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Abstract

In this work we continue to investigate the well-posedness for infinitesi-
mal dislocation based gradient viscoplasticity with linear kinematic hard-
ening. We assume an additive split of the displacement gradient into
non-symmetric elastic distortion and non-symmetric plastic distortion.
The thermodynamic potential is augmented with a term taking the dis-
location density tensor into account. The constitutive equations in the
models we study are assumed to be only of monotone type. Based on the
generalized version of Korn’s inequality for incompatible tensor fields (the
non-symmetric plastic distortion) due to Neff/Pauly/Witsch the existence
of solutions of quasistatic initial-boundary value problems under consid-
eration is shown using a time-discretization technique and a monotone
operator method.
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1 Introduction

We study the existence of solutions of quasistatic initial-boundary value prob-
lems arising in gradient viscoplasticity. The models we study use rate-dependent
constitutive equations with internal variables to describe the deformation be-
haviour of metals at infinitesimally small strain.

Our focus is on a phenomenological model on the macroscale not including
the case of single crystal plasticity. From a mathematical point of view, the maze
of equations, slip systems and physical mechanisms in single crystal plasticity
is only obscuring the mathematical structure of the problem.
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Our model has been first presented in [20]. It is inspired by the early work
of Menzel and Steinmann [17]. Contrary to more classical strain gradient ap-
proaches, the model features a non-symmetric plastic distortion field p ∈ M3

[4], a dislocation based energy storage based solely on |Curl p| and second gra-
dients of the plastic distortion in the form of Curl Curl p acting as dislocation
based kinematical backstresses. We only consider energetic length scale effects
and not higher gradients in the dissipation.

Uniqueness of classical solutions for rate-independent and rate-dependent
formulations is shown in [19]. The existence question for the rate-independent
model in terms of a weak reformulation is addressed in [20]. The rate-independent
model with isotropic hardening is treated in [8]. First numerical results for a
simplified rate-independent irrotational formulation (no plastic spin, symmet-
ric plastic distortion p) are presented in [27]. In [9, 32] well-posedness for a
rate-independent model of Gurtin and Anand [11] is shown under the decisive
assumption that the plastic distortion is symmetric (the irrotational case), in
which case we may really speak of a strain gradient plasticity model, since the
gradient acts on the plastic strain.

In order to appreciate the simplicity and elegance of our model we sketch
some of its ingredients. First, as is usual in plasticity theory, we split the total
displacement gradient into non symmetric elastic and plastic distortions

∇u = e+ p .

For invariance reasons, the elastic energy contribution may only depend on the
elastic strains sym e = sym(∇u−p). While p is non-symmetric, a distinguishing
feature of our model is that, similar to classical approaches, only the symmetric
part εp := sym p of the plastic distortion appears in the local Cauchy stress σ,
while the higher order stresses are non-symmetric. The reason for this is that
we assume that p has to obey the same transformation behavior as ∇u does,
and thus the energy storage due to kinematical hardening should depend only
on the plastic strains sym p. For more on the basic invariance questions related
to this issue dictating this type of behaviour, see [36, 18]. We assume as well
plastic incompressibility tr p = 0.

The thermodynamic potential of our model can therefore be written as∫
Ω

(
C[x](sym(∇u− p))(sym(∇u− p))︸ ︷︷ ︸

elastic energy

+
C1

2
|dev sym p|2︸ ︷︷ ︸

kinematical hardening

+
C2

2
|Curl p|2︸ ︷︷ ︸

dislocation storage

+ u · b︸︷︷︸
external volume forces

)
dx

The positive definite elasticity tensor C is able to represent the elastic anisotropy
of the material. The evolution equations for the plastic distortion p are taken
such that the stored energy is non-increasing along trajectories of p at frozen
displacement u, see [20]. Qualitatively, they have the form

∂tp ∈ g(σ − C1 dev sym p− C2 Curl Curl p) , (1)

where σ = C[x] sym(∇u− p) is the elastic symmetric Cauchy stress of the ma-
terial and g is a multivalued monotone flow function. Clearly, in the absence of
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energetic length scale effects (C2 = 0), the plastic distortion remains symmetric
and the model reduces to a classical plasticity model. Thus, the energetic length
scale is solely responsible for the plastic spin in the model.

Regarding the boundary conditions necessary for the formulation of the
higher order theory we assume that the boundary is a perfect conductor, this
means that the tangential component of p vanishes on ∂Ω. In the context of
dislocation dynamics these conditions express the requirement that there is no
flux of the Burgers vector across a hard boundary. Gurtin [12] introduces the
following different types of boundary conditions for the plastic distortion

∂tp× n|Γhard
= 0 ”micro-hard” (perfect conductor)

∂tp|Γhard
= 0 ”hard-slip” (2)

Curl p× n|Γhard
= 0 ”micro-free” .

We specify a sufficient condition for the micro-hard boundary condition, namely

p× n|Γhard
= 0

and assume Γhard = ∂Ω. This is the correct boundary condition for tensor fields
in H(Curl) which admits tangential traces.

We combine this with a new inequality extending Korn’s inequality to in-
compatible tensor fields, namely

∀ p ∈ H(Curl) : p× n|Γhard
= 0 : (3)

‖p‖L2(Ω)︸ ︷︷ ︸
plastic distortion

≤ C(Ω)
(
‖ sym p‖L2(Ω)︸ ︷︷ ︸

plastic strain

+ ‖Curl p‖L2(Ω)︸ ︷︷ ︸
dislocation density

)
.

Here, Γhard ⊂ ∂Ω with full two-dimensional surface measure and the domain
Ω needs to be sliceable, i.e. cuttable into finitely many simply connected
subdomains with Lipschitz boundaries. This inequality has been derived in
[24, 25, 26, 23] and is precisely motivated by the well-posedness question for
our model [20]. The inequality (3) expresses the fact that controlling the plas-
tic strain sym p and the dislocation density Curl p in L2(Ω) gives a control of
the plastic distortion p in L2(Ω) provided the correct boundary conditions are
specified: the micro-hard boundary condition.

It is worthy to note that with g only monotone and not necessarily a subd-
ifferential the powerful energetic solution concept [16, 9, 15] cannot be applied.
In this contribution we face the combined challenge of a gradient plasticity
model based on the dislocation density tensor Curl p involving the plastic spin,
a general monotone flow-rule and a rate-dependent response.

Setting of the problem. Let Ω ⊂ R3 be an open bounded set, the set of
material points of the solid body, with a C1-boundary. By Te we denote a
positive number (time of existence), which can be chosen arbitrarily large, and
for 0 < t ≤ Te

Ωt = Ω× (0, t).

The sets,M3 and S3 denote the sets of all 3× 3–matrices and of all symmetric
3× 3–matrices, respectively. Let sl(3) be the set of all traceless 3× 3–matrices,
i.e.

sl(3) = {v ∈M3 | tr v = 0}.
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Unknown in our small strain formulation are the displacement u(x, t) ∈ R3

of the material point x at time t and the non-symmetric infinitesimal plastic
distortion p(x, t) ∈ sl(3).

The model equations of the problem are

−divx σ(x, t) = b(x, t), (4)

σ(x, t) = C[x](sym(∇xu(x, t)− p(x, t))), (5)

∂tp(x, t) ∈ g
(
x,Σlin(x, t)

)
, Σlin = Σlin

e + Σlin
sh + Σlin

curl, (6)

Σlin
e = σ, Σlin

sh = −C1 dev sym p, Σlin
curl = −C2 Curl Curl p ,

which must be satisfied in Ω× [0, Te). Here, C1, C2 ≥ 0 are given material con-
stants and Σlin is the infinitesimal Eshelby stress tensor driving the evolution of
the plastic distortion p. The initial condition and Dirichlet boundary condition
are

p(x, 0) = p(0)(x), x ∈ Ω, (7)

p(x, t)× n(x) = 0, (x, t) ∈ ∂Ω× [0, Te), (8)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te) , (9)

where n is a normal vector on the boundary ∂Ω. For simplicity we consider
only homogeneous boundary condition. The elasticity tensor C[x] : S3 → S3

is a linear, symmetric, uniformly positive definite mapping. The mapping x 7→
C[x] : Ω→ S3 is measurable. Classical linear kinematic hardening is included for
C1 > 0. Here, the nonlocal backstress contribution is given by the dislocation
density motivated term Σlin

curl = −C2 Curl Curl p together with corresponding
micro-hard boundary conditions.

For the model we require that the nonlinear constitutive mapping g(x, ·) :
M3 → 2sl(3) is monotone1 for a.e. x ∈ Ω, i.e. it satisfies

0 ∈ g(x, 0), (10)

0 ≤ (v1 − v2) · (v∗1 − v∗2), (11)

for all vi ∈ M3, v∗i ∈ g(x, vi), i = 1, 2, and for a.e. x ∈ Ω. The mapping
x 7→ g(x, ·) : Ω → 2sl(3) is measurable (see Section 2 for the definition of the
measurability of multi-valued maps). Moreover, the function g has the following
property

g(x, v) ∈ S3 for any v ∈ S3 and a.e. x ∈ Ω.

Given are the volume force b(x, t) ∈ R3 and the initial datum p(0)(x) ∈ sl(3).

Remark 1.1. It is well known that classical viscoplasticity (without gradient ef-
fects) gives rise to a well-posed problem. We extend this result to our formulation
of rate-dependent gradient plasticity. The presence of the classical linear kine-
matic hardening in our model is related to C1 > 0 whereas the presence of the
nonlocal gradient term is always related to C2 > 0.

In the recent work by the authors [28] the existence of solutions for the initial
boundary problem (4) - (9) is studied under the assumption that the monotone
function g is a subdifferential of a proper lower-semicontinuous convex function

1Here 2sl(3) denotes the power set of sl(3).
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φ : M3 → R̄ (R̄ := R ∪ {∞}), i.e. g = ∂φ, and with the following different
boundary condition

Curl p(x, t)× n(x) = 0, (x, t) ∈ ∂Ω× [0, Te), (12)

instead of (8). It is required there that the function φ satisfies the following
two-sided estimate

a0|v|q − b0 ≤ φ(v) ≤ a1|v|q + b1, (13)

for positive a0 and a1, some b0 and b1 and any v ∈ M3. Based on methods
of convex analysis the existence of weak solutions (see Definition 4.6) for the
problem (4) - (7), (12) and (9) with g = ∂φ is obtained in [28] under the above
restrictions on the function g. We note that the existence result derived recently
in [28] is also valid for the new problem (4) - (9), i.e. with the boundary condition
(8) instead of (12) and of course the subdifferential structural assumption on g.
In this work, assuming Ω ⊂ R3 is a sliceable domain with a C1-boundary, we
show the existence of strong solutions (see Definition 4.5) for the problem (4)
- (9) with the monotone function g belonging to the class M(Ω,M3, q, α,m)
defined in Section 4. The derivation of this result is based on the inequality (3),
which is recently obtained in [21, 22] under the assumption that Ω is a sliceable
domain, and on the monotonicity assumption for the function g. We note that
in the case of the sliceable domain Ω the methods used in this work allow us to
show the existence of strong solutions for (4) - (9) with g = ∂φ, i.e. the weak
solutions for (4) - (9) with g = ∂φ derived in [28] are the strong solutions in the
sense of Definition 4.5 in this case. However, we do not know how to extend our
results on the existence of strong solutions to domains Ω which are not sliceable.
We note as well that the existence of strong solutions for the initial boundary
problem formed by equations (4) - (7), (12) and (9) with g ∈M(Ω,M3, q, α,m)
or g = ∂φ with φ satisfying (13) for any domain Ω is an open problem too.

Notation. Throughout the whole work we choose the numbers q, q∗ satisfying
the following conditions

1 < q, q∗ <∞ and 1/q + 1/q∗ = 1,

and | · | denotes a norm in Rk, k ∈ N. Moreover, the following notations are used
in this work. The space Wm,q(Ω,Rk) with q ∈ [1,∞] consists of all functions in
Lq(Ω,Rk) with weak derivatives in Lq(Ω,Rk) up to order m. If m is not integer,
then Wm,q(Ω,Rk) denotes the corresponding Sobolev-Slobodecki space. We set
Hm(Ω,Rk) = Wm,2(Ω,Rk). The norm in Wm,q(Ω,Rk) is denoted by ‖ · ‖m,q,Ω
(‖ · ‖q := ‖ · ‖0,q,Ω). The operator Γ0 defined by

Γ0 : v ∈W 1,q(Ω,Rk) 7→W 1−1/q,q(∂Ω,Rk)

denotes the usual trace operator. The space Wm,q
0 (Ω,Rk) with q ∈ [1,∞] con-

sists of all functions v in Wm,q(Ω,Rk) with Γ0v = 0. One can define the bilinear
form on the product space Lq(Ω,M3)×Lq∗(Ω,M3) by

(ξ, ζ)Ω =

∫
Ω

ξ(x) · ζ(x)dx.
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The space

LqCurl(Ω,M
3) = {v ∈ Lq(Ω,M3) | Curl v ∈ Lq(Ω,M3)}

is a Banach space with respect to the norm

‖v‖q,Curl = ‖v‖q + ‖Curl v‖q.

By H(Curl) we denote the space of measurable functions in L2
Curl(Ω,M3), i.e.

H(Curl) = L2
Curl(Ω,M3). The well known result on the generalized trace oper-

ator can be easily adopted to the functions with values in M3 (see [35, Section
II.1.2]). Then, according to this result, there is a bounded operator Γn on
LqCurl(Ω,M3)

Γn : v ∈ LqCurl(Ω,M
3) 7→

(
W 1−1/q∗,q∗(∂Ω,M3)

)∗
with

Γnv = v × n
∣∣
∂Ω

if v ∈ C1(Ω̄,M3),

where X∗ denotes the dual of a Banach space X. Next,

LqCurl,0(Ω,M3) = {w ∈ LqCurl(Ω,M
3) | Γn(w) = 0}.

We also define the space ZqCurl(Ω,M3) by

ZqCurl(Ω,M
3) = {v ∈ LqCurl,0(Ω,M3) | Curl Curl v ∈ Lq(Ω,M3)},

which is a Banach space with respect to the norm

‖v‖Zq
Curl

= ‖v‖V q + ‖Curl Curl v‖q.

For functions v defined on Ω×[0,∞) we denote by v(t) the mapping x 7→ v(x, t),
which is defined on Ω. The space Lq(0, Te;X) denotes the Banach space of
all Bochner-measurable functions u : [0, Te) → X such that t 7→ ‖u(t)‖qX is
integrable on [0, Te). Finally, we frequently use the spaces Wm,q(0, Te;X), which
consist of Bochner measurable functions having q-integrable weak derivatives up
to order m.

2 Maximal monotone operators

In this section we recall some basics about monotone and maximal monotone
operators. For more details see [3, 13, 30], for example.

Let V be a reflexive Banach space with the norm ‖ · ‖, V ∗ be its dual space
with the norm ‖ · ‖∗. The brackets 〈·, ·〉 denotes the dual pairing between V and
V ∗. Under V we shall always mean a reflexive Banach space throughout this
section. For a multivalued mapping A : V → 2V

∗
the sets

D(A) = {v ∈ V | Av 6= ∅}

and
GrA = {[v, v∗] ∈ V × V ∗ | v ∈ D(A), v∗ ∈ Av}

are called the effective domain and the graph of A, respectively.
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Definition 2.1. A mapping A : V → 2V
∗

is called monotone if and only if the
inequality holds

〈v∗ − u∗, v − u〉 ≥ 0 ∀ [v, v∗], [u, u∗] ∈ GrA.

A monotone mapping A : V → 2V
∗

is called maximal monotone iff the
inequality

〈v∗ − u∗, v − u〉 ≥ 0 ∀ [u, u∗] ∈ GrA
implies [v, v∗] ∈ GrA.

A mapping A : V → 2V
∗

is called generalized pseudomonotone iff the set Av
is closed, convex and bounded for all v ∈ D(A) and for every pair of sequences
{vn} and {v∗n} such that v∗n ∈ Avn, vn ⇀ v0, v∗n ⇀ v∗0 ∈ V ∗ and

lim sup
n→∞

〈v∗n, vn − v0〉 ≤ 0,

we have that [v0, v
∗
0 ] ∈ GrA and 〈v∗n, vn〉 → 〈v∗0 , v0〉.

A mapping A : V → 2V
∗

is called strongly coercive iff either D(A) is bounded
or D(A) is unbounded and the condition

〈v∗, v − w〉
‖v‖

→ +∞ as ‖v‖ → ∞, [v, v∗] ∈ GrA,

is satisfied for each w ∈ D(A).

It is well known ([30, p. 105]) that if A is a maximal monotone operator,
then for any v ∈ D(A) the image Av is a closed convex subset of V ∗ and the
graph GrA is demi-closed.2 A maximal monotone operator is also generalized
pseudomonotone (see [3, 13, 30]).

Remark 2.2. We recall that the subdifferential of a lower semi-continuous and
convex function is maximal monotone (see [31, Theorem 2.25]).

Definition 2.3. The duality mapping J : V → 2V
∗

is defined by

J(v) = {v∗ ∈ V ∗ | 〈v∗, v〉 = ‖v‖2 = ‖v∗‖2∗ }

for all v ∈ V .

Without loss of generality (due to Asplund’s theorem) we can assume that
both V and V ∗ are strictly convex, i.e. that the unit ball in the corresponding
space is strictly convex. In virtue of [3, Theorem II.1.2], the equation

J(vλ − v) + λAvλ 3 0

has a solution vλ ∈ D(A) for every v ∈ V and λ > 0 if A is maximal monotone.
The solution is unique (see [3, p. 41]).

Definition 2.4. Setting

vλ = jAλ v and Aλv = −λ−1J(vλ − v)

we define two single valued operators: the Yosida approximation Aλ : V → V ∗

and the resolvent jAλ : V → D(A) with D(Aλ) = D(jAλ ) = V .

2A set A ∈ V × V ∗ is demi-closed if vn converges strongly to v0 in V and v∗n converges
weakly to v∗0 in V ∗ (or vn converges weakly to v0 in V and v∗n converges strongly to v∗0 in
V ∗) and [vn, v∗n] ∈ GrA, then [v, v∗] ∈ GrA
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By the definition, one immediately sees that Aλv ∈ A
(
jAλ v

)
. For the main

properties of the Yosida approximation we refer to [3, 13, 30] and mention
only that both are continuous operators and that Aλ is bounded and maximal
monotone.

Next, the maximality of the sum of two maximal monotone operators is
given by the following result.

Theorem 2.5. Let V be a reflexive Banach space, and let A and B be maximal.
Suppose that the condition

D(A) ∩ intD(B) 6= ∅

is fulfilled. Then the sum A+B is a maximal monotone operator.

Proof. See [30, Theorem III.3.6] or [3, Theorem II.1.7]).

For deeper results on the maximality of the sum of two maximal monotone
operators we refer the reader to the book [34]. The next surjectivity result plays
an important role in the existence theory for monotone operators.

Theorem 2.6. If V is a (strictly convex) reflexive Banach space and A : V →
2V

∗
is maximal monotone and coercive, then A is surjective.

Proof. See [30, Theorem III.2.10].

Measurability of multi-valued mappings. In this subsection we present
briefly some facts about measurable multi-valued mappings. We assume that V ,
and hence V ∗, is separable and denote the set of maximal monotone operators
from V to V ∗ byM(V ×V ∗). Further, let (S,Σ(S), µ) be a σ−finite µ−complete
measurable space.

Definition 2.7. A function A : S → M(V × V ∗) is measurable iff for every
open set U ∈ V × V ∗ (respectively closed set, Borel set, open ball, closed ball),

{x ∈ S | A(x) ∩ U 6= ∅}

is measurable in S.

The next result states that the notion of measurability for maximal monotone
mappins can be equivalently defined in terms of the measurability for appropri-
ate single-valued mappings.

Proposition 2.8. Let A : S →M(V ×V ∗), let λ > 0 and let E be dense in V .
The following are equivalent:

(a) A is measurable;

(b) for every v ∈ E, x 7→ j
A(x)
λ v is measurable;

(c) v ∈ E, x 7→ Aλ(x)v is measurable.

Proof. See [7, Proposition 2.11].

For further reading on measurable multi-valued mappings we refer the reader
to [6, 13, 29].
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Canonical extensions of maximal monotone operators. Given a map-
ping A : S →M(V × V ∗), one can define a monotone graph from Lp(S, V ) to
Lq(S, V ∗), where 1/p+ 1/q = 1, as follows:

Definition 2.9. Let A : S → M(V × V ∗), the canonical extension of A from
Lp(S, V ) to Lq(S, V ∗), where 1/p+ 1/q = 1, is defined by:

GrA = {[v, v∗] ∈ Lp(S, V )×Lq(S, V ∗) | [v(x), v∗(x)] ∈ GrA(x) for a.e. x ∈ S}.

Monotonicity of A defined in Definition 2.9 is obvious, while its maximality
follows from the next proposition.

Proposition 2.10. Let A : S →M(V × V ∗) be measurable. If GrA 6= ∅, then
A is maximal monotone.

Proof. See [7, Proposition 2.13].

We have to point out here that the maximality of A(x) for almost every
x ∈ S does not imply the maximality of A as the latter can be empty ([7]):
S = (0, 1), and GrA(x) = {[v, v∗] ∈ Rm × Rm | v∗ = t−1/q}.

3 Some properties of the Curl Curl-operator

In this section we present some results concerning the Curl Curl-operator, which
are relevant to the further investigations. For the Curl Curl-operator with a
slightly different domain of definition similar results are obtained in [28, Section
4]. Here we adopt the results in [28] to our purposes.

Lemma 3.1 (Self-adjointness of Curl Curl). Let Ω ⊂ R3 be an open bounded
set with a Lipschitz boundary and A : L2(Ω,M3) → L2(Ω,M3) be the linear
operator defined by

Av = Curl Curl v

with dom(A) = Z2
Curl(Ω,M3). The operator A is selfadjoint and non-negative.

Proof. Indeed, let us consider first the following linear closed operator S :
L2(Ω,M3)→ L2(Ω,M3) defined by

Sv = Curl v, v ∈ dom(S) = L2
Curl,0(Ω,M3).

It is easily seen that its adjoint is given by

S∗v = Curl v, v ∈ dom(S∗) = L2
Curl(Ω,M3).

Then, by Theorem V.3.24 in [14], the operator S∗S with

dom(S∗S) = {v ∈ dom(S) | Sv ∈ dom(S∗)},

which is exactly the operator A, is self-adjoint in L2(Ω,M3). The non-negativity
of A follows from its representation by the operator S, i.e. A = S∗S, and the
identity

(Av, u)Ω = (S∗Sv, u)Ω = (Sv, Su)Ω,

which holds for all v ∈ dom(A) and u ∈ dom(S).

9



Corollary 3.2. The operator A : L2(Ω,M3)→ L2(Ω,M3) defined in Lemma 3.1
is maximal monotone.

Proof. According to the result of Brezis (see [5, Theorem 1]), a linear monotone
operator A is maximal monotone, if it is a densely defined closed operator such
that its adjoint A∗ is monotone. The statement of the corollary follows then
directly from Lemma 3.1 and the mentioned result of Brezis.

Boundary value problems. Let Ω ⊂ R3 be an open bounded set with
a Lipschitz boundary. For every v ∈ L2(Ω,M3) we define a functional Ψ on
L2(Ω,M3) by

Ψ(v) =

{
1
2

∫
Ω
|Curl v(x)|2dx, v ∈ L2

Curl,0(Ω,M3)

+∞, otherwise
.

It is easy to check that Ψ is proper, convex, lower semi-continuous. The next
lemma gives a precise description of the subdifferential ∂Ψ.

Lemma 3.3. We have that ∂Ψ = Curl Curl with

dom(∂Ψ) = Z2
Curl(Ω,M3).

Proof. Let A : L2(Ω,M3)→ L2(Ω,M3) be the linear operator defined by

Av = Curl Curl v

and dom(A) = Z2
Curl(Ω,M3). Due to Lemma 3.1, the following identity∫

Ω

Curl Curl v(x) · w(x)dx =

∫
Ω

Curl v(x) · Curlw(x)dx (14)

holds for any v, w ∈ Z2
Curl(Ω,M3). Therefore, using (14) we obtain∫

Ω

Curl Curl v · (w − v)dx =

∫
Ω

Curl v · (Curlw − Curl v)dx ≤ Ψ(w)−Ψ(v)

for every v, w ∈ dom(A). This shows that A ⊂ ∂Ψ. Since A is maximal
monotone (see Corollary 3.2) we conclude that A = ∂Ψ.

4 Existence of strong solutions

In this section we prove the main existence result for (4) - (9). To show the
existence of weak solutions a time-discretization method is used in this work.
In the first step, we prove the existence of the solutions of the time-discretized
problem in appropriate Hilbert spaces based on the Helmholtz projection in
L2(Ω,S3) (Section 4) and the monotone operator methods (Section 2). In the
second step, we derive the uniform a priori estimates for the solutions of the
time-discretized problem using the polynomial growth of the function g (see Def-
inition 4.1 below) and then we pass to the weak limit in the equivalent formula-
tion of the time-discretized problem employing the weak lower semi-continuity
of lower semi-continuous convex functions and the maximal monotonicity of g.

10



Main result. First, we define a class of maximal monotone functions we deal
with in this work.

Definition 4.1. For m ∈ L1(Ω,R), α ∈ R+ and q > 1, M(Ω,Rk, q, α,m) is

the set of multi-valued functions h : Ω×Rk → 2R
k

with the following properties

• v 7→ h(x, v) is maximal monotone for almost all x ∈ Ω,

• the mapping x 7→ jλ(x, v) : Ω → Rk is measurable for all λ > 0, where
jλ(x, v) is the inverse of v 7→ v + λh(x, v),

• for a.e. x ∈ Ω and every v∗ ∈ h(x, v)

α

(
|v|q

q
+
|v∗|q∗

q∗

)
≤ (v, v∗) +m(x), (15)

where 1/q + 1/q∗ = 1.

Remark 4.2. We note that the condition (15) is equivalent to the following two
inequalities

|v∗|q
∗
≤ m1(x) + α1|v|q, (16)

(v, v∗) ≥ m2(x) + α2|v|q, (17)

for a.e. x ∈ Ω and every v∗ ∈ h(x, v) and with suitable functions m1,m2 ∈
L1(Ω,R) and numbers α1, α2 ∈ R+.

Remark 4.3. Visco-plasticity is typically included in the former conditions by
choosing the function g to be in Norton-Hoff form, i.e.

g(Σ) = [|Σ| − σy]r+
Σ

|Σ|
, Σ ∈M3 ,

where σy is the flow stress and r is some parameter together with [x]+ :=
max(x, 0). If g :M3 7→ S3 then the flow is called irrotational (no plastic spin).

The main properties of the class M(Ω,Rk, q, α,m) are collected in the fol-
lowing proposition.

Proposition 4.4. Let H be a canonical extension of a function h : Rk → 2R
k

,
which belongs to M(Ω,Rk, q, α,m). Then H is maximal monotone, surjective
and D(H) = Lp(Ω,Rk).

Proof. See Corollary 2.15 in [7].

Next, we define the following notion of solutions for the initial boundary
value problem (4) - (9).

Definition 4.5. (Strong solutions) A function (u, σ, p) such that

(u, σ) ∈ H1(0, Te;H
1
0 (Ω,R3)× L2(Ω,S3)), Σlin ∈ Lq(ΩTe

,M3),

p ∈ H1(0, Te;L
2
Curl(Ω,M3)) ∩ L2(0, Te;Z

2
Curl(Ω,M3))

is called a strong solution of the initial boundary value problem (4) - (9), if for
every t ∈ [0, Te] the function (u(t), σ(t)) is a weak solution of the boundary value

problem (71) - (73) with ε̂p = sym p(t) and b̂ = b(t), the evolution inclusion (6)
and the initial condition (7) are satisfied pointwise.
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For the reader’s convenience we give here also the definition of weak solu-
tions for the problem (4) - (9) in the case when the monotone function g is a
subdifferential of a proper lower-semicontinuous convex function φ, i.e. g = ∂φ.

Definition 4.6. (Weak solutions) A function (u, σ, p) such that

(u, σ) ∈W 1,q∗(0, Te;W
1,q∗

0 (Ω,R3)× Lq
∗
(Ω,S3)), Σlin ∈ Lq(ΩTe

,M3),

p ∈W 1,q∗(0, Te;L
q∗(Ω,M3)) ∩ Lq

∗
(0, Te;Z

q∗

Curl(Ω,M
3))

with
(σ, dev sym p,Curl p) ∈ L∞(0, Te;L

2(Ω,S3 ×M3 ×M3))

is called a weak solution of the initial boundary value problem (4) - (9), if for
every t ∈ [0, Te] the function (u(t), σ(t)) is a weak solution of the boundary value

problem (71) - (73) with ε̂p = sym p(t) and b̂ = b(t), the initial condition (7) is
satisfied and the inequality3

1

2

∫
Ω

C−1[x]σ(x, t) · σ(x, t)dx+ C1‖ dev sym p(t)‖22 + C2‖Curl p(t)‖22

+

∫ t

0

∫
Ω

(
φ∗(x, ∂sp(x, s)) + φ(x,Σlin(x, s))

)
dxds ≤

∫ t

0

(b(s), ∂su(s))Ω ds

+
1

2

∫
Ω

C−1[x]σ(0)(x) · σ(0)(x)dx+ C1‖ dev sym p(0)‖22 + C2‖Curl p(0)‖22

holds for all t ∈ (0, Te) and with the function σ(0) ∈ L2(Ω,S3) determined by

equations (71) - (73) for ε̂p = sym p(0) and b̂ = b(0).

In our previous paper [28] it is shown that under some additional regularity
the weak solutions of the problem (4) - (9) with g = ∂φ become strong solutions
of (4) - (9) in the sense of Definition 4.5.

Next, we state the main result of this work.

Theorem 4.7. Suppose that 1 < q∗ ≤ 2 ≤ q < ∞. Assume that Ω ⊂ R3 is
a sliceable domain with a C1-boundary and C ∈ L∞(Ω,S3). Let the functions
b ∈ W 1,q(0, Te;L

q(Ω,R3)) and p(0) ∈ ZqCurl(Ω,M3) be given. Assume that g ∈
M(Ω,M3, q, α,m). Then there exists a solution (u, σ, p) of the initial boundary
value problem (4) - (9).

The proof of Theorem 4.7. In order to deal with the measurable elasticity
tensor C, we reformulate the problem (4) - (9) as follows:
Let the function (v̂, σ̂) ∈ W 1,q(0, Te,W

1,q
0 (Ω,R3) × Lq(Ω,S3)) be a solution of

the linear elasticity problem formed by the equations

−divx σ̂(x, t) = b(x, t), x ∈ Ω, (18)

σ̂(x, t) = Ĉ(sym(∇xv̂(x, t)), x ∈ Ω, (19)

v̂(x, t) = 0, x ∈ ∂Ω, (20)

3Here φ∗ is the Legendre-Fenchel conjugate of φ.

12



where Ĉ : S3 → S3 is any positive definite linear mapping independent of (x, t).
Such a function (v̂, σ̂) exists (see Section 4). Then the solution (u, σ, p) of the
initial boundary value problem (4) - (9) has the following form

(u, σ, p) = (ṽ + v̂, σ̃ + σ̂, p),

where the function (ṽ, σ̃, p) solves the problem

− divx σ̃(x, t) = 0, (21)

σ̃(x, t) = C[x](sym(∇xṽ(x, t)− p(x, t))) (22)

+(C[x]− Ĉ)(sym(∇xv̂(x, t)),

∂tp(x, t) ∈ g
(
x,Σlin(x, t)

)
, Σlin = Σlin

e + Σlin
sh + Σlin

curl, (23)

Σlin
e = σ̃ + σ̂, Σlin

sh = −C1 dev sym p, Σlin
curl = −C2 Curl Curl p ,

p(x, 0) = p(0)(x), x ∈ Ω, (24)

p(x, t)× n(x) = 0, (x, t) ∈ ∂Ω× [0, Te), (25)

ṽ(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te) . (26)

Here, the function (v̂, σ̂) given as the solution of (18) - (20) is considered as
known. Next, we show that the problem (21) - (26) has a solution. This will
prove the existence of solutions for (4) - (9).

Proof. We show the existence of solutions using the Rothe method (a time-
discretization method, see [33] for details). In order to introduce a time-
discretized problem, let us fix any m ∈ N and set

h :=
Te
2m

, p0
m := p(0), σ̂nm :=

1

h

∫ nh

(n−1)h

σ̂(s)ds ∈ Lq(Ω,R3), n = 1, ..., 2m.

Then we are looking for functions unm ∈ H1(Ω,R3), σnm ∈ L2(Ω,S3) and pnm ∈
Z2

Curl(Ω,M3) with

Σlin
n,m := σnm + σ̂nm − C1 dev sym pnm −

1

m
pnm − C2 Curl Curl pnm ∈ Lq(Ω,M3)

solving the following problem

−divx σ
n
m(x) = 0, (27)

σnm(x) = C[x](sym(∇xunm(x)− pnm(x))) (28)

+(C[x]− Ĉ)(Ĉ)−1σ̂nm(x),

pnm(x)− pn−1
m (x)

h
∈ g

(
Σlin
n,m(x)

)
, (29)

together with the boundary conditions

pnm(x)× n(x) = 0, x ∈ ∂Ω, (30)

unm(x) = 0, x ∈ ∂Ω . (31)
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Next, we adopt the reduction technique proposed in [1] to the above equations.
Let (unm, σ

n
m, p

n
m) be a solution of the boundary value problem (27) - (31). The

equations (27) - (28), (31) form a boundary value problem for the solution
(unm, σ

n
m) of the problem of linear elasticity. Due to linearity of this problem we

can write these components of the solution in the form

(unm, σ
n
m) = (ũnm, σ̃

n
m) + (v̄nm, σ̄

n
m),

with the solution (v̄nm, σ̄
n
m) of the Dirichlet boundary value problem (71) - (73)

to the data b̂ = 0, ε̂p = (C− Ĉ)(Ĉ)−1σ̂nm, and with the solution (ũnm, σ̃
n
m) of the

problem (71) - (73) to the data b̂ = 0, ε̂p = sym(pnm). We thus obtain

sym(∇xunm)− sym(pnm) = (P2 − I)sym(pnm) + sym(∇xv̄nm).

where the operator P2 is defined in Definition 4.8. We insert this equation into
(28) and get that (29) can be rewritten in the following form

pnm − pn−1
m

h
∈ G

(
−Mmp

n
m − C2 Curl Curl pnm + (σ̂nm + σ̄nm)

)
, (32)

pnm(x)× n(x) = 0, x ∈ ∂Ω, (33)

where

Mm := (CQ2 + L) sym +
1

m
I : L2(Ω,M3)→ L2(Ω,M3)

with the Helmholtz projection Q2 and the operator L defined by (74). Here G
denotes the canonical extension of g. Next, the problem (32) - (33) reads

Ψ(pnm) 3 σ̂nm + σ̄nm, (34)

where

Ψ(v) = G−1
(v − pn−1

m

h

)
+Mm(v) + ∂Φ(v).

Here, the functional Φ : L2(Ω,M3)→ R̄ is given by

Φ(v) :=

{
1
2

∫
Ω
|Curl v(x)|2dx, v ∈ L2

Curl,0(Ω,M3)

+∞, otherwise
,

respectively. The facts that Φ is a proper convex lower semi-continuous func-
tional and that Curl Curl = ∂Φ are proved in Section 3. Since Mm is bounded,
self-adjoint and positive definite (see Corollary 4.10 and the definition of Mm),
it is maximal monotone by Theorem II.1.3 in [3]. The last thing which we have
to verify is whether the following operator

Ψ = G−1 +Mm + ∂Φ

is maximal monotone. Since g ∈ M(Ω,M3, q, α,m), using the boundness of
Mm we conclude that the domains of G−1 and Mm are equal to the whole space
L2(Ω,M3). Therefore, Theorem 2.5 guarantees that the sum G−1 + Mm + ∂Φ
is maximal monotone with

dom(Ψ) = dom(∂Φ) := Z2
Curl(Ω,M3).
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Since Mm is coercive in L2(Ω,M3), which obviously yields the coercivity of Ψ,
the operator Ψ is surjective by Theorem 2.6. Thus, we conclude that equation
(34) as well as the problem (32) - (33) have the solutions with the required
regularity, i.e. pnm ∈ Z2

Curl(Ω,M3). By the constructions this implies that the
boundary value problem (27) - (31) is solvable as well (for more details we refer
the reader to [1]).

Rothe approximation functions: For any family {ξnm}n=0,...,m of functions
in a reflexive Banach space X, we define the piecewise affine interpolant ξm ∈
C([0, Te], X) by

ξm(t) :=

(
t

h
− (n− 1)

)
ξnm +

(
n− t

h

)
ξn−1
m for (n− 1)h ≤ t ≤ nh (35)

and the piecewise constant interpolant ξ̄m ∈ L∞(0, Te;X) by

ξ̄m(t) := ξnm for (n− 1)h < t ≤ nh, n = 1, ..., 2m, and ξ̄m(0) := ξ0
m. (36)

For the further analysis we recall the following property of ξ̄m and ξm:

‖ξm‖Lq(0,Te;X) ≤ ‖ξ̄m‖Lq(−h,Te;X) ≤
(
h‖ξ0

m‖
q
X + ‖ξ̄m‖qLq(0,Te;X)

)1/q

, (37)

where ξ̄m is formally extended to t ≤ 0 by ξ0
m and 1 ≤ q ≤ ∞ (see [33]).

A-priori estimates. Multiplying (27) by (unm − un−1
m )/h and then integrating

over Ω we get (
σnm, sym(∇x(unm − un−1

m )/h)
)

Ω
= 0.

Equations (28), (29) implies that for a.e. x ∈ Ω

σnm ·
(

sym(∇x(unm − un−1
m )/h)− C−1[x](σnm − σn−1

m )/h
)

σnm ·
(
C−1[x](C[x]− Ĉ)(Ĉ)−1(σ̂nm − σ̂n−1

m )/h
)

−p
n
m − pn−1

m

h
·
(
C1 dev sym pnm +

1

m
pnm + C2 Curl Curl pnm

)
+
pnm − pn−1

m

h
· σ̂nm = g−1

(pnm − pn−1
m

h

)
·
(pnm − pn−1

m

h

)
.

After integrating the last identity over Ω, the above computations imply

1

h

(
C−1σnm, σ

n
m − σn−1

m

)
Ω

+ C1
1

h

(
dev sym(pnm − pn−1

m ),dev sym pnm

)
Ω

+
1

m

1

h

(
pnm − pn−1

m , pnm

)
Ω

+ C2
1

h

(
Curl(pnm − pn−1

m ),Curl pnm

)
Ω

+α

∥∥∥∥pnm − pn−1
m

h

∥∥∥∥q
∗

Ω

≤ 1

h

(
σnm, C̄(σ̂nm − σ̂n−1

m )
)

Ω
+

1

h

(
σ̂nm, p

n
m − pn−1

m

)
Ω
,

where C̄ := C−1(C − Ĉ)(Ĉ)−1. Multiplying by h and summing the obtained
relation for n = 1, ..., l for any fixed l ∈ [1, 2m] we derive the following inequality
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(here B := C−1)

1

2

(
‖B1/2σlm‖22 + C1‖ dev sym plm‖22 +

1

m
‖plm‖22 + C2‖Curl plm‖22

)
+hα

l∑
n=1

∥∥∥∥pnm − pn−1
m

h

∥∥∥∥q
∗

Ω

≤ C(0) (38)

+h

l∑
n=1

(
σnm, C̄

σ̂nm − σ̂n−1
m

h

)
Ω

+ h

l∑
n=1

(
σ̂nm,

pnm − pn−1
m

h

)
Ω

,

where4

2C(0) := ‖B1/2σ(0)‖22 + C1‖ dev sym p(0)‖22 +
1

m
‖p(0)‖22 + C2‖Curl p(0)‖22.

Since σ̂nm ∈ Lq(Ω,S3), using Young’s inequality with ε > 0 we get that(
σ̂nm,

pnm − pn−1
m

h

)
Ω

≤ ‖σ̂nm‖q‖(pnm − pn−1
m )/h‖q∗

≤ Cε‖σ̂nm‖qq + ε‖(pnm − pn−1
m )/h‖q

∗

q∗ , (39)

where Cε is a positive constant appearing in the Young inequality. Analogically,
we obtain (

σnm, C̄
σ̂nm − σ̂n−1

m

h

)
Ω

≤ ε‖σnm‖22 + Cε‖(σ̂nm − σ̂n−1
m )/h‖22 (40)

with some other constant Cε. Combining the inequalities (38), (39) and (40),
and choosing an appropriate value for ε > 0 we obtain the following estimate

1

2

(
‖B1/2σlm‖22 + C1‖ dev sym plm‖22 +

1

m
‖plm‖22 + C2‖Curl plm‖22

)
+hĈε

l∑
n=1

∥∥∥pnm − pn−1
m

h

∥∥∥q∗
Ω
≤ C(0) + hε

l∑
n=1

‖σnm‖22 (41)

+hC̃ε

l∑
n=1

(
‖σ̂nm‖qq + ‖(σ̂nm − σ̂n−1

m )/h‖22
)
,

where C̃, C̃ε and Ĉε are some positive constants. Now, taking Remark 8.15
in [33] and the definition of Rothe’s approximation functions into account we

4Here we use the following inequality

l∑
n=1

(φnm − φn−1
m , φnm)Ω =

1

2

l∑
n=1

(
‖φnm‖22 − ‖φn−1

m ‖22
)

+
1

2

l∑
n=1

‖φnm − φn−1
m ‖22 ≥

1

2
‖φlm‖22 −

1

2
‖φ0

m‖22

for any family of functions φ0
m, φ

1
m, ..., φ

m
m.

16



rewrite (41) as follows

‖B1/2σ̄m(t)‖22 + C1‖ dev sym p̄m(t)‖22 +
1

m
‖p̄m(t)‖22 + C2‖Curl p̄m(t)‖22

+2Ĉε

∫ Te

0

∫
Ω

∣∣∂tpm(x, t)
∣∣q∗dxdt (42)

≤ 2C(0) + ε‖σm‖22,Ω×(0,t) + 2C̃ε‖σ̂‖qW 1,q(0,Te;Lq(Ω,S3)).

From (42) we get immediately that

C̄ε‖σm‖22,Ω×(0,t) + C1‖ dev sym p̄m(t)‖22 +
1

m
‖p̄m(t)‖22 + C2‖Curl p̄m(t)‖22

+2Ĉε‖∂tpm‖q
∗

q∗,Ω×(0,t) ≤ 2C(0) + 2C̃ε‖σ̂‖qW 1,q(0,Te;Lq(Ω,S3)), (43)

where C̄ε is some other constant depending on ε. Altogether, from estimate (43)
we get that

{pm}m is uniformly bounded in W 1,q∗(0, Te;L
q∗(Ω,M3)), (44)

{dev sym p̄m}m is uniformly bounded in L∞(0, Te;L
2(Ω,M3)), (45)

{σm}m, is uniformly bounded in L2(0, Te;L
2(Ω,S3)), (46)

{Curl p̄m}m is uniformly bounded in L∞(0, Te;L
2(Ω,M3)), (47){

1√
m
p̄m

}
m

is uniformly bounded in L∞(0, Te;L
2(Ω,M3)). (48)

In particular, the uniform boundedness of the sequences in (44) - (51) yields

{um}m is uniformly bounded in W 1,q∗(0, Te;W
1,q∗

0 (Ω,R3)), (49)

{Curl Curl p̄m}m is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (50){

Σ̄lin
m

}
m

is uniformly bounded in Lq(0, Te;L
q(Ω,M3)). (51)

Employing (37) the estimates (44) - (51) further imply that the sequences
{σm}m, {dev sym pm}m, {Curl pm}m, {pm/

√
m}m,

{
Σlin
m

}
m

and {Curl Curl pm}m
are also uniformly bounded in the corresponding spaces. As a result, we have

{pm}m is uniformly bounded in Lq
∗
(0, Te;Z

q∗

Curl(Ω,M
3)). (52)

Furthermore, due to inequality (3) and (45), (47) and (50) we obtain that

{p̄m}m, {pm}m are uniformly bounded in L2(0, Te;Z
2
Curl(Ω,M3)).(53)

Additional regularity of discrete solutions. To this end, let us assume
that

p(0) ∈ ZqCurl(Ω,M
3).

Then, in virtue of our uniform estimates, the condition g ∈ M(Ω,M3, q, α,m)
and the regularity of p(0) one easily gets that

g(Σlin
0,m) ≤ C (54)
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with a positive constant C independent of m. Let us now multiply (29) by
−(Σlin

n,m − Σlin
(n−1),m)/h. Then using the monotonicity of g we obtain that

1

m

∥∥∥∥pnm − pn−1
m

h

∥∥∥∥2

Ω

+

∥∥∥∥dev sym

(
pnm − pn−1

m

h

)∥∥∥∥2

Ω

+

∥∥∥∥Curl

(
pnm − pn−1

m

h

)∥∥∥∥2

Ω

≤
(
pnm − pn−1

m

h
,
σnm − σn−1

m

h

)
Ω

+

(
pnm − pn−1

m

h
,
σ̂nm − σ̂n−1

m

h

)
Ω

.

With (27) and (28) the last inequality can be rewritten as follows

1

m

∥∥∥∥pnm − pn−1
m

h

∥∥∥∥2

Ω

+

∥∥∥∥dev sym

(
pnm − pn−1

m

h

)∥∥∥∥2

Ω

+

∥∥∥∥Curl

(
pnm − pn−1

m

h

)∥∥∥∥2

Ω

+

(
C−1σ

n
m − σn−1

m

h
,
σnm − σn−1

m

h

)
Ω

≤
(
pnm − pn−1

m

h
,
σ̂nm − σ̂n−1

m

h

)
Ω

+

(
σnm − σn−1

m

h
, C̄
σ̂nm − σ̂n−1

m

h

)
Ω

.

Multiplying by h and summing then for n = 1, ..., 2m we get the estimate

1

m
‖∂tpm‖2ΩTe

+ ‖dev sym (∂tpm)‖2ΩTe
+ ‖Curl (∂tpm)‖2ΩTe

(55)

+C ‖∂tσm‖2ΩTe
≤ C‖∂tσ̂m‖2,ΩTe

(‖∂tσm‖2,ΩTe
+ ‖∂tpm‖2,ΩTe

).

Using now inequality (3) and Young’s inequality with ε > 0 in (55) we obtain
that

1

m
‖∂tpm‖2ΩTe

+ Cε ‖∂tpm‖2ΩTe
+ Cε ‖∂tσm‖2ΩTe

≤ C‖∂tσ̂m‖22,ΩTe
. (56)

Since σ̂m is uniformly bounded in W 1,q(ΩTe ,S3), estimates (55) and (56) imply

{dev sym ∂tpm}m is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (57)

{∂tσm}m is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (58)

{Curl ∂tpm}m is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (59){

1√
m
∂tpm

}
m

is uniformly bounded in L2(0, Te;L
2(Ω,M3)), (60)

{pm}m is uniformly bounded in H1(0, Te;L
2
Curl(Ω,M3)). (61)

Existence of solutions. By estimates (44) - (53), (57) - (61) and at the expense
of extracting a subsequence, we have that the sequences in (44) - (53), (57) -
(61) converge with respect to weak and weak-star topologies in corresponding
spaces, respectively. Next, we claim that weak limits of {p̄m}m and {pm}m
coincide. Indeed, using (44) this can be shown as follows

‖pm − p̄m‖22,ΩTe
=

m∑
n=1

∫ nh

(n−1)h

∥∥∥∥(pnm − pn−1
m )

t− nh
h

∥∥∥∥2

2

dt
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=
h2+1

2 + 1

m∑
n=1

∥∥∥∥pnm − pn−1
m

h

∥∥∥∥2

2

=
h2

2 + 1

∥∥∥∥dpmdt
∥∥∥∥2

2,ΩTe

,

which implies that p̄m−pm converges strongly to 0 in L2(ΩTe
,M3). The proof of

the fact that the difference σ̄m−σm converges weakly to 0 in L2(ΩTe
,S3) can be

performed as in [33, p. 210]. For the reader’s convenience we reproduce here the
reasoning from there. Let us choose some appropriate number d ∈ N and then fix
any integer n0 ∈ [1, 2d]. Let h0 = Te/2

n0 . Consider functions I[h0(n0−1),h0n0]v
with v ∈ L2(Ω,S3), where IK denotes the indicator function of a set K. We
note that, according to [33, Proposition 1.36], the linear combinations of all such
functions are dense in L2(ΩTe

,S3). Then for any h ≤ h0
5

(
σm − σ̄m, I[h0(n0−1),h0n0]v

)
ΩTe

=

∫ h0n0

h0(n0−1)

(σm(t)− σ̄m(t), v)Ω dt

=

h0n0/h∑
n=h0(n0−1)/h+1

∫ nh

(n−1)h

(
(σnm − σn−1

m )
t− nh
h

, v

)
Ω

dt

= −h
2

(
σh0n0/h
m − σh0(n0−1)/h

m , v
)

Ω
= −h

2
(σ̄m(h0n0)− σ̄m(h0(n0 − 1)), v)Ω .

Employing (46) we get that σ̄m−σm converges weakly to 0 in L2(ΩTe
,S3). Next,

by (48) the sequence {pm/m}m converges strongly to 0 in L2(ΩTe
,M3). Sum-

marizing all observations made above we may conclude that the limit functions
denoted by ṽ, σ̃, p and Σlin have the following properties

(ṽ, σ̃) ∈ H1(0, Te;H
1
0 (Ω,R3)× L2(Ω,S3)), Σlin ∈ Lq(ΩTe ,M3),

p ∈ H1(0, Te;L
2
Curl(Ω,M3)) ∩ L2(0, Te;Z

2
Curl(Ω,M3)).

Before passing to the weak limit, we note that the Rothe approximation func-
tions satisfy the equations

−divx σ̄m(x, t) = b̄m(x, t), (62)

σm(x, t) = C(sym(∇xum(x, t)− pm(x, t))) (63)

+(C[x]− Ĉ)(Ĉ)−1σ̂m(x),

∂tpm(x, t) ∈ g
(
Σ̄lin
m (x, t)

)
, (64)

together with the initial and boundary conditions

pm(x, 0) = p(0)(x), x ∈ Ω, (65)

pm(x, t)× n(x) = 0, x ∈ ∂Ω, (66)

um(x, t) = 0, x ∈ ∂Ω . (67)

Passing to the weak limit in (62), (63) and (65) - (67) we obtain that the limit
functions ṽ, σ̃, p and Σlin satisfy equations (21), (22) and (24) - (26). To show

5We recall that h is chosen to be equal to Te/2m for some m ∈ N.
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that the limit functions satisfy also (23) we proceed as follows:
As above, the system (62) - (67) can be rewritten as∫ Te

0

∫
Ω

(
g−1(∂tpm(x, t)) · ∂tpm(x, t))

)
dxdt = −

(
dσm
dt

,C−1σ̄m

)
ΩTe

−C1

(
dpm
dt

,dev sym p̄m

)
ΩTe

− 1

m

(
dpm
dt

, p̄m

)
ΩTe

(68)

−C2

(
dpm
dt

,Curl Curl p̄m

)
ΩTe

+ (σ̂m, ∂tpm)ΩTe
+
(
C̄σ̄m, ∂tσ̂m

)
ΩTe

.

Due to (57) - (61) and Lemma 4.11 we can pass to the weak limit inferior in
(68) to get the following inequality

lim sup
m→∞

∫ Te

0

∫
Ω

(
g−1(∂tpm(x, t)) · ∂tpm(x, t))

)
dxdt (69)

≤ (∂tp, σ̃ + σ̂ − dev sym p− Curl Curl p)ΩTe
.

Let G denote the canonical extension of g. Then (69) reads as follows

lim sup
m→∞

(
G−1(∂tpm), ∂tpm

)
ΩTe
≤ (∂tp, σ̃ + σ̂ − dev sym p− Curl Curl p)ΩTe

. (70)

Since G−1 is pseudo-monotone, inequality (70) yields that for a.e. (x, t) ∈ ΩTe

∂tp(x, s) ∈ g(σ̃(x, t) + σ̂(x, t)− dev sym p(x, t)− Curl Curl p(x, t)).

Therefore, we conclude that the limit functions ṽ, σ̃, p and Σlin satisfy equations
(21) - (26) and the existence of strong solutions is herewith established.

This completes the proof of Theorem 4.7.

Appendix A: Helmholtz’s projection

In this section we present some results concerning projection operators to spaces
of tensor fields, which are symmetric gradients and to spaces of tensor fields with
vanishing divergence. For details the reader is referred to [2].

In the linear elasticity theory it is well known (see [10, Theorem 10.15]) that
a Dirichlet boundary value problem formed by the equations

−divx σ(x) = b̂(x), x ∈ Ω, (71)

σ(x) = C[x](sym (∇xu(x))− ε̂p(x)), x ∈ Ω, (72)

u(x) = 0, x ∈ ∂Ω, (73)

to given b̂ ∈ W−1,q(Ω,R3) and ε̂p ∈ Lq(Ω,S3) has a unique weak solution

(u, σ) ∈ W 1,q
0 (Ω,R3) × Lq(Ω,S3) provided the open set Ω has a C1-boundary

and C ∈ C(Ω̄,S3). Here the number q satisfies 1 < q < ∞. For b̂ = 0 the
solution of (71) - (73) satisfies the inequality

‖ sym(∇xu)‖q ≤ C‖ε̂p‖q

with some positive constant C.
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Definition 4.8. For every ε̂p ∈ Lq(Ω,S3) we define a linear operator Pq :
Lq(Ω,S3)→ Lq(Ω,S3) by

Pq ε̂p := sym(∇xu),

where u ∈ W 1,q
0 (Ω,R3) is the unique weak solution of (71) - (73) to the given

function ε̂p and b̂ = 0.

Next, a subset Gq of Lq(Ω,S3) is defined by

Gq = {sym(∇xu) | u ∈W 1,q
0 (Ω,R3)}.

The main properties of Pq are stated in the following lemma.

Lemma 4.9. For every 1 < q < ∞ the operator Pp is a bounded projector
onto the subset Gq of Lq(Ω,S3). The projector (Pq)

∗ adjoint with respect to the
bilinear form [ξ, ζ]Ω := (ξ, ζ)Ω on Lq(Ω,S3)× Lq∗(Ω,S3) satisfies

(Pq)
∗ = Pq∗ , where

1

q∗
+

1

q
= 1.

Due to Lemma 4.9 the following projection operator

Qq = (I − Pq) : Lq(Ω,S3)→ Lq(Ω,S3)

is well-defined and generalizes the classical Helmholtz projection.
Let L : S3 → S3 be the linear, positive semi-definite mapping given by

Lv = C1 dev v. (74)

The next result is needed for the subsequent analysis.

Corollary 4.10. Let (CPq+L)∗ be the operator adjoint to CPq+L : Lq(Ω,S3)→
Lq(Ω,S3) with respect to the bilinear form (ξ, ζ)Ω on the product space Lq(Ω,S3)
× Lq

∗
(Ω,S3). Then (CPq + L)∗ = CPq∗ + L. Moreover, the operator CQ2 + L

is non-negative and self-adjoint.

For the proof of this result the reader is referred to [1].

Appendix B

In this appendix we prove the following lemma.

Lemma 4.11. Let X be a reflexive Banach space embedded continuously into
a Hilbert space H, the functions φm, φ̄m be defined by (35) and (36) for any
family of functions φ0

m, φ
1
m, ..., φ

m
m, respectively, and φ be a weak limit of φm.

Then the following inequality

lim sup
m→∞

〈
dφm
dt

, φ̄m

〉
Lq(X∗),Lp(X)

≥
〈
dφ

dt
, φ

〉
Lq(X∗),Lp(X)

holds, where 〈·, ·〉Lq(X∗),Lp(X) denotes the the dual pairing between Lp(X) and

Lq(X∗).
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Proof. The last inequality results from the next line by taking lim sup from both
side and using the lower semi-continuity of the norm〈

dφm
dt

, φ̄m

〉
Lq(X∗),Lp(X)

=

m∑
n=1

∫ hn

h(n−1)

〈
φnm − φn−1

m

h
, φnm

〉
X∗,X

dt

=

m∑
n=1

〈
φnm − φn−1

m , φnm
〉
X∗,X

=

m∑
n=1

1

2
‖φnm‖2H −

1

2
‖φn−1

m ‖2H

+
1

2
‖φnm − φn−1

m ‖2H ≥
1

2
‖φmm‖2H −

1

2
‖φ0

m‖2H .

The proof is completed by the application of the generalized integration-by-parts
formula.
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