
ADAPTIVE LARGE EDDY SIMULATION AND
REDUCED-ORDER MODELING
Sebastian Ullmann, Stefan Löbig, Jens Lang

Preprint, Mai 2012, Department of Mathematics, Technische Universität Darmstadt

Numerical
Analysis



Adaptive large eddy simulation and reduced-
order modeling 

S. Ullmann*, S. Löbig*, J. Lang*°† 

* Department of Mathematics, Technische Universität Darmstadt, 
Dolivostr. 15, D-64293 Darmstadt, Germany 
ullmann@mathematik.tu-darmstadt.de 

° Center of Smart Interfaces, Technische Universität Darmstadt, 
Petersenstr. 30, D-64287 Darmstadt, Germany 
sloebig@mathematik.tu-darmstadt.de 
† Graduate School Computational Engineering, Technische Universität Darmstadt, 
Dolivostr. 15, D-64293 Darmstadt, Germany 
lang@mathematik.tu-darmstadt.de 

Abstract  The quality of large eddy simulations can be substantially improved 
through optimizing the positions of the grid points. LES-specific spatial coordi-
nates are computed using a dynamic mesh moving PDE defined by means of 
physically motivated design criteria such as equidistributed resolution of turbulent 
kinetic energy and shear stresses. This moving mesh approach is applied to a 
three-dimensional flow over periodic hills at Re=10595 and the numerical results 
are compared to a highly resolved LES reference solution. Further, the applicabil-
ity of reduced-order techniques to the context of large eddy simulations is ex-
plored. A Galerkin projection of the incompressible Navier-Stokes equations with 
Smagorinsky sub-grid filtering on a set of reduced basis functions is used to obtain 
a reduced-order model that contains the dynamics of the LES. As an alternative 
method, a reduced-order model of the un-filtered equations is calibrated to a set of 
LES solutions. Both approaches are tested with POD and CVT modes as underly-
ing reduced basis functions. 

Keywords  Large eddy simulation, moving mesh method, reduced-order model-
ing, adaptivity 

1 Introduction  

Locally large solution variations are best resolved by a high concentration of mesh 
points there and few points in the remaining domain with less solution activity. 
This is especially true for modeling turbulent flows by large eddy simulations 
(LES). Here, the characteristic length of turbulent fluctuation varies significantly 
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over the physical domain, which demands for an LES-specific adaptation of the 
grid size to turbulent length scales. 
In the first part of this work we enhance the quality of our LES by applying the 
moving mesh method developed by Huang and Russell [1]. This r-adaptive 
method moves the grid points according to a time dependent mesh moving PDE to 
achieve higher resolution in important areas of the domain while keeping the data 
structure unchanged, i.e., topology and number of degrees of freedom of the 
spatial discretization once chosen are kept unchanged. The significance of areas is 
defined via a so called monitor function, which links in a natural and smooth way 
the mesh adaptation process to properties of the physical solution. It is commonly 
designed by solution-dependent quantities of interests (QoI), which are 
equidistributed over the adaptively chosen grid cells of the physical domain in an 
integral sense. 
The moving mesh method has successfully been used for the computation of a 
turbulent flow over periodic hills using single physical QoIs [E1, 2] and various 
combinations of physical QoIs [E2]. In Lang et al. [E3] a moving mesh method for 
two-dimensional finite element computations using mathematical QoIs has been 
studied. 
The second part of the paper focuses on reduced-order models for incompressible 
flows. While in many instances, the accuracy and efficiency of a numerical flow 
simulation can be greatly improved by adaptive meshing, the additional speed-up 
promised by reduced-order techniques seems attractive especially for many-query 
and real-time applications. In our context, by reduced-order techniques we mean 
models that are obtained by a Galerkin projection of a high dimensional problem 
on a small set of reduced basis functions with global support, that incorporate 
information about the solution of the high dimensional problem. Typically, the 
reduced basis functions are created using snapshots which are computed 
beforehand with a conventional numerical code. Thus, a large `off-line' 
computational cost, depending on the degrees of freedom of the numerical code, is 
accepted in order to obtain a small `on-line' cost, depending only on the number of 
basis functions used for the projection. 
A detailed introduction to reduced-order modeling based on the proper orthogonal 
decomposition (POD) is given by Holmes et al. [3]. While the original purpose of 
the POD method was to identify coherent structures of turbulent flows and to 
investigate their dynamics [4], slow progress has been made towards actually 
simulating turbulent flows using reduced-order models. Two reasons that perhaps 
contribute to that stagnation are these: Firstly, even for simple laminar flows it has 
been observed that Galerkin reduced-order models can converge towards spurious 
limit cycles [5,6]. Secondly, solutions of turbulent flows are much less amenable 
to data compression than laminar periodic flows, in other words, turbulent flow 
solutions can not be approximated well by a linear combination of a small number 
of snapshots. Still, we want to mention some promising results that could be 
achieved for three-dimensional transitional and turbulent flows: Telib et al. [7] 
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applied a calibrated POD to the flow in a T-mixer at 300Re =  and 400Re = , 
Buffoni et al. [8] simulated a three-dimensional flow around a square cylinder at 

300Re = and  Couplet at al. [9] built a reduced-order model from snapshots of an 
LES of the flow past a backward facing step at 7432Re = . In our own work [E4]  
we study a reduced-order model of the flow around a cylinder at 3900Re = , 
based on Smagorinsky-LES. Wang et al. [10] present a similar approach for the 
flow around a cylinder at 1000Re = . 
We compare two different methods to compute basis functions from the snapshot 
data: proper orthogonal decomposition and centroidal Voronoi tessellation (CVT). 
An introduction to the CVT method is provided by Du et al. [11]. We assess the 
resulting POD or CVT Galerkin reduced-order models by their ability to 
approximate given snapshot data. Different from the comparisons performed by 
Burkardt et al. [12], we apply both techniques to the laminar vortex-shedding flow 
around a circular cylinder, and present detailed quantifications of the model and 
approximation errors with respect to the number of basis functions. We derive and 
apply a reduced-order model for the pressure in order to extend the comparisons to 
the drag and lift forces acting on the cylinder. Finally, we explore techniques with 
which a progression towards low-dimensional modeling of the large-scale 
structures of turbulent flows can be made. 

2 Adaptive moving meshes for large-eddy simulations 

2.1 Large-eddy simulation 

The spatially filtered incompressible Navier-Stokes equations are given by 
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where the filtered velocity and pressure are denoted by 1 2 3( , , )Tu u u=u  and p , 

respectively.  The elements of the filtered strain rate tensor S  are defined by 
( ) / 2

j iij x i x jS u u= ∂ + ∂  and ν  represents the molecular viscosity. The external 

force is given by if  and ij i j i ju u u uτ = −  constitutes the subgrid-scale tensor. 

To model the subgrid stresses we employ the eddy viscosity approach of 
Smagorinsky [13], 

( )212 .
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Here, tν  is the turbulent eddy viscosity, SC  denotes the Smagorinsky constant, ∆  
is the filter width and the norm of the filtered strain rate tensor is given by 

1/2| | (2 )ij ijS S=S . 

2.2 Moving mesh method 

The moving mesh method developed by Huang and Russell [1] employs a time-
dependent moving mesh partial differential equation (MMPDE) to move the grid 
points in a way such that the coordinates minimize an adaptation functional. The 
essential part of the functional is formed by the monitor function which controls 
the concentration of the mesh via some solution-dependent quantity of interest 
(QoI). 
The MMPDE is defined as a coordinate transformation from a physical domain 
Ω  to a computational domain cΩ , where the coordinates are denoted by 

( )1, , T
nx x=x   and ( )1, , T

nξ ξ=ξ  , respectively. For actual computations, 
however, it is more convenient to have the MMPDE in the non-conservative 
formulation for the inverse mapping ( , )t=x x ξ , 
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since the location of the mesh points is then defined explicitly. The parameter τ  is 
used to adjust the time-scale of the mesh movement and is usually held fixed 
during the computation. For large values of τ , the mesh movement is smoother 
and therefore the MMPDE is easier to integrate numerically, whereas a smaller 
value results in faster adaption of the mesh to changes of the monitor function G . 
The parameter P  is used to achieve a spatially balanced MMPDE and is often 
chosen as some bound on the coefficients, i.e., 

2 2
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As suitable boundary condition for our MMPDE we move the boundary points by 
extrapolating their position from interior cells in such a way that we obtain 
orthogonal cells. 
The monitor function G  in the MMPDE is a positive definite and symmetric 
n n×  matrix and also the heart of the moving mesh method. It contains some 
quantity of interest (QoI) that is responsible for the assignment of important areas 
since the MMPDE equidistributes the product of the QoI and the cell volume over 
the domain. These QoI can be mathematically or physically motivated, like error 
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indicators or the solution's gradient. A common choice is Winslow's monitor 
function [14] together with an intensity parameter γ  

2, 1 .G Iω ω γ ψ= = + ‖ ‖  

We use this as basis for constructing our monitor function for multiple QoIs. Our 
technique is related to the concept of the balanced monitor function (BMF) by van 
Dam [15]. The resulting monitor function reads 
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Here, 1( , , )
pN

Tψ ψ ψ=   is the vector of pN  different QoI, pα  and pM  are the 

corresponding average and maximum values, respectively. We normalize each 
QoI with its maximum value to ensure that all are at least approximately of the 
same range. The additional normalization of each QoI by its respective average 
prevents single large maximum values from dominating all other monitor values 
on the rest of the domain. Additionally, weights ig  with sum one are introduced 
that can be assigned to the different QoIs. 
The monitor function is usually very non-smooth and therefore we apply a local 
averaging technique. This leads to smoother meshes and reduces the stiffness of 
the MMPDE. A description of the smoothing technique can be found in Hertel et 
al. [E2]. 

2.3 Numerical realization 

To solve the three-dimensional momentum and mass conservation on moving 
grids the Arbitrary Lagrangian-Eulerian (ALE) Method is employed in its filtered 
form. The governing equations read, see Ferziger [16],   

,
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Here, Gu  and ( )V t  are the velocity and time-dependent volume of a 
computational cell, respectively. When discretizing the governing equations there 
is a risk of introducing mass sources or sinks in the flow field when the velocity 

Gu  and the change of volume over time are not treated consistently. 
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For this reason, the Geometric Conservation Law (GCL), see Demirdzic [17], 
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needs to be satisfied. The GCL is used to determine the velocity by the given 
change of volume of the computational cell to ensure consistency. The resulting 
expressions for the components of Gu  are included in the discretized governing 
equations, so that only the change of volume over time remains, split into separate 
expressions for each face of the cell [17,16]. Hence, the GCL is not treated as 
separate equation here, but is introduced into the discrete form of the first 
governing equation. 
In each time step, the MMPDE has to be integrated first since the described ALE 
formulation for the governing equations  requires the new grid points at the end of 
the time step to evaluate the change of volume over time for each cell. Central 
Finite Differences in space together with an implicit time scheme are used for the 
discretization of the MMPDE. It is sufficient to solve the MMPDE up to moderate 
accuracy since not the exact position of the grid points but just an appropriate 
direction for moving the grid points with a suitable velocity is needed and 
therefore the implicit Euler scheme is adequate. To use the implicit Euler scheme, 
the coefficients ija  and ib  in the MMPDE are frozen during the time step, i.e., 

they are only once determined at the starting time. The strongly implicit procedure 
(SIP) introduced by Stone [18] is used to solve the resulting system of equations. 
The MMPDE approach has been successfully implemented in the LESOCC2 code 
[2, E2], which is used for numerical tests in the following. 

2.4 Turbulent flows over periodic hills 

The turbulent flow through a channel with streamwise periodically arranged 
constrictions was proposed as a test case for separation from curved surfaces, e.g. 
in Fröhlich et al. [19]. Figure 1 shows the extent of the computational domain with 
respect to the hill height. The coordinates x , y  and z  denote streamwise, normal 
and spanwise direction, respectively, and we have 9xL h= , 3.035yL h=  and 

4.5zL h= . The Reynolds number is 10595Re = , based on the hill height and the 
bulk velocity at the crest of the hill. The main features of this flow are a free shear 
layer above a recirculation area downstream of the hill, reattaching roughly at half 
the domain length followed by a strong acceleration at the windward side of the 
next hill. The resolution of the flow near the separation point has a strong impact 
on the reattachment of the recirculating flow as well as on the characteristics of 
the shear layer. The domain has periodic boundary conditions in streamwise and 
spanwise direction and walls on the boundaries in y -direction. 
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Figure 1: Geometry and computational domain for the flow over periodic hills. The con-

tour plot at the back shows a snapshot of the instantaneous streamwise velocity u . 

 

The reference solution for this test case is provided by Fröhlich et al. [19].  This 
highly resolved LES was carried out on a wall-resolving, nearly orthogonal
196 128 186× ×  grid. For our computations we use an initial grid with 89 33 49× ×  
points equispaced in x -direction and equidistant grid points along each vertical 
line. Figure 2 illustrates the adaptation process. We begin our computation with a 
statistically converged LES on the initial grid. Since we want to improve the LES 
with respect to the statistical flow properties it is not necessary to move the grid in 
every time step. Instead we adapt the grid every averN  time steps. During these 

averN  time steps temporal averages (with additional average in homogeneous z -
direction) are computed for use in the MMPDE. The adaptation is carried out here 
only in two dimensions ( x , y ) because of the statistically homogeneous nature of 
the flow with respect to the spanwise direction. The grid is adapted adaptN  times 

until it approaches a nearly steady state. Finally, a simulation on the obtained 
stationary grid is carried out to determine the statistics. 
 
 

 
Figure 2: Illustrated outline of the adaptation procedure applied. 
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For the computations presented here we chose 225avrN = , i.e., approximately a 
half flow through time. Tests showed that all adaptive grids in each computation 
of the flow over periodic hills have reached a nearly steady state after 

300adaptN =  adaptations. For the time-scaling and the intensity parameter the 
combination of  1.0τ =  and 10γ =  lead to satisfactory results in all cases without 
risking overshooting grid points. Following van Dam [15], we chose 0.3β =  in 
the balanced monitor function. 
Various physically motivated criteria for mesh movement as well as combinations 
of these criteria have been investigated in Hertel et al. [E2]. Some of these criteria 
will be introduced as well as the results of the respective computations will be 
presented here. Statistically averaged values were used since the focus was on the 
improvement of the LES with respect to statistical flow properties. In the 
equations below, .〈 〉  indicates averaging in time and statistically homogeneous z -
direction. 
The gradient of the streamwise velocity (GU) 

1gu uψ = 〈 〉  

is high along the hill and promises a high mesh concentration near the wall and 
around the separation point of the recirculation area. The gradient includes all 
regions of the flow field with at least one large derivative. 
Equidistributing the criterion resulting from the turbulent kinetic energy (TKE) 

( ), ,
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k k k

k
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i.e., the ratio between the modeled TKE sgsk  of the subgrid-scales and the 

maximum of the total TKE over the flow field ,tot maxk , over the domain is 
motivated by the idea of LES. The unresolved TKE is determined here via the 
approach by Berselli et al. [20], ( ) 21/32 1 0.5 .sgsk ≈ − −u u  In order to avoid 

unphysically high values in regions where resk  is small, the maximum of the total 
TKE had to be used for the QoI instead of the local total amount of TKE. 
Also motivated by the idea of LES is the balance of modeled to total shear stress 
(ST) 

12 1 2
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12 1 2
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The modeled SGS shear stress is available when the Smagorinsky model is used. 
Refinement is needed when this value is large since then more shear stress is 
modeled than resolved. To avoid unphysically high values for τψ  the absolute 
values had to be applied in the denominator. 
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Figure 3: Left: monitor function ω . Right: final grid after 300 adaptations. QoI: (a,b) gra-

dient of streamwise velocity; (c,d) turbulent kinetic energy; (e,f) shear stress. 

 

Investigations on moving grids using single criteria have shown that neither TKE 
nor ST lead to satisfactory results for the turbulent flow over periodic hills [2, E2]. 
The performance of the gradient of the streamwise velocity however exceeds 
those of every other physically motivated criterion tested so far. Therefore, it 
seems natural to try to further improve the achieved quality by combining the 
gradient with other criteria when adapting the grid. 
Figure 3 presents pictures of the monitor function and the final grid after 300 
adaptations for the gradient of the streamwise velocity guψ  and the combination 

of the gradient with the TKE guψ  & ,k totψ  and the ST guψ  & τψ . 

For the gradient of the streamwise velocity the monitor function is expectedly high 
near the crest of the hill, especially on the windward side of the hill where a strong 
acceleration of the flow takes place. Also near the separation point high values of 
the monitor function can be observed. Moderate values are achieved near the 
upper wall. In the rest of the domain the monitor function is negligibly small. The 
grid refinement is according to the monitor values strong near the hill crest and the 
separation point and achieves nearly wall resolution in those regions, but only in 
wall normal direction. Combining the gradient of the streamwise velocity with 
other criteria leads to monitor functions with high values in regions where the 
gradient or the second criterion proposed large values. In the case of the 
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combination with the TKE, guψ  & ,k totψ , this yields high monitor values and 

therefore grid refinement in the free shear layer after the separation from the hill. 
Closer examination reveals that the refinement does not happen at the exact 
separation point but some small distance away from it downstream. The 
combination of gradient and shear stress leads to some refinement near the upper 
wall in addition to the crest of the hill. In the other regions of the domain the 
monitor function for this combination stays negligibly small. 

2.5 Results 

We are interested in an improvement of the statistical quality of LES. Therefore 
we compare our results with the reference data and our initial grid concerning the 
averaged streamwise velocity 1u  and the Reynolds shear stress 1 2u u′′ ′′ . Figure 4 
shows the mean profiles for these quantities at positions /x h = 0.5, 4.0, 8.0. 
Significant improvement compared to the initial grid can be observed for every 
QoI. Although the average streamwise velocity is well predicted in position and 
amplitude of the maximum, the gradient and its combination with the shear stress 
have small problems in capturing the velocity near the bottom of the domain at 

/x h = 4.0. Greater differences in the predictions can be observed when it comes 
to the Reynolds shear stress. Here, the gradient of the streamwise velocity captures 
the amplitude of the maxima overall best despite its weakness again at /x h = 4.0. 
For /x h = 0.5 the combination of gradient and TKE predicts the position of the 
maximum Reynolds shear stress well but fails to capture the right amplitude. 
The comparison of the predicted separation and reattachment points for the 
different QoI, see Table 1, shows how strong the gradient of the streamwise 
velocity already is on its own. The combination with other criteria corrupts the 
prediction of the separation point in both cases. Only the reattachment point is 
better predicted by the combination of the gradient of the streamwise velocity with 
the shear stress. Despite the inferior performance of the combined criteria, here 
each QoI improves the prediction of the initial grid considerably. 

 

Table 1: Separation and reattachment points for different QoIs. Values obtained with final 
adapted grids compared to the reference data.  

 Reference Initial guψ  guψ &

 
guψ & τψ  

/sepx h  0.20 0.53 0.29 0.40 0.37 

/reax h  4.56 3.08 4.48 3.90 4.53 
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Figure 4: Averaged streamwise velocity 1 ( )u u= and Reynolds shear stress 

1 2 ( )u u u v′′ ′′ ′′ ′′=  at positions /x h = 0.5 (top), /x h = 4.0 (middle) and /x h = 8.0 (bot-

tom) in comparison with data from Fröhlich et al. [19] for adaptation using the following 
criteria: guψ , guψ & ,k totψ  and guψ & τψ . 
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3 Reduced-order modelling 

The construction of the reduced-order models is based on the following matrix 
form of a spatial semi-discretization of the Smagorinsky LES equations: 

( ) ( ) ,

0 .T

P= + +

=

U U U U U

U

   


 

Here,   is a mass matrix and   is a discretized gradient operator. Later on, the 
  inner product and norm, 

1/2) , ,( , ( )T T= =V W V W V V V  ‖ ‖  

respectively, will be used, which are discretizations of the 2L  inner product and 
norm. The advection matrix ( )U  depends linearly on U  and the viscosity matrix 

( )U  depends non-linearly on U  via the turbulent viscosity. In case of a direct 
numerical simulation (DNS), the viscosity matrix becomes independent of the 
velocity. 

3.1 Proper orthogonal decomposition 

Let 1, , N…U U  be a set of discrete velocity snapshot vectors that are numerically 
obtained from a DNS or LES at time steps 1, , Nt t… . The elements of each 
snapshot vector are the solution values at the mesh nodes. We define the snapshot 
fluctuations n n′ = −U U U  for 1, ,n N= …  with respect to some discrete reference 
velocity vector U . In the following we present the proper orthogonal 
decomposition in this setting, by applying the method of snapshots [4] to the 
snapshot fluctuations  1, , N′ ′…U U . The theory is derived in Holmes et al. [3] for a 
more general context. 
POD modes of a snapshot fluctuation matrix 1( , , )N′ ′= …U U  are a set of vectors 

1, , R…Φ Φ  that satisfy ( , )i j ijδ=Φ Φ   for all combinations of , 1, ,i j R= …  and 

that solve  

 
2

{
1

}
1

min ( , )
r

N R

n n r r
n r= =

′ ′−∑ ∑Φ
U U Φ Φ



  (3.1) 

for a given R  that is not larger than the rank of  . A solution of the 
minimization problem can be obtained by the following procedure: 

• Compute the eigendecomposition T T T= Σ Σ    , where 
N N×Σ∈  is a diagonal matrix that contains the square roots of the 

(non-negative) eigenvalues 1, , Nλ λ…  ordered non-increasingly on the 

diagonal and N N×∈  contains the corresponding eigenvectors. 
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• Choose an approximation rank R , not larger than the number of non-
zero eigenvalues. Define N R

R
×∈  as the matrix that contains the 

left R  columns of   and define R R
R

×Σ ∈  as the upper left portion 
of Σ . 

• Compute the matrix 1( , , )R R= …Φ Φ  by 1
R R R

−= Σ  . 
The POD can also be defined using singular value decomposition, 

 

1/2 1/2, .T= Σ =        

In this case R  is formed by the left R  columns of   and the matrices R  and 

RΣ  are defined as above. This approach requires a factorization 
1/2 1/2( )T=   , so for non-diagonal mass matrices the eigendecomposition 

of T   is the preferred method. 
For the derivation of the reduced-order model it will be useful that the POD modes 
are a linear combination of the snapshot fluctuation vectors,  

 
1

( , )
,

N
n r

r n
rn λ=

′
′=∑ U Φ

Φ U   (3.2) 

which means that some properties of the snapshot fluctuations are carried over to 
the POD modes. 

3.2 Centroidal Voronoi tessellation 

The Centroidal Voronoi tessellation is a method that groups the set of discrete 
snapshot fluctuation vectors 1, , R′ ′…U U  in clusters, such that on average the 
distances between each cluster's center and its members are small. More precisely, 
the CVT is defined as a set of clusters 1, , RV V…  and a set of modes 1, R…Φ Φ  that 
solve the minimization problem 

 2

{ },{ }
1

min .
r r

n r

R

n rV
r V′= ∈

′ −∑ ∑Φ
U

U Φ   (3.3) 

The CVT of a collection of snapshot fluctuation vectors can be computed using a 
variant of Lloyd's method [21]: 

1. Assign each vector to some cluster. 
2. Handle empty clusters. 
3. Compute all cluster mid-points. 
4. Assign each vector to the cluster whose mid-point is closest. 
5. If in step 4 any vector was shifted, then go to step 2, otherwise quit. 
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The CVT modes are then given by the cluster mid-points, 

 1 ,
| |

n r

r n
r VV ′ ∈

′= ∑
U

Φ U  (3.4) 

where | |rV  is the number of snapshots contained in the cluster rV . Thus, for the 
CVT it holds that each mode is a linear combination of snapshot fluctuation 
vectors. 
While the POD modes are orthonormal with respect to the  -inner product, the 
CVT modes are not  -orthonormal in general. It is even possible that they are 
linearly dependent, in which case they do not form a linear basis. In the special 
case that the CVT modes are computed from a set of snapshot fluctuations with 
respect to the snapshot mean, the CVT modes are always linearly dependent. To 
prove the linear dependence we need to find a set of coefficients 1, , Ra a′ ′… , not all 
equal to zero, for which 1 1 ... 0R Raa ′+ +′ =Φ Φ . Choosing | |r ra V′ =  for 

1, ,r R= … , we can write for any reference flow 

1 1 1 1

( ) .
| |

( )
n r

R R N N
r

r r n n n
rr r V n n

aa N
V ′= = ∈ = =

′
′ ′= = − = −∑ ∑ ∑ ∑ ∑

U

Φ U U U U U  

If the reference flow is the snapshot mean, it follows that 

1 1 1

1 0.( ) ( )N N N

n n n
n n n

N N
N= = =

− = − =∑ ∑ ∑U U U U  

As a consequence, a reference flow different from the snapshot mean must be 
used. If a stationary solution of the flow problem was available, we could use this 
stationary solution as a reference, as done in Burkardt et al. [12]. Otherwise we 
could also select a snapshot from the available solution data of the start-up phase 
of the simulation. Taking some snapshot nU  as a reference flow is not 
recommended, because this will lead to 0n′ =U , which results in a zero CVT 
mode if n′U  happens to be the only member of its cluster. In any case, it is 
recommended to check the output of Lloyd’s method for linear independence. 

3.3 Reduced-order velocity model 

The derivation of the Galerkin reduced-order model for the direct numerical 
simulation is based on the reduced basis approximation RU  of some discrete 
velocity vector U , 

 
1

R
R

r r
r

a
=

= +∑U U Φ  (3.5) 

where 1, , R…Φ Φ  can be POD or CVT basis functions. We assume that the 
discrete velocity snapshots 1, , N…U U  fulfill the discrete continuity equation 
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0TC =U  sufficiently well. Using the properties (3.2) and (3.4) of the POD and 
CVT basis functions, one can verify that divergence-free snapshots imply 
divergence-free basis functions, 0T

rC =Φ  for 1, ,r R= … , which imply 

divergence-free reduced basis approximations, 0T RC =U . Therefore, we 
concentrate solely on the discrete momentum equation  

.
( ) .P= + +U U U U     

Projecting this system of equations on the reduced basis functions 1, , R…Φ Φ  
results in 

 
.

( ) , 1, , .T T T T
r r r r P r R= + + = …Φ U Φ U U Φ U Φ     (3.6) 

Assuming that the reduced basis functions are discretely divergence-free, it holds 
that ( ) 0T T T

r rP C P= =Φ Φ  for any 1, ,r R= … . Substituting (3.5) into (3.6) 
leads to 

 
1 , 1 1

1, , .
R R R

ri i rij i j ri i r
i i j i

A a B a a C a D r R
= = =

= + + = …∑ ∑ ∑  (3.7) 

with  
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= …

= = …
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+ …
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Φ Φ Φ

Φ U Φ Φ Φ U Φ Φ
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
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  
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Suitable initial conditions can be derived by projecting the initial conditions of the 
spatial semi-discretization on the reduced basis functions. The computing time of 
the reduced-order system of ordinary differential equations (3.7) is only dependent 
on the number of basis functions R , but not on the number of mesh nodes any 
more.  

3.4 Reduced-order pressure model 

The pressure has been eliminated from the reduced-order model described in the 
last section. For the computation of the drag and lift coefficients, however, the 
pressure field is needed. In the following, we describe a way to compute the 
pressure from the solution of reduced-order velocity models. The method is based 
on the ideas of Rempfer [22] and Noack et al. [23], who substituted the reduced-
order approximation of the velocity field in the right-hand side of a continuous 
pressure Poisson equation. We extend this method to the case of a discrete 
pressure Poisson equation. For details on continuous and discrete pressure Poisson 
equations, see Gresho and Sani [24]. 
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The discrete pressure Poisson equation is derived by substituting the discrete 

momentum equations in the time derivative 
.

0T =U  of the discrete continuity 
equation, which yields 

 1 1( ( ) ) .T TP− −− = +U U        (3.8) 
With this equation we can compute the pressure associated with a discrete velocity 
field U . If we substitute a reduced basis approximation RU  of U , see (3.5), and 
denote the resulting pressure by RP , we can rewrite the discrete pressure Poisson 
equation (3.8) as 

 

1 1

, 1

1

1
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    

   

 

From this equation we can deduce that RP  can be decomposed as a linear 
combination of partial pressures, 

 0
, 1 1

,
R R

R R R R
ij i j i i

i j i

P P a a P a P
= =

= + +∑ ∑  (3.9) 

where the partial pressures satisfy 
1 1

1 1

1 1
0
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This means, we have to compute the solution of these 2 1R R+ +  systems of linear 
algebraic equations once, store the resulting partial pressures, and then we can 
compute the pressure fields associated with the reduced velocities cheaply using 
(3.9). 

3.5 Application to LES using updated coefficients 

In this section we provide a reduced-order model that is based on the governing 
equations of a large-eddy simulation instead of the equations of a direct numerical 
simulation. The method is not a reduced-order model in the strong sense, however, 
because its on-line computation time is dependent on the number of unknowns of 
the original simulation, the reason being the non-linearity in the eddy viscosity 
model. 
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We perform a Galerkin projection of the spatially semi-discretized weak form of 
the LES momentum equations on the 1, , R…Φ Φ . The resulting system of 
ordinary differential equations is given by 

t t

1 , 1 1

( ) ( ), 1, , ,
R R R

R R
ri i rij i j ri i r

i i j i

A a B a a C a D r R
= = =

= + + = …∑ ∑ ∑ U U  

where the solution dependent model coefficients are given as 
t

t

( ) ( ) ( ) ( ) , , 1, ,
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ri r i r i r i
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r r r
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= + + = …
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U Φ U Φ Φ Φ U Φ U Φ

U Φ U U Φ U U

  

 
 

For linear finite elements the turbulent viscosity tν  is constant within each grid 
cell. In this case, the expressions for the solution dependent model coefficients can 
be reformulated, so that the computational cost for computing them reduces to the 
time needed for constructing tν  from the current solution of the reduced-order 

model plus 2R R+  inner products of vectors whose length is equal to the number 
of grid cells. To save more computing time, we can extrapolate the solution-
dependent coefficients over a short time period before updating them. To this end, 
we choose a sequence of update times. During the time integration, at the update 
times we compute and store the coefficients, and between the update times we 
reconstruct the coefficients by quadratic extrapolation using previously stored 
values. For the first time steps, where we do not have enough data for a quadratic 
extrapolation, we use a full computation of the coefficients for each evaluation of 
the right-hand side [E4]. 

3.6 Application to LES using calibration 

In this section we formulate a reduced-order model for LES that has the same on-
line computational cost as the standard reduced-order model based on a direct 
simulation of the incompressible Navier-Stokes equations. The method uses a 
calibration of the model coefficients of the constant and linear terms of the 
reduced-order model, so that it mimics the behavior of the LES, even if it does not 
contain the non-linear dynamics of the eddy viscosity model. 

Let , ( , )r n n ra = −U U Φ   and let ,ˆr na  be the solution of a reduced-order model at 

nt , for 1, ,r R= …  and 1, ,n N= … . Here, the number and the placement of the 
snapshots in time are allowed to differ with respect to the snapshots used to 
generate the reduced basis functions. Further, let ,sra  and ,sˆra  be respective cubic 
spline interpolations for 1, ,r R= … , so that  

s ,s s ,s
1 1

, ˆ ˆ .
R R

R R
r r r r

r r

a a
= =

= + = +∑ ∑U U Φ U U Φ  
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A cost functional that measures the difference between the projected solution and 
the model solution is given as 

2
s s ,s ,s ,s ,s

0 0
, 1

ˆ ˆ ˆd ( ) ( ) d .
RT TR R

i i ir r r
i r

t a a A a a t
=

= − = − −∑∫ ∫U U  ‖ ‖  

We want to let a gradient-based optimization routine find the model coefficients 
klC  and kD , for , 1, ,k l R= … , that minimize the cost functional. In each step of 

the optimization routine we have to provide   and its derivatives with respect to 
the model coefficients. To compute the derivatives we apply adjoint techniques 
[25] to our problem. One can derive the expressions 

0 0
ˆ ˆˆ d , d ,
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DC DD
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where 1̂
ˆ, , Rb b…  are the solutions of the adjoint reduced-order model 

,s ,s
1 , 1 1

ˆ ˆ ˆˆ ˆ( ) ( 2 ( )),

ˆ ( ) 0, 1, , .
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r ri r rij rji j r ri ir r r
r r j r

i

b A b B B a b C A a a

b T i R
= = =

− = + + + −

= = …

∑ ∑ ∑

 

While in theory 1̂ ˆ, , Ra a…  and 1̂
ˆ, , Rb b…  are exact solutions of the reduced-order 

models, in practice they can be replaced by dense output or spline interpolations of 
a numerical solution. 
In each iteration of the optimization routine we are given a set of model 
coefficients, for which we perform the following steps: 

1. Solve the reduced-order model forward in time. 
2. Solve the adjoint reduced-order model backward in time. 
3. Compute the values of the functional and its derivatives. 

By using the adjoint of the reduced-order model, the calibration can be done much 
faster than by using a finite difference approximation of the gradients of the cost 
functional, as the computational cost in each step of the optimization is mainly one 
forward and one backward solution. 

3.7 Results for laminar vortex-shedding flow 

The accuracy of the reduced-order models was studied for a two-dimensional 
simulation of a flow around a circular cylinder at a Reynolds number of 100Re = . 
The domain with boundary conditions is sketched in Figure 5, where N

iΓ  denotes 

Neumann conditions and D
iΓ  denotes Dirichlet conditions for iu . 
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Figure 5: Sketch of the geometry (not to scale) and boundary conditions of the two-

dimensional flow around a circular cylinder. 

 

We used the geometric parameters cyl 0.1 mD = , 3 mL =  and 2 mH = , the 

inflow velocity was set to in 1 m/su =  and the kinematic viscosity was set to 
20.001 m/sν = . The simulation was performed with the finite element solver 

Kardos [E5], using stabilized linear finite elements [E6] and the ROS3P time 
integration method [E7]. For the spatial discretization we used a triangular mesh 
with 79723 mesh nodes, locally refined near the cylinder. The time was 
discretized with a constant step size of 0.001 st∆ = , but only every tenth solution 
was stored. The simulation was started with a fluid at rest. After a transient 
simulation time of less than 20 s  the solution became periodic. A snapshot of the 
solution at 20 st =  is presented in Figure 6, which demonstrates the appearance of 
a regularly shaped von Kármán vortex street. 
 

 
Figure 6: First snapshot of the absolute velocity field of the two-dimensional numerical so-

lution. 
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Figure 7: Central part of the absolute velocity field of the reference flow, sampled 
at  t=3.89 s (left). Snapshot fluctuation at t=20 s with respect to the reference flow (right). 

The same color scale as in Figure 6 is used for both images. 

 

 

 

      
 

      
 

      
 

      
 

      
 

      
 

      
 

Figure 8: Modes of a POD (left) of rank 7 and a CVT (right) of rank 7. The plots show the 
absolute values of the modal vector fields. 
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We chose the snapshot at 3.89 st =  as a reference flow U , which is shown in 
Figure 7 together with the snapshot fluctuation at 20 st =  with respect to the 
reference flow. Note that only a cut-out of the domain is plotted in Figure 7 and in 
the following figures. Using the snapshot fluctuations at times 

20.00 s,20.01 s, , 20.58 st = … , corresponding to one shedding cycle, we created 
sets of POD and CVT reduced basis functions. Figure 8 displays the reduced basis 
functions of a 7 mode POD and a 7 mode CVT. 
To compare the snapshots with their reduced-order representations a few 
definitions are required: Let a set of POD or CVT reduced basis functions 

1, , R…Φ Φ  be given for some fixed rank R . Let 1, , N…U U  and 1, , NP P…  be 
velocity and pressure solution vectors, respectively, sampled at 1, , Nt t… . These 
solution vectors may be different from the snapshots with which the reduced basis 
functions were created. Using the reduced-order coefficients 

, ( , ) , 1, , , 1, , ,r n n ra n N r R= − = … = …U U Φ   

we define the reduced-order approximations, based on (3.5) and (3.9), as 
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We used the reference flow shown in Figure 7 and the reduced basis functions 
shown in Figure 8 to approximate the velocity field from time 20 st =  to time 

21 st = . We chose a monitoring point (1.2,1)m =x  in the wake of the flow. In 
Figure 9 the time dependent streamwise velocity component at the monitoring 
point is compared to the reduced-order approximations of rank 7. The POD and 
CVT basis functions have lead to different approximations at the monitoring point, 
but the approximation quality was similar. 

 

 
Figure 9: Comparison of the velocity components 1u  at the monitoring point 

(1.2,1)m =x  for the original simulation, the POD approximation of rank 7 and the CVT 

approximation of rank 7. 
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To compare the solutions of the reduced-order model with the reduced-order 
approximations, we denote the numerical solutions of the reduced-order model at 
times 1, , Nt t…  as ,ˆr na  for 1, ,r R= …  and 1, ,n N= … . We define the reduced-
order modeled velocity and pressure fields, based on (3.5) and (3.9) as 

,
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, , , 0
, 1 1
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Now we define, for 1, ,n N= … , the 2L  model, approximation and total errors, 
respectively, as 
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We also measure the errors in the drag force DF  and the lift force LF  acting on 
the cylinder. These forces are given as 
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where S  is the surface of the cylinder and n  points outside of the domain. By 
using the finite element approximations of p  and u  we can write the drag and lift 
forces as functions of the nodal vectors, D ( , )F P U  and L ( , )F P U , respectively. 
Now we define the drag model, approximation and total errors, respectively, as 
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The lift errors are defined in an analogous way. To measure the errors over all 
time steps we use the error norm 

2
,

1

,
N

R n R
n

E E
=

= ∑  

where ,n RE  can be any of the 2L , drag or lift errors defined above. 
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Figure 10: Errors norms, depending on the rank of the reduced bases, using POD (left) and 
CVT (right) basis functions. From top to bottom: 2L  velocity error, drag error, lift error. 

 

We created POD and CVT reduced-order models of the cylinder flow simulation, 
using the snapshots at 20.00 s,20.01 s, , 20.58 st = …  and the reference flow at 

3.89 st = .  The ranks R  of the reduced bases were varied from 1 to 25. Reduced-
order approximations and model solutions were computed within the larger time 
interval [20,30]t∈  and compared to the snapshots in the same interval. 

The respective 2L  velocity errors and the drag and lift errors are presented in 
Figure 10. It turns out that the POD and CVT models behave qualitatively similar. 
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Figure 11: First snapshot of the absolute Smagorinsky-filtered velocity field of a three-

dimensional large-eddy simulation. 

 

In the 2L  case the modeling error is relatively close to the approximation error, 
which means that the reduced-order model is nearly optimal. Around 25R = , 
however, the modeling error stops to decrease any further. By comparing different 
mesh and time step sizes of the original simulations it could be verified that this 
accuracy limit of the reduced-order model is determined by the numerical errors of 
the snapshots. For the drag and lift computations, the approximation error first 
drops rapidly and then stays nearly constant for 10R ≥ . This behavior can be 
explained by the fact that the reduced-order approximation of the pressure field 
was not obtained by a projection, but by solving a set of pressure Poisson 
equations.  The computation of the snapshots, however, did not involve a pressure 
Poisson equation, so even the reduced-order approximations of the drag and lift 
forces contain some modeling error. 

3.8 Results for turbulent flow 

In this section we study the accuracy of the reduced-order models for a three-
dimensional large-eddy simulation performed with the finite element software 
Kardos [E5]. The domain was obtained by extruding the two-dimensional 
geometry of the preceding section in the third dimension by a depth of 0.3 m . We 
chose an inflow velocity of in 1 m/su =  and a kinematic viscosity of 

21/ 39000 m/s , so that the Reynolds number became 3900Re = . For the 
modeling of the turbulent stress tensor we used a Smagorinsky constant of 

S 0.15C = . The tetrahedral mesh was manually refined near the cylinder and in the 
near-cylinder wake region, resulting in a number of 123553 mesh nodes. For the 
time discretization a constant step size of 0.002 s  was chosen. The initial velocity 
field was taken from a simulation that was performed with an adaptive time 
stepping, starting from a fluid at rest and running through the transient flow phase 
until a developed turbulent flow was reached. A snapshot of the initial velocity 
field is shown in Figure 11. 
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Figure 12: Central part of the absolute velocity field of the reference flow (left). Central 
part of the absolute velocity field of the fluctuation based on the reference flow and the first 

snapshot (right). 

 

 

 

      
 

      
 

      
 

      
 

      
 

      
 

      
 

Figure 13: Modes of a velocity POD (left) of rank 7 and a velocity CVT (right) of rank 7. 
The plots show the absolute values of the vector fields.   
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After computing the solution of the LES within a time interval of 4 s , we selected 
the 1000 available LES solutions from 1 0 st =  to 1000 1.998 st =  as snapshots and 
picked a solution from the transient start-up simulation as a reference flow. In 
Figure 12 the reference velocity field and a velocity fluctuation around the 
reference are shown. The reason for not including all available numerical solutions 
up to 4 st =  in the snapshot data base was to enable the assessment of the 
reduced-order models with respect to reproducing `known' snapshots compared to 
reproducing `unknown' snapshots. While the first case is a necessary premise for 
the success of the methods, the latter case will be more significant for real-life 
applications, where the reduced model is to be used as a surrogate for the original 
model. 
The snapshot fluctuations around the reference flow were used to generate POD 
and CVT reduced basis functions. In Figure 13 the reduced basis functions of a 7 
mode POD are compared with a 7 mode CVT. 
As a visual criterion for the comparison of the different reduced-order models for 
large-eddy simulations we took the time evolution of the streamwise velocity 
component at the monitoring point (1.2,1,0.15)  from 0 st =  up to 4 st = . In 
Figure 14 the different reduced-order solutions of rank 64 are compared to the 
original simulation results. 
In the first plot of Figure 14, the projection of the solution on the reduced-basis 
functions is shown, which serves as a reference for the other models, as the 
projection is the 2L  optimal approximation of the original velocity field by a 
linear combination of the chosen reduced-basis functions. It can be observed that 
the first half of the snapshots, which formed the snapshot data base for building 
the reduced basis functions, are approximated well by the projected snapshots, 
while the other half is approximated poorly. The difference between the projection 
on the POD and on the CVT basis functions is relatively small over the whole 
time interval. 
The second plot of Figure 14 shows the solution of the DNS reduced-order models 
applied to the LES test case. The model solutions quickly diverge from the 
original simulation results and exhibit strong oscillations. The results of the POD 
and CVT are different, but qualitatively similar. 
The solution of the models with updated coefficients, based on the governing 
equations of the LES, is shown in the third plot of Figure 14. The model 
coefficients were updated at every 10th snapshot time. While the models are able 
to capture the dynamics of the snapshot phase well, they fail to approximate the 
dynamics of the unknown phase, due to the inability of the reduced basis functions 
to approximate these solutions. The accuracies of the POD and CVT models are 
similar. 
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Figure 14: Comparison of the streamwise velocity component 1u  of the original simulation 

with the POD and CVT reduced-order solutions of rank 64 at the monitoring point 
(1.2,1,0.15)=x . For 2t ≥ , the solutions are not contained in the snapshot data base used 

for constructing the reduced basis function. From top to bottom: projection of the velocity 
on the reduced basis functions, solution of reduced DNS model, solution of the reduced 

LES model, solution of the reduced DNS model calibrated to the snapshot data base. 

 

In the last plot of Figure 14 we show the results of the calibrated models. The 
models are based on the equations of a direct numerical simulation, but the 
coefficients were calibrated with respect to the snapshots that were used to 
generate the basis functions. Within the first half of the time interval the 



28  

performance is similar to the LES reduced-order model, in the second half the 
solutions are less accurate. In the calibrated case, the CVT model is more accurate 
than the POD model. 
Finally, we compare the computation times of the updated and the calibrated 
models. Creating the updated POD and CVT models of rank 64 from the snapshot 
set took 1712 s and 3863 s of wall-clock time, respectively, while running the 
models took 5335 s and 4621 s. Creating the calibrated models took 15301 s and 
32588 s for POD and CVT, respectively, but their time integrations took merely 
21 s and 26 s. The time integration of the finite element model over the same time 
interval took almost five weeks. All timings were obtained using one 
computational core of a 3.0 GHz AMD Opteron processor. 

4 Summary and Conclusions 

In the first part of this paper we have presented a mesh adaptation method based 
on LES-specific design criteria in order to improve the quality of statistical flow 
properties. The heart of the method is an iterative moving mesh strategy that 
balances statistically averaged values over the whole spatial grid. As a test 
problem the flow over periodic hills at Re=10595 was considered. Inspired by the 
remarkably good results for the mean streamwise velocity reported in Hertel et al. 
[E2], we have combined this quantity with the statistically averaged turbulent 
kinetic energy and shear stresses within the framework of balanced monitor 
functions, following the approach developed by van Dam [15]. The key idea is to 
improve the local resolution of these important LES quantities through a higher 
concentration of grid points in areas where they are insufficiently resolved. 
Based on our numerical experiments for the periodic hill flow we can draw the 
following main conclusions: (i) Significant improvement compared to the initial 
grid approximation can be observed for all combinations of LES-specific 
quantities. (ii) Even though the additional consideration of the turbulent kinetic 
energy and part of the shear stress to steer the moving mesh approach can locally 
improve the flow resolution with respect to specific quantities such as the 
reattachment point, the overall and well balanced quality of the streamwise 
velocity cannot be beaten. Further studies on different flows are planned for future 
research. 
In the second part of this work, reduced-order models were studied for a laminar 
direct numerical simulation and a turbulent large-eddy simulation of the flow 
around a cylinder. The reduced-order models for the velocity fields were obtained 
by a Galerkin projection of the semi-discretized flow problems onto relatively 
small sets of global basis functions. The reduced-order models for the pressure 
fields were derived by using a discrete pressure Poisson equation. Two different 
methods were used to generate basis functions for the projection, namely the 
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proper orthogonal decomposition and the centroidal Voronoi tessellation. The 
solutions of the resulting reduced-order models were compared by their accuracy 
with respect to the solutions of the underlying finite element simulations. 
For the DNS test case, the errors in the reduced-order solutions could be 
diminished to the order of magnitude of the numerical error of the original finite 
element solution. These results were possible with using about 25 POD or CVT 
modes, which validated the applicability and correctness of the models. The POD 
and CVT results did not differ much with respect to the error in the velocity field 
and in the time-dependent drag and lift forces. The findings indicate that both 
methods are similarly suitable for the construction of reduced-order models. 
For the LES test case, besides the different types of basis functions, we compared 
two different approaches for modeling the dynamics: a model based on the LES 
equations and a calibrated DNS model. Both models succeeded to capture the 
‘known’ solutions that were present in the snapshot database used for the creation 
of the reduced basis functions, but they failed to capture ‘unknown’ solutions that 
were not present in the snapshot database. As in the laminar case, the differences 
between the POD and CVT based models turned out to be rather small. 
Comparing the computational times, running the calibrated models took much less 
time than running the updated models, but the setup phase of the calibrated models 
was longer. 
The fact that the turbulent reduced-order models could not reproduce `unknown' 
snapshots highlights an important issue of reduced-order modeling in a turbulent 
context. While a lot can be done to improve the dynamics of the POD and CVT 
models, as shown in this work, the output of the models can, by definition, only be 
a linear combination of snapshots. Therefore a sufficiently large number of 
snapshots and, consequently, a large number of reduced basis functions must be 
provided to enable accurate computations of turbulent flows. 
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