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Abstract. We act on the assumption that the boundary of every ’phys-
ical’ domain Ω has microscopic asperities which influence the boundary
behaviour of weak solutions of the Boussinesq equations. Let Ωn ⊆
R3, n ∈ N, be domains with rough boundaries and let Ωn ’converge to’
Ω. Consider a sequence (un, θn)n∈N of weak solutions of the Boussinesq
equations with un fulfilling the impermeability condition un ·N = 0 on
∂Ωn and θn fulfilling the Robin boundary condition ∂θn

∂N
+α(θn−h0) = 0

on ∂Ωn. In this paper the boundary conditions and limit equations of
weak limits of (un, θn) on Ω under certain assumptions on the rugosity
of the boundaries will be determined.

1. Introduction and main result

We consider the Boussinesq equations

∂u

∂t
− ν∆u+ (u · ∇)u+

1
ρ
∇p− βθg = f1 ,

div u = 0 ,
∂θ

∂t
− κ∆θ + (u · ∇)θ = f2 ,

u(x, 0) = u0(x) ,

θ(x, 0) = θ0(x)

(1.1)

for a viscous, incompressible fluid with velocity u = (u1, u2, u3), pressure p,
and temperature θ on a domain Ω ⊆ R3 and a finite time interval [0, T [.
In (1.1) we denote by g = g(x) the gravitational vector force. The positive
constants appearing in (1.1) have the following meaning: ρ is the density,
ν the kinematic viscosity, β the coefficient of thermal expansion, and κ the
thermal diffusivity. The equations (1.1) constitute a model of motion of a
viscous, incompressible buoyancy-driven fluid flow coupled with heat con-
vection (Boussinesq approximation). For existence and uniqueness of weak
or strong solutions with Dirichlet or mixed Dirichlet/Neumann boundary
conditions we refer to [4, 10, 11, 12]. We suppose that the boundary is
impermeable, i.e.,

u ·N = 0 on ∂Ω , (1.2)

where N denotes the outer normal unit vector on ∂Ω.
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The present paper is based on the assumption that a ’real domain’ Ω is
never perfectly smooth, i.e., it contains microscopic asperities influencing
the effective boundary conditions for u and θ. In this paper we want to
determine the effect on boundary rugosity to weak solutions (u, θ) of the
Boussinesq equations (1.1).

The influence of boundary rugosity to weak solutions of the Navier-Stokes
equations was observed in several papers. In [5] the authors considered a
sequence of weak solutions un, n ∈ N, of the incompressible, instationary
Navier-Stokes equations on variable domains Dn converging to a domain D
with un fulfilling the impermeability condition un · N = 0 on Γn where Γn
is a periodically oscillating part of the boundary of Dn. They proved that
under suitable assumptions on the rugosity of Γn that a weak limit u on D
of un fulfills the no slip condition u = 0 on Γ. Here Γ is the part of the
boundary of D to which Γn converges. In [1] Bucur et al. generalized this
criterion by introducing the non-degeneracy condition (see Definition 3.2).
The case when the rugosity is degenerate in one direction is considered in [2]
for the stationary case and in [3] for the instationary case.

Throughout this work we suppose that the domain Ω has the form

Ω = { (x, x3) ∈ R3; x3 > ψ(x); x ∈ R2 } (1.3)

with a Lipschitz continuous function ψ : R2 → R+. As a model for these mi-
croscopic asperities we consider a family of ’domains with rough boundaries’

Ωn = { (x, x3) ∈ R3; x3 > ψ(x)− φn(x); x ∈ R2} (1.4)

with a family of Lipschitz continuous functions φn : R2 → R+ satisfying the
following properties:

(1) ∀ compact K ⊆ R2 it holds φn(x) →
n→∞

0 uniformly in x ∈ K,

(2)
|φn(x)− φn(y)|
|x− y|

≤ L ∀x, y ∈ R2;x 6= y ∀n ∈ N.

It follows by a well known argument that ψ ∈ W 1,∞
loc (R2), φn ∈ W 1,∞(R2)

and ‖∇φn‖∞ ≤ L for all n ∈ N. Consider a sequence (un, θn)n∈N of weak
solutions of the Boussinesq equations (1.1) on Ωn where un satisfies the
impermeability condition

un ·N = 0 on ∂Ωn (1.5)

and θn satisfies the Robin boundary condition

∂θn
∂N

+ α(θn − h0) = 0 on ∂Ωn (1.6)

where h0 denotes the exterior temperature on ∂Ωn.
Following the approach in [1] we will introduce a Young measure R =

(Rx)x∈R2 associated to a suitable subsequence of (∇φn)n∈N which describes
the character of oscillations of (∇φn)n∈N. This is motivated by the fact that
∇φn describes the deviation of the normal vector vector on Ωn to the normal
vector on Ω in the x1, x2-plane. Therefore, in our model the rugosity of the
boundary is characterized by R.

Assume that un converges weakly to u on Ω and that θn converges weakly
to θ on Ω. We will show that (u, θ) satisfy the Boussinesq equations (1.1)
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on [0, T [×Ω. Moreover, it is proved that θ satisfies the Robin boundary
condition

∂θ

∂N
+ αΛ · (θ − h0) = 0 on ∂Ω (1.7)

with a scalar function Λ(x) , x ∈ ∂Ω, which can be explicitly computed using
R, see (1.15). Under a non-degeneracy condition on R we will show that u
satisfies the no slip boundary condition

u = 0 on ∂Ω. (1.8)

This means that the microscopic asperities prevent the fluid from slipping,
i.e. u adheres completely to the boundary. By multiplying the Boussinesq
system (1.1) with test functions φ,w and using integration by parts and (1.7)
we obtain the following definition of weak solutions.

Definition 1.1. Let Ω ⊆ R3 be a domain with uniformly Lipschitz bound-
ary, let 0 < T < ∞, g ∈ L∞(0, T ;L∞(Ω)), let h0 ∈ L2(0, T ;L2(∂Ω)),
Λ ∈ L∞(0, T ;L∞(∂Ω)), and let ν, α, β, κ > 0 be constants. Further assume
u0, θ0 ∈ L2(Ω) and f1, f2 ∈ L2(0, T ;L2(Ω)).

(1) A pair

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1(Ω)) ,

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
(1.9)

is called a weak solution of the Boussinesq equations (1.1) with im-
permeability condition (1.2) and Robin boundary condition (1.7) if
it holds

−
∫ T

0
〈u, φt〉Ω dt−

∫ T

0
〈u⊗ u,∇φ〉Ω dt+ ν

∫ T

0
〈∇u,∇φ〉Ω dt

= β

∫ T

0
〈θg, φ〉Ω dt+

∫ T

0
〈f1, φ〉Ω dt+ 〈u0, φ(0)〉Ω

(1.10)

for all φ ∈ C∞0 ([0, T [;C∞0,σ(Ω)) and

−
∫ T

0
〈θ, wt〉Ω dt−

∫ T

0
〈u · ∇w, θ〉Ω dt+ ακ

∫ T

0
〈Λ · (θ − h0), w〉∂Ω dt

= −κ
∫ T

0
〈∇θ,∇w〉Ω dt+

∫ T

0
〈f2, w〉Ω dt+ 〈θ0, w(0)〉Ω

(1.11)

for all w ∈ C∞0 ([0, T [×Ω).
(2) A pair

u ∈ L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ,

θ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
(1.12)

is called a weak solution of the Boussinesq equations (1.1) with no slip
boundary condition (1.8) and Robin boundary condition (1.7) if the
identity (1.10) is satisfied for all φ ∈ C∞0 ([0, T [;C∞0,σ(Ω)) and (1.11)
is satisfied for all w ∈ C∞0 ([0, T [×Ω).
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Remark. In the ’usual’ definition of weak solutions to the Boussinesq equa-
tions it is assumed that u0 ∈ L2

σ(Ω). But for the formulation of Theorem 1.2
we only suppose u0 ∈ L2(Ω) in Definition 1.1. If (u, θ) is a weak solution as
in Definition 1.1 then it can be proved that, after a redefinition on a null set,
u : [0, T [→ L2

σ(Ω) is weakly continuous and the initial value is attained in
the sense u(0) = Pu0 where P is the usual Helmholtz projection on L2(Ω).

Using Galerkin approximation and a Fourier-type Aubin-Lions argument
(see [12, 14]) it can be proved that there exists a weak solution (u, θ) of
the Boussinesq equations (1.1) with boundary conditions as in (2) of Defini-
tion 1.1. Now we are able to formulate our main result. In this theorem a
precise formulation of what we have described in the introduction so far will
be given.

Theorem 1.2. Let Ω,Ωn be as in (1.3), (1.4), let D ⊆ R3 be open with
Ωn ⊆ D for all n ∈ N. Let 0 < T < ∞ , g ∈ L∞(0, T ;L∞(D)), let h0 ∈
L2(0, T ;H1(D)), and let ν > 0, α > 0, β > 0, κ > 0 be constants. Further
assume u0, θ0 ∈ L2(D) with divu0 = 0, and f1, f2 ∈ L2(0, T ;L2(D)).

Consider a sequence of weak solutions (un, θn)n∈N of the Boussinesq equa-
tions (1.1) on [0, T [×Ωn (with external forces f1, f2|[0,T [×Ωn and initial val-
ues u0, θ0|Ωn) with impermeability condition (1.5) and Robin boundary con-
dition (1.6).

Let u, θ ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)), and let (mk)k∈N be a subse-
quence such that the following two properties are fulfilled.

(i) (umk)k∈N and (θmk)k∈N are both bounded in L∞(0, T ;L2(Ωmk)) ∩
L2(0, T ;H1(Ωmk)) and

umk ⇀∗
k→∞

u in L∞(0, T ;L2(Ω)) , umk ⇀
k→∞

u in L2(0, T ;H1(Ω)) , (1.13)

θmk ⇀∗
k→∞

θ in L∞(0, T ;L2(Ω)) , θmk ⇀
k→∞

θ in L2(0, T ;H1(Ω)). (1.14)

(ii) Let R = (Rx)x∈R2 be a Young measure associated to (∇φmk)k∈N. By
Theorem 3.1 choose a compact set KR ⊆ R2 with supp(Rx) ⊆ KR
for almost all x ∈ R2.

Then the following statements are satisfied.
(1) (u, θ) is a weak solution of the Boussinesq equations (1.1) on [0, T [×Ω

(with external forces f1, f2|[0,T [×Ω and initial values u0, θ0|Ω) with
impermeability condition (1.2) and Robin boundary condition (1.7)
with the (time independent) ’weight function’

Λ(x, ψ(x)) =
1√

1 + |∇ψ(x)|2

∫
KR

√
1 + |∇ψ(x)− λ|2 dRx(λ) (1.15)

for almost all x ∈ R2.
(2) Under the additional assumption that R is non-degenerate (see Defi-

nition 3.2) it holds that u satisfies the no-slip boundary condition (1.8).
Therefore (u, θ) is a weak solution of the Boussinesq equations (1.1)
with no slip boundary condition (1.8) for u and Robin boundary con-
dition (1.7) with Λ defined by (1.15).

We remark that this theorem is independent of the concrete boundary
conditions that are fulfilled by u. For the existence and properties of Young
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measures needed for this theorem we refer to Section 3. The proof of this
theorem is the content of Section 4. In Section 2 we will discuss some pre-
liminaries, especially we will decompose the pressure in a harmonic and a
regular part as introduced in [16].

2. Preliminaries

2.1. Notation. Given a Banach space X and an interval [0, T [ , 0 < T <∞,
we denote by Lp(0, T ;X) , 1 ≤ p ≤ ∞ the Banach space of equivalence classes
of strongly measurable functions f : [0, T [→ X such that

‖f‖p :=
(∫ T

0
‖f(t)‖pX dt

) 1
p

<∞

if p <∞ and
‖f‖∞ := ess sup[0,T [‖f(·)‖X ,

if p = ∞. In the case that X = Lq(Ω) , 1 ≤ q ≤ ∞, the norm in the space
Lp(0, T ;Lq(Ω)) is denoted by ‖ · ‖q,p;Ω;T . Let d ∈ N, let Ω ⊆ Rd be an open
set, let 1 ≤ p ≤ ∞, and k ∈ N. We denote by Lp(Ω),W k,p(Ω),W k,p

0 (Ω)
the usual Lebesgue and Sobolev spaces with norm ‖ · ‖Lp(Ω) = ‖ · ‖p and
‖ · ‖Wk,p(Ω) = ‖ · ‖k,p, respectively. We set Hk(Ω) := W k,2(Ω) and Hk

0 (Ω) :=
W k,2

0 (Ω) . Furthermore define H0(Ω) := L2(Ω) and H−1(Ω) := W 1,2
0 (Ω)′.

For s ∈ R+ \ N let Hs(Ω) := W s,2(Ω) denote the usual Sobolev-Slobodeckij
space, see [15, Definition II.3.1]. Looking at [15, Satz II.5.3, Satz II.5.4
and Satz II.7.9 ] we get that for a bounded Lipschitz domain Ω ⊆ R3 and
0 ≤ s2 < s1 ≤ 1 the embedding

Hs1(Ω) ↪→ Hs2(Ω) (2.1)

is compact. For two measurable functions f, g with the property f ·g ∈ L1(Ω)
where f · g means the usual scalar product of scalar, vector or matrix fields,
we set

〈f, g〉Ω :=
∫

Ω
f(x) · g(x) dx.

Note that (in general) the symbol Lp(Ω) etc. will be used for spaces of scalar,
vector or matrix-valued functions. Let Cm(Ω) ,m = 0, 1, . . . ,∞, denote
the usual space of functions for which all partial derivatives of finite order
|α| ≤ m exist and are continuous and let Cm(Ω) := {φ|Ω;φ ∈ Cm(Rd)}. As
usual, Cm0 (Ω) is the set of all functions from Cm(Ω) with compact support in
Ω and let C∞0 (]0, T [×Ω) denote the space of smooth function with compact
support in ]0, T [×Ω . Further we define the following spaces of vector fields

C∞0,σ(Ω) := {φ ∈ C∞0 (Ω)d; divφ = 0 } ,

Lpσ(Ω) := C∞0,σ(Ω)
‖·‖p

.

Moreover, C∞0 (]0, T [;C∞0,σ(Ω)) is the space of smooth, solenoidal vector fields
with compact support in ]0, T [×Ω and

C∞0 ([0, T [;C∞0,σ(Ω)) := { v|[0,T [×Ω; v ∈ C∞0 (]− 1, T [;C∞0,σ(Ω)) } ,

C∞0 ([0, T [×Ω) := {w|[0,T [×Ω; w ∈ C∞0 (]− 1, T [×Rd) }.
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Let Ω ⊆ Rd , d ≥ 2, be a bounded Lipschitz domain. Let dS denote the
surface measure on ∂Ω. The space L2(∂Ω) should denote the usual Lebesgue
space on ∂Ω with scalar product 〈·, ·〉∂Ω. For 0 < s < 1 define Hs(∂Ω) :=
W s,2(∂Ω), see [13, I.3.6]. It is well known (see [15, Satz II.8.7]) that for
1
2 < s ≤ 1 there exists a continuous, linear trace operator T : Hs(Ω) →
Hs− 1

2 (∂Ω) with the property Tφ = φ|∂Ω for φ ∈ C1
0 (Ω).

Next we will discuss some definitions for Section 3. LetM(Rd) denote the
Banach space of finite, signed Radon measures on Rd with the total variation
norm ‖ · ‖M(Rd). It holds that C0(Rd)′ ∼= M(Rd) (see [8, Theorem 1.200])
where C0(Rd) := {φ ∈ C(Rd); limx→∞ φ(x) = 0 }. A Carathéodory function
is a function G(x, λ) : R2×R2 → R such that G(x, ·) is a continuous function
for all fixed x and G(·, λ) is a measurable function for all fixed λ. We call
a function f : Ω 7→ M(Rd) weakly∗ measurable if for all φ ∈ C0(Rd) the
function

x 7→ [f(x), φ]M(Rd);C0(Rd) =
∫

Rd
f(x, y)φ(y) dy , x ∈ Ω,

is measurable. Define the space

L∞ω∗(Ω;M(Rd)) := { f : Ω→M(Rd); f weakly∗ measurable;
x 7→ ‖f(x)‖M(Rd) measurable and essentially bounded }.

For two domains Ω1,Ω2 we write Ω1 ⊆⊆ Ω2 if Ω1 ⊆ Ω2. Further if (Xn)n∈N
is a sequence of Banach spaces we will write that a sequence vn ∈ Xn, n ∈ N,
is bounded in (Xn)n∈N if there is a constant M > 0 such that ‖vn‖Xn ≤M
for all n ∈ N.

2.2. Decomposition of the pressure. Let G ⊆ Rd , d ≥ 2, be a bounded
Lipschitz domain. For u ∈ L2(Ω) we write divu = 0 or ∆u = 0 if these
identities are satisfied in the sense of distributions on Ω. If u ∈ L2(Ω) satisfies
∆u = 0, then we can apply Weyl’s Lemma to get (after a redefinition on a
null set) that u is smooth, i.e. u ∈ C∞(Ω). Define

∆W 2,2
0 (G) := {∆p; p ∈W 2,2

0 (G) } ,

L2
0(G) := { p ∈ L2(G);

∫
G
p dx = 0 }.

A major point in the proof of the main theorem is to prove identity (4.3)
below. Since the standard Aubin-Lions argument cannot be used in our
situation, we formulate and prove the following variant of Theorem 2.6 in [16].

Theorem 2.1. Let G ⊆ Rd , d ≥ 2, be a bounded C2-domain, let 1 < r <∞,
0 < T <∞, let u0 ∈ L2(G) with divu0 = 0, let Q1 ∈ Lr(0, T ;L2(G)d

2
), and

let Q2 ∈ Lr(0, T ;L2(G)d). Consider u ∈ L∞(0, T ;L2(G)d) with divu(t) = 0
for a.a. t ∈]0, T [ and

−
∫ T

0
〈u, ∂tφ〉G dt+

∫ T

0
〈Q1,∇φ〉G dt+

∫ T

0
〈Q2, φ〉G dt− 〈u0, φ(0)〉G = 0

(2.2)
for all φ ∈ C∞0 ([0, T [;C∞0,σ(G)). Then there exist unique functions pr ∈
Lr(0, T ;L2

0(G)), ph ∈ L∞(0, T ;L2
0(G)) with pr(t) ∈ ∆W 2,2

0 (G) ,∆xph(t) = 0



CONVERGENCE PROPERTIES IN DOMAINS WITH ROUGH BOUNDARIES 7

for a.a. t ∈]0, T [ such that

−
∫ T

0
〈u+∇xph, ∂tφ〉G dt+

∫ T

0
〈Q1,∇φ〉G dt+

∫ T

0
〈Q2, φ〉G dt

= 〈u0, φ(0)〉G +
∫ T

0
〈pr,divφ〉G dt

(2.3)

for all φ ∈ C∞0 ([0, T [;C∞0 (G)). The following estimates are satisfied

‖pr‖2,r;G;T ≤ c(‖Q1‖2,r;G;T + ‖Q2‖2,r;G;T ) , (2.4)
‖ph‖2,∞;G;T ≤ c(‖u‖2,∞;G;T + ‖Q1‖2,r;G;T + ‖Q2‖2,r;G;T ) (2.5)

with a constant c = c(G, r, T ) > 0.

Proof. Step 1. Define u(0) := u0. For ψ ∈ C∞0,σ(G) , η ∈ C∞0 ([0, T [) we
have

−
∫ T

0
〈u(t), ψ〉G η′(t) dt− 〈u0, ψ(0)〉G η(0)

=
∫ T

0
−
(
〈Q1(t),∇ψ〉G + 〈Q2(t), ψ〉G

)
η(t) dt.

(2.6)

Identity (2.6) implies that there exists a Lebesgue null set N = N(ψ) such
that

〈u(t), ψ〉G − 〈u0, ψ〉G = −
∫ t

0
(〈Q1(t),∇ψ〉G + 〈Q2(t), ψ〉G ) dt (2.7)

for all t ∈ [0, T [\N . Using a separability argument u can be redefined on
a Lebesgue null set of [0, T [ such that (2.7) holds for all t ∈ [0, T [ and all
ψ ∈ C∞0,σ(G) since u ∈ L∞(0, T ;L2(G)d). For t ∈ [0, T [ define Q̃1(t) :=∫ t

0 Q1(s) ds and Q̃2(t) :=
∫ t

0 Q2(s) ds. We employ Fubini’s Theorem and [13,
Lemma II.2.2.2] to get for each fixed t ∈ [0, T [ a unique p(t) ∈ L2

0(G) such
that

〈u(t)− u0, ψ〉G + 〈Q̃1(t),∇ψ〉G + 〈Q̃2(t), ψ〉G = 〈p(t),divψ〉G (2.8)

for all ψ ∈W 1,2
0 (G). The estimate [13, (II.2.2.6)] yields

‖p(t)‖2 ≤ c(G, r)(‖u(t)− u0‖2 + ‖Q̃1(t)‖2 + ‖Q̃2(t)‖2) (2.9)

for all t ∈ [0, T [. Using (2.9) we can show that t 7→ p(t) , t ∈ [0, T [ , is
Bochner measurable (as a function [0, T [→ L2(G)). Furthermore it holds

‖p(t)‖2,∞;G;T ≤ c(G, r, T )(‖u‖2,∞;G;T + ‖Q1‖2,r;G;T + ‖Q2‖2,r;G;T ). (2.10)

Step 2. [16, Corollary 2.5] implies the existence of unique functions p̃r ∈
L∞(0, T ;L2

0(G)) and ph ∈ L∞(0, T ;L2
0(G)) with pr(t) ∈ ∆W 2,2

0 (G) and
∆xph(t) = 0 for a.a. t ∈ [0, T [ such that

p(t) = p̃r(t) + ph(t) , ‖p̃r(t)‖2 + ‖ph(t)‖2 ≤ c‖p(t)‖2 (2.11)
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with a constant c = c(G, r, T ) for a.a. t ∈ [0, T [. From (2.9), (2.11) it follows
p̃r(0) = 0. We integrate (2.8) over [0, T [ and use the Gauss theorem to get∫ T

0
〈u(t)− u0, φ〉G dt+

∫ T

0
〈Q̃1(t),∇φ〉G dt+

∫ T

0
〈Q̃2(t), φ〉G dt

=
∫ T

0
〈p̃r(t), divφ〉G dt−

∫ T

0
〈∇xph(t), φ〉G dt

(2.12)

for all φ ∈ C∞0 ([0, T [×G).
Step 3. Fix φ ∈ C∞0 (G) and consider ψ := ∇φ in (2.8). With divu = 0
and ∆xph = 0 it follows∫

G

(
p̃r(t+ h)− p̃r(t)

)
∆φdx =

∫
G

(
Q̃1(t+ h)− Q̃1(t)

)
· ∇2φdx

+
∫
G

(
Q̃2(t+ h)− Q̃2(t)

)
· ∇φdx

(2.13)

for all t ∈]0, T [ and all 0 < h < T − t. Since p̃r(t) ∈ ∆W 2,2
0 (G) we obtain

from [16, (2.1),(2.2)] that

‖p̃r(t+ h)− p̃r(t)‖2 ≤ c
2∑
i=1

‖Q̃i(t+ h)− Q̃i(t)‖2

for all t ∈]0, T [ and all 0 < h < T − t with a constant c = c(G, r, T ). Hence∫ T−h

0

∥∥∥ p̃r(t+ h)− p̃r(t)
h

∥∥∥r
2
dt ≤ c

2∑
i=1

∫ T−h

0

∥∥∥Q̃i(t+ h)− Q̃i(t)
h

∥∥∥r
2
dt

≤ c
2∑
i=1

∫ T−h

0

(1
h

)r ∫ t+h

t
‖Qi(s)‖r2 ds (h)r/r

′
dt

= c

2∑
i=1

1
h

∫ T

0

∫ T−h

0
1[t,t+h](s)‖Qi(s)‖r2 dt ds

≤ c
2∑
i=1

∫ T

0
‖Qi(s)‖r2 ds

(2.14)

for all t ∈]0, T [ and all 0 < h < T − t with a constant c = c(r,G, T ) > 0
independent of t and h. Estimate (2.14) yields p̃r ∈W 1,r(0, T ;L2(G)) and

‖∂tp̃r‖2,r;T ≤ c ( ‖Q1‖2,r;T + ‖Q2‖2,r;T ). (2.15)

Step 4. Let pr := ∂tp̃r ∈ Lr(0, T ;L2(G)). For arbitrary φ ∈ C∞0 ([0, T [×G)
consider ∂tφ instead of φ in (2.12) and integrate by parts to get (2.3). In
this argument φ(T ) = 0 and p̃r(0) = 0 were used.
Proof of uniqueness. Let p2

r and p2
h be an other pair of functions satis-

fying the conclusions of this lemma. By putting pr − p2
r in (2.4) and ph− p2

h

in (2.5) we get pr(t) = p2
r(t) and ph(t) = p2

h(t) for almost all t ∈]0, T [. �
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2.3. Preliminary Lemmas.

Lemma 2.2. Let Ω ,Ωn be as in (1.3), (1.4), let K ⊆ R2 be compact.
(1) Let (vn)n∈N be a bounded sequence in H1(Ωn). Then

lim
n→∞

∫
K
|vn(x, ψ(x)− φn(x))− vn(x, ψ(x))| dx = 0. (2.16)

(2) If (θn)n∈N is a bounded sequence in L2(0, T ;H1(Ωn)) then

lim
n→∞

∫
[0,T [×K

|θn(t, x, ψ(x)− φn(x))− θn(t, x, ψ(x))| d(x, t) = 0. (2.17)

Proof. For v ∈ C∞0 (Ωn) one has∫
K
|v(x, ψ(x)− φn(x))− v(x, ψ(x))| dx =

∫
K

∣∣∣∫ ψ(x)

ψ(x)−φn(x)

∂v

∂x3
(x, τ) dτ

∣∣∣ dx.
(2.18)

By a density argument, the identity (2.18) still holds true for vn ∈ H1(Ωn).
We deduce with (2.18)∫

K
|vn(x, ψ(x)− φn(x))− vn(x, ψ(x))| dx

≤
(∫

Ωn

|∂vn
∂x3

(x′, τ)|2 dτ
)1/2

(∫
K

∫ ψ(x)

ψ(x)−φn(x)
1 dτ dx

)1/2

≤ ‖vn‖W 1,2(Ωn)

√
|K| ‖φn‖1/2∞,K .

(2.19)

By using φn(x) → 0 for n → ∞ uniformly in x ∈ K, we get (2.16). The
proof of (2.17) is based on a ’time dependent’ version of (2.18) and an argu-
mentation similar to (2.19). �

Lemma 2.3. Let Ω ,Ωn be as in (1.3), (1.4).
(1) Let (vn)n∈N be bounded in L2

σ(Ωn), let v ∈ L2(Ω) with vn ⇀ v for
n→∞ in L2(Ω). Then v ∈ L2

σ(Ω).
(2) Let (wn)n∈N be bounded in L2(0, T ;L2

σ(Ωn)), let w ∈ L2(0, T ;L2(Ω))
with wn ⇀ w for n→∞ in L2(0, T ;L2(Ω)). Then w(t) ∈ L2

σ(Ω) for
a.a. t ∈ [0, T [.

Proof. We will only prove the second statement. Let φ ∈ C∞0 ([0, T [×Ω)
and let B ⊆ R3 be a ball with supp(φ(t, ·)) ⊆ B for all t ∈ [0, T [. Define
Bn := (Ωn \ Ω) ∩B and consider the identity∫ T

0
〈wn, φ〉Ωn dt =

∫ T

0
〈wn, φ〉Ω dt+

∫ T

0
〈wn, φ〉Bn dt. (2.20)

We get∣∣∣∣∫ T

0
〈wn, φ〉Bn dt

∣∣∣∣ ≤ sup
(t,x)∈[0,T [×Ωn

|φ(t, x)|
∫

[0,T [×Bn
|wn(t, x)| d(x, t)

≤ c
√
T |Bn| ‖wn‖L2(0,T ;W 1,2(Ωn))

(2.21)

with a constant c > 0 independent of n ∈ N. Since 1Ωn → 1Ω in L1
loc(R3) for

n → ∞, we get |Bn| → 0 for n → ∞ and consequently from (2.20) (2.21),
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and wn ⇀ w in L2(0, T ;L2(Ω)) it follows

lim
n→∞

∫ T

0
〈wn, φ〉Ωn dt =

∫ T

0
〈w, φ〉Ω dt (2.22)

for all φ ∈ C∞0 ([0, T [×Ω). We use wn ∈ L2(0, T ;L2
σ(Ωn)) and (2.22) to get∫ T

0 〈w,∇φ〉Ω dt = 0 for all φ ∈ C∞0 ([0, T [×Ω). A cut-off procedure gives us
a Lebesgue null set N ⊆]0, T [ such that 〈w(t),∇ψ〉Ω = 0 for all t ∈]0, T [\N
and all ψ ∈ C∞0 (Ω). Therefore, combining [9, Lemma III.2.1] with [7, Lemma
2.1(i)] we see that w(t) ∈ L2

σ(Ω) for all t ∈]0, T [\N . �

3. Young measures

The formulation of the main theorem is based on the following existence
theorem for Young measures. The main difficulty is that (φn)n∈N is defined
on an unbounded set.

Theorem 3.1. Let (φn) be as in (1.4). Then there exists a (not necessarily
unique) subsequence (mk)k∈N and a unique Young measure R = (Rx)x∈R2 ∈
L∞ω∗(R2;M(R2)) associated to the subsequence (∇φmk)k∈N with the following
properties.

(1) For a.a. x ∈ R2 it holds that Rx is a (positive) probability measure
on R2 and there exists a compact set KR ⊆ R2 with supp(Rx) ⊆ KR
for a.a. x ∈ R2.

(2) Let G(x, λ) : R2 × R2 → R be a Carathéodory function and define

G(x) :=
∫

R2

G(x, λ) dRx(λ) , for a.a. x ∈ R2. (3.1)

If the sequence (G(x,∇φmk(x))k∈N is weakly convergent in L1(R2)
and G ∈ L1(R2) then it holds

G(x,∇φmk(x)) ⇀
k→∞

G(x) in L1(R2). (3.2)

Remark. The subsequence (mk)k∈N to which there exists a Young measure
associated to (∇φmk)k∈N is not unique. But for a fixed subsequence (mk)k∈N
there is at most one Young measure associated to (∇φmk)k∈N.

Proof. For each l ∈ N there exists a (not necessarily unique) subsequence
(ml

k)k∈N and a unique Young measure (νlx)x∈B(0,l) ∈ L∞ω∗(B(0, l);M(R2))
associated to (∇φmlk)k∈N. We have employed [8, Proposition 8.4 and The-
orem 8.6] which is possible since B(0, l) := {x ∈ R2; |x| ≤ l} is bounded
and the sequence (∇φn)n∈N is bounded in L∞(B(0, l)). We remark that
(νlx)x∈B(0,l) ∈ L∞ω∗(B(0, l);M(R2)) is uniquely determined by the conver-
gence property

ψ(∇φmlk) ⇀∗
k→∞

∫
R2

ψ(λ) dνlx(λ) in L∞(B(0, l)) (3.3)

for all ψ ∈ C0(R2). Using induction on l ∈ N there exists (ml
k)k∈N such that

(ml+1
k )k∈N is a subsequence of (ml

k)k∈N and (νlx)x∈B(0,l) ∈ L∞ω∗(B(0, l);M(R2))
is the unique Young measure associated to (∇φmlk)k∈N. Moreover νl+1

x = νlx
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for a.a. x ∈ B(0, l) by (3.3) . Therefore it is possible to obtain a well defined
Young measure (Rx)x∈R2 ∈ L∞ω∗(R2;M(R2)) by requiring

(Rx)x∈R2 |B(0,l) = (νlx)x∈B(0,l) for a.a. x ∈ B(0, l) (3.4)

for all l ∈ N. Define mk := mk
k , k ∈ N (’diagonal sequence’). Let G(x, λ) :

R2 × R2 → R be a Carathéodory function as in (2). Since G ∈ L1(R2) and

1B(0,l)G(x,∇φmk(x)) ⇀
k→∞

1B(0,l)

∫
R2

G(x, λ) dRx(λ) in L1(R2) (3.5)

for all l ∈ N it follows that (3.2) is true. We choose a compact set KR ⊆ R2

such that ∇φmk(x) ∈ KR for a.a. x ∈ R2 and all k ∈ N. By considering
ψ ∈ C0(R2) with ψ(λ) = 0 for all λ ∈ KR in (3.3) we finish the proof. �

For the boundary behaviour of u the following definition is needed.

Definition 3.2. A Young measureR = (Rx)x∈R2 ∈ L∞ω∗(R2;M(R2)) is non-
degenerate if for a.a. x ∈ R2 it holds that supp(Rx) contains two linearly
independent vectors in R2.

4. Proof of the main theorem

The crucial point for the proof of the first part of the main theorem is
to prove that the Boussinesq system (1.1) has the property that a weak
limit of (un, θn)n∈N satisfies the variational identities (1.10), (1.11) with an
’additional weight function’ Λ on Ω. The proof of this weak compactness
property is the central topic of the lemmas in Section 5.1. To show the second
part of the main theorem we need additionally the boundary behaviour of
u which will be treated in Theorem 4.4. Without loss of generality we may
assume mk = k for all k ∈ N.

4.1. Lemmas needed for the proof of statement (1) of Theorem 1.2.

Lemma 4.1. The weak limit (u, θ) in (1.13), (1.14) satisfies (1.10) on Ω
for all φ ∈ C∞0 ([0, T [;C∞0,σ(Ω)).

Proof. By interpolation and the continuous imbedding H1(Ω) ↪→ L6(Ω) we
get with (1.13)∫ T

0
‖un ⊗ un‖4/32,Ω dt ≤ c

∫ T

0
‖un‖2/32,Ω‖un‖

2
H1(Ω) dt ≤ c (4.1)

with a constant c > 0 independent of n ∈ N. Therefore we find a matrix
field in L4/3(0, T ;L2(Ω)), denoted by u⊗ u, such that (along a not relabeled
subsequence)

un ⊗ un ⇀
n→∞

u⊗ u in L4/3(0, T ;L2(Ω)). (4.2)

The main step in the proof of this lemma is to prove the following assertion.
Assertion. It holds

lim
n→∞

∫ T

0
〈un ⊗ un,∇φ〉Ω dt =

∫ T

0
〈u⊗ u,∇φ〉Ω dt. (4.3)

for all φ ∈ C∞0 ([0, T [;C∞0,σ(Ω)).
Proof of (4.3). Fix φ ∈ C∞0 ([0, T [;C∞0,σ(Ω)). We choose smooth, bounded
domains Ω1,Ω2 with supp(φ(t, ·)) ⊆⊆ Ω1 ⊆⊆ Ω2 ⊆⊆ Ω for all t ∈ [0, T [.
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Since (un, θn) satisfies (1.10) for all ψ ∈ C∞0 ([0, T [;C∞0,σ(Ω2)) an application
of Theorem 2.1 yields the existence of unique

pr,n ∈ L4/3(0, T ;L2
0(Ω2)) , pr,n(t) ∈ ∆W 2,2

0 (G) for a.a. t ∈ [0, T [ , (4.4)

ph,n ∈ L∞(0, T ;L2
0(Ω2)) , ∆xph,n(t) = 0 for a.a. t ∈ [0, T [ (4.5)

such that

−
∫ T

0
〈un +∇xph,n, ψ〉Ω2η

′(t)

=
∫ T

0

(
〈un ⊗ un,∇ψ〉Ω2 − ν〈∇un,∇ψ〉Ω2

)
η(t) dt

+
∫ T

0

(
β〈θng, ψ〉Ω2 + 〈f1, ψ〉Ω2 + 〈pr,n, divψ〉Ω2

)
η(t) dt

(4.6)

for all ψ ∈ C∞0 (Ω2) , η ∈ C∞0 (]0, T [). Consider the estimates (2.4) and (2.5)
to see that (ph,n)n∈N is bounded in L∞(0, T ;L2(Ω2)) and that (pr,n)n∈N is
bounded in L4/3(0, T ;L2(Ω2)). Hence (along a not relabeled subsequence)

ph,n ⇀∗
n→∞

ph in L∞(0, T ;L2(Ω2)) , (4.7)

pr,n ⇀
n→∞

pr in L4/3(0, T ;L2(Ω2)). (4.8)

By (4.7) we can conclude that ∆xph(t) = 0 for a.a. t ∈ [0, T [. Conse-
quently (4.7) and [6, Theorem 2.2.7] imply that (ph,n)n∈N is bounded in
L∞(0, T ;C2(Ω1)). Therefore

ph,n ⇀
n→∞

ph in L2(0, T ;H2(Ω1)). (4.9)

Fix n ∈ N. With the imbedding L2(Ω1) ↪→ H−1(Ω1) , y 7→ 〈y, ·〉Ω1 , we can
write equation (4.6) as (it holds Ω1 ⊆ Ω2)

d

dt
(un +∇xph,n) = 〈un ⊗ un,∇·〉Ω1

− ν〈∇un ,∇·〉Ω1 + 〈pr,n,div·〉Ω1 + βθng + f1

(4.10)

in L4/3(0, T ;H−1(Ω1)). Consider the imbedding scheme

H1(Ω1) ↪→
compact

L2(Ω1) ↪→
continuous

H−1(Ω1). (4.11)

Looking at (4.10), (4.8), (1.13) (1.14) we see that ( ddt(un + ∇xph,n))n∈N is
bounded in L4/3(0, T ;H−1(Ω1)). Since by (1.13) and (4.9) the sequence
(un+∇xph,n)n∈N is bounded in L2(0, T ;H1(Ω1)) we get with (4.11) and [14,
Theorem 3.2.2] that a subsequence of (un+∇xph,n)n∈N is strongly convergent
in L2(0, T ;L2(Ω1)). Since (un + ∇xph,n)n∈N is also weakly convergent in
L2(0, T ;L2(Ω1)) to u+∇xph we have proven

un +∇xph,n →
n→∞

u+∇xph strongly in L2(0, T ;L2(Ω1)). (4.12)
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It follows (for this fixed φ)∫ T

0
〈u⊗ u,∇φ〉Ω1 dt

= lim
n→∞

∫ T

0
〈un ⊗ un,∇φ〉Ω1 dt

= lim
n→∞

∫ T

0
〈(un +∇xph,n)⊗ un,∇φ〉Ω1 dt

− lim
n→∞

∫ T

0
〈∇xph,n ⊗ (un +∇xph,n),∇φ〉Ω1 dt

=
∫ T

0
〈(u+∇xph)⊗ u,∇φ〉Ω1 −

∫ T

0
〈∇xph ⊗ (u+∇xph),∇φ〉Ω1 dt

=
∫ T

0
〈u⊗ u,∇φ〉Ω1 dt.

In this calculation (1.13), (4.9), (4.12) and the following argument were em-
ployed: For h ∈ L2(0, T ;H1(Ω1)) with ∆h(t) = 0 for a.a. t ∈]0, T [ it holds∫ T

0 〈∇xh ⊗ ∇xh,∇φ〉Ω1 dt = 0. From (4.2) and the above computation we
obtain (4.3).

Now we can finish the proof of this lemma. Let φ ∈ C∞0 ([0, T [;C∞0,σ(Ω)).
Using in the variational identity (1.10) for un and θn on Ωn with test function
φ the convergences (1.13), (1.14) and (4.3) we get that (u, θ) fulfills (1.10).

�

Since we want to prove the Robin boundary condition (1.15) it is impor-
tant that in the following lemma the domain Ω′ can share common parts of
the boundary with Ω.

Lemma 4.2. For all bounded Lipschitz domains Ω′ with Ω′ ⊆ Ω and for all
0 ≤ s < 1 it holds

θn →
n→∞

θ strongly in L2(0, T ;Hs(Ω′)). (4.13)

Proof. Assume by contradiction that there is a bounded Lipschitz domain
Ω′ with Ω′ ⊆ Ω and a subsequence (θmk)k∈N, an ε > 0 and 0 ≤ s < 1 with

‖θmk − θ‖L2(0,T ;Hs(Ω′)) ≥ ε ∀k ∈ N. (4.14)

From (1.11) we get for all ψ ∈ C∞0 (Ω′) and η ∈ C∞0 (]0, T [)

−
∫ T

0
〈θn, ψ〉Ω′η′(t)

=
∫ T

0

(
〈θnun,∇ψ〉Ω′ − κ〈∇θn,∇ψ〉Ω′ + 〈f2, ψ〉Ω′

)
η(t) dt.

(4.15)

In view of the identification L2(Ω′) ↪→ H−1(Ω′) , y 7→ 〈y, ·〉Ω′ , equation (4.15)
means that

d

dt
θn = 〈θnun,∇·〉Ω′ − κ〈∇θn,∇·〉Ω′ + f2 (4.16)

as identity in L
4
3 (0, T ;H−1(Ω′)) for every fixed n ∈ N. By (1.14) we see

that the sequence (θmk)k∈N is bounded in L2(0, T ;H1(Ω′)). From (4.16)
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with (1.13), (1.14) it follows that ( ddtθmk)k∈N is bounded in L4/3(0, T ;H−1(Ω′)).
Consider the imbedding scheme

H1(Ω′) ↪→
compact

Hs(Ω′) ↪→
continuous

H−1(Ω′). (4.17)

The compactness of the first imbedding follows from (2.1). From (4.17)
and [14, Theorem 3.2.2] we get the existence of a subsequence of (θmk)k∈N
which is strongly convergent in L2(0, T ;Hs(Ω′)). Looking at (1.14) yields
that this strong limit of a subsequence of (θmk)k∈N has to be θ. This con-
tradicts (4.14). �

Lemma 4.3. (u, θ) satisfies (1.11) on Ω for all w ∈ C∞0 ([0, T [×Ω) with Λ
defined by (1.15).

Proof. The crucial point of the lemma is to prove that

lim
n→∞

∫ T

0
〈θn, w〉∂Ωn dt =

∫ T

0
〈Λ · θ, w〉∂Ω dt (4.18)

for all w ∈ C∞0 ([0, T [×Ω) where Λ is defined by (1.15).
Proof of (4.18). Let K ⊆ R2 be compact with

supp(w) ⊆ { (t, x, ψ(x)− φn(x)); (t, x) ∈ [0, T [×K}

for all n ∈ N. Define

sn(x) :=
√

1 + |∇ψ(x)−∇φn(x)|2 , x ∈ K ,

and Q := [0, T [×K. Then we estimate∣∣∣∫ T

0
〈θn, w〉∂Ωn dt−

∫ T

0
〈Λ · θ, w〉∂Ω dt

∣∣∣
≤
∫
Q
| (θnw)(t, x, ψ(x)− φn(x))− (θnw)(t, x, ψ(x))| sn(x) d(x, t)

+
∫
Q
|(θnw)(t, x, ψ(x))− (θw)(t, x, ψ(x))| sn(x) d(x, t)

+
∣∣∣∫
Q

(θw)(t, x, ψ(x))
(
sn(x)−

∫
KR

√
1 + |∇ψ(x)− λ|2 dRx(λ)

)
d(x, t)

∣∣∣.
(4.19)

Let Ω′ ⊆ Ω be a bounded Lipschitz domain such that {(x, ψ(x));x ∈ K} ⊆
∂Ω′. Fix any 1

2 < s < 1. Using the continuous trace operator Hs(Ω′) ↪→
L2(∂Ω′) (see section 2.1) it follows from (4.13) that

θn → θ strongly in L2(0, T ;L2(∂Ω′)). (4.20)

A consequence of (2.17) and (4.20) is that the first two terms on the right
hand side of (4.19) tend to zero for n → ∞. In this argument we have
employed the boundedness of ∇ψ ,∇φn and the uniform convergence of
w(t, x, ψ(x) − φn(x)) for (t, x) ∈ [0, T [×K. To show that the third term
in (4.19) converges to zero consider the Carathéodory function

H(x, λ) := χK(x)
√

1 + |∇ψ(x)− λ|2 , x ∈ R2 , λ ∈ R2. (4.21)
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Using (3.2) it follows (along a not relabeled subsequence)

χK(x)
√

1 + |∇ψ(x)−∇φn(x)|2 ⇀
n→∞

χK(x)
∫
KR

√
1 + |∇ψ(x)− λ|2 dRx(λ)

(4.22)
in L1(R2) and even in L2(R2) due to the term χK . Especially we get for a.a.
t ∈ [0, T [

lim
n→∞

∫
K

(θw)(t, x, ψ(x))sn(x) dx

=
∫
K

(θw)(t, x, ψ(x))
∫
KR

√
1 + |∇ψ(x)− λ|2 dRx(λ) dx.

(4.23)

By (4.23) and the boundedness of (sn)n∈N on K we conclude with Lebesgue’s
theorem on dominated convergence that the third term on the right hand
side of (4.19) tends to zero for n→∞ (along a not relabeled subsequence).
Altogether (4.18) holds.

Let w ∈ C∞0 ([0, T [×Ω). We can consider w as an element in C∞0 ([0, T [×Ωn)
and therefore (un, θn) satisfies (1.11) with Λ replaced by 1 and w as test func-
tion. In this lemma we have to prove that for n tending to infinity (u, θ)
satisfies (1.11) on Ω with Λ defined by (1.15). The desired convergence
of the boundary term

∫ T
0 〈θn, w〉∂Ωn dt follows from (4.18). With the same

argumentation as in (4.18) (in this case (4.20) is not needed) we show that

lim
n→∞

∫ T

0
〈h0, w〉∂Ωn dt =

∫ T

0
〈Λ · h0, w〉∂Ω dt.

To pass to the limit in the ’other linear terms’ we make use of (1.13),
(1.14) and (2.22). For the nonlinear term

∫ T
0 〈un · ∇w, θn〉Ωn we additionally

need (4.13). �

4.2. Proof of statement 1 of Theorem 1.2. Combine Lemma 4.1 and
Lemma 4.3 to get that (u, θ) satisfies the identities (1.10) and (1.11) on Ω
for all test function φ and w as in Definition 1.1. From Lemma 2.3 we obtain
u ∈ L∞(0, T ;L2

σ(Ω)).

4.3. Proof of statement 2 of Theorem 1.2. Since we have already proven
statement 1 of the main theorem it is enough to prove the boundary be-
haviour of u when the Young measure R is non degenerate. The following
theorem describes the boundary behaviour of u under these conditions. The
idea of the proof is based on [1]; in our situation we consider a more general
(especially unbounded) domain. This theorem is completely independent of
the equations that are fulfilled by (un, θn)n∈N.

Theorem 4.4. Let Ω,Ωn be as in (1.3), (1.4). Let (un)n∈N be bounded in
L2(0, T ;H1(Ωn)), let un ⇀ u for n→∞ in L2(0, T ;H1(Ω)) and let un(t) ∈
L2
σ(Ω) for a.a. t ∈]0, T [ and for all n ∈ N. Assume that R = (Rx)x∈R2 is a

non-degenerate Young measure associated to (∇φn)n∈N. Then u(t) ∈ H1
0 (Ω)

for a.a. t ∈ [0, T [.

Proof. It suffices to prove the following assertion.
Whenever (vn)n∈N is a bounded sequence in H1(Ωn) ∩ L2

σ(Ωn) with vn ⇀ v
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for n → ∞ in H1(Ω) then v ∈ H1
0 (Ω). Assume this statement is true. For

n ∈ N and δ > 0 with δ < T − δ define

uδn(t) := (ũn ∗ ρδ)(t) :=
∫

R
ũn(t− τ)ρδ(τ) dτ , t ∈ [δ, T − δ] , (4.24)

where (ρδ)δ>0 is a smooth Dirac sequence with suitable compact support and
ũn(τ) := 1[0,T ](τ)un(τ). Then the sequence (uδn(t))n∈N with t ∈ [δ, T − δ]
has the properties of the sequence (vn)n∈N of the statement. Hence uδ(t) ∈
H1

0 (Ω) for all t ∈ [δ, T −δ]. Since uδ(t)→ u(t) for δ → 0+ strongly in H1(Ω)
for a.a. t ∈ [0, T ] we get u(t) ∈ H1

0 (Ω) for a.a. t ∈ [0, T [. It remains to show
that the assertion is true.

Let KR ⊆ R2 be compact with supp(Rx) ⊆ KR for a.a. x ∈ R2.
Lemma 2.3 yields v ∈ L2

σ(Ω). Fix D ∈ C(R2) , G ∈ C∞0 (R2). Choose
K ⊆ R2 compact with supp(G) ⊆ K. Define sn(x) := (∇ψ(x)−∇φn(x),−1)
for x ∈ K. Then

0 = lim
n→∞

∫
K
G(x)D(∇φn(x))

(
(v1
n, v

2
n, v

3
n)(x, ψ(x)− φn(x))

)
· sn(x) dx

= lim
n→∞

∫
K
G(x)D(∇φn(x))

(
(v1, v2, v3)(x, ψ(x))

)
· sn(x) dx

= −
∫
K
G(x)

(
(v1, v2)(x, ψ(x))

)
·
∫
KR

D(λ)λ dRx(λ) dx

+ lim
n→∞

∫
K
G(x)D(∇φn(x))

(
(v1, v2, v3)(x, ψ(x))

)
· (∇ψ(x),−1) dx

= −
∫
K
G(x)

(
(v1, v2)(x, ψ(x))

)
·
∫
KR

D(λ)λ dRx(λ) dx.

(4.25)

In the first equality of (4.25) we have made use of vn ∈ L2
σ(Ωn) and the

fact that sn(x) is parallel to the normal vector on ∂Ωn for a.a. x ∈ K.
Let Ω′ ⊆ Ω be a bounded Lipschitz domain with {(x, ψ(x));x ∈ K} ⊆
∂Ω′. From vn ⇀ v for n → ∞ in H1(Ω′) it follows vn → v for n → ∞
(strongly) in L2(∂Ω′). Further we use (2.16) and an argumentation similar
to (4.19) to get the second equality in (4.25). To get the first integral in
the third equality of (4.25) consider the Carathéodory function H(x, λ) :=
G(x)D(λ)[v1, v2](x, ψ(x)) ·λ for x, λ ∈ R2 and use (3.2). The argumentation
is similar to that in (4.21), (4.22). Moreover we use v ∈ L2

σ(Ω) to obtain that
the second term in the third equality of (4.25) equals zero for every n ∈ N.

A separability argument shows that there exists a null set M ⊆ R2 such
that (

(v1, v2)(x, ψ(x)
)
·
∫
KR

D(λ)λ dRx(λ) = 0 (4.26)

for all D ∈ C(R2) and all x ∈ R2 \M . Consider x ∈ R2 \M such that
Rx is non-degenerate. Fix (y1, z1), (y2, z2) ∈ supp(Rx) and r > 0 such
that w for all v ∈ Br(y1, z1) and w ∈ Br(y2, z2) the vectors v and w
are linearly independent in R2 . For i = 1, 2 choose Di ∈ C(R2) with
0 ≤ Di ≤ 1 , Di(yi, zi) = 1 and supp(Di) ⊆ Br(yi, zi). Then the vectors∫
KR

Di(λ)λ dRx(λ) , i = 1, 2 are linearly independent in R2. As consequence
of (4.26) it follows

(
(v1, v2)(x, ψ(x))

)
= 0 for all x ∈ R2 \M . With v ·N = 0
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on ∂Ω we get v ∈ H1
0 (Ω). This finishes the proof of Theorem 4.4 and conse-

quently the proof of the Main Theorem 1.2. �

Acknowledgment. The author thanks Reinhard Farwig for his kind sup-
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[3] Feireisl, E., Necǎsová, Š.:The effective boundary conditions for vector fields on do-
mains with rough boundaries: Applications to fluid mechanics. Preprint, Institute of
Mathematics, AS CR, Prague. 2008-1-22

[4] Canon, J., DiBenedetto, E. The initial value problem for the Boussinesq equations
with data in Lp. Approximation Methods for Navier-Stokes Problems, ed. by R. Raut-
man, Lecture Notes in Mathematics 771, Springer-Verlag, 1980

[5] Casado-Díaz, J., Fernández-Cara, E., Simon, J.: Why viscous fluids adhere to rugose
walls: A mathematical explanation. J. Differential Equations 189 (2003), 526-537

[6] Evans, L.: Partial Differential Equations. American Mathematical Society, Provi-
dence, 1998

[7] Farwig, R.: The weak Neumann problem and the Helmholtz decomposition in general
aperture domains. Progress in Partial Differential Equations: the Metz Surveys 2, ed.
by M. Chipot. Pitman Research Notes in Mathematics 296 (1993), 86-96

[8] Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: Lp Spaces.
Springer New York, 2007

[9] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier Stokes Equa-
tions, Volume I. Springer Verlag, New York, 1998

[10] Hishida, T. Existence and Regularizing Properties of Solutions for the Nonstationary
Convection Problem. Funkc. Ekvac. 34 (1991), 449-474

[11] Kagei, Y.: On weak solutions of nonstationary Boussinesq equations. Differential
Integral Equations 6, oo. 3 (1993), 587-611

[12] Morimoto, H.: Non-stationary Boussinesq equations. J. Fac. Sci. Univ. Tokyo Sect.
IA, Math. 39 (1992), 61-75

[13] Sohr, H.: The Navier-Stokes-Equations: An elementary functional analytic approach.
Birkhäuser Verlag, Basel, 2001

[14] Temam, R.: Navier-Stokes Equations. North-Holland, 1977
[15] Wloka, J.: Partielle Differentialgleichungen. B.G. Teubner, Stuttgart, 1982
[16] Wolf, J.: Existence of Weak Solutions to the Equations of Non-Stationary Motion of

Non-Newtonian Fluids with Shear Rate Dependent Viscosity. J. Math. Fluid Mech. 9
(2007), 104-138

Christian Komo, Darmstadt University of Technology, Department of
Mathematics, 64283 Darmstadt, Germany

E-mail address: komo@mathematik.tu-darmstadt.de


