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Abstract

We have developed a fully adaptive optimization environment suitable to solve complex optimal control
problems restricted by partial differential algebraic equations (PDAEs) and pointwise constraints on the
control [1, 2]. This contribution is devoted to the inclusion of pointwise constraints on the state within
the optimization environment. To this end we first give a brief introduction into the architecture of the
environment and the inclusion of pointwise constraints on the state by Moreau-Yosida regularization.
Then, we test the new tool by applying it to an optimal boundary control problem for the cooling of
hot glass down to room temperature, modeled by radiative heat transfer and semi-transparent boundary
conditions.

1 The KARDOS-based optimization environment

In the following we consider PDAE-constrained optimal control problems of the form

min
(y,u)∈U×Y

J(y, u) s.t. e(y, u) = 0, (1)

by,low ≤ y ≤ by,up, (2)

bu,low ≤ u≤ bu,up, (3)

with state y ∈ Y and state bounds by,low, by,up ∈ Y defining the feasible set of states Yad , control u ∈ U and
control bounds bu,low, bu,up ∈ U defining the feasible control set Uad , objective functional J(y, u), and
PDAE-constraint e(y, u) = 0. We will assume that the control space U and the state space Y are Hilbert
spaces. Furthermore, we assume J(y, u) and e(y, u) to be twice continuously Fréchet differentiable and
that the PDAE admits a unique and Fréchet differentiable solution operator y : u ∈ U 7→ y(u) ∈ Y . Then,
we can reduce the optimal control problem (1)-(3) to the control component u

min
u∈Uad

Ĵ(u) := J(y(u), u), where y = y(u) satisfies e(y, u) = 0 and y ∈ Yad . (4)

The optimization environment is built up in a modular way, such that the user can choose between
different optimization techniques, different time integration methods and different error estimation ap-
proaches. Furthermore, the spatial domain may be one, two or three dimensional, by considering the
software packages KARDOS1D,KARDOS2D or KARDOS3D, respectively [3].

In this section we focus on the implementation of the generalized multilevel SQP method developed in
[5], linearly implicit one-step methods of Rosenbrock type for the time integration and multilevel linear
finite elements on a triangular mesh for the space discretization of a two-dimensional spatial domain.
Local discretization errors in time are estimated by embedded Rosenbrock schemes of inferior order and
local errors in space by hierarchical bases. The space-time grids are locally adapted with respect to these
error estimates such that the overall discretization error serves a desired accuracy. The level of accuracy
is controlled autonomously with respect to convergence criteria and optimization progress.

Pointwise constraints on the control are realized by a projected Newton method with a modified ver-
sion of BICGSTAB, computing an SQP-step on an ε-inactive subset of the control space and a gradient step
on the corresponding ε-active subset. We use Armijo-line search to determine a proper scaling, such that
the considered direction is a descent direction. Global convergence is ensured by including a trust region
strategy. For more details we refer to [1] and [2].

To include pointwise state constraints of the form (2) we consider a Moreau-Yosida regularization
within the objective. Given the original objective J(y, u) from (1) and the space-time cylinder Q :=
Ω× [0, te], with spatial domain Ω and final time te, we consider its regularized counterpart

Jreg(y, u) = J(y, u) +
γk

3
‖max(0, y − by,up)‖3

L3(Q)
+
γk

3
‖max(0, by,low− y)‖3

L3(Q)
(5)

+
γe,k

3
‖max(0, y(te)− by,up(te))‖3

L3(Ω)
+
γe,k

3
‖max(0, by,low(te)− y(te))‖3

L3(Ω)
+
δut

2
‖∂tu‖2

L2(0,te)
. (6)



Note, that due to differentiability arguments it is not sufficient to consider quadratic penalty terms.
Furthermore, following continuous adjoint calculus a consideration of the state constraints also at final
time can only be ensured by the inclusion of final value terms, weighted with penalty parameter γe,k.

Starting with moderate values for γ0 and γe,0 the penalty parameters γk and γe,k are increased by a
factor cincrease, if

mk < c1γ
−0.5
k , (7)

with criticality measure mk = PUad−uk
(−∇Ĵreg(uk)), and some constant c1 > 0. We want to point out that

the criticality measure mk, which is a projection of the reduced gradient to the shifted feasible control set
Uad −uk is also used to control the grid refining multilevel strategy. The counter k describes the number
of the current optimization iteration.

Finally, we include a regularization of ∂tu to avoid undesired fast changes within the control.

2 Application to the glass cooling problem: focus on state constraints

We use the augmented environment to solve an optimal boundary control problem which occurs in the
context of glass manufacturing. Usually, the hot glass is cooled within a furnace to allow the control of
the evolution of the glass temperature T (x , t) by choosing an appropriate furnace temperature profile
u(t). Due to the high temperatures the process has to be modeled by radiative heat transfer. Here,
we use the so called gray scale problem, see e.g. [4], which is a semi-linear PDAE in two components.
Whereas the glass temperature distribution is described by the differential component the mean radia-
tive intensities are given by the algebraic component. Furthermore there is a high non-linear coupling
between temperature field and radiative field resulting in non-linearities in u and T of the power of four.
Note, that the furnace temperature u only occurs in the boundary conditions.

We consider the computational domain Ω = [0, 1]× [0, 1], te = 0.1 and the objective

Jreg(y, u) =
1

2

∫ te

0





T − Td







2
L2(Ω) dt +

0.1

2





(T − Td)(te)






2
L2(Ω)+

0.1

2

∫ te

0

(u− ud)
2dt +

γk

3
‖max(0, T − bT,up)‖3

L3(Q)

+
γk

3
‖max(0, bT,low−T )‖3

L3(Q)
+

0.1γk

3
‖max(0, (T−bT,up)(te))‖3

L3(Ω)
+

0.1γk

3
‖max(0, (bT,low−T )(te))‖3

L3(Ω)
+
δut

2
‖∂tu‖2

L2(0,te)
,

with bT,up = Td = 900 exp
�

− log(3)t
te

�

, bT,low = 0.0, γ0 = 1.0e+ 1, γmax = 1.0e+ 4, δut = 1.0e− 5.
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Figure 1: Optimal control and resulting state in four significant points

Figure 1 shows the optimal control and the resulting glass temperature in four significant points,
namely p1 = (0,0) in a corner, p2 = (0.5,0) on an edge, p3 = (0.25,0.25) in the interior and p4 =
(0.5, 0.5) in the center. As desired, the glass temperature stays within the feasible set of states, marked
in gray.
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