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Abstract

In this work we study the solvability of the initial boundary value problems, which model a
quasi-static nonlinear behavior of ferroelectric materials. Similar to the metal plasticity the energy
functional of a ferroelectric material can be additively decomposed into reversible and remanent
parts. The remanent part associated with the remanent state of the material is assumed to be a
convex non-quadratic function f of internal variables. In this work we introduce the notion of the
measure-valued solutions for the ferroelectric models and show their existence in the rate-dependent
case assuming the coercivity of the function f . Regularizing the energy functional by a quadratic
positive definite term, which can be viewed as hardening, we show the existence of measure-valued
solutions for the rate-independent and rate-dependent problems avoiding the coercivity assumption
on f .

1 Introduction and setting of the problem
Due to the ability of ferroelectric materials to transform a mechanical action into an electrical impulse
and vice versa they are being used in a broad range of modern engineering devices as actuators and sen-
sors. Recent technological developments enabled the reduction of the production costs for ferroelectric
ceramics and thereby increased the interest to use them in the novel implementations. Demand for the
reliable mathematical models, which on the one hand are capable to describe a complicated nonlinear
electromechanical behavior of ferroelectric devices in order to optimize their design and predict failure
processes and on the other hand are simple enough for numerical implementations, caused a rapid
progress in this field in the last years. A brief review of recent advances in modeling of ferroelectric
material behavior can be found in [7]. In the present work we study the solvability of the nonlinear
initial boundary value problems associated with phenomenological constitutive models of ferroelectrics
[3, 4, 6, 8, 12, 14]. Similar to models in the metal plasticity the type of ferroelectric models consid-
ered here is formulated within a thermodynamic framework by using the standard material relevant
description method of an energy function and a flow rule. In contrast to the micro-electromechanical
models, which contain a large number of internal variables standing for the distribution and the volume
interaction of ferroelectric domains, the main goal of the phenomenological models mentioned above
is to improve the speed and the robustness of numerical implementations by keeping the number of
internal variables as small as possible. The models presented in [3, 4, 6, 8, 12, 14] and studied in this
work use as internal variables only the remanent strain and the remanent polarization.

Setting of the problem. The model equations are formulated as follows. Let Ω ⊂ R3 be an open
bounded set with the C1-boundary ∂Ω and S3 denote the set of symmetric (3× 3)-matrices. Unknown
are the displacement field u(t, x) ∈ R3, the Cauchy stress tensor σ(t, x) ∈ S3, the remanent strain
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tensor r(t, x) ∈ S3, the electric potential φ(t, x) ∈ R, the vector of electric displacements D(t, x) ∈ R3

and the vector of remanent polarization P (t, x) ∈ R3 in a material point x at time t. The symbols

ε(u(t, x)) =
1
2

(∇xu(t, x) + (∇xu(t, x))T ) ∈ S3

and
E(φ(t, x)) = −∇xφ(t, x) ∈ R3

denote the linearized strain tensor and the electric field vector, respectively (ε and E for short). The
fundamental assumption of the models under consideration is that the strain tensor ε and the vector
of electric displacements D can be additively decomposed into reversible and irreversible parts, i.e.

ε = (ε− r) + r, D = (D − P ) + P.

In this case ε− r and D− P are reversible and r and P are irreversible parts of ε and D, respectively.
For (t, x) ∈ ΩT := (0, T )× Ω the unknown functions satisfy the following system of equations

−div σ = b, (1.1a)
div D = q, (1.1b)

σ = C (ε− r)− eTE, (1.1c)
D = e (ε− r) + ε E + P, (1.1d)(
rt
Pt

)
∈ ∂g

((
σ − fr
E − fP

)
− L

(
r

P

))
(1.1e)

completed by the initial conditions

r(0, x) = r0(x), P (0, x) = P 0(x), x ∈ Ω (1.1f)

and the homogeneous Dirichlet boundary conditions

u(t, x) = 0, φ(t, x) = 0, (t, x) ∈ [0, T )× ∂Ω. (1.1g)

The equations (1.1a) and (1.1b) are the equilibrium equation and the Gauss equation in a quasi-static
case, respectively. Here, the function b(t, x) ∈ R3 denotes a given body force and q(t, x) ∈ R is a given
density of free charge carriers. The functions g, f : S3×R3 → R in (1.1e) denote constitutive functions,
the form of which are usually determined by experiments. Based on the thermodynamical considerations
we give in the next two paragraphs the precise conditions, which g and f should satisfy, and discuss the
equation (1.1e). The mapping L : S3×R3 → S3×R3 in equation (1.1e) is linear symmetric and positive
semi-definite and stands for the hardening effects. This mapping is not contained in the engineering
models considered here and is introduced because of mathematical reasons, which are discussed in the
last two paragraphs of the introduction. An overview of the previous results concerning the existence
theory for the ferroelectric models and the structure of the present work can be found in the last
paragraph of this section as well.

Due to the additive splitting of the strain tensor ε and the vector of electric displacements D into the
reversible and irreversible parts, the constitutive relations (1.1c), (1.1d) can be equivalently rewritten
as follows

σ =
E =

(C + eTε−1e)(ε− r)− eTε−1(D − P )
−ε−1e(ε− r) + ε−1(D − P ), (1.2)

that implies that the reversible parts of ε and D satisfy the constitutive equations of linear piezoelec-
tricity. Here the mappings C : S3 → S3, ε : R3 → R3, e : S3 → R3 are material dependent elastic,
dielectric and piezoelectric tensors, respectively. In the engineering literature [3, 4, 6, 8, 12, 14] the en-
tries of the constitutive tensors C, ε and e often depend on the internal variables r and P . For example,
in [8] the tensor e has the following form

ekij =
|P |
Ps

(e33nkninj + e31nkαij +
1
2
e15(niαjk + njαik)), (1.3)
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where n = P
|P | , αij = δij − ninj , eij are constants and Ps is the remanent polarization saturation

constant. However, because of the difficulties arising in the mathematical treatment of the problem
(1.1), in the present work we suppose that the tensors C, ε and e are independent of the internal variables
r and P . Our approach to the derivation of the existence of the solutions for (1.1) relies heavily on
the Lp-existence theory for elliptic systems with 2 < p < ∞. In order to apply such a theory to our
purposes we have to require that the entries of the tensors C, ε and e are continuous functions of x ∈ Ω.
But since it is expected that the functions r, P belong only to Lp(Ω) for some 2 < p <∞ one can not
guarantee that the mappings C, ε and e possess this regularity. Therefore, we suppose that the tensors
C, ε and e are independent of P and r and continuous functions of x ∈ Ω. Additionally, according to
the engineering models considered here we assume that the mappings C, ε and e are linear and bounded
and that C and ε are symmetric and positive definite uniformly with respect to x ∈ Ω.
The method presented in this work can be easily generalized to the case of nonhomogeneous Dirichlet,

Neumann or mixed boundary conditions.

Thermodynamical considerations and choices of the function g. A general form of the energy
function corresponding to the models considered here can be derived by using the constitutive relations
(1.2) and the Clausius-Duhem inequality. Although the different types of thermodynamic potentials are
used in the literature (for example, the Helmholtz free energy function in [8, 7] or the enthalpy function
in [12]) it is typical in modeling of the nonlinear behavior of ferroelectric materials to derive model
equations by means of the Helmholtz free energy in the form Ψ = Ψ(ε,D, r, P ). The main requirement
is that the function Ψ satisfies the Clausius-Duhem inequality

0 ≤ σε̇+ EḊ − Ψ̇ = (σ −Ψε)ε̇+ (E −ΨD)Ḋ −Ψr ṙ −ΨP Ṗ . (1.4)

The arguments in the thermodynamics of irreversible processes yield that the equations

σ = Ψε(ε,D, r, P ) and E = ΨD(ε,D, r, P ) (1.5)

hold. The Clausius-Duhem inequality can be then reduced to the following inequality

0 ≤ −Ψr ṙ −ΨP Ṗ . (1.6)

Integrating the relations (1.5) and using (1.2) we conclude that the free energy function can be repre-
sented in the form

Ψ(ε,D, r, P ) = Ψrev + f̃(r, P ), (1.7)

where Ψrev = 1
2

(
(C + eTε−1e)(ε− r), ε− r

)
−
(
eTε−1(D − P ), ε− r

)
+ 1

2

(
ε−1(D − P ), D − P

)
is the

reversible part of the energy. The function f̃ corresponds to the remanent state of the material under
consideration and is given by

f̃(r, P ) = f(r, P ) +
1
2
|L1/2(r, P )T |2.

The authors of the engineering models [3, 6, 8, 12, 14] make different assumptions concerning the form
of the function f . Their choices are usually based on the experimental results. Several examples of the
function f are given below. The quadratic term with the linear positive semi-definite operator L is not
contained in the models considered here. It can be regarded as a hardening term and the reason of its
introduction is discussed in the next two paragraphs.
Since the entries of the given tensors C, e and ε are assumed to be continuous functions and inde-

pendent of r and P , using the expression for Ψ we rewrite the Clausius-Duhem inequality (1.6) as
follows

0 ≤ (σ − f̃r)ṙ + (E − f̃P )Ṗ . (1.8)

The second law of thermodynamics (1.8) restricts the choice of the function g in the equation (1.1e).
The inequality (1.8) holds if g is a proper convex function. Additionally, we suppose that the function
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g is lower semi-continuous. In most models in [3, 6, 8, 12, 14] the function g is chosen as an indicator
function of some bounded, closed and convex set K ⊂ S3 × R3 with 0 ∈ K, namely,

g = IK =

{
0, x ∈ K,
+∞, x 6∈ K.

(1.9)

This choice of the function g corresponds to a rate-independent process. Rate-dependent effects such
as time-dependent relaxation of ferroelectric polycrystals have been observed experimentally as well.
To describe the rate-dependent behavior of a ferroelectric material in [6] the function g is chosen in the
form of a polynomial. In the rate-dependent case we require that the function g satisfies the following
two-sided estimate with c1, c3 > 0 and c2, c4 ≥ 0

c1|v|p − c2 ≤ g(v) ≤ c3|v|p + c4, (1.10)

which holds for any v ∈ S3 × R3. The condition (1.10) implies that

g∗(v) ≥ d1|v|p
∗
− d2, (1.11)

for d1 > 0, d2 ≥ 0 and any v ∈ S3 × R3, where g∗ is the Legendre-Fenchel conjugate of g (see
Appendix A for basics on convex analysis). Throughout the whole work we assume that the number p
satisfies 2 ≤ p <∞ with p∗ such that 1/p+ 1/p∗ = 1.

Possible choices of the function f . In most models in the engineering literature the remanent
part of the energy f : S3 × R3 → R is given by a convex function whose domain dom(f) is a convex
(possibly unbounded) open subset of S3×R3. In [12, 14, 8] it is assumed that the function f = f(r, P )
depends only on P . In particular, in [12, 14] f has the following form

f(r, P ) = f(P ) =

{
Ps

2

(
(1 + (P,a)

Ps
) ln(1 + (P,a)

Ps
) + (1− (P,a)

Ps
) ln(1− (P,a)

Ps
)
)
, |(P, a)| < Ps,

+∞, |(P, a)| ≥ Ps,
(1.12)

where a ∈ R3 is a given direction with ‖a‖ = 1 and Ps is a saturation constant, and in [8] the function
f is of the form

f(r, P ) = f(P ) =

{
−P 2

s

(
ln(1− |P |Ps

) + |P |
Ps

)
, |P | < Ps,

+∞, |P | ≥ Ps.
(1.13)

In Theorem 2.5 we suppose that if the function f depends only on P , then it has to satisfy the following
coercivity condition

f(r, P ) = f(P ) ≥ a1|P |2 − a2, a1 > 0, a2 ≥ 0. (1.14)

The coercivity condition (1.14) is satisfied by the function f given by (1.13), but not by the function f
in (1.12). Thus, the result of Theorem 2.5 can not be applied to the function f defined by (1.12).
In [6] and [3] the function f depends on both internal variables r and P and satisfies the following

coercivity condition

f(z) ≥ b1|z|p − b2, b1 > 0, b2 ≥ 0, z = (r, P ). (1.15)

The present work is especially focused on the rate-dependent processes with the function g satisfying
the polynomial growth condition (1.10). Under the condition (1.10) we prove the existence of the
measure-valued solutions in the sense of Definition 2.2 for the model (1.1) without the regularizing
term, i.e. with L = 0 (see Theorem 2.5). However, in this case we have to assume that the function f
satisfies one of the coercivity conditions given above, i.e. either (1.14) if f depends only on P or (1.15)
if f depends on both variables r and P . If the linear mapping L in (1.1e) is positive definite, then we
are able to prove the existence of measure-valued solutions for the problem (1.1) in the rate-dependent
case without assuming the coercivity of the function f (see Theorem 2.6) as well.
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To prove the existence of measure-valued solutions for the rate-independent case (Theorem 2.6)
the linear symmetric and positive definite mapping L : S3 × R3 → S3 × R3 in the equation (1.1e)
is introduced. As we mentioned in the previous paragraphs this mapping is not contained in the
engineering models. The additional quadratic hardening term (Lz, z) with z =

(
r
P

)
in the energy

function Ψ(ε,D, r, P ) regularizes the model (1.1) with g given by (1.9) and the existence of measure-
valued solutions in the sense of Definition 2.2 can be obtained. The well-posedness of the problem (1.1)
in the rate-independent case without the regularizing term L is an open problem at the moment.

Previous results and structure of the present work. The first existence result for the nonlinear
ferroelectric models in the rate-independent case is obtained in [10] via the energetic approach. However,
in order to use the compactness argument the authors of [10] regularize the energy function by the
additive quadratic gradient term of internal variables 〈L∇z,∇z〉 with z = (r, P ) and positive definite
L, which is not present in the energy function (1.7). For such a modification of the model the authors
of [10] prove the existence of strong solutions. Hereby the tensors C, e, ε are allowed to depend on
the internal variables. For the free energy regularized by the term 〈Lz, z〉, which can be regarded
as the hardening, we mention the following existence results [5, 9]. In these works the tensors C, e, ε
are independent of the internal variables. The derivations of these results require that the Nemytskii
operator F : L2(Ω) → R̄, generated by the function f : S3 × R3 → R̄, is Frechet differentiable in
L2(Ω). The last requirement is satisfied if and only if the function ∇f is affine. In [5, 9] the existence
and uniqueness of the strong solution is shown in the rate-independent case under the assumption
F ∈ C2,Lip(L2(Ω, S3 × R3)) and F ∈ C3(L2(Ω, S3 × R3)), respectively. In the rate-dependent case it
is believed that there are no mathematical results concerning the existence of solutions. In the present
work we show the existence of measure-valued solutions of the rate-dependent problem (1.1), when
L = 0, i.e. the energy function in (1.7) does not contain regularizing terms. In Section 2 we introduce
and motivate the notion of measure-valued solutions for the ferroelectric model formed by equations
(1.1) as well as formulate the main existence results in Theorems 2.5 and 2.6 for the rate-dependent case
with L = 0 and for both rate-dependent and rate-independent cases with the positive definite mapping
L, respectively. For the rate-dependent model with L = 0, we assume that f satisfies either the
coercivity condition (1.14) or (1.15). The proofs of these existence results are given in the subsequent
sections. We note here also that the measure-valued solutions generalize naturally the notion of the
strong solution of the problem (1.1) investigated previously in [5, 9, 10].
In Section 3 we show that for some given functions r and P the system of equations (1.1a)-(1.1d),

(1.1g) is an elliptic system of partial differential equations. Since the proof of the main existence results
to the problem (1.1) relies heavily on the existence theory for the equations of linear piezoelectricity,
we use Lp-existence theory for elliptic systems of partial differential equations and present the main
properties of the solutions of the linear piezoelectricity model in full details in Section 3.
In Section 4 we reduce the system (1.1) to the evolution problem (4.6), (4.7). In Section 5 we use the

Rothe time-discretization method to construct an approximating problem (5.1), (5.2) and show that
it has a unique solution. In the following Sections 6, 7 we show the convergence of the approximating
sequence and prove the main existence results.

2 Statement of main results
In this section we introduce the notion of the measure-valued solutions of the problem (1.1) and then
state the main results of the work. For completeness, we give the definition of the strong solutions of
the problem (1.1).

Definition 2.1 (Strong solution). A function (u, φ, r, P ) such that

(u, φ) ∈W 1,p∗(0, T ;W 1,p∗

0 (Ω,R3 × R)), (r, P ) ∈W 1,p∗(0, T ;Lp
∗
(Ω, S3 × R3))

is called the strong solution of the initial boundary value problem (1.1), if for every t ∈ [0, T ] the
function (u(t), φ(t)) is the weak solution of the boundary value problem (1.1a) - (1.1d), (1.1g) with the
given r(t) and P (t) and the evolution problem (1.1e), (1.1f) is satisfied pointwise.

Next, we define the notion of the measure-valued solutions for the initial boundary value problem
(1.1).
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Definition 2.2 (Measure-valued solution). A function (u, φ, r, P, τ) such that

u ∈W 1,p∗(0, T ;W 1,p∗

0 (Ω,R3)), φ ∈W 1,p∗(0, T ;W 1,p∗

0 (Ω,R)),

z ≡ (r, P ) ∈W 1,p∗(0, T ;Lp
∗
(Ω, S3 × R3)), τ ∈ L∞w (ΩT ,M(S3 × R3))

with
z(t, x) =

∫
S3×R3

ξ τt,x(dξ)

is called the measure-valued solution of the initial boundary value problem (1.1), if for every t ∈ [0, T ]
the function (u(t), φ(t)) is the weak solution of the boundary value problem (1.1a) - (1.1d), (1.1g) with
the given r(t) and P (t), the initial conditions (1.1f) are satisfied pointwise and the following inequality∫

Ωt

g∗
((

rt
Pt

))
dsdx+

∫
Ωt

g

((
σ

E

)
− L

(
r

P

)
−F

)
dsdx

≤
∫

Ω

∫ t

0

((
rt
Pt

)
,

(
σ −∇rf(r, P )
E −∇P f(r, P )

)
− L

(
r

P

))
dsdx (2.1)

with F(t, x) =
∫
S3×R3

(∇rf
∇P f

)
(ξ) τt,x(dξ) holds for a.e. t ∈ (0, T ).

Remark 2.3. We note that the integrability of the function Φ(s, x) =
((

rt

Pt

)
,
(
σ−∇rf(r,P )
E−∇P f(r,P )

)
− L

(
r
P

))
is

not required in Definition 2.2. We require the existence of the double integral
∫

Ω

∫ t
0

Φ(s, x)dsdx, only.

Remark 2.4. As it is discussed in Appendix A, (A.3), if we could show F(t, x) = ∇(r,P )f(r(t, x), P (t, x))
in (2.1), i.e. τ = δ(r,P ), then the measure-valued solution (u, φ, r, P, τ) became the strong solution. The
integrability of Φ(s, x) follows then automatically from the inequality (A.1).

Next, we state the main results of this work.

Theorem 2.5. Let the functions b ∈W 1,p(0, T ;Lp(Ω,R3)), q ∈W 1,p(0, T ;Lp(Ω,R)) and (r(0), P (0)) ∈
L2(Ω, S3 × R3) be given. Suppose that L = 0. Assume that the function g : S3 × R3 → R̄ is convex,
l.s.c. and satisfies growth conditions (1.10), (1.11). Let the function f : S3 × R3 → R̄ be convex and
such that f ∈ C1(dom f) and satisfies either the coercivity condition (1.14) if f depends on P ∈ R3

only or (1.15) if f depends on both r ∈ S3 and P ∈ R3.
Then there exists a measure-valued solution (u, φ, r, P, τ) of the problem (1.1). Additionally, if f

satisfies (1.15), then
((

rt

Pt

)
,
(
σ
E

))
is integrable over Ωt for a.e. t ∈ (0, T ).

If L is positive definite the following result holds.

Theorem 2.6. Let the functions b ∈W 1,p(0, T ;Lp(Ω,R3)), q ∈W 1,p(0, T ;Lp(Ω,R)) and (r(0), P (0)) ∈
L2(Ω, S3 × R3) be given. Assume that L is positive definite and g : S3 × R3 → R̄ is convex, l.s.c.
function, which satisfies either the growth conditions (1.10), (1.11) or has the form (1.9). Let the
function f : S3 × R3 → R̄ be convex and satisfy f ∈ C1(dom f).
Then there exists a measure-valued solution (u, φ, r, P, τ) of the problem (1.1). Moreover, the function((
rt

Pt

)
,
(
σ
E

)
− L

(
r
P

))
is integrable over Ωt for a.e. t ∈ (0, T ).

At the end of this section we present the conditions which guarantee that a measure-valued solution of
the problem (1.1) is the strong one. The next remark motivates the introduction of the measure-valued
solutions.

Remark 2.7. We note that in order to guarantee that the measure-valued solution is strong one has
to show that the inequality (2.1) is satisfied with F(t, x) = ∇(r,P )f(r(t, x), P (t, x)). Indeed, if the
inequality∫

Ω

∫ t

0

g

((
σ −∇rf(r, P )
E −∇P f(r, P )

)
− L

(
r

P

))
dxds ≤

∫
Ω

∫ t

0

g

((
σ

E

)
−F − L

(
r

P

))
dxds, (2.2)
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holds for a function g satisfying (1.10), (1.11) for a.e. t ∈ (0, T ), then the equivalence (A.3) yields
that the measure-valued solution (u, φ, r, P, τ) is strong. For the case L = 0 considered in Theorem 2.5
we just set L = 0 in (2.2). For the function g given by (1.9) we need the following condition. In
Theorem 2.6 we have proved that

(
σ
E

)
− L

(
r
P

)
− F ∈ K, what yields that g

((
σ
E

)
− L

(
r
P

)
−F

)
= 0 for

the function g defined by (1.9). Then the verification of the following condition(
σ −∇rf(r, P )
E −∇P f(r, P )

)
− L

(
r

P

)
∈ K, a.e. (t, x) ∈ Ωt, (2.3)

implies that the second term on the left side of the inequality (2.1) is equal to zero, and therefore it
ensures that the measure-valued solution (u, φ, r, P, τ) is strong.

3 Existence for linear piezoelectric models
In section 4 we reduce the system of equations (1.1) to a single evolution equation for the vector-
function (r, P ). This equation is just the equation (1.1e) with the functions σ and E expressed through
the functions r and P . In this section we establish the relation between the functions (σ,E) and (r, P )
using the equations (1.1a)-(1.1d) with the homogeneous Dirichlet boundary conditions for the functions
u and φ. Let us suppose first that C, ε and e are measurable bounded functions of x ∈ Ω. For simplicity
we drop the time dependence of the given and the unknown function in this section.
We use notations from section 1 and rewrite the system of equations (1.1a)-(1.1d) as follows

div
(
C ε(u) + eT∇φ
−e ε(u) + ε ∇φ

)
=
(
−b
−q

)
+ div

(
Cr

−e r − P

)
. (3.1)

Next, we introduce the following notations: U ≡ (u, φ)T , z ≡ (r, P )T , B ≡ (−b,−q)T ,

A ≡
(
C eT

−e ε

)
, and E ≡

(
C 0
−e −I

)
. (3.2)

Now we use the symmetric properties of the tensor C and rewrite the system of equations (1.1a)-(1.1d),
(1.1g) as follows

DhAhkij (x)DkU
j(x) = Bi(x) +DhEhkij (x)zjk(x), x ∈ Ω, (3.3)

U(x) = 0, x ∈ ∂Ω. (3.4)

Since the entries of the mappings C, ε and e are bounded measurable functions we can suppose that
the same holds for the entries Ahkij (x), x ∈ Ω of the mapping A : S3 × R3 → S3 × R3. And since C
and ε are symmetric and positive definite uniformly with respect to x ∈ Ω and the terms containing e
cancel each other in the expression Ahkij (x)ηkj η

h
i with η ∈ S3×R3 we obtain that there exists a constant

c0 > 0 such that the following ellipticity condition

Ahkij (x)ηkj η
h
i ≥ c0ηkj ηkj , (3.5)

holds for every η ∈ S3 × R3 uniformly with respect to x ∈ Ω.
Next, we show that the system (3.3) - (3.4) has a unique weak solution U ∈ W 1,p

0 (Ω,R3 × R) for
every given z ∈ Lp(Ω, S3×R3) and B ∈W−1,p(Ω,R3×R) for 1 < p <∞. For this purpose we use the
existence results for elliptic systems of partial differential equations. We make different assumptions
on the entries of A for p = 2 and p 6= 2. If p = 2, we can apply the Lax-Milgram result for the bilinear
form A(U, V ) =

∫
Ω

(Ahkij (x)DjU
k(x), DhV

i(x))dx to the problem (3.3) - (3.4). In this case it is enough
to suppose that (3.5) is satisfied a.e. x ∈ Ω and that the entries of A are measurable bounded functions.
We prove now that for every given z ∈ L2(Ω, S3 × R3), B ∈W−1,2(Ω,R3 × R) there exists a unique

weak solution U ∈W 1,2
0 (Ω,R3 × R), which means that U satisfies

A(U, V ) = l(V ) (3.6a)

for all V ≡ (v, ψ) ∈W 1,2
0 (Ω,R3 × R), where

A(U, V ) = 〈A DU,DV 〉 = 〈A(ε(u),∇φ)T , (ε(v),∇ψ)T 〉, (3.6b)
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and

l(V ) ≡ 〈B, V 〉+ 〈Ez,DV 〉 = 〈b, v〉+ 〈q, ψ〉 − 〈Ez, (ε(v),∇ψ)T 〉. (3.6c)

The function A : W 1,2
0 (Ω,R3 × R) × W 1,2

0 (Ω,R3 × R) → R in (3.6b) is a bilinear form. Taking
U = V and using the ellipticity condition (3.5) together with the inequalities of Korn and Poincare
we obtain that A(U,U) ≥ c1‖U‖21,2. Since the entries of A are bounded functions we obtain that
|A(U, V )| ≤ c2‖U‖1,2‖V ‖1,2 and |l(V )| ≤ c3‖V ‖1,2. Therefore, the assumptions of the Lax-Milgram
theorem are satisfied and there exists a unique weak solution U ∈W 1,2

0 (Ω,R3×R) of the problem (3.3)
- (3.4). Thus, we have proved the following existence result for p = 2:

Theorem 3.1. Let Ω ⊂ R3 be an open bounded set with ∂Ω ∈ C1, (r, P ) ∈ L2(Ω, S3 × R3) and
(b, q) ∈ W−1,2(Ω,R3 × R). Let the entries of the mappings C : S3 → S3, ε : R3 → R3, e : S3 → R3

be bounded measurable functions. We suppose that for a.e. x ∈ Ω the mappings C and ε are linear,
symmetric, they are positive definite uniformly with respect to a.e. x ∈ Ω, whereas e : S3 → R3 is just
a linear mapping for a.e. x ∈ Ω.
Then there exists a unique function (u, φ) ∈ W 1,2

0 (Ω,R3 × R), which satisfies the equations (1.1a)-
(1.1d) with the homogeneous Dirichlet boundary conditions for arbitrary fixed t ∈ [0, T ) such that the
estimate

‖u‖1,2 + ‖φ‖1,2 ≤ c(‖r‖2 + ‖P‖2 + ‖b‖−1,2 + ‖q‖−1,2) (3.7)

holds for some constant c > 0, which is independent of r, P, b and q.

For the case p 6= 2 we can only prove the existence of the weak solution under the assumption that
the functions Ahkij (x) are continuous for all x ∈ Ω. Let 2 < p < ∞. We denote fi(x) ≡ Bi(x) +
DhEhkij (x)zjk(x). Suppose that f ∈ W−1,p(Ω,R3 × R). For every f ∈ W−1,p(Ω,R3 × R) one can find
F ∈ Lp(Ω, S3×R3) such that F satisfies fi = DhF

i
h in the sense of distributions and the estimate ‖F‖p ≤

c‖f‖−1,p holds. We suppose that C, ε and e satisfy the assumptions of Theorem 3.2. Then since the
assumptions of Theorem 3.1 are also satisfied, there exists a unique weak solution U ∈W 1,2

0 (Ω,R3×R)
of the problem (3.3), (3.4). It is easy to prove that if C, ε and e satisfy assumptions of Theorem 3.2,
then the functions Ahkij (x) are continuous for all x ∈ Ω and satisfy the Legendre-Hadamard condition

Ahkij (x)ηiηjξhξk ≥ c0|ξ|2|η|2 (3.8)

for some c0 > 0 and for every x ∈ Ω, ξ ∈ R4 and η ∈ R3 uniformly with respect to x. It is shown in [2,
p. 373] that the function U belongs then to W 1,p

0 (Ω,R3 × R) and the estimate

‖U‖1,p,Ω ≤ c‖F‖p,Ω (3.9)

holds with some c > 0 independent of F . If we suppose that z ∈ Lp(Ω, S3×R3), B ∈W−1,p(Ω,R3×R),
then we obtain that F ∈ Lp(Ω, S3 × R3) and ‖F‖p,Ω ≤ c(‖z‖p,Ω + ‖B‖−1,p,Ω).
To prove that the conclusion of Theorem 3.1 holds for 1 < p < 2 as well we use the following duality

arguments. Let 2 < p < ∞ and p∗ : 1
p + 1

p∗ = 1. In the same way as above we prove that for any
function f ∈W−1,p(Ω,R3×R) there is a unique solution U ∈W 1,p

0 (Ω) of the problem DhAkhji DkU
j = fi

with the operator A replaced by AT such that the inequality ‖U‖1,p,Ω ≤ c‖f‖−1,p,Ω holds. Therefore
we can define the linear bounded operator T : W−1,p(Ω) → W 1,p

0 (Ω) by Tf = U . Then there exists a
unique operator T ∗ : W−1,p∗(Ω)→W 1,p∗

0 (Ω), such that

[Tx, y] = [x, T ∗y] (3.10)

holds for all x ∈W−1,p(Ω) and y ∈W−1,p∗(Ω). This proves that for every g ∈W−1,p∗(Ω) the function
V ∈ W 1,p∗

0 (Ω) defined by V ≡ T ∗g satisfies DhAhkij DkV
j = gi in the weak sense. The uniqueness

follows immediately. Indeed, we take arbitrary g ∈ W−1,p∗(Ω) and U ∈ W 1,p
0 (Ω). The function

fi ≡ DhAkhji DkU
j belongs to W−1,p(Ω) and since U is the unique weak solution of DhAkhji DkU

j = fi
we have also Tf = U . We obtain

[U, g] = [Tf, g] = [f, T ∗g] = [f, V ] = −
∫

Ω

(
DhU

i(x),Ahkij (x)DkV
j(x)

)
dx (3.11)
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for every U ∈W 1,p
0 (Ω). Since U is chosen arbitrary we get that V ∈W 1,p∗

0 (Ω) satisfiesDhAhkij DkV
j = gi

in the weak sense and it is unique. From the relation T ∗g = V we obtain the estimate ‖V ‖1,p∗,Ω ≤
c‖g‖−1,p∗,Ω. And since for every h ∈ Lp∗ the estimate ‖div h‖−1,p∗ ≤ ‖h‖p∗ is satisfied we obtain that
the following existence result holds for all 1 < p <∞:

Theorem 3.2. Let Ω ⊂ R3 be an open bounded set with ∂Ω ∈ C1, (r, P ) ∈ Lp(Ω, S3 × R3) and
(b, q) ∈ W−1,p(Ω,R3 × R) with 1 < p < ∞. Let the entries of the mappings C : S3 → S3, ε : R3 →
R3, e : S3 → R3 be continuous functions of x ∈ Ω. We suppose that for every x ∈ Ω the mappings C
and ε are linear, symmetric, they are positive definite uniformly with respect to x ∈ Ω, and the mapping
e : S3 → R3 is linear.
Then there exists a unique weak solution (u, φ) ∈W 1,p(Ω,R3 ×R) of the problem (1.1a)-(1.1d) with

the homogeneous Dirichlet boundary conditions for arbitrary fixed t ∈ [0,∞) and the estimate

‖u‖1,p + ‖φ‖1,p ≤ c(‖r‖p + ‖P‖p + ‖b‖−1,p + ‖q‖−1,p) (3.12)

holds with a constant c > 0, which is independent of r, P, b and q.

4 Reduction to the evolution equation
In this section we show that the function (σ,E) can be expressed conveniently through the function
z = (r, P ) in such a way that after substituting (σ,E) into the equations (1.1e) and (1.1f) the problem
(1.1) is reduced to an evolution problem for the function z.

Let us suppose that the function (r, P ) is known and belongs to Lp(Ω, S3 × R3), 1 < p < ∞. We
consider the equations (1.1a)-(1.1d), (1.1g) and suppose that the entries of the mappings C : S3 →
S3, ε : R3 → R3, e : S3 → R3 are continuous functions of x ∈ Ω. Since the assumptions of Theorem
3.2 are satisfied we get that for every given z = (r, P ) ∈ Lp(Ω, S3 × R3) this problem has a unique
solution U = (u, φ) ∈ W 1,p

0 (Ω, S3 × R3). Let us decompose U = U0 + UB , where U0 = (u0, φ0) is
a solution of the problem (1.1a)-(1.1d) with (b, q) = 0 and (r, P ) 6= 0, and UB = (uB , φB) satisfies
(1.1a)-(1.1d) with (b, q) 6= 0 and (r, P ) = 0.
It follows from Theorem 3.2 that for all 1 < p <∞ the following estimate holds for the functions u0

and φ0

‖u0‖1,p + ‖φ0‖1,p ≤ c(‖r‖p + ‖P‖p). (4.1)

Next, we define a linear operator Q : Lp(Ω, S3 × R3)→ Lp(Ω, S3 × R3) by

Q(r, P )T ≡ (ε(u0), D0)T , (4.2)

which is bounded due to (4.1). It turns out that Q is a projection operator. To this end, we consider
the functions ε̃0 = ε0 − r and D̃0 = D0 − P and rewrite the equations (1.1c), (1.1d) as follows

(σ0, E0)T = D(ε̃0, D̃0)T , (4.3)

where D : S3 × R3 → S3 × R3 is the operator defined by

D =
(
C + eTε−1e −eTε−1

−ε−1e ε−1

)
. (4.4)

It was shown in [5] that D is symmetric and positive definite.

Lemma 4.1. Let the vector (r, P )T ∈ Lp(Ω, S3×R3) be given. We define the linear mapping Q = Qp :
Lp(Ω, S3 × R3)→ Lp(Ω, S3 × R3) by (4.2) where (ε(u0), D0)T satisfies the problem (1.1a)-(1.1d) with
(b, q) = 0. Then Qp is the projection operator, which is adjoint to the operator Qp∗ with respect to the
bilinear form [z1, z2]D ≡ 〈Dz1, z2〉p,p∗ .

Proof: The operator Qp maps the elements of the space Lp(Ω, S3 × R3) into the subspace H =
{w = (ε(u0), D0)T : u0 ∈ W 1,p

0 (Ω,R3), D0 ∈ Lp(Ω,R3) : div D0 = 0} of the space Lp(Ω, S3 × R3).
Since (4.3) contains only the differences ε(u0) − r, D0 − P we obtain from the uniqueness of the
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solution of the problem (1.1a)-(1.1d) with homogeneous Dirichlet boundary conditions that for every
w ∈ Lp(Ω, S3 × R3) the operator Qp is the projection operator, namely, Q2

pw = Qpw.
Now we show that Qp∗ is the adjoint operator to the operator Qp with respect to the bilinear form

[·, ·]D, i.e. we show that for every z = (r, P )T ∈ Lp(Ω, S3 × R3) and z∗ = (r∗, P ∗)T ∈ Lp∗(Ω, S3 × R3)
the equality

[Qp∗z∗, z]D = [z∗, Qpz]D (4.5)

holds.
Let us denote the images of Qp∗z∗ and Qpz as Qp∗z∗ ≡ (ε∗0, D

∗
0)T and Qpz ≡ (ε0, D0)T . We have

(σ0, E0)T = D((ε0, D0)T − (r, P )T ) = D(Qpz − z)

and in the same way (σ∗0 , E
∗
0 )T = D(Qz∗ − z∗). We show now that [(Qp∗ − I)z∗, Qpz]D = 0 and

[(Qp − I)z,Qp∗z∗]D = 0 are satisfied, it would imply (4.5). We obtain

[(Qp∗ − I)z∗, Qpz]D = 〈D(Qp∗z∗ − z∗), Qpz〉 = 〈(σ∗0 , E∗0 )T , (ε0, D0)T 〉 = 〈σ∗0 , ε(u0)〉
+ 〈 − ∇φ∗0, D0〉 = −〈div σ∗0 , u0〉+ 〈φ∗0,divD0〉 = 0.

In the same way one can show that [(Qp− I)z,Qp∗z∗]D = 0 holds. Then we have proved that Qp is the
projection operator, which is adjoint to the operator Qp∗ with respect to the bilinear form [·, ·]D. �
Now, let us define M := D(I − Qp), ẑ := (σB , EB)T , z := (r, P )T and z0 := (r0, P 0)T . Inserting

the expression (σ0, E0)T = D(Qp − I)(r, P )T into the equation (1.1e) with the initial conditions (1.1f)
yields that equations (1.1e) - (1.1f) can be rewritten in the following abstract form

zt ∈ ∂Ig (−Mz − Lz − ∂If (z) + ẑ) , (4.6)

z(0) = z0, (4.7)

where Ig, If : L2(Ω, S3 × R3)→ R are functionals defined by (A.7).

5 Existence and uniqueness for a time-discretized problem
We show the existence of measure-valued solutions using the Rothe method (a time-discretization
method). In order to introduce a time-discretized problem, let us fix any m ∈ N and set h := T

2m . From
the assumptions for the functions b and q we can conclude that ẑ ∈ Lp(Ω, S3 × R3). We set

ẑnm :=
1
h

∫ nh

(n−1)h

ẑ(s)ds ∈ Lp(Ω, S3 × R3), n = 1, ..., 2m.

Then we are looking for functions znm ∈ L2(Ω, S3 × R3) solving the following problem

znm − zn−1
m

h
∈ ∂Ig

(
Σnm
)
, (5.1)

z0
m = z0 (5.2)

with

Σnm := −Mmz
n
m − ∂If (znm) + ẑnm ∈ L2(Ω, S3 × R3), (5.3)

where
Mm := (D(I −Q2) + L+

1
m
I) : L2(Ω, S3 × R3)→ L2(Ω, S3 × R3).

To show that the discretized problem has a solution we needMm to be positive definite. This holds due
to the term 1

mI even if L is only positive semidefinite. Therefore we consider here rate-dependent case
with L = 0 and rate-independent case with L > 0 simultaneously and suppose that L is only positive
semidefinite. Recall that the functionals If and Ig are proper, convex and lower semi-continuous (see
Section A). We want to show that the equation (5.1) can be rewritten as

∂Ψ(znm) 3 ẑnm, (5.4)
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where

Ψ(v) = Ig∗
(v − pn−1

m

h

)
+

1
2
‖M1/2

m v‖22 + If (v).

The functional Φ(v) = 1
2‖M

1/2
m v‖22 : L2(Ω, S3 × R3)→ R̄ is proper, convex and lower semi-continuous.

Indeed, since Mm is bounded and positive definite operator, then it is maximal monotone by Theorem
II.1.3 in [1]. Since the operator Mm is also self-adjoint, one has that Mm = ∂Φ by Proposition II.2.7
in [1]. All other properties of Φ follow from its definition. The last thing which we have to verify is
whether the following relation

∂Ψ = ∂Ig∗ + ∂Φ + ∂If

holds. By the definition of Φ, we conclude that the domain of Φ is equal to the whole space L2(Ω, S3×
R3). By condition (1.11) the domain of the functional Ig∗ is also the whole space L2(Ω, S3 × R3) in
the rate-dependent case. In the rate-independent case the domain of Ig∗ also coincides with L2(Ω, S3×
R3). Therefore, condition (A.6) is fulfilled and, since all functionals are proper, convex and lower
semi-continuous, Proposition A.3 gives the desired result. With the relation (A.2) in hands the last
observation implies that

dom(∂Ψ) = dom(∂If ).

Since Φ is coercive in L2(Ω, S3 ×R3), which obviously yields the coercivity of Ψ, the operator A = ∂Ψ
is surjective by Theorem A.2. Thus, we conclude that for every fixed m ∈ N and n = 1, ..., 2m the
problem (5.1), (5.2) has a solution znm ∈ L2(Ω, S3 × R3) for every given ẑnm ∈ Lp(Ω, S3 × R3) and
z0 ∈ L2(Ω, S3 × R3). The solution znm is also unique. Indeed, suppose there are two functions z1 and
z2, which satisfy the equation (5.4) for a given ẑnm. We substitute the functions z1 and z2 into (5.4)
and consider the difference of both equations. Then using the monotonicity of ∂Ig∗ and ∂If we obtain
that

〈Mm(z1 − z2), z1 − z2〉 ≤ 0,

which together with the positive definity of Mm implies that the solutions coincide.

Rothe approximation functions: For any family {ξnm}n=0,...,2m of functions in a reflexive Banach
space X, we define the piecewise affine interpolant ξm ∈ C([0, T ], X) by

ξm(t) :=
(
t

h
− (n− 1)

)
ξnm +

(
n− t

h

)
ξn−1
m for (n− 1)h ≤ t ≤ nh (5.5)

and the piecewise constant interpolant ξ̄m ∈ L∞(0, T ;X) by

ξ̄m(t) := ξnm for (n− 1)h < t ≤ nh, n = 1, ..., 2m, and ξ̄m(0) := ξ0
m. (5.6)

For the further analysis we recall the following property of ξ̄m and ξm:

‖ξm‖Ls(0,T ;X) ≤ ‖ξ̄m‖Ls(−h,T ;X) ≤
(
h‖ξ0

m‖sX + ‖ξ̄m‖sLs(0,T ;X)

)1/s

, (5.7)

where ξ̄m is formally extended to t ≤ 0 by ξ0
m and 1 ≤ s ≤ ∞ (see [13]).

6 A-priori estimates.
Rate-dependent case. We suppose that g satisfies the conditions (1.10) and (1.11). Let us fix
m ∈ N and n = 1, ..., 2m. Since the problem (5.1), (5.2) has a unique solution, we obtain with the
Young-Fenchel property (see Appendix A)

Ig∗(
znm − zn−1

m

h
) + Ig(Σnm) =

〈znm − zn−1
m

h
,Σnm

〉
,
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which together with the relation (5.3) implies

Ig∗(
znm − zn−1

m

h
) + Ig(Σnm) +

1
h

〈
znm − zn−1

m ,Mmz
n
m

〉
+

1
h

〈
znm − zn−1

m , ∂If (znm)
〉

=
〈znm − zn−1

m

h
, ẑnm

〉
. (6.1)

We note that 〈znm − zn−1
m , ∂φ(znm)〉 ≥ φ(znm)− φ(zn−1

m ) holds for any convex functional φ. Therefore,
multiplying (6.1) by h and summing the obtained relation for n = 1, ..., l for any fixed l ∈ {1, ..., 2m}
we derive the following inequality

h

l∑
n=1

Ig∗
(znm − zn−1

m

h

)
+ h

l∑
n=1

Ig(Σnm) +
1
2

(
‖(M + L)1/2zlm‖22 +

1
m
‖zlm‖22

)
+ If (zlm)

≤ 1
2

(
‖(M + L)1/2z0‖22 +

1
m
‖z0‖22

)
+ If (z0) + h

l∑
n=1

‖z
n
m − zn−1

m

h
‖p∗‖ẑnm‖p. (6.2)

Applying the conditions (1.10) and (1.11) to the terms, which contain Ig and Ig∗ and the Young
inequality with ε < d1 to the last term in (6.2) we obtain

h(d1 − ε)
l∑

n=1

‖z
n
m − zn−1

m

h
‖p
∗

p∗ + hc1

l∑
n=1

‖Σnm‖pp +
1
2

(
‖(M + L)1/2zlm‖22 +

1
m
‖zlm‖22

)
+ If (zlm)

≤ 1
2

(
‖(M + L)1/2z0‖22 +

1
m
‖z0‖22

)
+ If (z0) + Cεh

l∑
n=1

‖ẑnm‖pp + (d2 + c2)|ΩT |. (6.3)

Now, taking Remark 8.15 in [13] into account and using the definition of Rothe’s approximation
functions we rewrite (6.3) as follows

(d1 − ε)‖∂tzm‖p
∗

p∗,ΩT
+ c1‖Σ̄m‖pp,ΩT

+
1
2

(
‖(M + L)1/2z̄m(t)‖22 +

1
m
‖z̄m(t)‖22

)
+ If (zm(t)) ≤ 1

2

(
‖M1/2z0‖22 +

1
m
‖z0‖22

)
+ If (z0) + (d2 + c2)|ΩT |+ Cε‖¯̂zm‖pp,ΩT

. (6.4)

Since ¯̂zm → ẑ in Lp(ΩT ), the last term in (6.4) is bounded by a constant. The estimate (6.4) implies
that

{zm}m is uniformly bounded in W 1,p∗(0, T ;Lp
∗
(Ω, S3 × R3)), (6.5){

Σ̄m
}
m

is uniformly bounded in Lp(ΩT , S3 × R3), (6.6)

{(M + L)1/2zm}m is uniformly bounded in L∞(0, T ;L2(Ω, S3 × R3)), (6.7){
1√
m
zm

}
m

is uniformly bounded in L∞(0, T ;L2(Ω, S3 × R3)), (6.8)

{f(zm)}m and {f(z̄m)}m are uniformly bounded in L∞(0, T ;L1(Ω,R)). (6.9)

We can improve the estimates (6.6)-(6.8) and show that
{

Σ̄m
}
m

is uniformly bounded in the space
L∞(0, T ;Lp(Ω, S3 ×R3)) and the sequences {(M + L)1/2z̄m}m and { 1√

m
z̄m}m are uniformly bounded

in W 1,2(0, T ;L2(Ω, S3 × R3)). Indeed, multiplying (5.1) by the term Σn
m−Σn−1

m

h and integrating over Ω
we obtain〈znm − zn−1

m

h
,

Σnm − Σn−1
m

h

〉
=

1
h

〈
∂Ig(Σnm),Σnm − Σn−1

m

〉
≥ 1
h

(Ig(Σnm)− Ig(Σn−1
m )). (6.10)
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Then we use that ∂If is a monotone operator and estimate the left side of (6.10) from above〈znm − zn−1
m

h
,

Σnm − Σn−1
m

h

〉
= −

〈znm − zn−1
m

h
, (M + L+

1
m

)
znm − zn−1

m

h

〉
−
〈znm − zn−1

m

h
,
∂If (znm)− ∂If (zn−1

m )
h

〉
+
〈znm − zn−1

m

h
,
ẑnm − ẑn−1

m

h

〉
≤− ‖(M + L)1/2 z

n
m − zn−1

m

h
‖22 − ‖

1√
m

znm − zn−1
m

h
‖22 +

〈znm − zn−1
m

h
,
ẑnm − ẑn−1

m

h

〉
. (6.11)

Now we combine (6.10) and (6.11), multiply the obtained relation by h and sum it up for n = 1, ..., l
and any fixed l ∈ {1, ..., 2m}. We obtain

h

l∑
n=1

(‖(M + L)1/2 z
n
m − zn−1

m

h
‖22 + ‖ 1√

m

znm − zn−1
m

h
‖22) +

∫
Ω

g(Σlm)dx

≤ Ig(Σ(0)) + h

l∑
n=1

〈znm − zn−1
m

h
,
ẑnm − ẑn−1

m

h

〉
, (6.12)

which implies the estimate

‖(M + L)1/2zmt‖22,ΩT
+ ‖ 1√

m
zmt‖22,ΩT

+ ‖Σ̄m(t)‖p,Ω ≤ Ig(Σ(0)) + ‖zmt‖p∗,ΩT
‖ẑmt‖p,ΩT

. (6.13)

Since by (6.5) the rigth side of (6.13) is bounded we obtain{
Σ̄m
}
m

is uniformly bounded in L∞(0, T ;Lp(Ω, S3 × R3)), (6.14)

{(M + L)1/2zm}m is uniformly bounded in W 1,2(0, T ;L2(Ω, S3 × R3)), (6.15){
1√
m
zm

}
m

is uniformly bounded in W 1,2(0, T ;L2(Ω, S3 × R3)). (6.16)

In conclusion we note that if the function f depends only on P and satisfies the coercivity condition
(1.14), we would obtain from (6.9)

{Pm}m and {P̄m}m are uniformly bounded in L∞(0, T ;L2(Ω, S3 × R3)) (6.17)

and if f depends on both r and P and satisfies the coercivity condition (1.15), we would get then from
(6.9)

{zm}m and {z̄m}m are uniformly bounded in L∞(0, T ;Lp(Ω, S3 × R3)), . (6.18)

Here we emphasize that the estimates of this paragraph hold for positive semi-definite operator L.
Suppose now that L is positive definite. Then the estimate (6.15) immediately implies that

{zm}m is uniformly bounded in W 1,2(0, T ;L2(Ω, S3 × R3)) (6.19)

without coercivity assumptions for the function f .
Rate-independent case. Now we suppose that g is defined by (1.9) and L is positive definite. The

proof runs the same lines of the second part of the previous paragraph except some slight changes. We
multiply (5.1) again by the term Σn

m−Σn−1
m

h , integrate over Ω and use that Ig(Σnm) = 0, m, n ∈ N to
obtain〈znm − zn−1

m

h
,

Σnm − Σn−1
m

h

〉
=

1
h

〈
∂Ig(Σnm),Σnm − Σn−1

m

〉
≥ 1
h

(Ig(Σnm)− Ig(Σn−1
m )) = 0. (6.20)

It follows from (6.20) that〈(
M + L+

1
m

)
znm − zn−1

m

h
,
znm − zn−1

m

h

〉
+

1
h

〈
∂If (znm)− ∂If (zn−1

m ), znm − zn−1
m

〉
≤
〈znm − zn−1

m

h
,
ẑnm − ẑn−1

m

h

〉
. (6.21)
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Since M is positive semidefinite, ∂If is monotone and L is positive definite we obtain the estimate∥∥∥∥znm − zn−1
m

h

∥∥∥∥
2,Ω

≤ C
∥∥∥∥ ẑnm − ẑn−1

m

h

∥∥∥∥
2,Ω

,

which after multiplying by h and summing for n = 1, ..., l implies

‖zmt‖2,ΩT
≤ C‖ẑmt‖2,ΩT

. (6.22)

Since the equation (6.1) holds also rate-independent g, we use it with the same arguments as in the
previous paragraph to obtain the following estimate∫ t

0

Ig∗(zmt)dt+
∫ t

0

Ig(Σ̄m)dt+ If (zm(t))

≤ 1
2

(‖(M + L)1/2z0‖22 +
1
m
‖z0‖22) + If (z0) + ‖zmt‖2,ΩT

‖¯̂zm‖2,ΩT
. (6.23)

Since the sequence {ẑm}m converges strongly inW 1,p(0, T ;Lp(Ω)) and the domain of Ig is the bounded
convex set K we obtain in the rate independent case that the estimates (6.22) and (6.23) imply

{zm}m is uniformly bounded in W 1,2(0, T ;L2(Ω, S3 × R3)), (6.24){
Σ̄m
}
m

is uniformly bounded in L∞(0, T ;L∞(Ω, S3 × R3)), (6.25)

{f(zm)}m is uniformly bounded in L∞(0, T ;L1(Ω,R)). (6.26)

7 Existence of measure-valued solutions
Based on the results of the previous sections we are able now to prove the main existence results of this
work, Theorem 2.5 and Theorem 2.6.

The proof of Theorem 2.5.

Proof. In a similar way as in the beginning of section 6 we use the equality (6.1) to derive the following
inequality ∫ t

0

∫
Ω

g∗(zmt(x, s))dsdx+
∫ t

0

∫
Ω

g(Σ̄m(x, s))dsdx+ 〈Mz̄m, zmt〉2,Ωt

+
∫

Ω

f(zm(x, t))dx−
∫

Ω

f(z0(x))dx ≤ 1
2m
‖z0‖22 + 〈zmt, ¯̂zm〉2,Ωt

. (7.1)

Using a-priori estimates from section 6 we want to pass to the limit in the inequality (7.1).
First, we obtain by (6.5) that, at the expense of extracting a subsequence, the sequence {zm}m

converges weakly in the space W 1,p∗(0, T ;Lp
∗
(Ω)) to some z. Next we claim that the sequence {z̄m}m

converges weakly in Lp
∗
(ΩT ) and the weak limits of {z̄m}m and {zm}m coincide. Indeed, using (6.5)

this can be shown as follows

‖zm − z̄m‖p
∗

p∗,ΩT
=

2m∑
n=1

∫ nh

(n−1)h

∥∥∥∥(znm − zn−1
m )

t− nh
h

∥∥∥∥p∗
p∗
dt

=
hp
∗+1

p∗ + 1

2m∑
n=1

∥∥∥∥znm − zn−1
m

h

∥∥∥∥p
∗

p∗
=

hp
∗

p∗ + 1

∥∥∥∥dzmdt
∥∥∥∥p∗
p∗,ΩT

, (7.2)

which implies that z̄m − zm converges strongly to 0 in Lp
∗
(ΩT ). Then the sequence {z̄m}m converges

weakly in Lp
∗
(ΩT ) to the same weak limit z ∈W 1,p∗(0, T ;Lp

∗
(Ω)) as {zm}m.

In the same way, using (6.15) and (6.16), we obtain that

M(z̄m − zm)→ 0 and
1
m

(z̄m − zm)→ 0 in L2(ΩT ). (7.3)
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Since the elements of {Σ̄m}m∈N belong to the space Lp(ΩT ), we can use the definition (A.7) to define
the convex functionals Îg : Lp(Ωt) → R̄ and Îg∗ : Lp

∗
(Ωt) → R̄ by Îg∗(z) ≡

∫ t
0

∫
Ω
g∗(z(s, x))dsdx and

Îg(z) ≡
∫ t

0

∫
Ω
g(z(s, x))dsdx, respectively. Then the functionals satisfy Îg∗ = (Îg)∗. Since zmt converges

weakly to zt in Lp
∗
(ΩT ) we obtain

lim inf
m→∞

Îg∗(zmt) ≥ Îg∗(zt). (7.4)

Due to (6.6) there exists a subsequence of {Σ̄m}m, which converges weakly to Σ̄ in Lp(ΩT ). Therefore
we get

lim inf
m→∞

Îg(Σ̄m) ≥ Îg(Σ̄).

Our next goal is to compute the function Σ̄. To this end, we consider the sequence Σ̄m = −Mz̄m +
1
m z̄m − ∂f(z̄m) + ¯̂zm, m ∈ N.
By constructions, ¯̂zm converges strongly to ẑ in Lp(ΩT ). It follows from (6.16) that the sequence
{ 1√

m
zm}m is uniformly bounded in L2(ΩT ). By (7.3) the sequence { 1√

m
z̄m}m is also uniformly bounded

in L2(ΩT ) and therefore 1
m z̄m converges strongly to 0 in L2(ΩT ) .

Moreover, it follows from (6.15) and (7.3) that the sequence {Mz̄m}m converges weakly in L2(ΩT ) and
the weak limit coincides with the weak limit of the sequence {Mzm}m = {

(
σm

Em

)
}m. By Theorem 3.2 we

get that for every zm ∈W 1,2(0, T ;L2(Ω)) there exists a solution (σm, Em) ∈W 1,2(0, T ;L2(Ω;S3×R3))
of the problem

−div σm = 0, div Dm = 0, (7.5)(
σm

E(∇φm)

)
= D

((
ε(∇um)
Dm

)
− zm

)
= −D(I −Q2)zm = −Mzm (7.6)

with homogeneous boundary conditions for the functions (um, φm).
Now, let us define the operator Mp∗ = D(I −Qp∗) : Lp

∗
(Ω)→ Lp

∗
(Ω). Due to the uniqueness of the

solution of the problem (7.5) - (7.6), instead of the operator M we can consider the operator Mp∗ in
(7.6). We note that the operatorMp∗ is the extension of the operatorM on L2(Ω). Thus, because of the
linearity of the operator Mp∗ , the sequence {

(
σm

Em

)
}m converges weakly in the space W 1,2(0, T ;L2(Ω))

to Mp∗z =
(
σ
E

)
, which is the solution of the problem (7.5), (7.6) corresponding to the function z. Since

the sequence {−Mz̄m + 1
m z̄m + ¯̂zm}m converges weakly in L2(ΩT ) and {Σ̄m}m converges weakly in

Lp(ΩT ), the sequence {∂If (z̄m)}m converges weakly in L2(ΩT ) to some F ∈ L2(ΩT ). By Theorem
B.3 there exists a Young measure τ ∈ Lw(ΩT ;M(S3 × R3)) associated with the sequence {zm}m such
that F(t, x) =

∫
S3×R3 ∂f(ξ)τt,x(dξ) for a.e. (t, x) ∈ ΩT . Thus, we get that Σ̄m converges weakly to

−Mp∗z −F + ẑ in Lp(ΩT ) and that the inequality holds

lim inf
m→∞

Îg(Σ̄m) ≥ Îg(−Mp∗z −F + ẑ). (7.7)

Since J(z) =
∫

Ω
f(z(x))dx is a convex functional on Lp

∗
(Ω) and zm(t) converges weakly to z(t) in

Lp
∗
(Ω), we get that lim infm→∞

∫
Ω
f(zm(x, t))dx ≥

∫
Ω
f(z(x, t))dx. Next, for a.e. x ∈ Ω we have that

z(x, ·) ∈ W 1,p∗(0, T ;S3 × R3). Let us fix x ∈ Ω. From (6.9) we conclude that the set f(z(x, [0, T ])) ⊂
dom f . Since f ∈ C1(dom f) and z(x, [0, T ]) is a compact subset of dom f , we obtain that f(z(·)) :
[0, T ] → R is an absolute continuous function and therefore f(z(t)) is almost everywhere strongly
differentiable with f(z(t))− f(z0) =

∫ t
0
(∂f(z(τ), zt(τ))dτ for a.e. t ∈ (0, T ). It follows from (6.9) that∫

Ω
(f(z(x, t))− f(z0(x))dx <∞ and hence

∫
Ω

∫ t
0
(∂f(z(x, τ), zt(x, τ))dτdx <∞. Therefore we get1

lim inf
m→∞

∫
Ω

(f(zm(x, t))− f(z0(x))dx ≥
∫

Ω

∫ t

0

(∂f(z(x, τ), zt(x, τ))dτdx. (7.8)

1The existence of the integral
R t
0

R
Ω(∂f(z(x, τ), zt(x, τ))dxdτ is an open problem.
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Now, we estimate lim infm→∞ 〈Mz̄m, zmt〉2,Ωt
from below. To this end, we note first that (7.3) implies

that lim infm→∞ 〈Mz̄m, zmt〉2,Ωt
= lim infm→∞ 〈Mzm, zmt〉2,Ωt

. The equations (7.5) - (7.6) yield that

〈Mzm, zmt〉2,Ωt
=
〈
−
(
σm
Em

)
, zmt

〉
2,Ωt

=
〈
−
(
σm
Em

)
,−D−1

(
σmt
Emt

)
+
(
ε(∇umt)
Dmt

)〉
2,Ωt

=
〈(σm

Em

)
,D−1

(
σmt
Emt

)〉
2,Ωt

. (7.9)

We introduce the functions wm =
(
σm

Em

)
. Then in terms of wm the last term can be rewritten as follows

〈D−1wm, wmt〉2,Ωt
= ‖(D−1)

1
2wm(t)‖22 − ‖(D−1)

1
2w(0)‖22,

where w(0) = wm(0) does not depend on m since zm(0) = z0. The relation {wm}m = {Mzm}m implies
that wm ⇀ w in W 1,2(0, T ;L2(Ω)) and since D−1 is a positive definite symmetric operator, we obtain
that (D−1)

1
2wm(t) ⇀ (D−1)

1
2w(t) in L2(Ω). Since w 7→ ‖(D−1)

1
2w‖22 is a proper, convex and l.s.c.

functional on L2(Ω), using Lemma A.4 we obtain

lim inf
m→∞

〈D−1wm, wmt〉2,Ωt
= lim inf

m→∞
(‖(D−1)

1
2wm(t)‖22 − ‖(D−1)

1
2w(0)‖22)

≥ ‖(D−1)
1
2w(t)‖22 − ‖(D−1)

1
2w(0)‖22 = 〈D−1w,wt〉2,Ωt

. (7.10)

Let (u, φ, σ,D) be a solution of the problem (7.5), (7.6) with homogeneous boundary conditions corre-
sponding to z. And let us assume first that f satisfies the coercivity condition (1.15). Then we have
that zm ⇀ z in Lp(ΩT ). Combining (7.9), (7.10) we obtain

lim inf
m→∞

〈Mzm, zmt〉2,Ωt
≥ 〈D−1w,wt〉2,Ωt

= 〈w,D−1wt〉2,Ωt

=
∫ t

0

∫
Ω

((
σ

E(∇φ)

)
,

(
ε(∇ut)
Dt

))
dxds+ 〈Mz, zt〉p,p∗,Ωt

(7.11)

Since z ∈ L∞(0, T ;Lp(Ω)), then also
(

σ
E(∇φ)

)
∈ L∞(0, T ;Lp(Ω)) and we obtain that the first term on

the right side of (7.11) 〈
(

σ
E(∇φ)

)
,
(
ε(∇ut)
Dt

)
〉p,p∗,ΩT

= 0. Therefore

lim inf
m→∞

〈Mzm, zmt〉2,Ωt
≥ 〈Mz, zt〉p,p∗,Ωt

. (7.12)

Altogether we obtain

Îg∗(zt) + Îg(−Mpz −F + ẑ) ≤ 〈zt,−Mpz + ẑ〉p,p∗,Ωt
−
∫

Ω

∫ t

0

(zt, ∂f(z))dtdx. (7.13)

Suppose now that f(r, P ) = f(P ) and satisfies the coercivity condition (1.14). The coercivity con-
dition implies that P ∈ L∞(0, T ;L2(Ω)). Since ∂f(z) =

(
0

∂f(P )

)
and the sequence (Σm)m is uni-

formly bounded in Lp(ΩT ), we obtain that σ ∈ Lp(ΩT ) and 〈σ, εt〉Ωt
= 0. Now since E,D − P ∈

W 1,2(0, T ;L2(Ω)) we integrate by parts the term 〈E,Dt − Pt〉Ωt
with respect to t to obtain

〈E,Dt − Pt〉Ωt
= 〈E,D − P 〉Ω|

t
0 − 〈Et, D − P 〉Ωt

.

Since P ∈ L2(Ω) and D−P ∈ L2(Ω) for every t ∈ [0, T ], then also D ∈ L2(Ω). Therefore we obtain for
every t ∈ [0, T ] that 〈E,D〉Ω = 0. And since Et = E(∇φt) ∈ L2(Ω), we obtain for a.e. t ∈ [0, T ] that
also 〈Et, D〉Ω = 0. Thus we obtain that

〈E,Dt − Pt〉Ωt
= −〈E,P 〉Ω|

t
0 + 〈Et, P 〉Ωt

. (7.14)

Now we show that the function x→
∫ t

0
(E,Pt) ∈ L1(Ω). Indeed, we have that for every fixed x ∈ Ω the

function (E,P ) is absolutely continuous and

(E,P )|t0 =
∫ t

0

d

dt
(E,P )ds =

∫ t

0

(Et, P ) + (E,Pt)ds.
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It follows from the estimate (7.14) that
∫

Ω

∫ t
0
(E,Pt)dsdx exists. Therefore we get that the equality∫

Ω

∫ t
0
(E,Dt − Pt)dsdx = −

∫
Ω

∫ t
0
(E,Pt)dsdx is satisfied and with m→∞ the estimate (7.1) takes the

form

Îg∗(zt) + Îg(−Mp∗z −F + ẑ) ≤ 〈zt, ẑ〉p,p∗,Ωt
−
∫

Ω

∫ t

0

(zt,Mp∗z + ∂f(z))dtdx. (7.15)

This completes the proof of Theorem 2.5.

Now we prove the existence result for the case when L is a positive definite operator.

The proof of Theorem 2.6.

Proof. We start again from the inequality∫ t

0

∫
Ω

g∗(zmt(x, s))dsdx+
∫ t

0

∫
Ω

g(Σ̄m(x, s))dsdx+ 〈(M + L)z̄m, zmt〉2,Ωt

+
∫

Ω

f(zm(x, t))dx−
∫

Ω

f(z0(x))dx ≤ 1
2m
‖z0‖22 + 〈zmt, ¯̂zm〉2,Ωt

. (7.16)

Using (6.19) for the rate-dependent and (6.24) for the rate-independent case we obtain based on the
same arguments as in the (7.2) that up to a subsequence the sequence {z̄m − zm}m converges strongly
to 0 in L2(ΩT ) and therefore the sequences {zm}m and {z̄m}m converge weakly to the same limit
z ∈W 1,2(0, T ;L2(Ω)) in L2(ΩT ) and {zmt}m converges weakly to zt ∈ L2(ΩT ).
The functionals Îg : L2(Ωt)→ R̄ and Îg∗ : L2(Ωt)→ R̄ defined by Îg∗(z) ≡

∫ t
0

∫
Ω
g∗(z(s, x))dsdx and

Îg(z) ≡
∫ t

0

∫
Ω
g(z(s, x))dsdx, respectively, are convex, proper and l.s.c. for both rate-dependent and

rate-independent choices of the function g. Obviously, it holds Îg∗ = (Îg)∗. Since zmt converges weakly
to zt in L2(ΩT ) we obtain

lim inf
m→∞

Îg∗(zmt) ≥ Îg∗(zt). (7.17)

Due to (6.6) and (6.25) there is a subsequence of {Σ̄m}m, which converges weakly to Σ̄ = −(M+L)z−
F+ ẑ in L2(ΩT ) with the function F ∈ L2(ΩT ) such that F(t, x) =

∫
S3×R3 ∂f(ξ)τt,x(dξ) for a.e. (t, x) ∈

ΩT with the Young measure τ ∈ Lw(ΩT ;M(S3 × R3)) associated to the sequence {zm}m. Then we
obtain

lim inf
m→∞

Îg(Σ̄m) ≥ Îg(−(M + L)z −F + ẑ). (7.18)

Since zm(t) converges weakly to z(t) in L2(Ω), then lim infm→∞
∫

Ω
f(zm(x, t))dx ≥

∫
Ω
f(z(x, t))dx.

Let us fix x ∈ Ω. For every fixed x ∈ Ω we have z(x, ·) ∈W 1,2(0, T ;S3×R3). Since f ∈ C1(S3×R3,R),
we obtain that f(z(·)) : [0, T ] → R is an absolute continuous function and therefore f(z(t)) is for a.e.
t ∈ (0, T ) strongly differentiable with f(z(t))− f(z0) =

∫ t
0
(∂f(z(τ), zt(τ))dτ . It follows from (6.9) and

(6.26) that
∫

Ω
(f(z(x, t))− f(z0(x))dx <∞ and hence

∫
Ω

∫ t
0
(∂f(z(x, τ), zt(x, τ))dτdx <∞. Therefore

we have

lim inf
m→∞

∫
Ω

(f(zm(x, t))− f(z0(x))dx ≥
∫

Ω

∫ t

0

(∂f(z(x, τ), zt(x, τ))dτdx. (7.19)

Due to the weak convergence of the sequences (zm)m and (z̄m)m in the space L2(ΩT ) we obtain

lim inf
m→∞

〈(M + L)z̄m, zmt〉2,Ωt
= lim inf

m→∞
〈(M + L)zm, zmt〉2,Ωt

= lim inf
m→∞

(‖(M + L)
1
2 zm(t)‖22

− ‖(M + L)
1
2 z(0)‖22) ≥ ‖(M + L)

1
2 z(t)‖22 − ‖(M + L)

1
2 z(0)‖22 = 〈(M + L)z, zt〉2,Ωt

(7.20)

Altogether we take the limit inferior on the left side and the limit on the right side of (7.16) and obtain
with (7.17)-(7.20) the following inequality

Îg∗(zt) + Îg(−(M + L)z −F + ẑ) ≤ 〈zt,−(M + L)z + ẑ〉2,Ωt
−
∫

Ω

∫ t

0

(zt, ∂f(z))dtdx. (7.21)

This completes the proof of Theorem 2.6.
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Remark 7.1. In the proof of Theorem 2.5 and Theorem 2.6 the function (r, P ) is obtained as the limit
of the weakly convergent sequence (rn, Pn) and the measure τ is the Young measure associated with
this sequence (rn, Pn) (see Appendix B for the main properties of Young measures, if needed). As we
have mentioned in Remark 2.4, the measure-valued solution (u, φ, r, P ) is strong if F = ∇(r,P )f(r, P )
in (2.1). This holds if the mapping ∇(r,P )f is affine. However, this case has no practical applications
and therefore beyond our interests.

A Convex analysis
In this section we briefly recall some basic facts about convex functions, their subdifferentials and the
surjectivity results for them.
Let V be a reflexive Banach space with the norm ‖ · ‖, V ∗ be its dual space with the norm ‖ · ‖∗. The

brackets 〈·, ·〉 denote the duality pairing between V and V ∗. By V we shall always mean a reflexive
Banach space throughout this section.
For a function φ : V → R̄ the sets

dom(φ) = {v ∈ V | φ(v) <∞}, epi(φ) = {(v, t) ∈ V × R | φ(v) ≤ t}

are called the effective domain and the epigraph of φ, respectively. One says that the function φ is
proper if dom(φ) 6= ∅ and φ(v) > −∞ for every v ∈ V . The epigraph is a non-empty closed convex set
iff φ is a proper lower semi-continuous convex function or, equivalently, iff φ is a proper weakly lower
semi-continuous convex function (see [16, Theorem 2.2.1], if needed).
The Legendre-Fenchel conjugate of a proper convex lower semi-continuous function φ : V → R̄ is the

function φ∗ defined for each v∗ ∈ V ∗ by

φ∗(v∗) = sup
v∈V
{〈v∗, v〉 − φ(v)}.

The Legendre-Fenchel conjugate φ∗ is convex, lower semi-continuous and proper on the dual space V ∗.
Moreover, the Young-Fenchel inequality holds

∀v ∈ V, ∀v∗ ∈ V ∗ : φ∗(v∗) + φ(v) ≥ 〈v∗, v〉 , (A.1)

and the inequality φ ≤ ψ implies ψ∗ ≤ φ∗ for any two proper convex lower semi-continuous functions
ψ, φ : V → R̄ (see [16, Theorem 2.3.1]). Due to Proposition II.2.5 in [1] a proper convex lower semi-
continuous function φ satisfies the following identity

int dom(φ) = int dom(∂φ), (A.2)

where ∂φ : V → 2V
∗
denotes the subdifferential of the function φ. We note that the equality in (A.1)

holds iff v∗ ∈ ∂φ(v), i.e. together with (A.1)

v∗ ∈ ∂φ(v)⇔ φ∗(v∗) + φ(v) ≤ 〈v∗, v〉 , ∀v ∈ V, ∀v∗ ∈ V ∗. (A.3)

Remark A.1. We recall that the subdifferential of a lower semi-continuous proper and convex function
is maximal monotone2 (see [1, Theorem II.2.1]).

The next surjectivity result on subdifferentials of convex functions is one of the key tools in the proof
of our main existence result.

Theorem A.2. Let A := ∂φ, where φ : V → R̄ is a proper convex lower semi-continuous function on
V . Then the following conditions are equivalent

lim
‖v‖→∞

φ(v)
‖v‖

=∞; (A.4)

R(A) = V ∗ and A−1 is bounded. (A.5)
2A monotone mapping A : V → 2V ∗ is called maximal monotone iff the inequality

〈v∗ − u∗, v − u〉 ≥ 0 ∀ u∗ ∈ A(u)

implies v∗ ∈ A(v).

18



Proof. See [1, Theorem II.2.6], for example.

To state our next result, we recall that the relation

∂φ+ ∂ψ = ∂(φ+ ψ)

holds for any two convex functions ψ and φ, if there exists a point in dom(φ) ∩ dom(ψ) where φ is
continuous (see [15, Proposition II.7.7]). Then, since a proper convex lower semi-continuous function is
continuous on the interior of its domain ([1, Proposition II.2.2]), we get the following important result.

Proposition A.3. Let φ be a proper convex lower semi-continuous function and ψ be convex. Suppose
that

int dom(φ) ∩ dom(ψ) 6= ∅. (A.6)

Then
∂φ+ ∂ψ = ∂(φ+ ψ).

We will use the following chain rule

Lemma A.4. Let φ : H → R∞ be proper, convex and l.s.c. on H. If z, zt ∈ L2(0, T ;H) and if there
exists g ∈ L2(0, T ;H) with g ∈ ∂φ(z) a.e. on [0, T ], then φ(z) is absolutely continuous on [0, T ] and

d

dt
φ(z(t)) =

〈
h(t),

dz(t)
dt

〉
H

holds for every h ∈ ∂φ(u) a.e. on [0, T ].

Convex integrands. For a proper convex lower semi-continuous function φ : Rk → R̄ we define a
functional Iφ on Lp(Ω,Rk) by

Iφ(v) =

{∫
Ω
φ(v(x))dx, φ(v) ∈ L1(Ω,Rk)

+∞, otherwise
, (A.7)

where Ω is a bounded domain in RN with some N ∈ N. Due to Proposition II.8.1 in [15] the functional
Iφ is proper, convex, lower semi-continuous, and v∗ ∈ ∂Iφ(v) iff

v∗ ∈ Lp
∗
(Ω,Rk), v ∈ Lp(Ω,Rk) and v∗(x) ∈ ∂φ(v(x)), a.e.

Due to the result of Rockafellar in [11, Theorem 2] the Legendre-Fenchel conjugate of Iφ is equal to
Iφ∗ , i.e. (

Iφ
)∗ = Iφ∗ ,

where φ∗ is the Legendre-Fenchel conjugate of φ.

B Young measures

Let E ⊂ Rm be a Lebesgue measurable set with µ(E) < ∞. We denote C0(Rd) = Cc(Rd)
‖·‖∞ .

Let M(Rd) of signed Radon measures with bounded total variation. There is a one-to-one corre-
spondence between the dual space of C0(Rd) and the space M(Rd), such that ν ∈ M(Rd) defines a
linear continuous functional on C0(Rd) in the following sense 〈ν, f〉 =

∫
Rd f(x)ν(dx) for f ∈ C0(Rd)

and ‖ν‖M(Rd) = sup‖f‖∞≤1 |〈ν, f〉|. One says that ν ∈ M(Rd) belongs to Prob(Rd) if ν is a prob-
ability measure. The mapping τ : E → M(Rd) is said to belong to the space L∞w (E,M(Rd)),
if for all f ∈ L1(E;C0(Rd)) the function x → 〈τx, f(x, ·)〉 =

∫
Rd f(x, λ)dτx(λ) is measurable and

‖τ‖L∞w (E;M(Rd)) ≡ ess supx∈E‖τx‖M(Rd) <∞.

Definition B.1. A Young measure τ : E →M(Rd) is an element of the space L∞w (E,M(Rd)), such
that τx ∈ Prob(Rd) for µ−a.e. x ∈ E.
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Theorem B.2. Let {un}n : E → Rd be a norm bounded sequence in L1(E; Rd). Then there exists
a subsequence {unk

}k of the sequence {un}n and a Young measure τ ∈ L∞w (E,M(Rd)) such that the
sequence {τnk

}k konverges to τ in L∞w (E,M(Rd)).

Theorem B.3. Let {un}n : E → Rd be a sequence of measurable functions and {τn}n be a sequence
of Young measures associated to functions {un}n such that τn → τ . Let Φ : Rd → R be continuous and
suppose that {Φ(un)}n is uniformly integrable.
Then ∫

E

∫
Rd

|Φ(ξ)|τx(dξ)µ(dx) <∞

and Φ(un) converges (L1, L∞) to w, where

w(x) =
∫

Rd

Φ(ξ)τx(dξ) for µ− a.e. x ∈ E.
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C Notations
(·, ·), | · |: skalar product and norm in R3 or S3

〈·, ·〉, ‖ · ‖2: skalar product and norm in L2(Ω) or L2(Ω)
〈·, ·〉p,p∗ , ‖ · ‖p: bilinear form on Lp(Ω)× Lp∗(Ω) and norm in Lp(Ω)
〈·, ·〉k,p,Ω, ‖ · ‖k,p,Ω: skalar product and norm in W k,p(Ω)
[·, ·]: is a bilinear form on W 1,p

0 (Ω)×W−1,p∗(Ω).
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