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Abstract

We present a model hierarchy multilevel optimisation approach to solve an optimal boundary
control problem in glass manufacturing. The process is modelled by radiative heat transfer and for-
mulated as an optimal control problem restricted by partial differential algebraic equations (PDAE)
and additional control constraints. We consider a sequence of model approximations given by space-
time dependent non-linear PDAEs of ascending accuracy. The different models allow for a model
hierarchy based optimisation approach, where the models are shifted automatically as the optimi-
sation proceeds. We present a realisation of a multilevel generalised SQP method within the fully
space-time adaptive optimisation environment Kardos using linearly implicit methods of Rosenbrock
type and multilevel finite elements. We apply the optimal control algorithm to a glass cooling problem
and present numerical experiments for the model hierarchy based approach in two spatial dimensions
and for a fully space-time adaptive optimisation in three spatial dimensions.

Keywords: optimal boundary control; multilevel; SQP-methods; control constraints; adaptivity;
Rosenbrock methods; 3D finite elements; model hierarchy; partial differential algebraic equations;
PDAE; radiative heat transfer

1 Introduction

During the last decade it has been becoming of growing interest not only to simulate the behaviour of en-
gineering, medical or financial applications but also to optimise their input such that the resulting output
follows a desired profile. Usually, the considered process is described by a system of space-time dependent
partial differential equations, possibly coupled with algebraic constraints (PDAEs). Mathematically, this
results in a so called PDAE-constrained optimal control problem, in general with additional constraints
on control and state. For real-world applications, the bottleneck of solving such problems is the high
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complexity of the involved PDAEs, which have to be solved several times within each optimisation it-
eration. Therefore, an efficient optimisation environment has to combine the following two aspects: (i)
an optimisation technique with a high order of convergence, such that the number of PDAE solves is
brought to a moderate level, and (ii) a fully space-time adaptive PDAE solver of high order, such that
the involved PDAEs are solved as efficiently as possible. To even gain more efficiency without loss of
accuracy for the optimal control, multilevel techniques are an attractive means.

In this work we present an optimal boundary control problem for the cooling process of hot and
already formed glass, which is an important task in glass manufacturing. The cooling process is steered
within a furnace, such that the furnace temperature acts on the glass surface only. The task is now
to choose a furnace temperature profile that enforces a certain glass temperature evolution, to promote
chemical reactions and minimise internal stresses, both at moderate cost. Furthermore, the furnace
temperature has to be restricted to a feasible set due to the operation interval of the oven. Because of
the high temperatures that occur especially at the beginning of the cooling process, the direction- and
frequency-dependent thermal radiation field and the spectral radiative properties of semi-transparent
glass play a dominant role. In Section 2, we introduce a seven-dimensional radiative heat transfer model
that describes the evolution of the glass temperature and the radiative field depending on the furnace
temperature. Since this model is quite expensive, especially for optimisation purposes, we derive suitable
approximations, using simplified spherical harmonics and a practically relevant frequency bands model
(Farina et al., 2010; Klar et al., 2005; Larsen et al., 2002; Pinnau and Thömmes, 2004). The different
models allow for a model hierarchy based optimisation approach, where the optimisation is started on
the cheapest model. While the optimisation proceeds, the models are shifted automatically, such that
the optimal control is carried out on the most accurate model at the end.

In Section 3 we formulate the cooling process as a PDAE constraint optimal control problem with
control constraints and present a realisation of a multilevel generalised SQP method (Ziems, 2010; Ziems
and Ulbrich, 2011) within the fully space-time adaptive optimisation environment Kardos (Clever et al.,
2010, 2012; Erdmann et al., 2002). Control constraints are handled by an appropriate projection. Reduced
gradients and actings of the reduced Hessian are computed with the continuous adjoint approach. We
follow Rothe’s method with adaptive Rosenbrock methods in time and adaptive multilevel finite elements
in space. To be able to choose the discretisation scheme in accordance to the structure of the considered
PDAE, we explicitly allow for an independent discretisation of state and adjoint systems. The resulting
inexactness is controlled by refining grids adaptively in space and time as the optimisation proceeds.

In Section 4 we apply the presented algorithm to a glass cooling problem. Note that the presented
environment is not restricted to the solution of glass cooling problems. It is a suitable optimisation
tool for arbitrary boundary control problems restricted by space-time dependent PDAEs of similar type
and constraints on the control. For more details on the class of PDAEs that can be handled we refer
to Erdmann et al. (2002). The Section is divided into two subsections. In Subsection 4.1 we solve the
optimal control problem for the highest model using the model hierarchy based approach and compare
its performance to a similar optimisation run, carried out on the highest model only. Due to the high
complexity of the considered model, and the high computing time in three spatial dimensions, we first
approximate the three dimensional computational domain by a two dimensional cross section. In Sub-
section 4.2, we then consider the entire domain and solve the optimal control problem in three space
dimensions, considering the less complex grey scale model.

2 Glass Cooling

One important step in glass manufacturing is the cooling of the hot and already formed glass down to
room temperature. Because the quality of the final product depends highly on the temperature evolution
within the glass during the cooling process, there is the need to control the behaviour of the glass
temperature. To this end, the hot glass is cooled within a furnace, which is preheated in the beginning.
Choosing an optimal course for the temperature reduction within the oven, the temperature evolution
within the glass can be influenced in such a way that the resulting product is of high quality.

To be able to compute such an optimal boundary control, it is necessary to derive a suitable model
of the cooling process. Because of the high temperatures that occur especially at the beginning of the
cooling process, the direction- and frequency-dependent thermal radiation field and the spectral radiative
properties of semi-transparent glass play a dominant role. In the following we describe radiation by
its intensity I(x, t, ν, s), which depends on the spatial variable x ∈ Ω ⊂ R

d, d = 2, 3, time t ∈ [0, te),
frequency ν ∈ [0,∞), and direction s ∈ S

2 of the unit sphere. Since the prolongation of energy caused by
radiation is significantly faster than the one caused by diffusion, it is reasonable to model radiation in a
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quasi-static manner. The furnace temperature, denoted by u(t), is assumed to be constant in space. Note
that, based on the physical background, it occurs only in the boundary conditions. The prolongation of
the glass temperature T (x, t) is modelled by the heat equation and the non-linear exchange of energy
between radiation field and glass temperature T (x, t). We write the model in a dimensionless form, such
that the involved quantities are arranged more clearly. Multiplication with appropriate reference values
brings the dimensionless quantities back to its physical counterparts (see e.g. Klar et al. (2005)). The
equations read as follows:

ǫ2∂tT − ǫ2∇ · (kc∇T ) = −

∫ ∞

ν0

∫

S2

κν (B(T, ν)− I(x, t, ν, s)) dsdν, (1)

ǫs · ∇I(x, t, ν, s) + (σν + κν)I(x, t, ν, s) =
σν

4π

∫

S2

I(x, t, ν, s)ds+ κνB(T, ν), ∀ν > ν0, (2)

with boundary and initial conditions

ǫkcn · ∇T = hc(u− T ) + απ

(

na

ng

)2 ∫ ν0

0

(B(u, ν)−B(T, ν))dν, (3)

I(x, t, ν, s) = r(n · s)I(x, t, ν, s′) + (1− r(n · s))B(u, ν), ∀(x, s) ∈ ∂Ω× S
2 : n(x) · s < 0, (4)

T (x, 0) = T0(x). (5)

The non-linear exchange of energy between radiative field and the glass itself is described by the scaled
Planck function

B(T, ν) =
n2
g

c20

2hpν
3

Iref
(

ehpν/(kbT ·Tref) − 1
) , (6)

with Planck constant hp = 6.626e−34Js, Boltzmann constant kb = 1.381e−23 J
K , the speed of light in vac-

uum c0 = 2.998e+ 8m
s , and the reference quantities for the glass temperature Tref and the intensity Iref,

respectively. Generally, we set Tref = 1K and Iref = 1 W
m2 , such that the values of the dimensionless quan-

tities coincide with their dimension-assigned counterpart. For more details concerning the dimensionless
model, we e.g. refer to Farina et al. (2010); Larsen et al. (2002).

The definition of the remaining dimensionless parameters is given in Table 1. The concrete values
that are used in the numerical experiments are listed in Table 3.

Table 1: Dimensionless parameters of radiative heat transfer model
ǫ optical thickness coefficient, with 0 < ǫ ≤ 1 for an optically thick, diffusive regime
kc heat conduction coefficient
hc convective heat transfer coefficient
κν frequency-dependent absorption coefficient
σν frequency-dependent scattering coefficient
ng refractive index: ratio of the speed of light in vacuum and in glass
na refractive index: ratio of the speed of light in vacuum and in air
ν0 upper bound of the opaque spectral region [0, ν0]
α mean hemispheric surface emissivity in the opaque spectral region
r reflectivity coefficient, with r ∈ [0, 1]
n(x) outwards normal on glass surface

The challenge in solving system (1)-(5) lies in

• the differential algebraic structure, caused by the different time scales of radiation and diffusion,

• the highly non-linear coupling of the glass temperature with the radiative field,

• the six or even seven dimensional phase space.

The high dimension of the phase space makes the numerical solution of the full radiative heat transfer
equation (1)-(5) very expensive, which is especially demanding for optimisation purposes, where the
system has to be solved several times. Various approximate models that are less time consuming, yet
sufficiently accurate, have been developed (Klar et al., 2005; Larsen et al., 2002).
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2.1 The Models

In the following, we use a first order approximation of simplified spherical harmonics (SP1), including a
practically relevant frequency bands model. The main idea of this approach is to substitute the direction
dependent radiative intensity by an integral mean using asymptotic and variational analysis. In a second
step, the continuous frequency spectrum is discretised into N bands, assuming constant coefficients on
each of these bands. The considered SP1-approximations have been tested fairly extensively for various
radiation transfer problems in glass and have proven to be an efficient way to improve the classical
diffusion approximations (Klar et al., 2005; Larsen et al., 2002). By varying the number N of frequency
bands, we derive three different models of rising complexity and accuracy.

The Augmented Rosseland Approximation. In its classical form, the Rosseland approximation,
which can be also interpreted as an SP0 approximation, lacks in a proper description of boundary layer
effects. Considering the SP1 approximation of (1)-(5) and replacing the equation of transfer by a pure
algebraic equation lead to a significant improvement of the Rosseland approximation, where the boundary
conditions are augmented by a radiative term.

The augmented Rosseland approximation results in a space-time dependent partial differential equa-
tion of mixed parabolic-elliptic type in one component with state y := T , given by

∂tT −∇ · ((kc + kr(T ))∇T ) = 0, (7)

equipped with boundary and initial conditions

n · (kc + kr(T ))∇T =
hc

ǫ
(u− T ) +

απ

ǫ

(

na

ng

)2 ∫ ν0

0

(B(u, ν)−B(T, ν))dν

+
4πa1
ǫ

∫ ∞

ν0

(B(u, ν)−B(T, ν))dν, (8)

T (x, 0) = T0(x), (9)

the boundary condition coefficient a1 = 1.149e−1 and the thermal conductivity

kr(T ) =
4π

3

∫ ∞

ν0

1

σ + κ
∂TB(T, ν)dν,

which is caused by radiation. To evaluate kr, we divide the continuous frequency spectrum into eight
bands with piecewise constant absorption coefficients κi, i = 1, . . . , 8, (see Table 2). Furthermore, we set
σ = 0 for clean glass.

The Grey Scale Model. Considering the SP1 approximation of (1)-(5) and discretising the continuous
frequency spectrum by just one single band, we achieve the so called grey scale model. Its name is based
on the fact, that in this model we entirely neglect the dependency on wavelength or frequency. It is given
by the following space-time dependent partial differential algebraic equations of mixed parabolic-elliptic
type in two components with state y := (T, φ)T :

∂tT − kc∆T −
1

3(κ+ σ)
∆φ = 0 (10)

−
ǫ2

3(κ+ σ)
∆φ = −κφ+ 4πκa2T

4 (11)

with boundary and initial conditions

kcn · ∇T +
1

3(κ+ σ)
n · ∇φ =

h

ǫ
(u− T ) +

1

2ǫ

(

4πa2u
4 − φ

)

(12)

ǫ2

3(κ+ σ)
n · ∇φ =

ǫ

2
(4πa2u

4 − φ) (13)

T (0, x) = T0(x), (14)

and the radiated energy coefficient a2 = 1.8e−8.
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The Eight Band Model. We again consider the SP1 approximation of (1)-(5), but now we discretise
the continuous frequency spectrum into eight bands [νi−1, νi], i = 0, . . . , 8, where we formally set ν8 := ∞
and ν−1 := 0, see Figure 1. On each of the bands we interpret frequency dependent quantities as constants.
The values are given in Table 2. Defining the frequency-independent mean of the Planck function

B(i)(v) :=

∫ νi

νi−1

B(v, ν)dν, i = 1, . . . , 8, (15)

the eight band model is given by the following system of space-time dependent partial differential algebraic
equations of mixed parabolic-elliptic type in nine components with state y := (T, φ1, . . . , φ8)

T :

∂tT −∇ · (kc∇T ) =

8
∑

i=1

∇ ·

(

1

3 (σi + κi)
∇φi

)

, (16)

−ǫ2∇ ·

(

1

3 (σi + κi)
∇φi

)

+ κiφi = 4πκiB
(i) (T ) , i = 1, . . . , 8, (17)

with boundary and initial conditions

kcn · ∇T +

8
∑

i=1

1

3 (σi + κi)
n · ∇φi =

hc

ǫ
(u− T )+

+
απ

ǫ

(

na

ng

)2
(

B(0) (u) −B(0) (T )
)

+
a1
ǫ

8
∑

i=1

(

4πB(i) (u)− φi

)

, (18)

ǫ2

3 (σi + κi)
n · ∇φi = a1ǫ

(

4πB(i) (u)− φi

)

, i = 1, . . . , 8, (19)

T (x, 0) = T0 (x) , (20)

and the boundary condition coefficient a1 = 1.149e−1.

Figure 1: The continuous frequency spectrum is approximated by a discrete eight-band model with
constant coefficients on each interval.

Table 2: Absorption coefficients of eight band model

Band i νi−1(10
13s−1) νi(10

13s−1) κi(m
−1)

- 0 2.9334638 opaque
1 2.9334638 3.4223744 7136.00
2 3.4223744 3.7334994 576.32
3 3.7334994 4.5631659 276.98
4 4.5631659 5.1335616 27.98
5 5.1335616 5.8669276 15.45
6 5.8669276 6.8447489 7.70
7 6.8447488 102.6712329 0.50
8 102.6712329 ∞ 0.40

2.2 Model Hierarchy

With the three models described above, we have a sequence of approximations to the full radiative heat
transfer model with ascending accuracy and complexity. To determine an optimal furnace temperature
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evolution for a real cooling process, it is clearly desirable to consider the most accurate model. However,
from an efficiency point of view the lowest model is the natural candidate of choice, especially for opti-
misation purposes. To serve both accuracy and efficiency, we consider the optimal control problem on a
model hierarchy, where most of the optimisation iterations are carried out on cheap models but where at
least the last iteration, and hence the optimal control, is computed using the best model available.

Let a sequence of models Mi, i = 1, . . . ,m, with ascending accuracy be given. We take for M1 the
Rosseland approximation, for M2 the grey scale, and for M3 the eight band model. Furthermore, we
define some criticality measure CM , which decreases while the control iterates approach the optimal
control. We now shift from the current model Mi to the next higher order model Mi+1 if an appropriate
error estimate E(Mi,Mi+1) exceeds the scaled criticality measure, i.e.,

shift from model Mi to model Mi+1, if

E(Mi,Mi+1) > kiCM . (21)

For the glass cooling problem, it is reasonable to estimate the error between the different models by
considering the difference in the glass temperature over space and time. Note that neither the mean
intensities nor the entire state are a meaningful candidate, since they differ in the three models. For
T : Ω× [0, te) → R, we define

E(Mi,Mi+1) := ‖TMi
− TMi+1

‖L2(Ω×[0,te)) =

(∫ te

0

∫

Ω

(TMi
(x, t)− TMi+1

(x, t))2dxdt

)

1
2

, (22)

which can be evaluated with nearly no extra effort, see Subsection 3.3. An implementation of a model
hierarchy based SQP method and a comparison to the corresponding realisation on the highest order
model is presented and discussed in Section 4.

3 Optimisation Environment

To determine a furnace temperature profile that enforces an efficient cooling while maintaining a high
quality of the manufactured glass we interpret the setting as an optimal boundary control problem. To
this end we define an objective functional that measures the quality of the furnace temperature profile
and the resulting temperature evolution within the glass. The optimal control is computed by minimising
this objective with respect to the considered glass cooling model and with upper and lower bounds for
the furnace temperature.

For the optimisation, we consider derivative based optimisation algorithms and follow the so called
continuous adjoint approach. More details on the optimal control problem and the determination of the
derivatives are given in Subsection 3.1. In Subsection 3.2 we introduce a multilevel generalised SQP
method (Clever et al., 2010, 2012; Ziems, 2010; Ziems and Ulbrich, 2011), which allows for point-wise
constraints on the control. Its coupling with the state-of-the-art PDAE solver Kardos is presented in
Subsection 3.3.

3.1 Optimal Control Problem

To determine an appropriate optimal control, it is essential to formulate a sound objective. In the
context of glass cooling we deal with at least two contrary criteria. An important aim is to force the
glass temperature function as close as possible to a desired temperature profile. Such a profile, for which
good performance of the involved chemical processes is known, is generally given by engineers. A common
approach is to choose the tracking function for the glass temperature spatially constant in order to enforce
a homogeneous cooling with small temperature gradients. This is necessary to reduce internal stresses
and avoid cracks within the glass. Note that, because the cooling is controlled at the boundary only,
such a guiding function can only be approached but not necessarily reached within the entire domain.
Furthermore, it is desirable to pay certain attention to the glass temperature at the final time, which
is realised by an additional term in the objective. Especially in the context of the continuous adjoint
calculus, such a term is of great importance, since it affects the initial values of the adjoint systems (Clever
and Lang, 2011). Finally, the objective has to include a regularisation of the control itself. This term
can be used to search an optimal control close to a preferable profile or to minimise the manufacturing
costs. An objective functional that meets all the requirements stated above can be defined by

J(T, u) :=
1

2

∫ te

0

‖T − Td‖
2
L2(Ω) dt+

δe
2
‖(T − Td)(te)‖

2
L2(Ω) +

δu
2

∫ te

0

(u− ud)
2dt, (23)
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with the desired glass temperature distribution Td(x, t), the guideline for the control ud(t) and the
Tikhonov parameters δu and δe. For more complex objective functionals within the context of glass cool-
ing, including time dependent weights and a term forcing the minimisation of internal stresses explicitly,
we refer to Clever and Lang (2011). Additionally, it is important to restrict the control u to a convex,
feasible set Uad, which represents the operation interval of the furnace.

In the following, let the state system of the optimal control problem be denoted by

e(y, u) = 0. (24)

Depending on the model chosen, the state system is defined by one of the approximations (7)-(9), (10)-(14)
or (16)-(20), respectively. Assuming J(y, u) and e(y, u) to be twice continuously Fréchet differentiable,
which is obvious for the objective (23) and was shown for the grey scale model in Pinnau (2007), it is a
common approach to reduce the optimisation problem to its control component, such that the reduced
optimal control problem reads

min
u∈Uad

Ĵ(u) := J(y(u), u), where y = y(u) satisfies e(y, u) = 0. (25)

The feasible subset Uad of the control space U is defined by

Uad := {u ∈ U : ulow ≤ u(t) ≤ uup, ∀t ∈ [0, te]}, (26)

with upper bound uup and lower bound ulow. Denoting the adjoint operator of the state operator by
e∗(y, u), the reduced gradient is given by

∇Ĵ(u) = ∇uJ(y, u) +∇ue
∗(y, u)ξ, (27)

where ξ is the adjoint state, which can be computed by solving the adjoint system

∂yJ(y, u) + ∂ye
∗(y, u)ξ = 0. (28)

A formal description of this process is shown in Figure 2.

Solve state system Solve adjoint system Evaluate reduced gradient
u y ξ ∇Ĵ(u)

Figure 2: Computation of reduced gradient by adjoint calculus

Instead of the whole reduced Hessian Ĵ ′′(u), we only consider actings of it, that can efficiently be
computed by evaluating

Ĵ ′′(u)su = ∂uuJ(y, u)su + ∂uue
∗(y, u)ξsu + ∂ue

∗(y, u)w + ∂uyJ(y, u)sy + ∂uye
∗(y, u)ξsy, (29)

with some direction su, the linearised state sy, and the second adjoint state w. The linearised state sy is
the solution of the linearised state system

∂ye(y, u)sy = −∂ue(y, u)su, (30)

with input su, and the second adjoint state is the solution of the second adjoint system

∂ye
∗(y, u)w = −∂yyJ(y, u)sy − ∂yye

∗(y, u)ξ̂sy − ∂yuJ(y, u)su − ∂yue
∗(y, u)ξsu, (31)

which depends on state y, linearised state sy and adjoint state ξ. The complete data flow is illustrated in
Figure 3. Note that it is inefficient to compute all components of the reduced Hessian, since this would
require at least 2m additional PDAE solves, where m is the number of discretisation points of the control
space. Contrarily, the adjoint based approach presented above requires only two additional PDAE solves,
independent of the discrete control space.
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Solve state system Solve adjoint system

Solve linearized
state system

Solve second ad-
joint system

Evaluate acting of
reduced Hessian

u y

ξ
y

y
ξ

su sy w Ĵ ′′(u)su

Figure 3: Computation of acting of reduced Hessian by adjoint calculus

3.2 Multilevel Generalised SQP Method

In the following, we consider a multilevel generalised SQP method that explicitly allows the use of
independent discretisation schemes and independent spatial meshes for state and adjoint equations, see
Clever et al. (2010, 2012); Ziems (2010); Ziems and Ulbrich (2011). Enriched with a fully space time
adaptive PDAE solver, this has the advantage that we can perfectly exploit the structure of each PDAE
independently from the other involved PDAEs, gaining a high degree of efficiency. Clearly, allowing for
independent discretisations for state and adjoint equations introduces inconsistencies between reduced
derivatives and the minimisation problem itself. Therefore, the algorithm is enriched by a multilevel
strategy that tailors the grid refinement in accordance to the optimisation progress.

The main idea of the SQP method is to approximate the reduced optimisation problem (25) by a
sequence of reduced SQP-subproblems:

min
su∈Uad−uk

q̂k(su) := J(yk, uk) +
〈

Ĵ ′(uk), su

〉

+
1

2

〈

su, Ĵ
′′(uk)su

〉

s.t. ‖su‖ ≤ ∆k, (32)

with reduced gradient Ĵ ′(uk), reduced Hessian Ĵ ′′(uk) and trust region radius ∆k. When solving (32) we
have to account for four characteristics. The first two points are, that the search direction su is restricted
to the set Uad − uk and its length to the trust region radius ∆k. The third point is, that we only
need actings of the reduced Hessian Ĵ ′′(uk)su and the last, that the reduced Hessian is not necessarily
symmetric due to the different discretisation schemes in state and adjoint systems and the independent
spatial meshes. To handle the control constraints, we define the ε-active set

Aε(uh
k) = {i|(uh

up)i − (uh
k)i ≤ ε or ((uh

k)i − uh
low)i ≤ ε}, (33)

where (uh)i denotes the i-th component of the discretised control uh. The ε-inactive index set Iε(uh
k)

is defined by the complement Aε(uh
k)

c. Here and in the following we set ε = min{CM , (uup − ulow)/2},
with criticality measure CM , upper bound uup and lower bound ulow, to avoid an overlapping of active
regions. Because we only have actings of the slightly unsymmetrical Hessian, we consider a restricted
version of BiCGstab, which solves the linear equation

Ĵ ′′(uk)su = −∇Ĵ(uk) (34)

only on the ε-inactive part, delivering the solution s
I
ε(uk)

u . In the ε-active region, a projected gradient

step s
A

ε(uk)
u := −∇Ĵ(uk)|Aε(uk) is considered. Using Armijo’s line search, a proper scaling σk of the trial

step

su,proj := PUad−uk
(σksu), with su := sI

ε(uk)
u + sA

ε(uk)
u , (35)

is determined. The projection PUad−uk
(d) of a quantity d is defined, such that uk +PUad−uk

(d) is within
the feasible set Uad. A new control uk+1 := uk + σsu,proj is accepted, if the actual reduction

aredk = J(yk, uk)− J(yk+1, uk+1) (36)

is at least a fraction of the model based predicted reduction

predk = q̂k(0)− q̂k(su,proj). (37)
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If a step is accepted, the ratio of actual and predicted reduction is used in a standard fashion to adjust
the trust region radius ∆k. If a step is rejected, it has to be verified, if either the SQP-subproblem (32)
does not approximate the optimisation problem (25) well enough or if full and reduced model do not
coincide well enough on the current discretisation level. In the first case, the trust region gets reduced
and in the second, the accuracy level gets increased.

Independently of acceptance or rejection of a new control, for a sufficient quality of space and time
grids, we require

ηy ≤c1CM , (38)

ηξ ≤c2CM , (39)

with criticality measure CM and global discretisation error estimators ηy and ηξ, see Subsection 3.3. If
the criticality measure descents below a predefined tolerance, the algorithm is stopped. For more details
on the algorithm we refer to Clever et al. (2010, 2012); Ziems (2010); Ziems and Ulbrich (2011).

In later computations we define the criticality measure CM by the projection of the reduced gradient

CM = ‖PUad−uk
(Ĵ ′(uk))‖. (40)

Note that we use the same criticality measure CM to control the model hierarchy in (21). A flow chart
that illustrates the performance of the considered multilevel hierarchy based SQP-method is presented
in Figure 4.

k=0 Set k:=k+1

Consider quotient
of predicted reduc-
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Figure 4: Schematic representation of multilevel hierarchy based SQP-method
In the flow chart decisions are visualised by octagons, other tasks by rectangles. Rounded corners mark
tasks, that include at least one PDAE solve. Note that the BiCGstab box includes the evaluation of
actings of the reduced Hessian (29) in every iteration.

3.3 Realisation

To solve the involved systems of PDAEs, to evaluate functionals like objective and reduced derivatives
and to estimate discretisation errors, we couple the optimisation algorithm with the fully space-time
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adaptive software package Kardos. It is based on Rothe’s method with adaptive linearly implicit one-
step method of Rosenbrock type for the time integration and adaptive multilevel finite elements for the
spatial discretisation. The linearly implicit structure of the Rosenbrock methods is advantageous to
handle non-linearities, like the Planck function in the glass cooling problem. The one-step character
allows rapid change of step sizes, which are adjusted with respect to local error estimates determined
by an embedded scheme of inferior order. To control the adaptive grid refinement in space, the spatial
discretisation error is estimated locally by the hierarchical basis concept (Lang, 2001).

Kardos offers the possibility to make PDAE solutions from previous runs available to the current
PDAE solve. This mechanism can be used to solve state and adjoint systems sequentially, to evaluate the
reduced gradient as illustrated in Figure 2 and to evaluate the reduced Hessian, see Figure 3. Figure 5
gives a closer look at the underlying grid and data management in Kardos. Because state and linearised
state equation have initial conditions, those two systems are solved forward in time, whereas adjoint and
second adjoint system with their terminal conditions are solved backwards in time. Each of the four
systems can be solved with a different integration method that matches the structure of the underlying
PDAE. On each accuracy level, an adaptive time discretisation t0, t1, . . . , tn is determined during the
state system solve. This discretisation is reused for all other PDAE solves as long as the resulting global
error estimates ηy and ηξ fulfil (38) and (39). In each point of time tk, the Rosenbrock discretisation
results in a sequence of elliptic PDEs, which are solved on their own suitable grid. Hence, when setting
up adjoint and second adjoint system the environment has to manage the transfer from up to three PDAE
solutions, which have been computed on their own independent spatial mesh. The computations are done
partly forwards and partly backwards in time. Note that the same mechanism can be used to evaluate the

Figure 5: Grid and data management
On each accuracy level, an adaptive time discretisation t0, t1, . . . , tn is determined during the state
system solve, which is then used for all other PDAE solves on this level. In each point of time tk, the
Rosenbrock discretisation results in a sequence of elliptic PDEs, which are solved on their own suitable
spatial grid by finite elements. Solving the adjoint system backwards in time on the predefined time
grid, the spatial meshes are individually adapted to reach the desired accuracy. To provide a current
PDAE solve with solutions from previous runs, the solution is imported on its computational grid and
transferred to the current grid.

model error (22). In this case a lower model solution is read in during a higher model solve. Having both
solutions on the same grid, the L2-norm of their difference can be efficiently evaluated by a weighted sum.
On each accuracy level the procedure is the same as presented in the flow chart 5, but with increasing
number of time nodes. This results in an increasing number of elliptic differential equations, each of them
solved on a individually refined grid ensuring the new accuracy. To provide global error estimates ηy and
ηξ for the multilevel strategy in (38)-(39), we make use of the already computed local error estimates
and relay on tolerance proportionality. With respect to the semi-discretisation, we distinguish between
the local error in time let = (0, let1, . . . , le

t
n) and the local error in space lex = (0, lex1 , . . . , le

x
n) and define
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the global estimate

η = (te − t0)
− 1

2





(

n−1
∑

k=0

τk
2

(

(letk)
2 + (letk+1)

2
)

)1/2

+

(

n−1
∑

k=0

τk
2

(

(lexk)
2 + (lexk+1)

2
)

)1/2


 , (41)

with adaptive time step sizes τk, k = 0, . . . , n− 1.
Considering the local error estimate (41) within the state system (24) evaluates ηy. Using the local

error estimate (41) within the adjoint system (28) evaluates ηξ. The unknown proportionality factors can
formally be handled by the constants c1 and c2

We want to point out, that the Kardos based multilevel SQP algorithm is not restricted to the
solution of the glass cooling problem. It is a suitable optimisation tool for arbitrary boundary control
problems restricted by space-time dependent PDAEs of similar type. For more details on the class of
PDAEs that can be handled we refer to Erdmann et al. (2002).

4 Numerical Experiments

The following Section is divided into two subsections. In Subsection 4.1 we solve the optimal control
problem for the eight band model using the model hierarchy based approach, explained in Subsection
2.2. We compare its performance with respect to quality and effort to a similar optimisation run, carried
out on the eight band model only. Due to the high complexity of the considered model, and the high
computing time in three spatial dimensions, in this subsection we approximate the three dimensional
computational domain by a two dimensional cross section. In Subsection 4.2, we then consider the entire
domain and solve the optimal control problem in three space dimensions, considering the less complex
grey scale model. The computational domain Ω3d is given by the convex hull of the eight points

p1 = (−1,−1,−1), p2 = (1,−1,−1), p3 = (1, 1,−1), p4 = (−1, 1,−1),

p5 = (0.5, 0.5, 1), p6 = (1, 0.5, 1), p7 = (1, 1, 1), p8 = (0.5, 1, 1).

To define a two dimensional cross section we set z = 1
3 , which results in Ω2d = [0, 1] × [0, 1]. Both

geometries, together with their initial grids, are shown in Figure 6.

Figure 6: Three dimensional computational domain and two dimensional cross section z = 1
3 , with initial

grids

Further parameters concerning the different models and the optimisation algorithm are given in Table
3. In the following numerical experiments we use linear finite elements and the third order Rosenbrock
method ROS3PL (Lang and Verwer, 2001; Lang and Teleaga, 2008), which is an L-stable time integration
scheme and does not suffer from order reduction.

4.1 Model Hierarchy Approach

In this section we present the model hierarchy based SQP method presented in Section 3. For the model
hierarchy, we consider all three models (7)-(9), (10)-(14) and (16)-(20), which means that we finish the
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Table 3: Problem and model specific qualities
Uad feasible control set [300, 900] kc conductivity coefficient 1.0e+ 0
te final time 1.0e−1 hc convection coefficient 1.0e−3
T0(x) initial glass temperature 9.0e+ 2 ǫ optical thickness coeff. 5.0e−1

α mean hemispheric surface emissivity 0.914

Td(t) desired glass temperature T0 · e
− log(

T0
300

)t

te ng refractive index for glass 1.46e+ 0
na refractive index for air 1.0e+ 0

u0(t) initial control Td(t) a1 boundary condition coefficient 1.149e−1
ud(t) desired control Td(t) a2 radiated energy coefficient 1.8e−8
δe final value weight 1.0e−1 hp Planck constant 6.626e−34Js

δu control regularisation weight 1.0e−1 kb Boltzmann constant 1.381e−23 J
K

∆k trust region 5.0e+ 2 c0 speed of light in vacuum 2.998e+ 8m
s

algorithm with an optimal control for the eight band model. As an approximative weighted mean of
the absorption rates of the different bands, given in Table 2, the mean absorption coefficient κ in the
grey scale problem is set to κ = 10. The results of the hierarchy based approach are compared to those
that result from a similar optimisation carried out on the eight band model only. Due to the quite high
complexity of this one-model approach, we first replace the three dimensional computational domain by
the two dimensional cross section Ω2d = [0, 1]× [0, 1], see Figure 6. Furthermore, we carry out all PDAE
solves on a predefined space-time grid, which is refined in the boundary region, with 76 time steps and
1053 spatial nodes. The mesh is chosen in such a way, that there is no further refinement necessary
during the entire optimisation. Note that this simplification is only made to be able to study the benefit
of the model hierarchy. Full space-time adaptivity and a grid refining multilevel strategy as explained
in Section 3 are considered in Subsection 4.2 for three space dimensions. For an application to the glass
cooling problem in two space dimensions, we refer to Clever et al. (2010, 2012).

The constants k1 and k2 that steer the shifting from one model to another, see (21), are set to
k1 = k2 = 1.0. To get an impression about the similarity of the three models, Figure 7 shows the
glass temperature on the cut section through y = 0.5 at different points of time for all three models,
resulting from the initial control u0. The corresponding temperature distribution over the entire domain
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Figure 7: Glass temperature on cut section through y = 0.5 at different points of time

[0, 1] × [0, 1] ∈ R
2 for the final time is shown in Figure 8. For a better visualisation of the temperature
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Figure 8: Glass temperature distribution at final time for the models M1, M2 and M3
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differences, the colour is scaled between 300 and 450, which is the lower quarter of the feasible set Uad.
The computations were carried out on a AMD Athlon(tm) 64 X2 Dual Core Processor 6000+, with a
CPU cache size of 512 KB and a clock rate of 1000 MHz. On the predefined grid the state system solve
of the Rosseland approximation requires 26s, that of the grey scale model 49s, and that of the eight band
model 400s. We clearly see a ratio of 1 : 2 : 16. Due to the nearly linear scaling of the Kardos code
with respect to the degrees of freedom, these factors are also valid for arbitrary space-time resolutions.

We now start the algorithm for the Rosseland modelM1 with initial control u0. After two optimisation
iterations the model error E(M1,M2) exceeds the criticality measure CM and hence the model is shifted
automatically to the grey scale model M2. After two optimisation iterations on this level, the model error
E(M2,M3) exceeds the criticality measure CM again, and the model is finally shifted to the eight band
modelM3. After every model change the criticality measure increases, which shows that an almost optimal
control for one model is not necessarily optimal for another model. However, it is a good approximation
of it and can be interpreted as an efficiently computed initial control. We stop the algorithm if the
criticality measure falls below the limit of 5.0e−4 and refer to the last control iterate as optimal control.
This optimal control together with the initial control is presented in Figure 9(a). The evolution of the
glass temperature over time that results from the optimal control is shown in Figure 9(b) for the boundary
point Q1 = (0, 0.5), the corner point Q2 = (1, 0), and the interior point Q3 = (0.5, 0.25). Note that the
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Figure 9: Initial and optimal control and resulting glass temperature evolution
Figure 9(a) shows the initial and the optimal control determined by the model hierarchy based ap-
proach, Figure 9(b) the evolution of the glass temperature resulting from the optimal control over
time in a boundary point Q1, a corner point Q2 and an interior point Q3, and Figure 9(c) the glass
temperature distribution over the entire domain at final time.

glass temperature within the computational domain is mainly located between the temperature of the
boundary point Q1 (green dashed line) and the interior point Q3 (red dot-dashed line), see 9(b). Hence,
the optimal glass temperature is evenly distributed around the desired profile Td(t). Contrarily, for the
initial control, the resulting glass temperature distribution lies above Td(t) in any space-time point of
the computational domain. The glass temperature distribution over the entire domain at final time,
resulting from the optimal control, is shown in Figure 9(c). Comparing it to the distribution resulting
from the initial control, see Figure 8(c), we can observe a significant improvement. More details about
the optimisation performance are given in Table 4.

Comparing the model hierarchy based approach to a similar optimisation that is already started with
the eight band model, see Table 5, it can be observed, that now the algorithm determines an optimal
control of comparable accuracy in k = 5 instead of k = 7 optimisation iterations. However, the model
hierarchy based approach needs only 3 optimisation iterations on the time consuming eight band model,
see Table 4. It is necessary to additionally compute the model error for the two lower models. However the
effort for the optimisation iterations on these models is almost negligible in comparison to the complexity
of the eight band model. Having a look at the computing time (Table 4 and Table 5), it can be seen
that the model hierarchy based approach saves about 20% of the computational time required by the
one-model approach.

Studying the results of the two algorithms, we clearly observe a significant different development of
the control iterates in each optimisation step, see Figure 10. But, as expected, the optimal controls that
result from the two approaches are nearly identical. Their relative L2-difference is 1.578e − 06. Due to
the great conformance of the optimal control from both approaches, we abstain from showing further
results for the one-model approach, since they coincide with those presented for the model hierarchy
based approach in Figure 9.

Summarising, it can be said that for a reasonable hierarchy of different models with ascending accuracy,
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Table 4: Optimisation protocol for the model hierarchy based approach
time to

opt. target criticality model error compute #BiCGstab accumulated
iter. value measure E(Mi,Mi+1) E [s] iterations CPU time [s]

Start with Rosseland approximation

2.4213889e+02 1.320e+01 2.804e – 01 45 139
1 8.9556646e+01 6.420e – 01 3.143e – 01 45 5 1 192
2 8.9018226e+01 6.828e – 02 3.143e – 01 44 4 2 097

Shift to grey scale model

1.5892804e+02 6.010e+00 1.504e – 01 392 2 570
3 1.3618194e+02 3.657e – 01 1.575e – 01 391 4 3 377
4 1.3605275e+02 7.212e – 03 1.579e – 01 391 3 4 432

Shift to eight band model

1.9479777e+02 2.230e+00 - - 5 575
5 1.9113854e+02 1.126e – 01 - - 4 14 647
6 1.9112199e+02 2.544e – 03 - - 3 21 995
7 1.9112197e+02 2.367e – 04 - - 1 25 853

Table 5: Optimisation protocol for the eight band model
optimisation target criticality #BiCGstab accumulated

iteration value measure iterations CPU time [s]

4.5934272e+02 1.835e+01 1 268
1 1.9478452e+02 1.763e+00 4 10 387
2 1.9118843e+02 2.163e – 01 3 17 716
3 1.9112234e+02 7.690e – 03 3 25 043
4 1.9112200e+02 7.283e – 04 1 28 831
5 1.9112198e+02 1.576e – 04 1 32 625
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Figure 10: Comparison between model hierarchy and eight band model
Control iterates determined by model hierarchy based approach 10(a) and determined entirely on eight
band model 10(b). Iterates computed with the Rosseland approximation are plotted with a dot-dashed
line, those of the grey scale model with a dashed line, and those of the eight band model with a solid
line. Even though the model hierarchy based approach requires two additional optimisation iterations
it determines the same optimal control significantly faster than the one-model optimisation.

the presented model hierarchy based approach is a suitable tool to decrease the computational effort while
maintaining the desired accuracy. As long as the optimisation is entirely carried out on the same level
of accuracy we observe savings in the computing time of around 20%. However, when the grid refining
multilevel strategy, presented in Section 3, is enabled as well, the last optimisation iteration might require
more than 90% of the entire computing time. To serve the desired accuracy, this expensive step has to
be carried out in the model hierarchy based approach as well. Hence in such a case, a benefit of 20%
from the remaining 10% does only result in a benefit of 2% of the computing time.

14



4.2 Numerical Experiments in 3D

In the previous 2d example, we did not apply grid adaption and the grid refining multilevel strategy for
a better visualisation of the benefit achieved by the model hierarchy based approach. However, to solve
the optimal boundary problem for glass cooling on a complex 3d geometry, the space-time adaptivity
together with the grid refining multilevel strategy are essential. Since the combination of model hierarchy
and multilevel strategy does not promise so much additional benefit, in this subsection we concentrate
on the one model approach, using the grey scale model (10)-(14).

The involved PDAEs are solved by Kardos3d (Erdmann et al., 2002). Different radiation models on
a cube were already solved successfully with this software (Klar et al., 2005), although no optimisation
was considered.

Unlike the previously considered case, the mean absorption coefficient κ in the grey scale problem
is set to κ = 1.0. The other problem and model parameters are chosen as before. Since the arising
PDAEs are solved adaptively in time and space, error tolerances have to be set. At the beginning of the
optimisation process the local space and time error of the solution of the state equation should be smaller
than 1.0e− 02, while the local space error of the solution of the adjoint equation should be smaller than
2.0e − 02. During the optimisation these tolerances are reduced as described in Figure 4. For stability
reasons the tolerances are always halved, if a refinement is necessary. For the refinement criteria (38) and
(39), the constants c1 = c2 = 1.0e − 2 were chosen. The computations were done on a AMD Opteron
DualCore 8218 with 3.0 GHz and 128 GB RAM with 533 MHz FSB.

Table 6: Optimisation protocol for grey scale model in three spatial dimensions
opt. target criticality time space nodes accumulated
iter. value measure nodes State Adjoint CPU time [s]
0 6.1996136e+02 2.561e+01 19 1399 1399 115
1 1.2240010e+02 1.644e+01 19 1399 1399 5 893
ref 1.2802449e+02 2.129e+00 31 1399 4897 11 867
3 1.2270402e+02 1.342e+00 31 1399 4897 45 845
4 1.2203427e+02 7.838e – 01 31 1399 4897 83 894
ref 1.2076971e+02 1.294e+00 39 9192 9308 119 333
5 1.2035865e+02 1.170e+00 39 9192 9308 230 170
ref 1.1888023e+02 1.102e – 01 71 67978 67978 356 458
6 1.1887778e+02 9.954e – 02 71 67978 67978 2 398 655

In Table 6 the optimisation protocol of the glass cooling process modelled by the grey scale approxi-
mation can be seen. The target value and the criticality measure are not monotonically decreasing as in
the case with fixed space and time grids. This is due to the adaptive refinement of these grids. Errors in
the integration routine on coarser grids can lead to larger target value on finer grids. Since a good optimal
control on a coarse grid usually isn’t also a good optimal control on a finer grid, the criticality measure
can increase after a grid refinement. After six optimisation iterations the space and time grids are quite
fine and the computed optimal control can be trusted to approximate well the continuous optimal control.

The control iterates of the optimisation are shown in Figure 11(a). The convergence to the optimal
control is quite fast. Most work has to be done around the transition from inactive to active control
constraints at around t = 0.068.

In Figure 11(b) the temperature during the cooling process in four different points of the geometry is
compared to the desired temperature Td. These Points are Q1 = (0, 0, 0) in the interior, Q2 = (1, 1,−1)
in a corner, Q3 = (0, 0,−1) on a boundary facet and Q4 = (0,−1,−1) on a boundary edge. The points on
the edge and in the corner (Q2 and Q4) cool down uniformly and quicker than the points in the interior
(Q1 and Q3).

In Figure 12 the terminal temperature distribution in the geometry resulting from the computed
optimal control is compared to the one resulting from the initial control. While there are still great
temperature differences between the corner and the interior for the initial control, the temperature dis-
tribution after an optimal cooling process is quite uniform and significantly lower.

In the last optimisation step, the local approximation errors in time and space of the state solution
satisfy the quite strict tolerance 6.25e – 04 and the local approximation error in space of the adjoint
solution satisfies the tolerance 1.25e – 03. This results in an adaptive grid with 67978 nodes in space and
71 nodes in time. One can see that the last step consumes about 85% of the total computing time.

It was shown in Clever et al. (2010, 2012) that an optimisation using only the highest accuracy level
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Figure 11: Control iterates and glass temperature profile at different points for the optimal control
In 11(a) the control iterates are displayed. A fast convergence to the optimal control can be
observed. In 11(b) the temperature profile at four different points for the optimal control
is compared with the desired temperature profile.

(a) (b) (c)

(d) (e) (f)

Figure 12: Terminal glass temperature distributions resulting from initial and optimal control
On top one can see the temperature distribution at the end of the cooling process resulting
from the initial control and at the bottom the terminal temperature distribution resulting
from the optimal control at different slices through the geometry. On the left z = −1,
which is essentially the bottom of the geometry (12(a) and 12(d)), in the middle z = 0
(12(b) and 12(e)) and finally on the right the slice is parallel to the y-axis with y = 0.5
(12(c) and 12(f)).

is expected to take five times longer than the fully adaptive multilevel optimisation strategy. Since the
multilevel optimisation took about 28 days, that would mean a computing time of about 140 days.

Summarising, it can be said, that the presented optimisation algorithm is capable of solving complex
three dimensional problems. Further, we have presented a fully adaptive optimisation scenario for the
glass cooling problem on a three dimensional computational domain. It can be seen, that here the grid
refining multilevel strategy is of great advantage and makes the difference whether one can solve the
optimisation problem in an acceptable time or not.
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5 Conclusions

We have presented an adaptive multilevel and model hierarchy strategy to solve optimal control prob-
lems for glass cooling processes in two and three-dimensional geometries. Both strategies are useful to
drastically reduce the computing time necessary to reach practically relevant accuracies. The model
hierarchy based optimisation approach is especially attractive if no grid refinement options are available
to solve the PDAE constraints. In this case, most of the work can be done on the basis of lower order
and less expensive models. However, if adaptive discretisation schemes are used and therefore the last
optimisation iteration is in general carried out on significantly fine meshes, then this advantage becomes
less important.

Adaptive multilevel optimisation strategies based on successive improvement of the approximation
property of the space-time discretisations perform remarkably robust and have the potential to solve
even complex three-dimensional glass cooling problems within moderate time. Their great advantage is,
that only a few optimisation steps have to be evaluated on the highest discretisation level. Needless to
say, the two approaches presented can be applied to general PDAE-constrained optimal control problems.
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Klar, A., Lang, J. and Seäıd, M. (2005). Adaptive solution of SPN -approximations to radiative heat transfer in
glass, International Journal of Thermal Science 44: 1013–1023.

Lang, J. (2001). Adaptive multilevel solution of nonlinear parabolic PDE systems, Springer.

Lang, J. and Teleaga, D. (2008). Towards a fully space-time adaptive FEM for magnetoquasistatics, IEEE
Transactions on Magnetics 44,6: 1238–124.

Lang, J. and Verwer, J. (2001). ROS3P - an accurate third-order Rosenbrock solver designed for parabolic
problems, BIT 41: 730–737.
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