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A viscous incompressible fluid with a large number of small axially symmetric solid

particles is considered. It is assumed that the particles are identically oriented and under

the influence of the fluid they move translationally or rotate around symmetry axis but the

direction of their symmetry axes does not change. The asymptotic behavior of oscillations

of the system is studied, when the diameters of particles and distances between the nearest

particles are decreased. The equations, describing the homogenized model of the system,

are derived. It is shown that the homogenized equations correspond to a non-standard

hydrodynamics. Namely, the homogenized stress tensor linearly depends not only on the

strain tensor but also on the rotation tensor.
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1 Introduction

Mechanics of suspensions is a part of a general physical-chemical sphere of knowledge about

dispersions. Dispersion is a mixture of 2 phases one of which forms a continuum medium (we

will call it a dispersive phase) and the other one is dispersed and distributed in the form of

separate volume elements inside the first one (we will call it a disperse phase). In this work it

is supposed that the dispersive phase is a viscous incompressible fluid and the disperse phase

consists of a great number of small solid ferromagnetic particles suspended in the fluid. The

sizes of particles are assumed to be of the same order as the distances between the nearest

particles.
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When neglecting all physical-chemical processses, the study of the suspension motion can

be considered as a problem of pure classical mechanics. In this case the motion of the dispersive

phase is governed by the Navier-Stockes equations, and the motion of solid particles forming

a dispersed phase is described by the equations of continuum mechanics. However, the study

of the properties of the fluids in the framework of such a model by using both analytical and

numerical methods appears to be an unsurmountable problem because of a great number of

the small particles. Therefore it is necessary to develop adequate macroscopic models that can

help in studying such fluids. It is known that under the absence of external forces the motion

of the compound is governed by the following homogenized equations:

ρ
∂v

∂t
+ (v,∇)v − div σ[v] = ρf, divv = 0,

where ρ = ρ(x) is the homogenized specific mass density of the mixture, v(x, t) is the homog-

enized velocity of the suspension, σ[v] = {σij[v]}3
i,j=1 is the homogenized stress tensor, and f

is the external force acting on the suspension. Moreover, the stress tensor linearly depends on

the strain tensor e[v] = {eij[v] = 1
2
( ∂vi
∂xj

+
∂vj
∂xi

)}3
i,j=1:

σ[v] = Ae[v]− Ep,

where A = {anpqr(x, t)}3
n,p,q,r=1 is the effective viscousity tensor (it is symmetrical with respect

to permutation of pairs of subscripts and of subscripts in pairs themselves), E = {δij}3
i,j=1 is

the unity matrix, and p(x, t) is the pressure. The result is qualitatively the same in the case of

weak electric or magnetic forces affecting the suspension.

If the suspension is subjected to the influence of a very strong electric or magnetic field

then its behavior appears to be different. The study of such a behavior leads to a development

of the so-called asymmetric hydrodynamics in which case the stress tensor appears to be non-

symmetric (see, for example, the pioneer works [1] and [15] where this fact was established

from physical considerations, and our previous work [4] where the same linear problem was

considered):

σ[v] = ADe[v] + ARω[v]− Ep. (1)

Here AD and AR are the deformative and rotational parts of the effective viscousity tensor, and

ω[v] = {ωij[v] = 1
2
( ∂vi
∂xj
− ∂vj

∂xi
)}3
i,j=1.

In this paper we suggest a non-linear mathematical model of a suspension which is a mixture

of a viscous incompressible fluid with a large number of small perfectly rigid inclusions which are

the prolate particles oriented along the fixed direction l. Under the influence of the surrounding

fluid the particles can move translationally or rotate around symmetry axis but the direction

of their symmetry axes does not change. Such a motion of the composite can be realized, for

example, if the particles are strongly magnetizable and subjected to the influence of the strong

magnetic field, so that they are oriented along the field direction B (see Figure1).
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Figure 1: The suspension with oriented particles

We study the asymptotic behavior of such a mixture when the diameters of inclusions tend

to zero and the inclusions are distributed in the whole volume. As a result, we obtain the

homogenized equations corresponding to asymmetric hydrodynamics.

2 Statement of the problem

Consider a bounded domain Ω in R3 with smooth boundary ∂Ω. Suppose that this domain

is filled with a mixture consisting of a viscous incompressible fluid with a large number Nε =

O(ε−3) of small solids Qi
ε(t) bounded by smooth surfaces ∂Qi

ε(t) and suspended in the fluid.

Further we will call them ”the particles”.

Let Ωε(t) = Ω \
N⋃
i=1

Qi
ε(t) be a domain filled with the fluid, ρf and ρs be the specific mass

density of the fluid and of solid particles respectively, µ be the dynamic viscosity of the fluid,

vε = vε(x, t) be the velocity of the fluid, pε = pε(x, t) be the pressure, f
ε

= f
ε
(x, t) be the

external force acting on the suspension, e[vε] =
{
enp[v] =

1

2

(∂vn
∂xp

+
∂vp
∂xn

)}3

n,p=1
be the strain

tensor in the fluid, σ[vε] =
{
σnp[v] = 2µenp[v] − pεδnp

}3

n,p=1
be the stress tensor in the fluid,

xiε(t) be the position of the center of mass of Qi
ε(t), u

i
ε(t) be the displacement of the center

of mass of Qi
ε(t), θ

i
ε(t) be the rotation vector of Qi

ε(t), m
i
ε be the mass of Qi

ε(t), I
i
ε(t) be the

inertia tensor of Qi
ε(t).

Consider the following system of equations:

ρf
∂vε
∂t

+ ρf (vε,∇)vε − µ4vε = ∇pε + ρff ε, div vε = 0, x ∈ Ωε; (2)
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vε = u̇iε + θ̇
i

ε × (x− xiε), θ̇
i

ε = P dθ̇
i

ε, x ∈ ∂Qi
ε; (3)

mi
εü

i
ε +

∫
Siε

σ[vε]ν ds =

∫
Qiε

ρsf ε dx; (4)

P d d

dt

[
I iεθ̇

i

ε

]
+ P d

∫
∂Qiε

(x− xiε)× σ[vε]ν ds = P d

∫
Qiε

(x− xiε)× ρsf ε dx, (5)

where f
ε

= f
ε
(x, t) is the external force acting on the mixture, ν is the unit inner normal vector

to the surface ∂Qi
ε(t), and P d is a projection operator onto some fixed d-dimensional subspace

Sd ⊂ R3.

Depending on d, such a system describes non-stationary motions of the mixture under

various regimes of particles rotations. Namely, if d = 3 then the particles can rotate without

any constraints. Such a situation was considered in [11] (for the case of an elastic medium filled

with the particles) and in [2],[12],[17],[26] (for the case of a viscous incompressible fluid filled

with the particles). If d = 0 then the particles move translationally without any rotations. In

this paper, we focuss on the non-standard cases where d = 1 or d = 2 (a similar linear problems

for the case of elastic and fluid media were considered in our previous works [9] and [4]; see also

[10]).

The case d = 1 can be realized, for example, if we consider strongly magnetizable prolate

ellipsoidal particles in the strong magnetic field directed along a constant vector B. Then all

the particles are aligned along B ([20]), and under the influence of elastic forces they can move

translationally or rotate only around their symmetry axis l = B, but the direction of their

symmetry axis does not change (see Figure1). In this case, the subspace S1 is a linear subspace

spanned by the vector l.

The case d = 2 can be realized, for example, if we consider strongly magnetizable oblate

ellipsoidal particles in the strong magnetic field. Moreover, it is assumed that the particles are

aligned in such a way that their symmetry axes are identically oriented along the direction l

perpendicular to the field direction B and they can rotate both around their symmetry axis

and around the field direction. In this case, subspace S2 is a linear subspace spanned by vectors

l and B. The result both in case d = 1 and in case d = 2 is qualitatively the same: the stress

tensor in the homogenized model is expressed via the strain tensor and the rotation tensor in

accordance with (1).

The system of equations (2)-(5) is supplemented by the initial conditions

vε(x, 0) = vε0(x), x ∈ Ωε(0); (6)

uiε(0) = 0, u̇iε(0) = viε, θ
i
ε(0) = 0, θ̇iε(0) = ωiε (7)
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(div vε0 = 0 at x ∈ Ωε(0) and vε0(x) = viε + ωiε × (x− xiε(0)) at x ∈ ∂Qi
ε(0)) and the boundary

condition on ∂Ω

vε(x, t) = 0, x ∈ ∂Ω. (8)

Theorem 1. There exists a unique solution of the problem (2)− (8) for t ∈ [0, T ] (local in time

(0 < T < ∞) or even global (T = ∞) if the data are small enough and the particles do not

collide with each other and with the boundary ∂Ω; for more details see, for example, [28] and

references therein).

The main goal of the paper is to study the asymptotic behavior of the solution of problem

(2)− (8) as ε→ 0.

At first, we get uniform (with respect to ε) bounds for the derivatives of that solution

extended onto the particles Qi
ε(t) by equality (3).

3 A priori estimations of the solution

of the problem (2)− (8)

Starting from the solution {vε(x, t), uiε(t), θiε(t) = P dθiε(t), i = 1, Nε} of the problem (2)− (8)

we construct the vector function

ṽε(x, t) = χε(x, t)vε(x, t) +
Nε∑
i=1

χiε(x, t)[u̇
i
ε(t) + θ̇

i

ε(t)× (x− xiε(t))], (9)

where χε(x, t) is the characteristic function of the domain Ωε(t), filled with the fluid, and χiε(x, t)

is the characteristic function of a particle Qi
ε(t). We also denote by

ρε(x, t) = ρfχε(x, t) + ρs

Nε∑
i=1

χiε(x, t)

the density of the suspension ”the fluid-the particles”.

1. At the first step we estimate ‖∇ṽε(x, t)‖L2(ΩT ), where ΩT = Ω × [0, T ]. To do so, we

multiply equation (2) by vε(x, t) and integrate over domain ΩT
ε = [0, T ]×Ωε(t). Using Green’s

formula, we get

T∫
0

∫
Ωε(t)

ρf

(
vε,

∂vε
∂t

)
dxdt+

T∫
0

∫
Ωε(t)

ρf (vε, (vε · ∇)vε) dxdt+ 2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

e2
kl[vε] dxdt−

−
T∫

0

∫
∂Ωε(t)

(σ[vε], vε) dSdt = ρf

T∫
0

∫
Ωε(t)

(vε, f ε) dxdt. (10)
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With the aid of the boundary conditions (3), equations (4)-(5) and Reynolds transport

theorem (see, for example, [3]), the surface integral in (10) can be transformed as follows:

−
T∫

0

∫
∂Ωε(t)

(σ[vε], vε) dSdt =

T∫
0

ρs
2

Nε∑
i=1

d

dt

∫
Qiε(t)

|u̇iε(t) + θ̇
i

ε(t)× (x− xiε(t))|2 dxdt−

−ρs

T∫
0

Nε∑
i=1

∫
Qiε(t)

(
u̇iε(t) + θ̇

i

ε(t)× (x− xiε(t)), f ε(x, t)
)
dxdt. (11)

Consider now the second term in the LHS of (10). Taking into account the boundary

condition (8) and the divergence-free condition for the velocity vε(x, t), with integrating by

parts we get

T∫
0

∫
Ω(t)

ρf (vε, (vε · ∇)vε) dxdt = 0,

whence it follows that

T∫
0

∫
Ωε(t)

ρf (vε, (vε · ∇)vε) dxdt = −ρf

T∫
0

Nε∑
i=1

∫
Qiε(t)

(vε, (vε · ∇)vε) dxdt. (12)

With the help of equality (3) one can easily check that∫
Qiε(t)

(vε, (vε · ∇)vε) dx = 0, i = 1, Nε. (13)

Combining now (12) and (13), we conclude that the second term in the LHS of (10) is equal to

0.

Consider now the first term in the LHS of (10). It is easy to see that the following identity

holds:

T∫
0

∫
Ωε(t)

ρf

(
vε,

∂vε
∂t

)
dxdt =

T∫
0

ρf
2

d

dt

∫
Ωε(t)

|vε|2 dxdt+

+

T∫
0

ρf
2

d

dt

Nε∑
i=1

∫
Qiε(t)

|vε|2 dxdt−
T∫

0

ρf
2

Nε∑
i=1

∫
Qiε(t)

d|vε|2

dt
dxdt.

Using Reynolds transport theorem and recalling that vε = u̇iε + θ̇
i

ε × (x− xiε) for x ∈ Qi
ε(t)

(i = 1, Nε), one can be convinced that the second and the third term in the RHS of that

equality coincide with each other. Hence,
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T∫
0

∫
Ωε(t)

ρf

(
vε,

∂vε
∂t

)
dxdt =

T∫
0

ρf
2

d

dt

∫
Ωε(t)

|vε|2 dxdt. (14)

Combining now equalities (10)-(14), we obtain

T∫
0

ρf
2

d

dt

∫
Ωε(t)

|vε|2 dxdt+

T∫
0

ρs
2

Nε∑
i=1

d

dt

∫
Qiε(t)

|u̇iε(t) + θ̇
i

ε(t)× (x− xiε(t))|2 dxdt−

−ρs

T∫
0

Nε∑
i=1

∫
Qiε(t)

(
u̇iε(t) + θ̇

i

ε(t)× (x− xiε(t)), f ε(x, t)
)
dxdt+ 2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

e2
kl[vε] dxdt =

= ρf

T∫
0

∫
Ωε(t)

(vε, f ε) dxdt.

It is easy to see that we can rewrite this equality as follows:

1

2

T∫
0

d

dt

{∫
Ω

ρε(x, t)|ṽε(x, t)|2 dx
}
dt+ 2µ

T∫
0

∫
Ω

3∑
k,l=1

e2
kl[ṽε] dxdt =

=

T∫
0

∫
Ω

ρε(x, t)(ṽε, f ε) dxdt.

Due to the first Korn’s inequality (see [25])

‖ṽε‖2
◦
H1(Ω)

≤ 2

∫
Ω

3∑
k,l=1

e2
kl[ṽε] dx, (15)

the last identity gives us the required bound

‖∇ṽε‖2
L2(ΩT ) ≤ C (16)

provided the external force f
ε

is bounded.

2. At the second step we prove the following estimation:

ρf‖
∂vε
∂t
‖2
L2(ΩTε ) + 2µ

∫
Ωε(T )

3∑
k,l=1

ekl[vε(x, T )] dx ≤ C. (17)

To prove this bound we assume that the following conditions hold.

3.1) Let diε be the diameter of the ellipsoidal particle Qi
ε(t), B(Qi

ε(t)) be a minimal ball con-

taining Qi
ε(t), and Ri

ε(t) be a distance from the ball B(Qi
ε(t)) to other minimal balls and
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to the boundary ∂Ω. We suppose that both diε and Ri
ε(t) (for any fixed t ∈ [0, T ]) satisfy

the following inequalities:

C1ε ≤ diε, R
i
ε(t) ≤ C2ε, (18)

where constants C1 and C2 do not depend on ε (0 < C1 < C2 <∞).

3.2) The velocities u̇iε(t) of the centers of mass of Qi
ε(t) for any fixed t ∈ [0, T ] change in a

smooth way when passing from one particle to another, i.e. there exist smooth vector

functions V ε(x, t) such that u̇iε(t) = V ε(x
i
ε, t), V ε(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ],∣∣∣∂V ε

∂t

∣∣∣ < C and |∇xV ε| < C.

3.3) The instant angular velocities and accelerations of the particles Qi
ε(t) are bounded, so

that the following estimates hold: |θ̇iε(t)| < C,
Nε∑
i=1

|θ̈iε|2(diε)
3 < C.

3.4) max
(x,t)∈ΩTε

|vε(x, t)| < C.

3.5) The external force f
ε
(x, t) and the initial velocity vε0(x) are bounded: ‖f

ε
‖L2(ΩT ) ≤ C,

‖vε0‖H1(Ω) ≤ C.

Here, all constants C do not depend on ε,

Let ϕiε(x, t) ∈ C∞(Ω × [0, T ]) be the functions satisfying the following conditions for any

t ∈ [0, T ]: ϕiε = 1 for x ∈ B(Qi
ε(t)), ϕ

i
ε = 0 for x /∈ B(1+α)diε

(t), 0 ≤ ϕiε ≤ 1 for x ∈ B(1+α)diε
(t)

and |∇xϕ
i
ε(x, t)| ≤

C

diε
, where B(1+α)diε

(t) denotes a ball of diameter (1 + α)diε concentric with

the minimal ball B(Qi
ε(t)), and constants α > 0, C > 0 do not depend on ε.

Introduce the following vector field:

lε(x, t) = V ε(x, t) +
Nε∑
i=1

[u̇iε(t) + θ̇
i

ε(t)× (x− xiε(t))− V ε(x, t)]ϕ
i
ε(x, t), (x, t) ∈ ΩT . (19)

From the properties of V i
ε(x, t) and ϕiε(x, t) follows that

lε(x, t) = u̇iε(t) + θ̇
i

ε(t)× (x− xiε(t)) for x ∈ Qi
ε(t) (i = 1, Nε);∣∣∣∂lε(x, t)

∂t

∣∣∣ < C; |∇xlε(x, t)| < C; lε(x, t) = 0 for (x, t) ∈ ∂Ω× [0, T ], (20)

where C > 0 does not depend on ε.

Consider in ΩT the following vector function:

q
ε
(x, t) =

∂ṽε
∂t

+
3∑
i=1

lεi
∂ṽε
∂xi

=
(
1 + |lε|2

) 1
2
∂ṽε

∂l̂ε
, (21)
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where
∂ṽε

∂l̂ε
denotes the directional derivative of ũε along the vector field

l̂ε =

{
1(

1 + |lε|2
) 1

2

,
lε1(

1 + |lε|2
) 1

2

,
lε2(

1 + |lε|2
) 1

2

,
lε3(

1 + |lε|2
) 1

2

}
.

Since ṽε(x, t) is continuous everywhere in ΩT , ∇xṽε(x, t) and
∂ṽε(x, t)

∂t
are continuous both

in ΩT
ε and in QT

ε = ΩT \ ΩT
ε , ṽε(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ], and the vector field l̂ε

is tangent to the lateral surface of ∂ΩT
ε , then q

ε
(x, t) is continuous everywhere in ΩT and

q
ε
(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ]. Therefore, from (19) and (21), it follows that for any

t ∈ [0, T ] q
ε
(x, t) ∈

◦
H1 (Ω). Moreover, since div ṽε = 0, we get

div q
ε

=
3∑

i,j=1

∂lεi
∂xj

∂ṽεj
∂xi

. (22)

For further considerations we need a technical lemma which can be proved analogously to

[12].

Lemma 1. For any vector function q
ε
(x) ∈

◦
H1 (Ω) there exists a vector function zε(x) ∈

◦
H1 (Ω)

such that div zε(x) = div q
ε
(x) for x ∈ Ω, zε(x) = q

ε
(x) + aiε for x ∈ Qi

ε (i = 1, Nε) and

‖zε‖2
H1(Ω) ≤ C

(
‖div q

ε
‖2
L2(Ω) +

Nε∑
i=1

‖∇q
ε
‖2
L2(Qiε)

)
, (23)

where aiε are constant vectors and C does not depend on ε.

Applying this Lemma to the function q
ε
(x) defined by equality (21) for every t ∈ [0, T ],

we construct a vector function zε(x, t). From estimate (23), using equalities (21) and (22) and

taking into account the properties of the vector field lε(x, t), we get

‖zε(t)‖2
H1(Ω) ≤ C

{
‖∇ṽε(t)‖2

L2(Ω) +
Nε∑
i=1

(
|θ̈iε(t)|2 + |θ̇iε(t)|4

)
(diε)

3
}
.

Hence, due to the estimate (16) and conditions 3.1) and 3.3), the following inequality follows

T∫
0

‖zε(t)‖2
H1(Ω) dt ≤ C, (24)

where C does not depend on ε.

Set now wε = q
ε
− zε. It is clear that wε(x, t) ∈ L2(0, T ;

◦
H1 (Ω)), div wε = 0 and wε(x, t) =

aiε(t) for x ∈ Qi
ε(t) (i = 1, Nε). Multiply equation (2) by wε and integrate over domain ΩT

ε .

Using Green’s formula, we get
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T∫
0

∫
Ωε(t)

ρf

(
wε,

∂vε
∂t

)
dxdt+

T∫
0

∫
Ωε(t)

ρf (wε, (vε · ∇)vε) dxdt+ 2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

ekl[wε]ekl[vε] dxdt−

−
T∫

0

Nε∑
i=1

( ∫
∂Qiε(t)

σ[vε] dS, a
i
ε(t)
)
dt = ρf

T∫
0

∫
Ωε(t)

(wε, f ε) dxdt. (25)

Estimate now each of the terms in (25). Taking into account the form of the vector function

q
ε
(x, t) and using inequality (20), Cauchy-Schwarz and Young’s inequalities (with arbitrary

δ > 0), estimate from above the RHS of equality (25):

∣∣∣ρf T∫
0

∫
Ωε(t)

(wε, f ε) dxdt
∣∣∣ = ρf

∣∣∣ T∫
0

∫
Ωε(t)

(q
ε
− zε, f ε) dxdt

∣∣∣ ≤
≤ ρf‖f ε‖L2(ΩTε )

(
‖∂vε
∂t
‖L2(ΩTε ) + C‖∇vε‖L2(ΩTε ) + ‖zε‖L2(ΩTε )

)
≤ (26)

≤ ρf
4δ
‖f

ε
‖2
L2(ΩT ) + 3ρfδ

(
‖∂vε
∂t
‖2
L2(ΩTε ) + C2‖∇vε‖2

L2(ΩTε ) + ‖zε‖2
L2(ΩTε )

)
.

Consider now the first term on the LHS of equality (25). With the help of the same

arguments as before, we obtain the following lower bound:

T∫
0

∫
Ωε(t)

ρf

(
wε,

∂vε
∂t

)
dxdt =

T∫
0

∫
Ωε(t)

ρf

(
q
ε
− zε,

∂vε
∂t

)
dxdt =

=

T∫
0

∫
Ωε(t)

ρf

∣∣∣∂vε
∂t

∣∣∣2 dxdt+
3∑
i=1

T∫
0

∫
Ωε(t)

ρf lεi

(∂vε
∂xi

,
∂vε
∂t

)
dxdt−

T∫
0

∫
Ωε(t)

ρf

(
zε,

∂vε
∂t

)
dxdt ≥ (27)

≥ ρf

www∂vε
∂t

www2

L2(ΩTε )
−3Cρf

( 1

4δ
‖∇vε‖2

L2(ΩTε ) +δ
ww∂vε
∂t

ww2

L2(ΩTε )

)
− ρf

4δ
‖zε‖2

L2(ΩTε )−ρfδ
ww∂vε
∂t

ww2

L2(ΩTε )
.

Next, analogously to (12)-(13), it can be shown that

T∫
0

∫
Ωε(t)

ρf (wε, (vε · ∇)vε) dxdt = 0. (28)

Estimate now the fourth term in the LHS of (25):

−
T∫

0

Nε∑
i=1

( ∫
∂Qiε(t)

σ[vε] dS, a
i
ε(t)
)
dt =

T∫
0

Nε∑
i=1

(
mi
εü

i
ε(t), a

i
ε(t)
)
dt−

10



−ρs

T∫
0

Nε∑
i=1

( ∫
Qiε(t)

f
ε
(x, t) dx, aiε(t)

)
dt = J1

ε − J2
ε .

Using Cauchy-Schwarz inequality and identity aiε(t) = q
ε
(x, t) − zε(x, t) for x ∈ Qi

ε(t)

(i = 1, Nε), we get:

|J1
ε | ≤

Nε∑
i=1

{ T∫
0

mi
ε|üiε|2 dt

} 1
2
{ T∫

0

mi
ε|aiε|2 dt

} 1
2 ≤

≤ 1

2

T∫
0

Nε∑
i=1

mi
ε|üiε|2 dt+

ρs
2

T∫
0

Nε∑
i=1

∫
Qiε(t)

(
|q
ε
(x, t)|2 + |zε(x, t)|2

)
dxdt,

whence, taking into account the form of the vector function q
ε
(x, t) on the particles Qi

ε(t) and

conditions 3.2)-3.3), the following upper bound follows:

|J1
ε | ≤

ρs
2
‖zε‖2

L2(QTε ) + C max
0≤t≤T

{ Nε∑
i=1

|θ̈iε|2(diε)
5 +

Nε∑
i=1

|üiε|2(diε)
3 +

Nε∑
i=1

|θ̇iε(t)|2(diε)
3
}
≤

≤ ρs
2
‖zε‖2

L2(QTε ) + C.

The term J2
ε can be estimated analogously:

|J2
ε | ≤

ρs
2
‖zε‖2

L2(QTε ) + ρs‖f ε‖
2
L2(QTε ) + C.

Thus,

∣∣∣ T∫
0

Nε∑
i=1

( ∫
∂Qiε(t)

σ[vε] dS, a
i
ε(t)
)
dt
∣∣∣ ≤ ρs‖zε‖2

L2(QTε ) + ρs‖f ε‖
2
L2(QTε ) + 2C. (29)

It remains to consider only the third term in the LHS of (25). Taking into account that

wε = q
ε
− zε, we have:

2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

ekl[wε]ekl[vε] dxdt =

= 2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

ekl[qε]ekl[vε] dxdt− 2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

ekl[zε]ekl[vε] dxdt. (30)

The second term in the RHS of (30) we can estimate as follows:

11



2µ
∣∣∣ T∫

0

∫
Ωε(t)

3∑
k,l=1

ekl[zε]ekl[vε] dxdt
∣∣∣ ≤ (‖∇zε‖2

L2(ΩTε ) + ‖∇vε‖2
L2(ΩTε )

)
. (31)

Recalling the definition of q
ε

and l̂ε, the first term in the RHS of (30) can be written as

follows
( ∂

∂x0

≡ ∂

∂t

)
:

2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

ekl[qε]ekl[vε] dxdt = µ

T∫
0

∫
Ωε(t)

3∑
i=0

∂

∂xi

(
l̂εi(1 + |lε|2)

1
2

3∑
k,l=1

e2
kl[vε]

)
dxdt−

−µ
T∫

0

∫
Ωε(t)

3∑
i=1

∂lεi
∂xi

3∑
k,l=1

e2
kl[vε] dxdt+ µ

T∫
0

∫
Ωε(t)

3∑
i,k,l=1

(∂lεi
∂xl

∂vεk
∂xi

+
∂lεi
∂xk

∂vεl
∂xi

)
ekl[vε] dxdt =

= J1
ε + J2

ε + J3
ε .

Due to (20), we have:

|J2
ε |+ |J3

ε | ≤ C‖∇vε‖2
L2(ΩTε ).

Applying the divergence theorem to the integral J1
ε and taking into account that the vector

field l̂ε(x, t)(1 + |lε|2)
1
2

3∑
k,l=1

e2
kl[vε] is tangent to the lateral surface of the domain ΩT

ε , we get:

J1
ε = µ

∫
Ωε(T )

3∑
k,l=1

e2
kl[vε(x, T )] dx− µ

∫
Ωε(0)

3∑
k,l=1

e2
kl[vε(x, 0)] dx.

Thus,

2µ

T∫
0

∫
Ωε(t)

3∑
k,l=1

ekl[wε]ekl[vε] dxdt ≥ µ

∫
Ωε(T )

3∑
k,l=1

e2
kl[vε(x, T )] dx−

−µ
∫

Ωε(0)

3∑
k,l=1

e2
kl[vε0(x)] dx− C‖∇vε‖2

L2(ΩTε ). (32)

Combining now (25)-(32), we obtain:

ρf

(
1− (3C + 4)δ

)www∂vε
∂t

www2

L2(ΩTε )
+ µ

∫
Ωε(T )

3∑
k,l=1

e2
kl[vε(x, T )] dx ≤ ρf

4δ
|fε‖2

L2(ΩT ) + ρs‖fε‖2
L2(QTε )+

+
(

3ρf
(C

4δ
+ C2δ

)
+ 2C + 1

)
‖∇vε‖2

L2(ΩTε ) + ρf

( 1

4δ
+ 3δ

)
‖zε‖2

L2(ΩTε ) + ‖∇zε‖2
L2(ΩTε )+

12



+ρs‖zε‖2
L2(QTε ) + 2C +

∫
Ωε(0)

3∑
k,l=1

e2
kl[vε0(x)] dx.

Taking here δ =
1

2(3C + 4)
, using previously obtained bounds (16) and (24), and taking

into consideration condition 3.5), we get the required bound (17):

ρf‖
∂vε
∂t
‖2
L2(ΩTε ) + 2µ

∫
Ωε(T )

3∑
k,l=1

ekl[vε(x, T )] dx ≤ C,

where constant C does not depend on ε.

Before formulating the main result we introduce some definitions and assumptions.

4 Additional assumptions and the main result

Consider now the following auxiliary linear stationary problem in domain Ωε(t) (t is a param-

eter):

−µ4vε = ∇pε + F ε, divvε = 0, x ∈ Ωε, (33)

vε = aiε + biε × (x− xiε), biε = P dbiε, x ∈ ∂Qi
ε, (34)

∫
∂Qiε

σ[vε]ν ds =

∫
Qiε

F ε dx, (35)

P d

∫
∂Qiε

(x− xiε)× σ[vε]ν ds = P d

∫
Qiε

(x− xiε)× F ε dx, (36)

vε(x) = 0, x ∈ ∂Ω. (37)

Let Ky
h be a cube with the side length h (ε � h � 1) centered at y ∈ Ω. We assume that

the edges of this cube are parallel to the coordinate axes. Let J θ̂ε [Ky
h] be the following class of

vector-functions:

J θ̂ε [Ky
h] = {wε ∈ H1(Ky

h); divwε = 0;

wε(x) = wiε + [P dθiε + (1− P d)θ̂]× (x− xiε), x ∈ Qi
ε ∩K

y
h},

where wiε and θiε are arbitrary vectors, and θ̂ is a given vector. Consider a minimization problem

in this class for the following functional (mesocharacteristic):

Aγεh(wε, y, T ) = EKy
h
[wε, wε]+

13



+P εhγ
Ky
h

[
wε(x)−

3∑
n,p=1

Tnpϕ
np(x− y), wε(x)−

3∑
q,r=1

Tqrϕ
qr(x− y)

]
, (38)

where

EG[uε, vε] = 2µ

∫
G

3∑
n,p=1

enp[uε]enp[vε] dx, (39)

P εhγ
G [uε(x), vε(x)] = h−2−γ

∫
G

〈uε(x), vε(x)〉 dx, (40)

ϕqr(x) =
1

2
(xre

q + xqe
r)− δqr

3

3∑
n=1

xne
n, (41)

ekl[v] =
1

2

(∂vk
∂xl

+
∂vl
∂xk

)
, T = {Tqr} is an arbitrary symmetric second rank tensor, {en}3

n=1 is an

orthonormal basis in R3, and 0 < γ < 2 is a penalty parameter.

This mesocharacteristic plays the crucial role in our consideration. Roughly speaking, it

allows us to compute the energy of the suspension in some mesoscopic cube of size h (ε� h�
1), which is a so-called representative volume element. In other words, if a suspension can be

described within the effective single medium approach, then the rheological properties of the

suspension can be determined by calculation or measurements in some representative volume

element of an intermediate mesoscale h, which is why we choose the cube Ky
h.

Next, observe that the first term (39) in (38) represents the energy of the suspension. The

minimizer wε of (38) is ”close”, up to an additive constant, to the true global minimizer uε of the

variational problem, which corresponds to (2)-(8) if the tensor T is chosen appropriately. Now

one should choose T . If the single medium homogenized description is possible, then uε(x)

is ”close” to some smooth (homogenized) vector-function u(x), which depends only on the

macroscopic variable x and does not depend on ε, so that it does not vary on the microscale ε.

We then minimize the energy of the suspension, adding the constraint that the minimizer wε is

”close” to the linear part (differential) of the global minimizer u, so that |wε−u| = o(h) ∼ h1+ γ
2

for some γ > 0. This condition is imposed by introducing the penalty term (40).

It can be proved that there exists the unique vector-function which minimizes the functional

(38); the minimal value of this functional is given by

min
wε∈J θ̂ε [Ky

h ]

Aγεh(wε, y, T ) =
3∑

n,p,q,r=1

a0,γ
npqr(y, S

d, ε, h)TnpTqr+

+2
3∑

n,p=1

3∑
q=1

bγnpq(y, S
d, ε, h)Tnpθ̂q +

3∑
q,r=1

cγqr(y, S
d, ε, h)θ̂qθ̂r, (42)

where a0,γ
npqr(y, S

d, ε, h), bγnpq(y, S
d, ε, h) and cγqr(y, S

d, ε, h) are the components of the fourth-,

third- and second-rank tensors respectively, defined as follows

14



a0,γ
npqr(y, S

d, ε, h) = EKy
h
[wnp, wqr] + P εhγ

Ky
h

[
wnp(x)− ϕnp(x− y), wqr(x)− ϕqr(x− y)

]
, (43)

bγnpq(y, S
d, ε, h) = EKy

h
[wnp, vq] + P εhγ

Ky
h

[
wnp(x)− ϕnp(x− y), vq(x)

]
, (44)

cγqr(y, S
d, ε, h) = EKy

h
[vq, vr] + P εhγ

Ky
h

[
vq(x), vr(x)

]
. (45)

Here wnp(x) is the vector-function that minimizes the functional (38) in J0
ε [Ky

h] as T = T np =
1

2
(en ⊗ ep + ep ⊗ en), vq(x) is the vector-function minimizing the functional (38) in Je

q

ε [Ky
h] as

T = 0, and en (n = 1, 2, 3) form an orthonormal basis in R3.

Starting from the solution {vε(x), aiε, b
i
ε(t) = P dbiε(t), i = 1, Nε} of the problem (33)− (37)

we construct the vector function

ṽε(x) = χε(x)vε(x) +
Nε∑
i=1

χiε(x)[aiε + biε × (x− xiε)], (46)

where χε(x) is the characteristic function of the domain Ωε, filled with the fluid, and χiε(x) is

the characteristic function of a particle Qi
ε.

We assume that the following conditions hold:

4.1) for some real number γ > 0 the following limits exist heterogeneously at x ∈ Ω:

a) lim
h→0

lim
ε→0

a0,γ
npqr(x, S

d, ε, h)

h3
= lim

h→0
lim
ε→0

a0,γ
npqr(x, S

d, ε, h)

h3
= a0

npqr(x, S
d),

b) lim
h→0

lim
ε→0

bγnpq(x, S
d, ε, h)

h3
= lim

h→0
lim
ε→0

bγnpq(x, S
d, ε, h)

h3
= bnpq(x, S

d),

c) lim
h→0

lim
ε→0

cγqr(x, S
d, ε, h)

h3
= lim

h→0
lim
ε→0

cγqr(x, S
d, ε, h)

h3
= cqr(x, S

d),

where {a0
npqr(x, S

d)}, {bnpq(x, Sd)}, {cqr(x, Sd)} are continuous tensors (at x ∈ Ω).

4.2) the sequence F ε(x) converges weakly in L2(Ω) to a vector function F (x), as ε→ 0.

Note, that the existence of limits 4.1) is a general restriction on the spatial distributions of

the particles. Since we do not require any spatial periodicity, we have to impose some conditions

on these distributions.

Remark. If the limits in 4.1) exist for some γ > 0, then they exist for any γ > 0 and the

limiting tensors do not depend on γ; moreover, {a0
npqr(x, S

d)} and {cqr(x, Sd)} are positive

definite tensors (these facts can be proved analogously to [22]).

In our previous work [4] the following theorem was proved.
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Theorem 2. Let conditions 4.1)-4.2) hold. Then the sequence of vector-functions ṽε(x), defined

by (46), converges strongly in L2(Ω) to a vector-function v(x, t), which is a solution of the

following homogenized linear stationary problem:

−
3∑

n,p,q,r=1

∂

∂xp

[
aDnpqr(x)eqr[v] + aRnpqr(x)ωqr[v]

]
en = ∇p+ F , x ∈ Ω, (47)

divv = 0, x ∈ Ω, (48)

v(x) = 0, x ∈ ∂Ω. (49)

Here

aDnpqr = a0
npqr +

1

2

3∑
l=1

bqrlεlnp, aRnpqr =
1

4

3∑
l,m=1

clmεlnpεmqr +
1

2

3∑
l=1

bnplεlqr, (50)

ωqr[v] =
1

2

(∂vq
∂xr
− ∂vr
∂xq

)
, (51)

where {εlnp} is Levi-Civita permutation tensor.

The problem (47)− (49) has the unique solution.

Let Rt
ε and Rt (t is a parameter) be the resolving operators of the problems (33)-(37) and

(47)-(49), respectively (vε = Rt
εF ε and v = RtF ). Analogously to [8] and [22], one can show

that Rt
ε and Rt are compact and self-adjoint in L2(Ω). Moreover, with the help of Theorem 2,

it can be proved that for any t ∈ [0, T ] and any f ∈ L2(Ω)

lim
ε→0
‖Rt

εf −Rtf‖L2(Ω) = 0, ‖Rt
εf‖L2(Ω) ≤ C, (52)

where constant C depends neither on ε nor on t (for more details see [22]).

Assume now that the sequence
Nε∑
i=1

χiε(x, t) = 1 − χε(x, t) converges as ε → 0 ∗-weakly in

L∞(ΩT ) to the function 0 < C(x, t) < 1:

Nε∑
i=1

χiε(x, t) ⇀ C(x, t)
(
∗ − weakly in L∞(ΩT )

)
, (53)

where Ct(x, t) ∈ L4

(
0, T ;L2(Ω)

)
, ∇C(x, t) ∈ L2(ΩT ), and the sequences f

ε
(x, t) and ṽε0(x)

converge as ε→ 0 strongly in L2(ΩT ) to f(x, t) and strongly in L2(Ω) to v0(x), respectively:

lim
ε→0
‖f

ε
− f‖L2(ΩT ) = 0, (54)

lim
ε→0
‖ṽε0 − v0‖L2(Ω) = 0. (55)
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Theorem 3. Let conditions 3.1)-3.5) are satisfied, the limits (53)-(55) exist, the limits in 4.1)

exist for every t ∈ [0, T ] and the limiting tensors {a0
npqr(x, t, S

d)}, {bnpq(x, t, Sd)}, {cnp(x, t, Sd)}
are continuous in ΩT . Then the sequence of vector-functions ṽε(x, t), defined by (9), converges

strongly in L2(ΩT ) (and in L2(Ω) uniformly with respect to t) to a vector-function v(x, t), which

is a generalized solution of the following homogenized problem:

∂(ρv)

∂t
+(v·∇)(ρv)−

3∑
n,p,q,r=1

∂

∂xp

[
aDnpqr(x, t)eqr[v]+aRnpqr(x, t)ωqr[v]

]
en = ∇p+F , x ∈ ΩT , (56)

divv(x, t) = 0, x ∈ ΩT , (57)

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (58)

v(x, 0) = v0(x), (59)

where

ρ(x, t) = ρf [1− C(x, t)] + ρsC(x, t), F (x, t) = ρ(x, t)f(x, t). (60)

Remark. A function v(x, t) ∈ L(ΩT ) = H1(ΩT )
⋂
L2

(
0, T ;

◦
J (Ω)

)⋂
L∞(ΩT ), where

◦
J (Ω)

is the class of divergence free vector functions from
◦
H1 (Ω), is said to be a generalized solution

to the problem (56)-(59) if it satisfies the following integral identity

τ∫
0

∫
Ω

{(
−ρv,Φt + (v · ∇)Φ

)
+

3∑
n,p,q,r=1

[aDnpqr(x, t) + aRnpqr(x, t)]
∂vn
∂xp

∂Φq

∂xr

}
dxdt+

+

∫
Ω

(
ρv,Φ(x, τ)

)
−
∫
Ω

(
ρv,Φ(x, 0)

)
=

τ∫
0

∫
Ω

(F ,Φ) dxdt (61)

for any Φ(x, t) ∈ L(ΩT ) and τ (0 < τ ≤ T ).

Lemma 2. Problem (56)-(59) can have at most one generalized solution from L(ΩT ).

Proof. Assume that there exist two solutions v′(x, t) ∈ L(ΩT ) and v′′(x, t) ∈ L(ΩT ). Then the

function v = v′ − v′′ ∈ L(ΩT ) satisfies the following identity for any Φ ∈ L(ΩT ):

−
τ∫

0

∫
Ω

{
(ρv,Φt) +

(
ρv, (v′ · ∇)Φ

)
−
(
ρv′′, (v · ∇)Φ

)}
dxdt+

+

τ∫
0

∫
Ω

3∑
n,p,q,r=1

[aDnpqr(x, t) + aRnpqr(x, t)]
∂vn
∂xp

∂Φq

∂xr
dxdt+

∫
Ω

(
ρ(x, τ)v(x, τ),Φ(x, τ)

)
dx = 0.
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Choosing here Φ(x, t) = v(x, t), after obvious transformations we get that

1

2

∫
Ω

ρ(x, τ)|v(x, τ)|2 dx+

τ∫
0

∫
Ω

3∑
n,p,q,r=1

[aDnpqr(x, t) + aRnpqr(x, t)]
∂vn
∂xp

∂vq
∂xr

dxdt ≤

≤ 1

2

τ∫
0

∫
Ω

|ρt||v|2 dxdt+

τ∫
0

∫
Ω

ρ
{∣∣(v, (v′ · ∇)v

)∣∣+
∣∣(v′′, (v · ∇)v

)∣∣} dxdt.
Since for any fixed t ∈ [0, τ ] v(x, t) ∈

◦
J (Ω), the following inequality holds (see [4]):∫

Ω

[
aDnpqr + aRnpqr

]∂vn
∂xp

∂vq
∂xr

dx ≥ ‖v‖2
H1(Ω), (62)

where aDnpqr and aRnpqr are defined by (50). Using now inequality (62) and the fact that both

the function ρ(x, t) and the vector functions v′(x, t) and v′′(x, t) are bounded, we obtain:

max
0≤t≤τ

∫
Ω

ρ(x, τ)|v(x, τ)|2 dx+

τ∫
0

∫
Ω

|∇v|2 dxdt ≤ C
{ τ∫

0

∫
Ω

|ρt||v|2 dxdt+

τ∫
0

∫
Ω

|v||∇v| dxdt
}
,

(63)

where constant C does not depend on τ .

Using Hölder’s inequality, we can write

τ∫
0

∫
Ω

|ρt||v|2 dxdt ≤
{ τ∫

0

(∫
Ω

|v|q dx
) r
q
dt
} 2
r
{ τ∫

0

(∫
Ω

|ρt|q
′
dx
) r′
q′
dt
} 1
r′

=

= ‖v‖2

Lr

(
0,τ ;Lq(Ω)

)‖ρt‖
Lr′

(
0,τ ;Lq′ (Ω)

), (64)

where q′ =
q

q − 2
, r′ =

r

r − 2
(q ≥ 2, r ≥ 2).

Introduce now the following space of vector functions:

◦
V2 (Ωτ ) =

{
v(x, t) : ‖v‖2

Ωτ = ess max
0≤t≤τ

∫
Ω

|v(x, t)|2 dx+

τ∫
0

∫
Ω

|∇v(x, t)|2 dxdt <∞;

v(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ]
}
.

For any vector function v(x, t) ∈
◦
V2 (Ωτ ) the following inequality holds (see [19]):

‖v‖
Lr

(
0,τ ;Lq(Ω)

) ≤ β‖v‖Ωτ , (65)
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where q and r are arbitrary constants such that
1

r
+

3

2q
=

3

4
, r ≥ 2, 2 ≤ q ≤ 6 and β = 42/r.

Note that due to the Embedding theorems (see [19]) L(ΩT ) ⊂
◦
V2 (ΩT ).

Choosing in (64) q = 4 and r =
8

3
and taking into account (65), we get

τ∫
0

∫
Ω

|ρt||v|2 dxdt ≤ β2‖v‖2
Ωτ‖ρt‖L4

(
0,τ ;L2(Ω)

). (66)

Next, using Hölder’s inequality, we have

τ∫
0

∫
Ω

|v| |∇v| dxdt ≤ ‖v‖Ωτ

{ τ∫
0

∫
Ω

|v|2 dxdt
} 1

2 ≤ (τ)
1
r′ (meas Ω)

1
q′ ‖v‖Ωτ‖v‖Lr

(
0,τ ;Lq(Ω)

),
where r′ =

2r

r − 2
and q′ =

2q

q − 2
. Choosing, as before, q = 4 and r =

8

3
and using inequality

(65), we get

τ∫
0

∫
Ω

|v| |∇v| dxdt ≤ β(τ)
1
8 (meas Ω)

1
4‖v‖2

Ωτ . (67)

From (63), (66) and (67) it follows that

min{ρf , ρs, 1}‖v‖2
Ωτ ≤ δ(τ)‖v‖2

Ωτ , (68)

where δ(τ) = β2‖ρt‖
L4

(
0,τ ;L2(Ω)

)+β(τ)
1
8 (meas Ω)

1
4 . Taking now τ so that δ(τ) < min{ρf , ρs, 1},

from (68) we conclude that v(x, t) = 0. If τ < T , then partitioning interval [0, T ] into subin-

tervals of length τk (for which v(x, t) = 0) and repeating the above arguments, after a final

number of steps one can show that v(x, t) = v′(x, t)−v′′(x, t) ≡ 0 in ΩT . The Lemma is proved.

5 Proof of Theorem 3

In accordance with the bounds (16)-(17) and conditions 3.1)-3.3) the sequence of vector func-

tions {vε(x, t), ε > 0} is bounded in H1(ΩT ) and, thus, it is weakly compact in H1(ΩT ) (and

in
◦
H1 (Ω) for any t ∈ [0, T ]). Due to the Embedding theorem, this sequence is compact in

L2(ΩT ) (and in L2(Ω) for any t ∈ [0, T ]). Hence, there exists a subsequence {vεk(x, t), εk > 0}
which converges weakly in H1(ΩT ) (and in H1(Ω) for any t ∈ [0, T ]) and strongly in L2(ΩT )

(and in L2(Ω) for any t ∈ [0, T ]) to some vector function v(x, t). Using conditions 3.3)-3.4), we

conclude that v(x, t) ∈ L(ΩT ).

As it is shown below, the limiting vector function v(x, t) is a solution of the problem (56)-

(59). Since this problem, due to Lemma 2, has a unique generalized solution from L(ΩT ), the

entire sequence {vε(x, t), ε > 0} also converges to v(x, t).
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Introduce now the following vector function

W ε(x, t) = ρf

[∂vε
∂t

+ (vε · ∇)vε

]
χε(x, t) + ρs

Nε∑
i=1

[∂V i
ε

∂t
+ (V i

ε · ∇)V i
ε

]
χiε(x, t), (69)

where V i
ε(x, t) = u̇iε(t) + θ̇

i

ε(t)× (x− xiε).

Lemma 3. The sequence of vector functions {W ε(x, t), ε > 0} is weakly compact in L2(ΩT ).

So, there exists a subsequence {W εk
(x, t), εk > 0} which converges as εk → 0 weakly in L2(ΩT )

to the limiting vector function W (x, t) which is given by

W (x, t) =
∂(ρv)

∂t
+ (v · ∇)(ρv), (70)

where ρ(x, t) is determined by equation (60) and v(x, t) is a limit of the subsequence

{vεk(x, t), εk → 0}.

Proof. From the bounds (16)-(17) and conditions 3.3)-3.4) it follows that the sequence

{W ε(x, t), ε > 0} is bounded in L2(ΩT ) and, hence, it is weakly compact. Let ϕ(x, t) ∈ C1
0(ΩT )

be an arbitrary smooth vector function with a compact support. Then

T∫
0

∫
Ω

(W εk
, ϕ) dxdt = ρf

T∫
0

∫
Ωε(t)

(∂vεk
∂t

+ (vεk · ∇)vεk , ϕ
)
dxdt+

+ρs

Nε∑
i=1

T∫
0

∫
Qiε(t)

(∂V i
εk

∂t
+ (V i

εk
· ∇)V i

εk
, ϕ
)
dxdt = ρf

T∫
0

∫
Ω

(∂vεk
∂t

+ (vεk · ∇)vεk , ϕ
)
dxdt+

+(ρs − ρf )
Nε∑
i=1

T∫
0

∫
Qiε(t)

(∂V i
εk

∂t
+ (V i

εk
· ∇)V i

εk
, ϕ
)
dxdt = J1

εk
+ J2

εk
. (71)

Since vεk(x, t) converges weakly in H1(ΩT ) and strongly in L2(ΩT ) to v(x, t),

lim
εk→0

J1
εk

= ρf

T∫
0

∫
Ω

(∂v
∂t

+ (v · ∇)v, ϕ
)
dxdt. (72)

The second integral in (71) we can write in the form

J2
εk

= (ρs − ρf )
Nε∑
i=1

T∫
0

∫
Qiε(t)

3∑
j=0

∂

∂xj
[(V i

εk
, ϕ)V̂ i

εk,j
] dxdt−

−(ρs − ρf )
Nε∑
i=1

T∫
0

∫
Qiε(t)

3∑
j=0

V̂ i
εk,j

(
V i
εk
,
∂ϕ

∂xj

)
dxdt = J2,1

εk
+ J2,2

εk
,
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where x0 ≡ t, V̂ i
εk,0
≡ 1, V̂ i

εk,j
= V i

εk,j
(x, t) (j = 1, 3). Since the vector V̂

i

εk
= {V̂ i

εk,j
}3
j=0 is

tangent to the lateral surface of [0, T ]×Qi
εk

(t) (i = 1, Nεk) and the vector function ϕ(x, t) has

a compact support in ΩT , with the help of the divergence theorem we conclude that J2,1
εk

= 0.

Using (53) and taking into account that V i
εk

(x, t) = vεk(x, t) at (x, t) ∈ Qi
εk

(t)× [0, T ] and

vεk(x, t) converges strongly in L2(ΩT ) to v(x, t), we obtain

lim
εk→0

J2,2
εk

= −(ρs − ρf )
T∫

0

∫
Ω

C(x, t)
[(
v,
∂ϕ

∂t

)
+

3∑
j=1

vj

(
v,
∂ϕ

∂xj

)]
dxdt.

Thus,

lim
εk→0

J2
εk

= −(ρs − ρf )
T∫

0

∫
Ω

C(x, t)
[(
v,
∂ϕ

∂t

)
+

3∑
j=1

vj

(
v,
∂ϕ

∂xj

)]
dxdt =

= (ρs − ρf )
T∫

0

∫
Ω

(∂(Cv)

∂t
+ (v · ∇)(Cv), ϕ

)
dxdt. (73)

Here, the integration by parts is justified, because v(x, t) ∈ H1(ΩT )
⋂
L∞(ΩT ), ρ(x, t) ∈

H1(ΩT )
⋂
L∞(ΩT ) and ϕ(x, t) ∈ C1

0(ΩT ).

Combining now (71)-(73) and taking into account (60), we finally get

T∫
0

∫
Ω

(
W (x, t), ϕ(x, t)

)
dxdt = lim

εk→0

T∫
0

∫
Ω

(
W εk

(x, t), ϕ(x, t)
)
dxdt =

=

T∫
0

∫
Ω

(∂(ρv)

∂t
+ (v · ∇)(ρv), ϕ

)
dxdt,

whence the statement of the lemma follows. �

Denote by Fε the RHS of problem (2)-(5):

Fε(x, t) =
[
ρfχε(x, t) + ρs(1− χε(x, t)

]
f
ε
(x, t). (74)

Recalling now (69) and taking into account that

∂V i
ε

∂t
+ (V i

ε · ∇)V i
ε = üiε(t) + θ̈

i

ε(t)×
(
x− xiε(t)

)
+ θ̇

i

ε(t)×
[
θ̇
i

ε(t)×
(
x− xiε(t)

)]
, (75)

we can represent the solution vε(x, t) of the problem (2)-(8) in the form vε(x, t) = Rt
εΦ

t
ε[x], where

Rt
ε is the resolving operator of the problem (33)-(37) in the domain Ωε(t) (t is a parameter),

and Φt
ε[x] = F ε(x, t)−W ε(x, t).
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Since for every t the operator Rt
ε is self-adjoint in L2(Ω), for any continuous vector function

ϕ(x, t) ≡ ϕt[x] we have:

T∫
0

∫
Ω

(vε, ϕ) dxdt =

T∫
0

∫
Ω

(Rt
εΦ

t
ε, ϕ

t) dxdt =

T∫
0

∫
Ω

(Φt
ε, R

t
εϕ

t) dxdt =

=

T∫
0

∫
Ω

(Φt
ε, R

tϕt) dxdt+

T∫
0

∫
Ω

(Φt
ε, R

t
εϕ

t −Rtϕt) dxdt. (76)

Using Lemma 3 and conditions (53)-(54), we conclude that the subsequence {Φt
εk

[x] ≡
Φεk

(x, t), εk > 0} converges weakly in L2(ΩT ) to the vector function Φ(x, t) = F (x, t) −
W (x, t) ≡ Φt[x], where the vector functions F and W are defined in (60) and (70), respec-

tively. Thus,

lim
εk→0

T∫
0

∫
Ω

(Φt
εk
, Rtϕt) dxdt = lim

εk→0

T∫
0

∫
Ω

(Φεk
(x, t), Rtϕ(x, t)) dxdt =

T∫
0

∫
Ω

(Φ(x, t), Rtϕ(x, t)) dxdt =

=

T∫
0

∫
Ω

(Φt, Rtϕt) dxdt =

T∫
0

∫
Ω

(RtΦt, ϕt) dxdt =

T∫
0

∫
Ω

(RtΦt[x], ϕ(x, t)) dxdt. (77)

Here we took into consideration that for almost all t ∈ [0, T ] Φ(x, t) ∈ L2(Ω) and the operator

Rt is self-adjoint in L2(Ω). Next,

∣∣∣ T∫
0

∫
Ω

(Φt
ε, R

t
εϕ

t −Rtϕt) dxdt
∣∣∣ ≤ ‖Φε‖L2(ΩT )

{ T∫
0

‖Rt
εϕ

t −Rtϕt‖2
L2(Ω) dt

} 1
2
.

Since the sequence {Φε, ε > 0} is bounded in L2(ΩT ) uniformly with respect to ε, with the

help of (52) we get:

lim
ε→0

∣∣∣ T∫
0

∫
Ω

(Φt
ε, R

t
εϕ

t −Rtϕt) dxdt
∣∣∣ = 0. (78)

Combining now (76)-(78), we obtain:

lim
εk→0

∣∣∣ T∫
0

∫
Ω

(vε, ϕ) dxdt
∣∣∣ =

T∫
0

∫
Ω

(RtΦt[x], ϕt) dxdt.

On the other hand, since the subsequence {vεk(x, t) ≡ vtεk [x], εk > 0} converges as εk → 0

strongly in L2(ΩT ) (and in L2(Ω) uniformly with respect to t ∈ [0, T ]) to the vector function

v(x, t) ≡ vt[x], we have:
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lim
εk→0

T∫
0

∫
Ω

(
vε(x, t), ϕ(x, t)

)
dxdt =

T∫
0

∫
Ω

(vt, ϕt) dxdt.

So, for all t ∈ [0, T ] v(x, t) ≡ vt[x] = RtΦt[x] = Rt[F (x, t) −W (x, t)]. Moreover, with the

aid of condition (55), we conclude that v(x, 0) = v0.

Recalling the definition of the resolving operator Rt and the form of the vector function

W (x, t) (see (70)), we conclude that v(x, t) is the generalized solution of the problem (56)-(59).

Theorem 3 is proved.
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