75)

Usually, this is done my means of the implicit function theorem by showing that the PDAE-constraint
e(y, u) = 0 is twice continuously Fréchet differentiable and that ∂y e(y, u) has a bounded inverse. How-
ever, non-linearities in form of Nemyzki operators are only differentiable from L∞ to L∞ or with norm
gap. To this end we define an operator R : Y × U → Y , as suggested in [15], that separates linear and
non-linear parts, given by

R(y, u) = y + D−1N(y) + D−1B(u), D : Y → Z∗, N : Y → L∞(Q)Nν+2, B : U → L∞(Σ)Nν+2, (76)
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with

〈D0(y),λ〉W∗,W := 〈∂t T,λ〉W∗,W + kc(∇T,∇λ)L2(Q)−
Nν
∑

i=1

κi

ε2 (φi,λ)L2(Q)+
hc

ε
(T,λ)L2(Σ), (77)

〈Di(y),λ〉W∗,W :=
ε2

3(σi +κi)
(∇φi,λ)L2(Q)+κi(φi,λ)L2(Q)+ a1ε(φi,λ)L2(Σ), i = 1, . . . , Nν , (78)

〈N0(y),λ〉W∗,W :=
Nν
∑

i=1

κi

ε2 (4πκiB
(i)(T ),λ)L2(Q)+

απ

ε

�

na

ng

�2

(B(0)(T ),λ)L2(Σ), (79)

〈Ni(y),λ〉W∗,W :=−κi(4πκiB
(i)(T ),λ)L2(Q), i = 1, . . . , Nν , (80)

〈B0(u),λ〉W∗,W :=−
hc

ε
(u,λ)L2(Σ)−

απ

ε

�

na

ng

�2

(B(0)(u),λ)L2(Σ), (81)

〈Bi(u),λ〉W∗,W :=−a1ε(4πB(i)(u),λ)L2(Σ), i = 1, . . . , Nν , (82)

(83)

DNν+1(y) := T (0)− T0, and NNν+1(y) = BNν+2(y) = 0, such that

e(y(u), u) = 0⇔ R(y(u), u) = 0. (84)

Because the linear operator D is bounded invertible with D−1 ∈ L(L∞(Q)Nν+2, Y ) and D−1 ∈
L(L∞(Σ)Nν+2, Y ) [17], and because N : Y → L∞(Q)Nν+2 and B : U → L∞(Σ)Nν+2 are continuously
Fréchet differentiable, the operator R is continuously Fréchet differentiable [15]. From [18] we can
deduce that the linearized state system

Dv + ∂y N(y)v =−∂y N(y)g (85)

has a unique solution v ∈ Y . The substitution v := w − g and the fact that the linear operator D is
bounded invertible implies that the system

w+ D−1∂y N(y)w = g (86)

has a unique solution w ∈ Y . Hence, there exists a unique solution w ∈ Y with

∂yR(y, u)w = g, (87)

which shows bounded invertibility of ∂yR and hence the applicability of the implicit function theorem to
R(y(u), u). Hence, the Fréchet derivative of u 7→ y(u) exists and is given by

y ′(u) =−∂y e−1(y, u)∂ue(y, u). (88)
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The acting of the first derivative of e(y, u) at (y, u) ∈ V in the direction (s, d) ∈ V , s :=
(sT , sφ1

, . . . , sφNν
) is given by

〈∂y e0(y, u)s,ξT 〉W∗,W = 〈∂tsT ,ξT 〉W∗,W + kc(∇sT ,∇ξT )L2(Q)+
Nν
∑

i=1

1

3(σi +κi)
(∇sφi

,∇ξT )L2(Q)

+
hc

ε
(sT ,ξT )L2(Σ)+

απ

ε

�

na

ng

�2

(∂T B(0)(T )sT ,ξT )L2(Σ)

+
a1

ε

Nν
∑

i=1

(sφi
,ξT )L2(Σ), (89)

〈∂y ei(y, u)s,ξφi
〉W∗,W =

ε2

3(σi +κi)
(∇sφi

,∇ξφi
)L2(Q)+κi(sφi

− 4π∂T B(i)(T )sT ,ξφi
)L2(Q)

+ a1ε(sφi
,ξφi
)L2(Σ), i = 1, . . . , Nν , (90)

〈∂ue0(y, u)d,ξT 〉W∗,W =−
hc

ε
(d,ξT )L2(Σ)−

απ

ε

�

na

ng

�2

(∂T B(0)(u)d,ξT )L2(Σ)

−
4πa1

ε

Nν
∑

i=1

(∂T B(i)(u)d,ξT )L2(Σ), (91)

〈∂uei(y, u)d,ξφi
〉W∗,W :=−4πa1ε(∂T B(i)(u)d,ξφi

)L2(Σ), i = 1, . . . , Nν , (92)

the acting of the second derivative at (y, u) ∈ V in the direction [(s1, d1), (s2, d2)] ∈ V × V , with s j :=
(sT, j, sφ1, j, . . . , sφNν , j) by

〈∂y y e0(y, u)[s1, s2],ξT 〉W∗,W =
απ

ε

�

na

ng

�2

(∂T T B(0)(T )sT,1sT,2,ξT )L2(Σ), (93)

〈∂y y ei(y, u)[s1, s2],ξφi
〉W∗,W =−4πκi(∂T T B(i)(T )sT,1sT,2,ξφi

)L2(Q), i = 1, . . . , Nν , (94)

〈∂uue0(y, u)[d1, d2],ξT 〉W∗,W =−
απ

ε

�

na

ng

�2

(∂T T B(0)(u)d1d2,ξT )L2(Σ)

−
4πa1

ε

Nν
∑

i=1

(∂T T B(i)(u)d1d2,ξT )L2(Σ), (95)

〈∂uuei(y, u)[d1, d2],ξφi
〉W∗,W :=−4πa1ε(∂T T B(i)(u)d1d2,ξφi

)L2(Σ), i = 1, . . . , Nν , (96)

and the mixed terms by

∂yue(y, u) = 0, ∂uy e(y, u) = 0. (97)

4 Optimality Systems

Assuming uniqueness of the adjoint system and hence the existence of Lagrange multipliers we have all
ingredients at hand to state the first-order optimality condition. A promising idea to show solvability
of the adjoint system is published in a recent work by R. Pinnau and O. Tse for a simplified natural
convection-radiation model [16].

12



4.1 First-Order Optimality System, N-band

For the Nν -band model the reduced gradient is given by

∇Ĵ(u)du =
�

δu(t)(u− ud), du

�

U ,U
+
�

δd(t)∂tu,∂t du

�

U ,U
−
∫ te

0

∫

∂Ω

�hc

ε
ξT (98)

+
απ

ε

�

na

ng

�2

∂T B(0)(u)ξT +
4πa1

ε

Nν
∑

i=1

∂T B(i)(u)ξT + 4πa1ε

Nν
∑

i=1

∂T B(i)(u)ξφi

�

dudxdt,

with adjoint state ξ := (ξT ,ξφ1
, . . . ,ξφNν

)T , fulfilling the adjoint system

−∂tξT − kc∆ξT − 4π
Nν
∑

i=1

κi∂T B(i)(T )ξφi
=−(T − Td) +δg(t)∆T, (99)

−
ε2

3(σi +κi)
∆ξφi

−
1

3(σi +κi)
∆ξT =−κiξφi

, i = 1, . . . , Nν , (100)

with boundary and terminal conditions

kcn · ∇ξT =−

 

hc

ε
+
απ

ε

�

na

ng

�2

∂T B(0)(T )

!

ξT −δg(t)n · ∇T, (101)

ε2

3(σi +κi)
n · ∇ξφi

+
1

3(σi +κi)
n · ∇ξT =−a1εξφi

−
a1

ε
ξT , i = 1, . . . , Nν , (102)

ξT (te) =−δe(T − Td)(te) +δge∆T (te)−δgen · ∇T (te), (103)

where we identify the component ξT0
by ξT (0) and formally set the outer normal n of an inner point

x ∈ Ω equal to zero.
Finally, state system (4)-(8), adjoint system (99)-(103) and the optimality condition

∫

Σ

�

−
hc

ε
ξT −

απ

ε

�na

ng

�2
∂T B(0)(u)ξT − 4πa1

N
∑

i=1

∂T B(i)(u)
�

1

ε
ξT + εξφi

�

+
δu

|∂Ω|
(u− ud)

�

(du− u) +
δd

|∂Ω|
∂tu∂t(du− u)dxdt ≥ 0, ∀du ∈ Uad . (104)

accumulate to first-order optimality system.

4.2 Second-Order Optimality System, N-band

For the Nν -band model the acting of the reduced Hessian in a direction [su, du] is given by

〈Ĵ ′′(u)su, du〉U∗,U =
�

δu(t)su, du

�

U ,U
+
�

δd(t)∂tsu,∂t du

�

U ,U

−
∫ te

0

∫

∂Ω

�hc

ε
wT +

απ

ε

�

na

ng

�2
�

∂T B(0)(u)wT + ∂T T B(0)(u)suξT

�

+
4πa1

ε

Nν
∑

i=1

�

∂T B(i)(u)wT + ∂T T B(i)(u)suξT

�

+ 4πa1ε

Nν
∑

i=1

�

∂T B(i)(u)wφi
+ ∂T T B(i)(u)suξφi

�

�

dudxdt, (105)
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such that the linearized state system

∂tsy,T − kc∆sy,T −
Nν
∑

i=1

1

3
�

σi +κi
�∆sy,φi

= 0, (106)

−
ε2

3
�

σi +κi
�∆sy,φi

= 4πκi∂T B(i) (T ) sy,T −κisy,φi
, i = 1, . . . , Nν , (107)

with boundary and initial conditions

kcn · ∇sy,T +
Nν
∑

i=1

1

3
�

σi +κi
�n · ∇sy,φi

=
hc

ε
(su− sy,T ) (108)

+
απ

ε

�

na

ng

�2
�

∂T B(0)(u)su −∂T B(0)(T )sy,T

�

+
a1

ε

Nν
∑

i=1

�

4π∂T B(i)(u)su− sy,φi

�

,

ε2

3(σi +κi)
n · ∇sy,φi

= a1ε
�

4π∂T B(i)(u)su− sy,φi

�

, i = 1, . . . , Nν , (109)

sy,T (x , 0) = 0, (110)

and the second adjoint system

− ∂t wT − kc∆wT =−sy,T + 4π
Nν
∑

i=1

κi

�

∂T B(i)(T )wφi
+ ∂T T B(i)(T )sy,Tξφi

�

+δg(t)∆sy,T , (111)

−
ε2

3(σi +κi)
∆wφi

−
1

3(σi +κi)
∆wT =−κiwφi

, i = 1, . . . , Nν , (112)

with boundary and terminal conditions

kcn · ∇wT =−
hc

ε
wT −

απ

ε

�

na

ng

�2
�

∂T B(0)(T )wT + ∂T T B(0)(T )sy,TξT

�

−δg(t)n · ∇sy,T , (113)

ε2

3(σi +κi)
n · ∇wφi

+
1

3(σi +κi)
n · ∇wT =−a1εwφi

−
a1

ε
wT , i = 1, . . . , Nν , (114)

wT (te) =−δesy,T (te) +δge∆sy,T (te)−δgen · ∇sy,T (te), (115)

are fulfilled for the given direction su ∈ U . Analogously to the adjoint system, we identify the component
wT0

by wT (0) and formally set the outer normal n of an inner point x ∈ Ω equal to zero.
Thinking in terms of reduced quantities, the second-order optimality condition is equivalent with

positive definiteness of the reduced Hessian in a minimizer ( ȳ , ū, ξ̄), that fulfills the necessary first-order
optimality system.

5 Conclusion

In this preprint we have presented first promising ideas to show existence and uniqueness of the state
for and SP1-Nν -band approximation of radiative heat transfer. For a founded formulation of first and
second optimality condition it is necessary to examine the adjoint system and the second adjoint system
(adjoint for Hessian) in detail. From the current point of view, success seems most likely, however some
function spaces might need to be adapted.
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