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1 Introduction

Throughout this paper, let 1 < p < ∞. For a non-empty subset I of the set
Z of the integers, let lp(I) denote the complex Banach space of all sequences
x = (xn)n∈I of complex numbers with norm ‖x‖p = (

∑
n∈I |xn|p)1/p < ∞. We

consider lp(I) as a closed subspace of lp(Z) in the natural way and write PI for
the canonical projection from lp(Z) onto lp(I). For I = Z+, the set of the non-
negative integers, we write lp and P instead of lp(I) and PI, respectively. By J we
denote the operator on lp(Z) acting by (Jx)n := x−n−1, and we set Q := I − P .

For every Banach space X, let L(X) stand for the Banach algebra of all
bounded linear operators on X, and write K(X) for the closed ideal of L(X)
of all compact operators. The quotient algebra L(X)/K(X) is known as the
Calkin algebra of X. Its importance in this paper stems from the fact that the
invertibility of a coset A + K(X) of an operator A ∈ L(X) in this algebra is
equivalent to the Fredholm property of A, i.e., to the finite dimensionality of the
kernel kerA = {x ∈ X : Ax = 0} and the cokernel cokerA = X/imA of A, with
imA = {Ax : x ∈ X} referring to the range of A. If A is a Fredholm operator
then the difference indA := dim kerA − dim cokerA is known as the Fredholm
index of A.
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Our goal is a criterion for the Fredholm property and a formula for the Fred-
holm index for operators in the smallest closed subalgebra of L(lp) which contains
all Toeplitz and Hankel operators with piecewise continuous generating function.
The precise definition is as follows. Let T be the complex unit circle. For each
function a ∈ L∞(T), let (ak)k∈Z denote the sequence of its Fourier coefficients,

ak :=
1

2π

∫ 2π

0

a(eiθ)e−ikθ dθ.

The Laurent operator L(a) associated with a ∈ L∞(T) acts on the space l0(Z) of
all finitely supported sequences on Z by (L(a)x)k :=

∑
m∈Z ak−mxm. (For every

k ∈ Z, there are only finitely many non-vanishing summands in this sum.) We
say that a is a multiplier on lp(Z) if L(a)x ∈ lp(Z) for every x ∈ l0(Z) and if

‖L(a)‖ := sup{‖L(a)x‖p : x ∈ l0(Z), ‖x‖p = 1}

is finite. In this case, L(a) extends to a bounded linear operator on lp(Z) which
we denote by L(a) again. The set Mp of all multipliers on lp(Z) is a Banach
algebra under the norm ‖a‖Mp := ‖L(a)‖. We let M 〈p〉 stand for M2 if p = 2
and for the set of all a ∈ L∞(T) which belong to M r for all r in a certain open
neighborhood of p if p 6= 2.

It is well known that M2 = L∞(T). Moreover, every function a with bounded
total variation Var(a) is in Mp for every p, and the Stechkin inequality

‖a‖Mp ≤ cp(‖a‖∞ + Var(a))

holds with a constant cp independent of a. In particular, every trigonometric
polynomial and every piecewise constant function on T are multipliers for every p.
We denote the closure in Mp of the algebra P of all trigonometric polynomials and
of the algebra PC of all piecewise constant functions by Cp and PCp, respectively.
Thus, Cp and PCp are closed subalgebras of Mp for every p. Note that C2 is just
the algebra C(T) of all continuous functions on T, and PC2 is the algebra PC(T)
of all piecewise continuous functions on T. It is well known that Cp ⊆ C(T) and
Cp ⊆ PCp ⊆ PC(T) for every p. In particular, every multiplier a ∈ PCp possesses
one-sided limits at every point t ∈ T (see [2] for these and further properties of
multipliers). For definiteness, we agree that T is oriented counter-clockwise, and
we denote the one-sided limit of a at t when approaching t from below (from
above) by a(t−) (by a(t+)).

Let a ∈Mp. The operators T (a) := PL(a)P and H(a) := PL(a)QJ , thought
of as acting on imP = lp are called the Toeplitz and Hankel operator with
generating function a, respectively. It is well known that ‖T (a)‖ = ‖a‖Mp and
‖H(a)‖ ≤ ‖a‖Mp for every multiplier a ∈Mp.

For a subalgebra A of Mp, we let T(A) and TH(A) stand for the smallest
closed subalgebra of L(lp) which contains all operators T (a) with a ∈ A and all
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operators T (a) +H(b) with a, b ∈ A, respectively. We will be mainly concerned
with the algebras Cp, PCp, and with their intersections with M 〈p〉, in place of A.
Now we can state the goal of the paper more precisely: we will state a criterion
for the Fredholm property of operators in TH(PCp) and derive a formula for the
Fredholm index of operators T (a) +H(b) with a, b ∈ PCp.

The study of the Fredholm property of operators in TH(PCp) has a long and
involved history. We are going to mention only some of its main stages.

The Fredholm properties of operators in the algebra T(PCp) are well under-
stood thanks to the work of I. Gohberg/N. Krupnik and R. Duduchava; see [2]
and the literature cited there. We will need these results later on; therefore we
recall them in Section 2. Different approaches to these algebras were developed
in [2] and [11]; our presentation will be mainly based on the latter.

The structure of the algebras TH(PCp) is much more involved than that of
T(PCp). For instance, the Calkin image Tπ(PC) := T(PC)/K(l2) of T(PC) is
a commutative algebra, whereas that one of TH(PC) is not. The Calkin im-
age of TH(PC) was first described by Power [16]. An alternative approach was
developed by one of the authors in [21], where it was shown that the algebra
THπ(PC) := TH(PC)/K(l2) possesses a matrix-valued Fredholm symbol. In the
present paper, we take up the approach from [21] in order to study the Fredholm
properties of operators in TH(PCp) for p 6= 2.

It should be mentioned that the algebras TH(PCp) have close relatives which
live on other spaces than lp, such as the Hardy spaces Hp(R) and the Lebesgue
spaces Lp(R+). The corresponding algebras were examined (with different meth-
ods) in the report [20], see also the recent monograph [19]. Despite these fairly
complete results for the Fredholm property, a general, transparent and satisfying
formula for the Fredholm index of operators in TH(PCp) (or on related algebras)
was not available until now. Among the particular results which hold under
special assumptions we would like to emphasize the following. In [12], there is
derived an index formula for operators of the form λI + H where λ ∈ C and
H is a Hankel operator on Hp(R). Already earlier, some classes of Wiener-Hopf
plus Hankel operators were studied in connection with diffraction problems; see
[13, 14]. Note also that the (very hard) invertibility problem for Toeplitz plus
Hankel operators is treated in [1, 3].

Finally we would like to mention that algebras like TH(PCp) can also be
viewed of as subalgebras of algebras generated by convolution-type operators
and Carleman shifts changing the orientation. First results in that direction were
presented in [8, 9] where, in particular, a matrix-valued Fredholm symbol was
constructed.

The goal of the present paper is to provide a transparent symbol calculus for
the Fredholm property as well as a handy formula for the Fredholm index for
operators in the algebra TH(PCp). The techniques developed and used in this
paper also allow to handle the corresponding questions for the related algebras
on the spaces Hp(R) and Lp(R+).
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2 The Fredholm property

In what follows, we fix p ∈ (1, ∞) and consider all operators as acting on lp

unless stated otherwise.
As already mentioned, we start with recalling the basic results of the Fredholm

theory of operators in the algebra T(PCp), which are due Gohberg/Krupnik
and Duduchava. The functions f±1(t) := t±1 are multipliers for every p. It
is easy to check that the algebra generated by the Toeplitz operators T (f±1)
contains a dense subalgebra of K(lp). Thus, the ideal K(lp) is contained in
T(Cp), hence also in T(PCp), and it makes sense to consider the quotient algebra
T(PCp)/K(lp). Clearly, if A ∈ T(PCp) and if the coset A+ L(lp) is invertible in
T(PCp)/K(lp), then it is also invertible in the Calkin algebra L(lp)/K(lp), hence
A is a Fredholm operator. The more interesting question is if the converse holds,
i.e., if the invertibility of A+L(lp) in the Calkin algebra implies the invertibility
of A + K(lp) in T(PCp)/K(lp). If this implication holds for every A ∈ T(PCp),
one says that T(PCp)/K(lp) is inverse closed in L(lp)/K(lp).

Let R denote the two-point compactification of the real line by the points ±∞
(thus R is homeomorphic to a closed interval) and let the function µp : R → C
be defined by

µp(λ) := (1 + coth(π(λ+ i/p)))/2

if λ ∈ R and by µp(−∞) = 0 and µp(+∞) = 1. Note that when λ runs from
−∞ to∞ then µp(λ) runs along a circular arc in C which joins 0 to 1 and passes
through the point (1 − i cot(π/p))/2. An easy calculation gives µp(−λ) = 1 −
µq(λ), where 1/p+1/q = 1. Thus, for fixed t ∈ T, the values Γ(T (a)+K(lp))(t, λ)
defined in the following theorem run from a(t− 0) to a(t+ 0) along a circular arc
when λ runs from −∞ to ∞.

Theorem 1 (a) T(PCp)/K(lp) is a commutative unital Banach algebra.

(b) The maximal ideal space of T(PCp)/K(lp) is homeomorphic with the cylinder
T× R, provided with an exotic (non-Euclidean) topology.

(c) The Gelfand transform Γ : T(PCp)/K(lp) → C(T × R) of the coset T (a) +
K(lp) with a ∈ PCp is

Γ(T (a) +K(lp))(t, λ) = a(t− 0)(1− µq(λ)) + a(t+ 0)µq(λ).

(d) T(PCp)/K(lp) is inverse closed in L(lp)/K(lp).

The topology mentioned in assertion (b) will be explicitly described in Section
3. Note that this topology is independent of p. Since the cosets T (a) + K(lp)
with a ∈ PCp generate the algebra T(PCp)/K(lp), the Gelfand transform on
T(PCp)/K(lp) is completely described by assertion (c). Thus, if A ∈ T(PCp),
then the coset A+K(lp) is invertible in T(PCp)/K(lp) if and only if the function
Γ(A+K(lp)) does not vanish on T×R. Together with assertion (d) this shows that
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A ∈ T(PCp) is a Fredholm operator if and only if Γ(A + K(lp)) does not vanish
on T × R. It is therefore justified to call the function smbpA := Γ(A + K(lp))
the Fredholm symbol of A.

The index of a Fredholm operator in T(PCp) can be determined my means of
its Fredholm symbol. First suppose that a ∈ PCp is a piecewise smooth function
with only finitely many jumps. Then the range of the function

Γ(T (a) +K(lp))(t, λ) = a(t−)(1− µq(λ)) + a(t+)µq)(λ)

is a closed curve with a natural orientation, which is obtained from the (essential)
range of a by filling in the circular arcs

Cq(a(t−), a(t+)) := {a(t−)(1− µq(λ)) + a(t+)µq)(λ) : λ ∈ R}

at every point t ∈ T where a has a jump. (If the function a is continuous at t,
then Cq(a(t−), a(t+)) reduces to the singleton {a(t)}.) If this curve does not pass
through the origin, then we let wind Γ(T (a) +K(lp)) denote its winding number
with respect to the origin, i.e., the integer 1/(2π) times the growth of the argu-
ment of Γ(T (a) +K(lp)) when t moves along T in positive (= counter-clockwise)
direction. If this condition is satisfied then T (a) is a Fredholm operator, and

indT (a) = −wind Γ(T (a) +K(lp))

(see [2], Section 2.73 and Proposition 6.32 for details). Moreover, as in Section
5.49 of [2], one can extend both the definition of the winding number and the
index identity to the case of an arbitrary Fredholm operator in T(PCp). More
precisely, one has the following.

Proposition 2 Let A ∈ T(PCp) be a Fredholm operator. Then

indA = −wind Γ(A+K(lp)).

We would like to emphasize an important point. The algebra T(PC2)/K(l2)
is a commutative C∗-algebra, hence the Gelfand transform is an isometric ∗-
isomorphism from T(PC2)/K(l2) onto C(T × R). In particular, the radical of
T(PC2)/K(l2) is trivial, and the equality smb2A = 0 for some operator A ∈
T(PC2) implies that A is compact. For general p it is not known if the radical of
T(PCp)/K(lp) is still trivial; it is therefore not known if smbpA = 0 implies the
compactness of A.

In order to state our results on the Fredholm property of operators in the
Toeplitz+Hankel algebra TH(PCp)/K(lp) we need some notation. Let T+ be the
set of all points in T with non-negative imaginary part and set T0

+ := T+\{−1, 1}.
Further let the function νp : R→ C be defined by

νp(λ) := (2i sinh(π(λ+ i/p)))−1

if λ ∈ R and by νp(±∞) = 0. Recall that 1/p+ 1/q = 1.
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Theorem 3 (a) Let a, b ∈ PCp. Then the operator T (a) + H(b) is Fredholm if
and only if the matrix

smbp (T (a) +H(b))(t, λ) := (1)(
a(t+)µq(λ) + a(t−)(1− µq(λ)) (b(t+)− b(t−))νq(λ)

(b(t̄−)− b(t̄+))νq(λ) a(t̄−)(1− µq(λ)) + a(t̄+)µq(λ)

)
is invertible for every (t, λ) ∈ T0

+ × R and if the number

smbp (T (a) +H(b))(t, λ) := (2)

a(t+)µq(λ) + a(t−)(1− µq(λ)) + it (b(t+)− b(t−))νq(λ)

is not zero for every (t, λ) ∈ {±1} × R.

(b) The mapping smbp defined in assertion (a) extends to a continuous algebra
homomorphism from TH(PCp) to the algebra F of all bounded functions on T+×R
with values in C2×2 on T0

+ × R and with values in C on {±1} × R. Moreover,
there is a constant M such that

‖smbpA‖ := sup
(t,λ)∈T+×R

‖smbpA(t, λ)‖∞ ≤M inf
K∈K(lp)

‖A+K‖ (3)

for every operator A ∈ TH(PCp). Here, ‖B‖∞ refers to the spectral norm of the
matrix B.

(c) An operator A ∈ TH(PCp) has the Fredholm property if and only if the func-
tion smbpA is invertible in F .

(d) The algebra TH(PCp)/K(lp) is inverse closed in L(lp)/K(lp).

Before going into the details of the proof, we remark two consequences of Theorem
3 which will be needed in the next section.

Corollary 4 Let a, b ∈ PCp and T (a) +H(b) a Fredholm operator on lp. Then

(a) the function a is invertible in PCp, and

(b) if b is continuous at ±1, then T (a)−H(b) is a Fredholm operator on lp.

Proof. If T (a) +H(b) is a Fredholm operator, then the diagonal matrices

smbp (T (a) +H(b))(t, ±∞) = diag (a(t±), a(t
±

))

are invertible for every t ∈ T0
+ and the numbers smbp (T (a) + H(b))(1, ±∞) =

a(1±) and smbp (T (a) + H(b))(−1, ±∞) = a((−1)±) are not zero by assertion
(a) of Theorem 3. Hence, a is invertible as an element of PC. Since the algebra
PCp is inverse closed in PC by Proposition 6.28 in [2], assertion (a) follows. The
proof of assertion (b) is also immediate from the form of the symbol described in
Theorem 3 (a).
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The remainder of this section is devoted to the proof of Theorem 3. We will need
two auxiliary ingredients which we are going to recall first. Let A be a unital
Banach algebra. The center of A is the set of all elements a ∈ A such that ab = ba
for all b ∈ A. A central subalgebra of A is a closed subalgebra C of the center of
A which contains the identity element. Thus, C is a commutative Banach algebra
with compact maximal ideal space M(C). For each maximal ideal x of C, consider
the smallest closed two-sided ideal Ix of A which contains x, and let Φx refer to
the canonical homomorphism from A onto the quotient algebra A/Ix.

In contrast to the commutative setting, where C/x ∼= C for all x ∈M(C), the
quotient algebras A/Ix will depend on x ∈M(C) in general. In particular, it can
happen that Ix = A for certain maximal ideals x. In this case we define that
Φx(a) is invertible in A/Ix for every a ∈ A.

Theorem 5 (Allan’s local principle) Let C be a central subalgebra of the uni-
tal Banach algebra A. Then an element a ∈ A is invertible if and only if the cosets
Φx(a) are invertible in A/Ix for each x ∈M(C).

Here is the second ingredient. Recall that an idempotent is an element p of an
algebra such that p2 = p.

Theorem 6 (Two idempotents theorem) Let A be a Banach algebra with
identity element e, let p and q be idempotents in A, and let B denote the smallest
closed subalgebra of A which contains p, q and e. Suppose that 0 and 1 belong
to the spectrum σB(pqp) of pqp in B and that 0 and 1 are cluster points of that
spectrum. Then

(a) for each point x ∈ σB(pqp), there is a continuous algebra homomorphism
Φx : B → C2×2 which acts at the generators of B by

Φx(e) =

(
1 0
0 1

)
, Φx(p) =

(
1 0
0 0

)
, Φx(q) =

(
x

√
x(1− x)√

x(1− x) 1− x

)
where

√
x(1− x) denotes any complex number with (

√
x(1− x))2 = x(1− x).

(b) an element a ∈ B is invertible in B if and only if the matrices Φx(a) are
invertible for every x ∈ σB(pqp).

(c) if σB(pqp) = σA(pqp), then B is inverse closed in A.

We proceed with the proof of Theorem 3, which we split into several steps.

Step 1: Localization. For every operator A ∈ L(lp), we denote its coset
A+K(lp) in the Calkin algebra by Aπ, and for every multiplier a ∈Mp, we put
ã(t) := a(1/t). The identities

T (ab) = T (a)T (b) +H(a)H(b̃) and H(ab) = T (a)H(b) +H(a)T (b̃), (4)

which hold for arbitrary a, b ∈Mp, together with the compactness of the Hankel
operators H(c) for c ∈ Cp show that the set Cp of all cosets T (c)π with c ∈ Cp and
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c = c̃ forms a central subalgebra of the algebra TH(Mp)/K(lp) and, in particular,
of the algebra TH(PCp)/K(lp). One can, thus, reify Allan’s local principle with
TH(PCp)/K(lp) and Cp in place of A and C, respectively. It is not hard to
see that the maximal ideal space of Cp is homeomorphic to the arc T+, with
t ∈ T+ corresponding to the maximal ideal {c ∈ Cp : c(t) = 0} of Cp. We let Jt
denote the smallest closed ideal of TH(PCp)/K(lp) which contains the maximal
ideal t and write Aπt for the coset Aπ + Jt of A ∈ TH(PCp). Instead of T (a)πt
and H(b)πt we often write T πt (a) and Hπ

t (b), respectively, and the local quotient
algebra (TH(PCp)/K(lp))/Jt is denoted by THπt (PCp) therefore. By Allan’s local
principle, we then have

σTH(PCp)/K(lp)(A
π) = ∪t∈T+σTHπt (PCp)(A

π
t ) (5)

for every A ∈ TH(PCp).

Step 2: Local equivalence of multipliers. Let a, b ∈ PCp and t ∈ T+. We

show that if a(t±) = b(t±) and a(t
±

) = b(t
±

), then T πt (a) = T πt (b) and Hπ
t (a) =

Hπ
t (b). This fact will be used in what follows in order to replace multipliers by

locally equivalent ones. It is clearly sufficient to prove that if a ∈ PCp satisfies

a(t±) = a(t
±

) = 0, then T π(a), Hπ(a) ∈ Jt. We will give this proof for t ∈ T0
+;

the proof for for t = ±1 is similar.
Given ε > 0, let f ∈ PC such that ‖a− f‖Mp < ε. Then there is an open arc

U := (e−iδt, eiδt) ⊂ T+ such that |a(s)| < ε almost everywhere on U∪U and such
that f has at most one discontinuity in each of U and U . Then |f(s)| < 2ε for
s ∈ U ∪ U . Now choose a real-valued function ϕ0 ∈ C∞(T) such that ϕ0(t) = 1,
the support of ϕ0 is contained in U , and ϕ0 is monotonously increasing on the
arc (e−iδt, t) and monotonously decreasing on (t, eiδt). Set ϕ := ϕ0 + ϕ̃0. Then
ϕ = ϕ̃, and

T π(f)− T π(fϕ) = T π(f(1− ϕ)) = T π(f)T π(1− ϕ) ∈ Jt,

Hπ(f)−Hπ(fϕ) = Hπ(f(1− ϕ)) = Hπ(f)T π(1− ϕ) ∈ Jt.

Since ‖fϕ‖∞ < 2ε and Var(fϕ) < 8ε, we conclude that ‖fϕ‖Mp < 10cpε from
Stechkin’s inequality. Thus, ‖T π(fϕ)‖ < 10cpε and ‖Hπ(fϕ)‖ < 10cpε, with a
constant cp depending on p only. Thus, T π(a) differs from the element T π(f) −
T π(fϕ) ∈ Jt by the element T π(a − f) + T π(fϕ), which has a norm less than
(1 + 10cp)ε. Since ε > 0 is arbitrary and Jt is closed, this implies T π(a) ∈ Jt.
Analogously, Hπ(a) ∈ Jt.

Step 3: The local algebras at t ∈ T0
+. We start with describing the local

algebras THπt (PCp) at points t ∈ T0
+. Let χt denote the characteristic function

of the arc in T which connects t with t̄ and runs through the point -1. Clearly,
χt ∈ PCp. The crucial observation, which is a simple consequence of the identities
(4), is that the operator T (χt) +H(χt) is an idempotent. Further, let ϕt ∈ Cp be
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any multiplier such that 0 ≤ ϕt ≤ 1, ϕt(t) = 1, ϕ(t̄) = 0 and ϕt + ϕ̃t = 1. Again
by (4), the coset T πt (ϕt) is an idempotent.

We claim that the idempotents pt := T πt (ϕt) and qt := T πt (χt) + Hπ
t (χt)

together with the identity element e := Iπt generate the local algebra THπt (PCp).
Let a, b ∈ PCp. Then, using step 2,

T πt (a) = a(t+)T πt (χtϕt) + a(t−)T πt ((1− χt)ϕt) + a(t̄−)T πt (χt(1− ϕt))
+ a(t̄+)T πt ((1− χt)(1− ϕt)). (6)

It is not hard to check that

T πt (χtϕt) = ptqtpt,

T πt ((1− χt)ϕt) = pt(e− qt)pt,
T πt (χt(1− ϕt)) = (e− pt)qt(e− pt),

T πt ((1− χt)(1− ϕt)) = (e− pt)(e− qt)(e− pt). (7)

Let us verify the first of these identities, for example. By definition,

ptqtpt = T πt (ϕt)T
π
t (χt)T

π
t (ϕt) + T πt (ϕt)H

π
t (χt)T

π
t (ϕt).

Since T (ϕt) commutes with T (χt) modulo compact operators and H(ϕ̃t) is com-
pact, we can use the identities (4) to conclude

T πt (ϕt)T
π
t (χt)T

π
t (ϕt) = T πt (χt)T

π
t (ϕt) = T πt (χtϕt).

Further, due to the compactness of H(ϕt) and H(ϕ̃t),

T πt (ϕt)H
π
t (χt)T

π
t (ϕt) = Hπ

t (ϕtχt)T
π
t (ϕt) = Hπ

t (ϕtχtϕ̃t).

Since ϕtχtϕ̃t is a continuous function, Hπ
t (ϕtχtϕ̃t) = 0. This gives the first of the

identities (7). The others follow in a similar way. Thus, (6) and (7) imply that
T πt (a) belongs to the algebra generated by e, pt and qt. Similarly, we write

Hπ
t (b) = b(t+)Hπ

t (χtϕt) + b(t−)Hπ
t ((1− χt)ϕt) + b(t̄−)Hπ

t (χt(1− ϕt))
+ b(t̄+)Hπ

t ((1− χt)(1− ϕt)) (8)

and use the identities

Hπ
t (χtϕt) = ptqt(e− pt),

Hπ
t ((1− χt)ϕt) = −ptqt(e− pt),

Hπ
t (χt(1− ϕt)) = (e− pt)qtpt,

Hπ
t ((1− χt)(1− ϕt)) = −(e− pt)qtpt (9)

to conclude that Hπ
t (b) also belongs to the algebra generated by e, pt and qt.

Thus, the algebra THπt (PCp) is subject to the two idempotents theorem.
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In order to apply this theorem we have to determine the spectrum of the coset
ptqtpt = T πt (χtϕt) in that algebra. We claim that

σTHπt (PCp)(T
π
t (χtϕt)) = {µq(λ) : λ ∈ R} (10)

with 1/p+ 1/q = 1. Let at ∈ PCp be a multiplier with the following properties:

(a) at is continuous on T \ {t} and has a jump at t ∈ T.

(b) at(t
+) = χt(t

+) = 1 and at(t
−) = χt(t

−) = 0.

(c) at takes values in {µq(λ) : λ ∈ R} only.

(d) at is zero on the arc joining −t to t which contains the point 1.

Then, by Theorem 1, the essential spectrum of the Toeplitz operator T (at) in each
of the algebras L(lp)/K(lp) and T(PCp)/K(lp) is equal to the arc {µq(λ) : λ ∈ R}.
Hence, the essential spectrum of T (at), now considered as an element of the
algebra TH(PCp)/K(lp), is also equal to this arc. Hence,

σTHπt (PCp)(T
π
t (at)) ⊆ {µq(λ) : λ ∈ R}

by Allan’s local principle. Since T πt (at) = T πt (χtϕt), this settles the inclusion ⊆
in (10). For the reverse inclusion, let bt ∈ PCp be a multiplier with the following
properties:

(a) bt is continuous on T \ {t} and has a jump at t ∈ T.

(b) bt(t
±) = χt(t

±).

(c) bt takes values not in {µq(λ) : λ ∈ R} on the arc joining −t to t which
contains the point −1.

(d) bt is zero on the arc joining −t to t which contains the point 1.

Then, again by Theorem 1, the essential spectrum of the Toeplitz operator T (bt)
in each of the algebras L(lp)/K(lp) and T(PCp)/K(lp) is equal to the union of
the arc {µq(λ) : λ ∈ R} and the range of bt. Hence, the essential spectrum of
T (bt), now considered as an element of the algebra TH(PCp)/K(lp), is also equal
to this union. Since bt is continuous on T \ {t} by property (a), we have

σTHπs (PCp)(T
π
s (bt)) = {bt(s), bt(s̄)}

for s ∈ T0
+ \{t}. Since the points bt(s) and bt(s̄) do not belong to {µq(λ) : λ ∈ R}

by property (c), we conclude that the open arc {µq(λ) : λ ∈ R} is contained in
the local spectrum of T (bt) at t. Since spectra are closed, this implies

{µq(λ) : λ ∈ R} ⊆ σTHπt (PCp)(T
π
t (bt)).

Since T πt (bt) = T πt (χtϕt) by property (b), this settles the inclusion ⊇ in (10).
Since νq(λ)2 = µq(λ)(1 − µq(λ)), we can choose

√
µq(λ)(1− µq(λ)) = νq(λ).

With this choice and identities (6) – (9) it becomes evident that the two idem-
potents theorem associates with the coset T πt (a) +Hπ

t (b) the matrix function

λ 7→
(
a(t+)µq(λ) + a(t−)(1− µq(λ)) (b(t+)− b(t−))νq(λ)

(b(t̄−)− b(t̄+))νq(λ) a(t̄−)(1− µq(λ)) + a(t̄+)µq(λ)

)
10



on R.

Step 4: The local algebra at 1 ∈ T+. Next we are going to consider the local
algebra THπ1 (PCp) at the fixed point 1 of the mapping t 7→ t̄. Let f : T → C
denote the function eis 7→ 1 − s/π where s ∈ [0, 2π). This function belongs to
PCp, and it has its only jump at the point 1 ∈ T where f(1±) = ±1. Using ideas
from [17], it was shown in [18] by one of the authors that the Hankel operator
H(f) belongs to the Toeplitz algebra T(PCp) and that its essential spectrum is
given by

σess(H(f)) = {2i νq(λ) : λ ∈ R}. (11)

(in fact, this identity was derived in [18] with p in place of q, which makes no
difference since νp(−λ) = νq(λ) for every λ.) Let χ+ denote the characteristic
function of the upper half-circle T+. Since every coset T π1 (a) with a ∈ PCp is
a linear combination of the cosets Iπ1 and T π1 (χ+) and every coset Hπ

1 (b) is a
multiple of the coset Hπ

1 (f), the local algebra THπ1 (PCp) is singly generated (as a
unital algebra) by the coset T π1 (χ+). In particular, THπ1 (PCp) is a commutative
Banach algebra, and its maximal ideal space is homeomorphic to the spectrum
of its generating element. Similar to the proof of (10) one can show that

σTHπ1 (PCp)(T
π
t (χ+)) = {µq(λ) : λ ∈ R} (12)

It is convenient for our purposes to identify the maximal ideal space of the algebra
THπ1 (PCp) with R. The Gelfand transform of T πt (χ+) is then given by λ 7→ µq(λ)
due to (12). Let h denote the Gelfand transform of Hπ

1 (f). From (4) we obtain

Hπ
1 (f)2 = T π1 (ff̃)− T π1 (f)T π1 (f̃).

The function ff̃ is continuous at 1 ∈ T and has the value −1 there, and the
function f + f̃ is continuous at 1 ∈ T and has the value 0 there. Thus,

Hπ
1 (f)2 = −Iπ1 + T π1 (f)2.

Since T π1 (f) = T π1 (2χ+ − 1) = 2T π1 (χ+)− Iπ1 we conclude that

h(λ)2 = (2µq(λ)− 1)2 − 1 = (sinh(π(λ+ i/q)))−2

if λ ∈ R and by h(±∞) = 0. By (11), this equality necessarily implies that

h(λ) = (sinh(π(λ+ i/q)))−1 = 2iνq(λ)

if λ ∈ R and h(±∞) = 0. Combining these results we find that the Gelfand
transform of T π1 (a) +Hπ

1 (b) is the function

λ 7→ a(1+)µq(λ) + a(1−)(1− µq(λ)) + i (b(1+)− b(1−))νq(λ).

Step 5: The local algebra at −1 ∈ T+. It remains to examine the local algebra
THπ−1(PCp) at the point −1. Let Λ : l2 → l2 denote the mapping (xn)n≥0 7→

11



((−1)nxn)n≥0. Clearly, Λ−1 = Λ, and one easily checks (perhaps most easily on
the level of the matrix entries, which are Fourier coefficients) that

Λ−1T (a)Λ = T (â) and Λ−1H(a)Λ = −H(â)

for a ∈ PCp, where â(t) := a(−t). Thus, the mapping A 7→ Λ−1AΛ is an automor-
phism of the algebra TH(PCp), which maps compact operators to compact oper-
ators and induces, thus, an automorphism of the algebra TH(PCp)/K(lp). The
latter maps the local ideal at 1 to the local ideal at −1 and vice versa and induces,
thus, an isomorphism between the local algebras THπ1 (PCp) and THπ−1(PCp),
which sends T π1 (χ+) to T π−1(1 − χ+) and Hπ

1 (χ+) to −Hπ
−1(1 − χ+) = Hπ

−1(χ+),
respectively.

Step 6: From local to global invertibility. We have identified the right-hand
sides of (1) and (2) as the functions which are locally associated with the oper-
ator T (a) + H(b) via the two idempotents theorem and via Gelfand theory for
commutative Banach algebras, respectively. It follows from the two idempotents
theorem and from Gelfand theory that the so-defined mappings smbp (t, λ) ex-
tend to a continuous homomorphism from TH(PCp) to C2×2 or C, respectively,
which combine to a continuous homomorphism from TH(PCp) to the algebra
F . Allan’s local principle then implies that the coset A + K(lp) of an operator
A ∈ TH(PCp) is invertible in TH(PCp)/K(lp) if and only if its symbol does not
vanish. The proof of estimate (3) will base on Mellin homogenization arguments.
We therefore postpone it until Section 5; see estimate (26).

Step 7: Inverse closedness. It remains to show that TH(PCp)/K(lp) is an
inverse closed subalgebra of the Calkin algebra L(lp)/K(lp). We shall prove this
fact by using a thin spectra argument as follows: If A is a unital closed subalgebra
of a unital Banach algebra B, and if the spectrum in A of every element in a dense
subset of A is thin, i.e. if its interior with respect to the topology of C is empty,
then A is inverse closed in B. See, e.g., [19], Corollary 1.2.32, for a simple proof
of this argument.

Let A0 be the set of all operators of the form

A :=
l∑

i=1

k∏
j=1

(T (aij) +H(bij)) with Aij, bij ∈ PC, (13)

and write σTHess (A) for the spectrum of A in TH(PCp)/K(lp). Then A0/K(lp) is
dense in TH(PCp)/K(lp), and the assertion will follow once we have shown that
TH(PCp)/K(lp) is thin for every A ∈ A0.

Given A of the form (13), let Ω denote the set of all discontinuities of the

functions aij and bij, and put Ω̃ := (Ω ∪ Ω) ∩ T+. Clearly, Ω̃ is a finite set. By
what we have shown above,

σTHess (A) = ∪(t,λ)∈T+×R σ(smbp (A)(t, λ))

12



where σ(B) stands for the spectrum (= set of the eigenvalues) of the matrix B.
We write σTHess (A) as Σ1 ∪ Σ2 ∪ Σ3 where

Σ1 := ∪(t,λ)∈{−1,1}×R σ(smbp (A)(t, λ)),

Σ2 := ∪(t,λ)∈(T0
+\Ω̃)×R σ(smbp (A)(t, λ)),

Σ3 := ∪(t,λ)∈(Ω̃\{−1,1})×R σ(smbp (A)(t, λ)).

It is clear that Σ1 is a set of measure zero. It is also clear that each set

Σ2,t := ∪λ∈R σ(smbp (A)(t, λ)) with t ∈ T0
+ \ Ω̃

has measure zero. Since the functions aij and bij are piecewise constant, the

mapping t 7→ Σ2,t is constant on each connected component of T0
+ \ Ω̃, and the

number of components is finite. Thus, Σ2 is actually a finite union of sets of
measure zero. Since Ω̃ is finite, it remains to show that each of the sets

Σ3,t := ∪λ∈R σ(smbp (A)(t, λ)) with t ∈ Ω̃ \ {−1, 1}

has measure zero. For this goal it is clearly sufficient to show that each set

Σ0
3,t := ∪λ∈R σ(smbp (A)(t, λ)) with t ∈ Ω̃ \ {−1, 1}

has measure zero. Let t ∈ Ω̃ \ {−1, 1}, and write smbp (A)(t, λ) as (cij(λ))2
i,j=1.

The eigenvalues of this matrix are s±(λ) = (c11(λ) + c22(λ))/2±
√
r(λ) where

r(λ) = (a11(λ) + a22(λ))2/4− (a11(λ)a22(λ)− a12(λ)a21(λ))

and where
√
r(λ) is any complex number the square of which is r(λ). Since

r is composed by the meromorphic functions coth and 1/ sinh, the set of zeros
of r is discrete. Hence, R \ {λ ∈ R : r(λ) = 0} is an open set, which as the
union of an at most countable family of open intervals. Let I be one of these
intervals. Then I can be represented as the union of countably many compact
subintervals In such that the intersection In ∩ Im consists of at most one point
whenever n 6= m and each set r(In) is contained in a domain where a continuous
branch, say fn, of the function z 7→

√
z exists. Then ±fn ◦ r : In → C is

a continuously differentiable function, which implies that (±fn ◦ r)(In) is a set
of measure zero. Consequently, the associated sets s±(In) of eigenvalues have
measure zero, too. Since the countable union of sets of measure zero has measure
zero, we conclude that each set Σ0

3,t has measure zero, which finally implies that
σTHess (A) = Σ1∪Σ2∪Σ3 has measure zero and is, thus, thin. This settles the proof
of the inverse closedness and concludes the proof of Theorem 3.

We would like to mention that there is another proof of the inverse closedness
assertion in the previous theorem which is based on ideas from [5] and which
works also in other situations.
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3 An extended Toeplitz algebra

In the proof of the announced index formula for Toeplitz plus Hankel operators,
we shall need an extension of the results of the previous section to certain matrix
operators. For k ∈ N and X a linear space, we let Xk and Xk×k stand for the
linear spaces of all vectors of length k and of all k × k-matrices with entries in
X, respectively. If X is an algebra, then Xk×k becomes an algebra under the
standard matrix operations. If X is a Banach space, then Xk and Xk×k become
Banach spaces with respect to the norms

‖(xj)kj=1‖ =
k∑
j=1

‖xj‖ and ‖(aij)ki,j=1‖ = k sup
1≤i,j≤k

‖aij‖. (14)

If, moreover, X is a Banach algebra, thenXk×k is a Banach algebra with respect to
the introduced norm. Actually, any other norm on Xk and any other compatible
matrix norm on Xk×k will do the same job. Note also that if X is a C∗-algebra
there is a unique norm (different from the above mentioned) which makes Xk×k
to a C∗-algebra. Since we will not employ C∗-arguments, the choice (14) will be
sufficient for our purposes.

Let T0(PCp) denote the smallest closed subalgebra of L(lp(Z)) which contains
the projection P and all Laurent operators L(a) with a ∈ PCp. The algebra
T0(PCp) contains T(PCp) in the sense that the operator PL(a)P : imP → imP
can be identified with the Toeplitz operator T (a). For k ∈ N, the matrix algebra
T0(PCp)k×k will be also denoted by T0

k×k(PCp). One can characterize T0
k×k(PCp)

also as the smallest closed subalgebra of L(lp(Z)k) which contains all operators of
the form L(a)diagP+L(b)diagQ with a, b ∈ (PCp)k×k, where Q := I−P , diagA
stands for the operator on L(lp(Z)k) which has A ∈ L(lp(Z)) at each entry of its
main diagonal and zeros at all other entries, and where L(a) = (L(aij))

k
i,j=1 refers

to the matrix Laurent operator with generating function a = (aij)
k
i,j=1. Note that

K(lp(Z)k) is contained in T0
k×k(PCp).

The Fredholm theory for operators in T0
k×k(PCp) is well known. We will

present it in a form which is convenient for our purposes. Our main tools are again
Allan’s local principle (Theorem 5) and a matrix version of the two idempotents
theorem (Theorem 6) due to [5]. Here is the result.

Theorem 7 Let a, b ∈ (PCp)k×k.

(a) The operator A := L(a)diagP +L(b)diagQ is Fredholm on lp(Z)k if and only
if the matrix

(smbpA)(t, λ) =(
a(t−) + (a(t+)− a(t−))diagµq(λ) (b(t+)− b(t−))diag νq(λ)

(a(t+)− a(t−))diag νq(λ) b(t+)− (b(t+)− b(t−))diagµq(λ)

)
is invertible for every pair (t, λ) ∈ T× R.
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(b) The mapping smbp defined in assertion (a) extends to a continuous algebra
homomorphism from T0

k×k(PCp) to the algebra F of all bounded functions on

T× R with values in C2k×2k. Moreover, there is a constant M such that

‖smbpA‖ := sup
(t,λ)∈T+×R

‖smbpA(t, λ)‖∞ ≤M inf
K∈K(lp(Z)k)

‖A+K‖ (15)

for every operator A ∈ T0
k×k(PCp).

(c) An operator A ∈ T0
k×k(PCp) has the Fredholm property on lp(Z)k if and only

if the function smbpA is invertible in F .

(d) The algebra T0
k×k(PCp)/K(lp(Z)k) is inverse closed in the Calkin algebra

L(lp(Z)k)/K(lp(Z)k).

(e) If A ∈ T0
k×k(PCp) is a Fredholm operator, then

indA = −wind (det smbpA(t, λ)/(det a22(t, ∞) det a22(t, −∞)))

where smbpA = (aij)
2
i,j=1 with k × k-matrix-valued functions aij.

It is a non-trivial fact that the function

W : T× R, (t, λ) 7→ det smbpA(t, λ)/(det a22(t, ∞) det a22(t, −∞))

forms a closed curve in the complex plane. Thus, the winding number of W is
well defined if A is a Fredholm operator.

The remainder of this section is devoted to the proof of Theorem 7. We shall
mainly make use of results from Sections 2.3 - 2.5 in [11] and Chapter 6 in [2].
We will be quite sketchy when the arguments are close to those from the proof
of Theorem 3.

Step 1: Spline spaces. We start with recalling some facts about spline spaces
and operators thereon from [11]. Let χ[0,1] denote the characteristic function of
the interval [0, 1] ⊂ R and, for n ∈ N, let Sn denote the smallest closed subspace
of Lp(R) which contains all functions

ϕk,n(t) := χ[0,1](nt− k), t ∈ R,

where k ∈ Z. The space lp(Z) can be identified with each of the spaces Sn in
the sense that a sequence (xk) is in lp(Z) if and only if the series

∑
k∈Z xkϕk,n

converges in Lp(R) and that∥∥∥∑xkϕk,n

∥∥∥
Lp(R)

= n−1/p ‖(xk)‖lp(Z)

in this case. Thus, the linear operator

En : lp(Z)→ Sn ⊂ Lp(R), (xk) 7→ n1/p
∑

xkϕk,n,
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and its inverse E−n : Lp(R) ⊃ Sn → lp(Z) are isometries for every n. Further we
define operators

Ln : Lp(R)→ Sn, u 7→ n
∑
k∈Z

〈u, ϕk,n〉ϕk,n

with respect to the sesqui-linear form 〈u, v〉 :=
∫
R uvdx, where u ∈ Lp(R) and

v ∈ Lq(R) with 1/p + 1/q = 1. It is easy to see that every Ln is a projection
operator with norm 1 and that the Ln converge strongly to the identity operator
on Lp(R) as n→∞. Finally we set

Yt : lp(Z)→ lp(Z), (xk) 7→ (t−kxk) for t ∈ T.

Clearly, Yt is an isometry, and Y −1
t = Yt−1 . One easily checks that Y −1

t L(a)Yt =
L(at) with at(s) = a(ts) for every multiplier a, which implies in particular that
Y −1
t T0(PCp)Yt = T0(PCp).

Step 2: Some homomorphisms. In Sections 2.3.3 and 2.5.2 of [11] it is shown
that, for every A ∈ T0(PCp) and every t ∈ T, the strong limit

smbtA := s-limn→∞EnY
−1
t AYtE−nLn

exists and that the mapping smbt is a bounded unital algebra homomorphism.
This homomorphism can be extended in a natural way to the matrix algebra
T0
k×k(PCp). We denote this extension by smbtA again.

In order to characterize the range of the homomorphism smbt, we have to
introduce some operators on Lp(R). Let χ+ stand for the characteristic function
of the interval R+ = [0, ∞) and χ+I for the operator of multiplication by χ+.
Further, SR refers to the singular integral operator

(SRf)(t) :=
1

πi

∫ ∞
−∞

f(s)

s− t
ds,

with the integral understood as a Cauchy principal value. Both χ+I and SR
are bounded on Lp(R), and S2

R = I. Thus, the operators PR := (I + SR)/2
and QR := I − PR are bounded projections on Lp(R). We let Σp

k(R) stand
for the smallest closed subalgebra of L(Lp(R)k) which contains the operators
diagχ+I, diagSR, and all operators of multiplication by constant k × k-matrix-
valued functions.

Theorem 8 Let t ∈ T. Then
(a) smbt diagP = diagχ+I.
(b) smbt L(a) = a(t+)diagQR + a(t−)diagPR for a ∈ (PCp)k×k.
(c) smbtK = 0 for every compact operator K.
(d) smbt maps the algebra T0

k×k(PCp) onto Σp
k(R).

(e) The algebra Σp
k(R) is inverse closed in L(Lp(R)k).
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Assertion (c) of the previous theorem implies that every mapping smbt induces a
natural quotient homomorphism from T0(PCp)/K(lp(Z)) to Σp

1(R). We denote
this quotient homomorphism by smbt again. It now easily seen that the estimate
(15) holds for every A ∈ T0

k×k(PCp) (with the constant M = 1 for k = 1).

Step 3: The Fredholm property. Since the commutator L(a)P − PL(a) is
compact for every a ∈ Cp, the algebra Cp := {diagL(a) : a ∈ Cp}/K(lp(Z)k) lies
in the center of the algebra A := T0

k×k(PCp)/K(lp(Z)k). It is not hard to see that
Cp is isomorphic to Cp; hence the maximal ideal space of Cp is homeomorphic to
the unit circle T. In accordance with Allan’s local principle, we introduce the
local ideals Jt and the local algebras At := A/Jt at t ∈ T.

By Theorem 8 (b), the local ideal Jt lies in the kernel of smbt. We de-
note the related quotient homomorphism by smbt again. Thus, smbt is an al-
gebra homomorphism from At onto Σp

k(R), which sends the local cosets con-
taining the operators diagP and L(a) with a ∈ (PCp)k×k to diagχ+I and
a(t+) diagQR + a(t−) diagPR, respectively. By Theorem 2.3 in [11], this homo-
morphism is injective, i.e., it is an isomorphism between At and Σp

k(R).
Since PR and diagχ+I are projections, the algebra Σp

k(R) is subject to the
two projections theorem with coefficients, as derived in [5]. Alternatively, this
algebra can be described by means of the Mellin symbol calculus, see Section 2.1
in [11]. In each case, the result is that an operator of the form

(a+diagχ+I + a−diagχ−I) diagPR + (b+diagχ+I + b−diagχ−I) diagQR (16)

where χ− := 1−χ+ and a±, b± ∈ Ck×k is invertible if and only if the (2k)× (2k)-
matrix-valued function

λ 7→
(
a+diag (1− µp(λ)) + a−diagµp(λ) (b+ − b−) diag νp(λ)

(a+ − a−) diag νp(λ) b+diagµp(λ) + b−diag (1− µp(λ))

)
is invertible at each point λ ∈ R. Note that the function

λ 7→ a+diag (1− µp(λ)) + a−diagµp(λ)

is continuous on R and that this function connects a+ with a− if λ runs from
−∞ to +∞. For the sake of index computation, one would prefer to work with
a function which connects a− with a+ if λ increases. Since µp(−λ) = 1 − µq(λ)
and νp(−λ) = νq(λ) with q satisfying 1/p+ 1/q = 1, we obtain that the operator
A in (16) is invertible if and only if the matrix function

λ 7→
(
a+diagµq(λ) + a−diag (1− µq(λ)) (b+ − b−) diag νq(λ)

(a+ − a−) diag νq(λ) b+diag (1− µq(λ)) + b−diagµq(λ)

)
is invertible on R. This observation, together with the local principle, implies
that the coset L(a)diagP + L(b)diagQ + K(lp(Z)k) is invertible in the quotient
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algebra T0
k×k(PCp)/K(lp(Z)k) if and only if the matrix function in assertion (a)

of Theorem 7 is invertible. In particular, this gives the “if”-part of assertion (a).
The “only if”-part of this assertion follows from the inverse closedness assertion
(d), which can be proved using ideas from [5], where inverse closedness issues of
two projections algebras with coefficients are studied. The proof of assertions (b)
and (c) of Theorem Theorem 7 is then standard.

Step 4: The index formula. It remains to prove the index formula (e). First
we have to equip the cylinder T× R with a suitable topology, which will be dif-
ferent from the usual product topology. We provide T with the counter-clockwise
orientation and R with the natural orientation given by the order <. Then the
desired topology is determined by the system of neighborhoods U(t0, λ0) of the
point (t0, λ0) ∈ T× R, defined by

U(t0, −∞) = {(t, λ) ∈ T× R : |t− t0| < δ, t ≺ t0} ∪ {(t0, λ) ∈ T× R : λ < ε},

U(t0, +∞) = {(t, λ) ∈ T× R : |t− t0| < δ, t0 ≺ t} ∪ {(t0, λ) ∈ T× R : ε < λ}

if λ0 = ±∞ and by

U(t0, λ0) = {(t0, λ) ∈ T× R : λ0 − δ1 < λ < λ0 + δ2}

if λ0 ∈ R, where ε ∈ R and δ, δ1, δ2 are sufficiently small positive numbers, and
where t ≺ s means that t precedes s with respect to the chosen orientation of
T. Note that the cylinder T × R, provided with the described topology, is just
a homeomorphic image of the cylinder T × [0, 1], provided with the Gohberg-
Krupnik topology. The latter has been shown by Gohberg and Krupnik to be
(homeomorphic to) the maximal ideal space of the commutative Banach algebra
T(PCp)/K(lp); see [6] and [2], Proposition 6.28. If one identifies T× [0, 1] with
T × R, then the Gelfand transform of a coset A + K(lp) of A ∈ T(PCp) is just
the function Γ(A) defined in Theorem 1.

It is an important point to mention that while the function smbpA for A ∈∈
T0
k×k(PCp) is not continuous on T × R (just consider the south-east entry of

smbp (L(a)P + L(b)Q)), the function

(t, λ) 7→ det smbpA(t, λ)/(det a22(t, ∞) det a22(t, −∞)

is continuous on T × R. This non-trivial fact was observed by Gohberg and
Krupnik in a similar situation when studying the Fredholm theory for singular
integral operators with piecewise continuous coefficients (see [7]; an introduction
to this topic is also in Chapter V of [15]).

We will establish the index formula by employing a method which also goes
back to Gohberg and Krupnik and is known as linear extension. This method has
found its first applications in the Fredholm theory of one-dimensional singular
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integral equations; see [10, 15]. We will use this method in the slightly differ-
ent context of Toeplitz plus Hankel operators. Therefore, and for the readers’
convenience, we recall it here.

Let B be a unital ring with identity element e. With every h × r-matrix
β := (bjl)

h,r
j,l=1 with entries in B, we associate the element

el(β) =
h∑
j=1

bj1 . . . bjr ∈ B (17)

generated by β and call the bjl the generators of el(β). For each element of this
form, there is a canonical matrix ext(β) ∈ Bs×s with s = h(r+ 1) + 1 with entries
in the set {0, e, bjk : 1 ≤ j ≤ h, 1 ≤ k ≤ r} and with the property that el(β) is
invertible in B if and only if ext(β) is invertible in Bs×s. Actually, a matrix with
this property can be constructed as follows. Let

ext(β) :=

(
Z X
Y 0

)
=

(
eh(r+1) 0
W e

)(
eh(r+1) 0

0 el(β)

)(
Z X
0 e

)
(18)

where el denotes the unit element of Bl×l,

Z := eh(r+1) +


0 B1 0 · · · 0 0
0 0 B2 · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · 0 Br

0 0 0 · · · 0 0


with Bj := diag (b1j, b2j, . . . , bhj), X is the column −(0, . . . , 0, e, . . . , e)T with
hr zeros followed by h identity elements, Y is the row (e, . . . , e, 0, . . . , 0) with
h identity elements followed by hr zeros, and W := (M0, M1, . . . , Mr) with
M0 := (e, . . . , e) consisting of h identity elements and

Mj := (b11b12 . . . b1j, b21b22 . . . b2j, . . . , bh1bh2 . . . bhj)

for j = 1, . . . , r. The matrix ext(β) in (18) is called the linear extension of el(β).
Since the outer factors on the right-hand side of (18) are invertible, it follows

indeed that el(β) is invertible in B if and only if its linear extension ext(β) is
invertible in Bs×s. As a special case we obtain that if the bjl are bounded linear
operators on some Banach space B, then el(β) is a Fredholm operator on B
if and only if ext(β) is a Fredholm operator on L(B)s×s = L(Bs). Moreover,
ind el(β) = ind ext(β) is this case.

We shall apply this observation for B = lp(Z)k and for the generating opera-
tors

bjl := L(cjl) diagP + L(djl) diagQ with cjl, djl ∈ (PCp)k×k. (19)
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Put β := (bjl)
h,r
j,l=1, γ := (L(cjl))

h,r
j,l=1 and δ := (L(djl))

h,r
j,l=1. The linear extensions

of γ and δ are Laurent operators again; thus ext(γ) = L(c) and ext(δ) = L(d)
with piecewise continuous multipliers c and d. Moreover,

ext(β) = L(c) diagP + L(d) diagQ. (20)

If el(β) is a Fredholm operator then, by Theorem 7 (a), the matrices c(t±) and
d(t±) are invertible for every t ∈ T. Hence, c and d are invertible in (PCp)ks×ks.
This fact together with the above observation implies that the operator el(β)
is Fredholm on lp(Z)k if and only if its linear extension ext(β) is Fredholm on
lp(Z)ks, which on its hand holds if and only if the Toeplitz operator T (d−1c) is
Fredholm on lpks, and that the Fredholm indices of the operators el(β), ext(β)
and T (d−1c) coincide in this case. The symbol of the Toeplitz operator T (d−1c)
is the function

smbp (T (d−1c))(t, λ) = (d−1c)(t+)diagµq(λ) + (d−1c)(t−)diag (1− µq(λ))

(which stems from the matrix-version of Theorem 1), and smbp (ext(β)) =:
(aij)

2
i,j=1 is related with smbp (T (d−1c)) via

det smbp (T (d−1c))(t, λ) = det(smbp ext(β))(t, λ)/(det a22(t, ∞) det a22(t,−∞))

as can be checked directly; see [10, 15] for details. This fact can finally be used
to derive the index formula for Fredholm operators of the form el(β) with the
entries of β given by (19). For details we refer to [10, 15] again, where a similar
setting is considered.

Since the operators el(β) lie dense in T0
k×k(PCp), the index formula for a

Fredholm operator in this algebra follows by a standard approximation argument.
To carry out this argument one has to use the estimate

‖smbp el(β)‖ ≤M inf
K∈K(lp(Z)k)

‖el(β) +K‖

with M independent of β, which is an immediate consequence of (15).

4 The index formula for T +H-operators

Our next goal is to provide an index formula for Fredholm operators of the
form T (a) + H(b) on lp where a, b are multipliers in PCp with a finite set of
discontinuities. We start with a couple of lemmata.

Lemma 9 If a ∈ C(T) ∩M 〈p〉, then H(a) is compact on lp.

Proof. It is shown in Proposition 2.45 in [2] that C(T) ∩M 〈p〉 ⊆ Cp (in fact it
is shown there that the closure of C(T)∩M 〈p〉 in the multiplier norm equals Cp)

20



and in Theorem 2.47 that H(a) is compact on lp if a ∈ Cp.

For a subset Ω of T, let PC(Ω) stand for the set of all piecewise continuous
functions which are continuous on T \ Ω, and put PC〈p〉(Ω) := PC(Ω) ∩M 〈p〉.
Thus, C〈p〉 := PC〈p〉(∅) = C(T) ∩ M 〈p〉. From 6.27 in [2] one concludes that
PC〈p〉(Ω) ⊆ PCp if Ω is finite.

In what follows, we specify Ω0 := {τ1, . . . , τm} to be a finite subset of T\{±1}
and put Ω := Ω0 ∪ {±1}. Let ϕ0 ∈ C〈p〉 be a multiplier which satisfies ϕ = ϕ̃,
takes its values in [0, 1], and is identically 1 on a certain neighborhood of {−1, 1}
and identically 0 on a certain neighborhood of Ω0 ∪ Ω0. Moreover, we suppose
that ϕ2

0 + ϕ2
1 = 1 where ϕ1 := 1− ϕ0.

Lemma 10 Let c ∈ PC〈p〉({−1, 1}) and d ∈ PC〈p〉(Ω0). Then the operators
H(c)T (d)−H(cdϕ0) and T (c)H(d)−H(cdϕ1) are compact on lp.

Proof. We write H(c)T (d) = H(c)T (d)T (ϕ0) +H(c)T (d)T (ϕ1) with

H(c)T (d)T (ϕ0) = H(c) (T (dϕ0)−H(d)H(ϕ̃0))

= H(cdϕ0)− T (c)H(d̃ϕ0)−H(c)H(d)H(ϕ̃0),

H(c)T (d)T (ϕ1) = H(c)T (ϕ1)T (d) +H(c) (T (d)T (ϕ1)− T (ϕ1)T (d))

= (H(cϕ1)− T (c)H(ϕ̃1))T (d)

+ H(c)
(
H(d)H(ϕ̃1)−H(ϕ1)H(d̃)

)
.

The operators H(d̃ϕ0), H(ϕ̃0), H(cϕ1), H(ϕ1) and H(ϕ̃1) are compact by Lemma
9, which gives the first assertion. The proof of the second assertion proceeds
similarly.

Lemma 11 Let a0, b0 ∈ PC〈p〉({−1, 1}) and a1, b1 ∈ PC〈p〉(Ω0). Then the op-
erator

(T (a0) +H(b0))(T (a1) +H(b1))− (T (a0a1) +H(a1b0ϕ0) +H(a0b1ϕ1))

is compact on lp.

Proof. We write (T (a0) +H(b0))(T (a1) +H(b1)) as

T (a0)T (a1) + T (a0)H(b1) +H(b0)T (a1) +H(b0)H(b1)

= T (a0a1) +K1 +H(a0b1ϕ1) +K2 +H(b0a1ϕ0) +K3 +K4

where K1 := T (a0)T (a1)−T (a0a1) and K4 := H(b0)H(b1) = T (b0)T (b̃1)−T (b0b̃1)
are compact on lp by Proposition 6.29 in [2], and K2 := T (a0)H(b1)−H(a0b1ϕ1)
and K3 := H(b0)T (a1)−H(b0a1ϕ0) are compact by Lemma 10.

The following proposition provides us with a key observation; it will allow us to
separate the discontinuities in Ω0 and {−1, 1}.
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Proposition 12 Let a, b ∈ PC〈p〉(Ω). If the operator T (a) + H(b) is Fredholm
on lp, then there are functions a0, b0 ∈ PC〈p〉({−1, 1}) and a1, b1 ∈ PC〈p〉(Ω0)
such that T (a0) +H(b0) and T (a1) +H(b1) are Fredholm operators on lp and the
difference

(T (a0) +H(b0))(T (a1) +H(b1))− (T (a) +H(b))

is compact.

Proof. If T (a)+H(b) is Fredholm on lp, then a is invertible in PCp by Corollary
4 (a). Since the maximal ideal space of PCp is independent on p and a ∈ PC〈p〉,
one even has a−1 ∈ PC〈p〉.

Let U and V be open neighborhoods of {−1, 1} and Ω0 ∪ Ω0, respectively,
such that closU ∩ closV = ∅. We will assume moreover that U = U−1 ∪U1 is the
union of two open arcs such that ±1 ∈ U±1, and that V = V+∪V− is the union of
two open arcs such that V+ ⊆ T0

+ and V− ⊆ T \ T0
+. Note that these conditions

imply that closU−1 ∩ closU1 = ∅.
Now we choose a continuous piecewise (with respect to a finite partition of T)

linear function c on T which is identically 1 on closV , coincides with a on ∂U ,
and does not vanish on T \ U . This function is of bounded total variation; thus
c ∈ C(T) ∩M 〈p〉, whence c ∈ Cp as mentioned in the proof of Lemma 9. Put
a0 := aχU + cχT\U . Then a0 ∈ PC〈p〉 and a−1

0 ∈ PC〈p〉. Further, set a1 := a−1
0 a.

The function a1 is identically 1 on U and coincides with a on V . Since PC〈p〉 is
an algebra, a1 belongs to PC〈p〉. Finally, set b0 := bϕ0 and b1 := bϕ1, with ϕ0

and ϕ1 as in front of Lemma 10.
The above construction guarantees that a0, b0 ∈ PC〈p〉({−1, 1}) and a1, b1 ∈

PC〈p〉(Ω0), and the operator

(T (a0) +H(b0))(T (a1) +H(b1))− (T (a0a1) +H(a1b0ϕ0) +H(a0b1ϕ1))

is compact on lp by Lemma 11. The functions (a1 − 1)b0ϕ0 and (a0 − 1)b1ϕ1

vanish identically on a certain neighborhood of Ω by their construction. Hence,
the Hankel operators H((a1−1)b0ϕ0) and H((a0−1)b1ϕ1) are compact by Lemma
9, which implies that the operator

(T (a0) +H(b0))(T (a1) +H(b1))− (T (a0a1) +H(b0ϕ0) +H(b1ϕ1))

is compact. Since a0a1 = a and b0ϕ0 + b1ϕ1 = b(ϕ2
0 + ϕ2

1) = b, and since
T (a0) + H(b0) and T (a1) + H(b1) are Fredholm operators on lp by Theorem 3,
the assertion follows.

By the previous proposition,

ind (T (a) +H(b)) = ind (T (a0) +H(b0)) + ind (T (a1) +H(b1)).

Since H(b0) ∈ T(PCp) as already mentioned, and since an index formula for
Fredholm operators in T(PCp) is known (see, e.g., 6.40 in [2]), the determination
of ind (T (a0) +H(b0)) is no serious problem. The following theorem provides us
with a basic step on the way to compute the index of T (a1) +H(b1).
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Theorem 13 Let a, b ∈ PC〈p〉(Ω0). If one of the operators T (a) ± H(b) is
Fredholm on lp, then the other one is Fredholm on lp, too, and the Fredholm
indices of these operators coincide.

Proof. By Corollary 4 (b), the operators T (a) + H(b) and T (a) − H(b) are
Fredholm operators on lp only simultaneously. It remains to prove that their
indices coincide. Recall from the introduction that T (a) = PL(a)P and H(a) =
PL(a)QJ . Thus, the index equality will follow once we have constructed a Fred-
holm operator D such that the difference

D(PL(a)P + PL(b)QJ +Q)− (PL(a)P − PL(b)QJ +Q)D (21)

is compact. The following construction of D is a modification of an idea in [12].
(Note that the compactness of the operator (21) also provides an alternate proof
of the simultaneous Fredholm property of the operators T (a)±H(b).)

A function c ∈ Mp is called even (resp. odd) if c = c̃ (resp. c = −c̃)
or, equivalently, if JL(c)J = L(c) (resp. JL(c)J = −L(c)). Every function
c ∈ Cp can be written as a sum of an even and an odd function in a unique
way: c = (c+ c̃)/2 + (c− c̃)/2. Let θo and θe be an odd and an even function in
C(T) ∩M 〈p〉, respectively, and assume that θe vanishes at all points of Ω0 (and,
hence, at all points of Ω0). Put

D := PL(θo + θe)P +QL(θo − θe)Q. (22)

We will later specify the functions θo and θe such that D becomes a Fredholm
operator. First note that

JPL(θo + θe)PJ = −QL(θo − θe)Q, JQL(θo − θe)QJ = −PL(θo + θe)P,

whence JDJ = −D and JD+DJ = 0. Next we show that D commutes with the
operator PL(a)P + PL(b)Q + Q up to a compact operator. Since the Toeplitz
operators PL(θo + θe)P and PL(a)P commute modulo a compact operator, it
remains to show that D commutes with PL(b)Q up to a compact operator. The
latter fact follows easily from the identity

DPL(b)Q− PL(b)QD

= PL(θo + θe)PL(b)Q− PL(b)QL(θo − θe)Q
= PL(θo + θe)L(b)Q− PL(θo + θe)QL(b)Q

− PL(b)L(θo − θe)Q+ PL(b)PL(θo − θe)Q
= 2PL(θeb)Q− PL(θo + θe)QL(b)Q+ PL(b)PL(θo − θe)Q

and from the compactness of the operators PL(θeb)Q and PL(θo±θe)Q by Lemma
9 (note that θeb ∈ C(T)∩M 〈p〉). The compactness of the operator (21) is then a
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consequence of the identity

D(PL(a)P + PL(b)QJ +Q)− (PL(a)P − PL(b)QJ +Q)D

= DPL(a)P − PL(a)PD +DPL(b)QJ + PL(b)QJD

= DPL(a)P − PL(a)PD + (DPL(b)Q− PL(b)QD)J

and of the compactness of the commutators [D,PL(a)P ] and [D,PL(b)Q].
Finally we show that the functions θe and θo can be specified such that the

operator D in (22) is a Fredholm operator on lp. Set θ̂o(t) := |t2 − 1|2 for t ∈ T.
Then θ̂o is an even function in C∞(T) and θo := χT+ θ̂o−χT− θ̂o is an odd function
in C(T) ∩M 〈p〉. Further,

θe(t) := i
m∏
j=1

|t− τj|2|t− τj|2, t ∈ T

defines an even function θe ∈ C(T) ∩M 〈p〉 which vanishes at the points of Ω0.
Since θo and iθe are real-valued functions, we conclude that θo± θe are invertible
in C(T) ∩M 〈p〉, which implies that D is a Fredholm operator as desired.

Now we are in a position to derive an index formula for a Fredholm operator of
the form T (a) + H(b) with a, b ∈ PC〈p〉(Ω0). We make use of the well-known
identity(

PL(a)P + PL(b)QJ +Q 0
0 PL(a)P − PL(b)QJ +Q

)
=

1

2

(
I J
I −J

)(
PL(a)P +Q PL(b)Q
JPL(b)QJ J(PL(a)P +Q)J

)(
I I
J −J

)
, (23)

where the outer factors in (23) are the inverses of each other. Thus, if one of
the operators T (a) ±H(b) = PL(a)P ± PL(b)QJ is a Fredholm operator, then
so is the other, and the Fredholm indices of these operators coincide. Hence the
middle factor(

PL(a)P +Q PL(b)Q
JPL(b)QJ J(PL(a)P +Q)J

)
=

(
PL(a)P +Q PL(b)Q
QL(b̃)P QL(ã)Q+ P

)
in (23) is a Fredholm operator, and

ind (T (a) +H(b)) =
1

2
ind

(
PL(a)P +Q PL(b)Q
QL(b̃)P QL(ã)Q+ P

)
=

1

2
ind

(
PL(a)P PL(b)Q
QL(b̃)P QL(ã)Q

)
.

For the latter identity note that the operator

A :=

(
PL(a)P +Q PL(b)Q
QL(b̃)P QL(ã)Q+ P

)
∈ L(lp(Z)2)

24



has the complementary subspaces L1 := {(Qx1, Px2) : (x1, x2) ∈ lp(Z)2} and
L2 := {(Px1, Qx2) : (x1, x2) ∈ lp(Z)2} of lp(Z)2 as invariant subspaces and that
A acts on L1 as the identity operator and on L2 as the operator

A0 :=

(
PL(a)P PL(b)Q
QL(b̃)P QL(ã)Q

)
.

Let the function W : T× R→ C be defined by

W (t, λ) = det smbpA0(t, λ)/(ã(t, ∞)ã(t,−∞)).

Since T (a)+H(b) is Fredholm, W does not pass through the origin, and Theorem
7 entails that indA0 = −windW . Thus,

ind (T (a) +H(b)) = −1

2
windW.

We are going to show that actually

ind (T (a) +H(b)) = −wind T+W, (24)

where the right-hand side is defined as follows. The compression of W onto T+×R
is a continuous function the values of which form a closed oriented curve in C
which starts and ends at 1 ∈ C and does not contain the origin. The winding
number of this curve is denoted by wind T+W . Analogously, we define wind T−W .

For the proof of (24) we suppose for simplicity that a and b have jumps only
at the points t1 and t1 where t1 ∈ T0

+. If t moves along T+ from 1 to t1 (resp.
on T− from 1 to t1), then the values of W (t, λ) = a(t)/ã(t) = a(t)/a(t) move
continuously from 1 to a(t−1 )/a(t1

+
) (resp. from 1 to a(t1

+
)/a(t−1 )). Using that

W (t, λ) = W (t, λ)−1 for t ∈ T \ {−1, 1}, one easily concludes that

[argW ]1→t1⊂T+ = [argW ]t1→1⊂T−

where the numbers on the left- and right-hand side stand for the increase of the
argument of W if t moves in positive direction along the arc from 1 to t1 in T+

and along the arc from t1 to 1 in T−, respectively. Analogously,

[argW ]−1→t1⊂T− = [argW ]t1→−1⊂T+ .

Consider

W (t1, λ)/(a(t1
+

)a(t1
−

))

= [a(t+1 )µq(λ) + a(t−1 )(1− µq(λ))] [a(t1
+

)µq(λ) + a(t1
−

)(1− µq(λ))]

−(b(t+1 )− b(t−1 ))(b(t1
+

)− b(t1
−

))µq(λ)(1− µq(λ))

and the related expression for W (t1, λ)/(a(t+1 )a(t−1 )). Then

[argW ]Cq(a(t−1 ), a(t+1 )) = [argW ]Cq(a(t1
−

), a(t1
+

))
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because W (t1, λ)/(a(t1
+

)a(t1
−

)) = W (t1, λ)/(a(t+1 )a(t−1 )). So we arrive at the
equality wind T+W = wind T−W , whence (24) follows.

Now suppose that a, b ∈ PC〈p〉 are continuous on T\{−1, 1}. Then we define

a function W : T+ × R by

W (t, λ) =
(
a(t+)µq(λ) + a(t−)(1− µq(λ)) + it(b(t+)− b(t−))νq(λ)

)
a−1(±1∓)

if t = ±1 and by W (t, λ) = a(t)/a(t) if t ∈ T0
+. The function W is continuous

and determines a closed curve which starts and ends at 1 ∈ C. If T (a) + H(b)
is a Fredholm operator, then this curve does not pass through the origin and
possesses, thus, a well defined winding number.

Since T (a)+H(b) is in T(PCp) and the symbol V : T×R→ C of this operator
relative to the algebra T(PCp) is known (it is just given by

V (t, λ) = a(t+)µq(λ) + a(t−)(1− µq(λ)) + it(b(t+)− b(t−))νq(λ)

if t = ±1 and by V (t, λ) = a(t) if t ∈ T\{−1, 1}) and since indT (a) = −wind TV ,
one can again prove that wind TV = wind T+W by comparing the increments of
the arguments as above.

Now we look at the factorization given by Proposition 12 and denote by W0

and W1 the above defined function W : T+ × R for the operators T (a0) + H(b0)
and T (a1) + H(b1), respectively. It is easy to see that W0W1 coincides with the
function W for the operator T (a) +H(b). Summarizing, we get

Theorem 14 Let a, b ∈ PC〈p〉 and T (a)+H(b) a Fredholm operator on lp. Then

ind (T (a) +H(b)) = −wind T+W0 − wind T+W1 = −wind T+W

with W , W0 and W1 defined as above.

5 The general case

In this section we want to sketch an approach to derive an index formula for an
arbitrary Fredholm operator A ∈ TH(PCp). With A, we associate the function
W (A) : T+ × R→ C defined by

W (A)(t, λ) =

{
smbpA(t, λ)/smbpA(t,∓∞) if t = ±1
det smbpA(t, λ)/(a22(t, ∞)a22(t, −∞)) if t 6= ±1

where we wrote smbpA(t, λ) = (aij(t, λ))2
i,j=1 for t ∈ T0

+. For A = T (a) +H(b),
this definition coincides with that one from the previous section.

Theorem 15 If A ∈ TH(PCp) is a Fredholm operator, then

indA = −wind T+W (A). (25)
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The remainder of this section is devoted to the proof of this theorem. It will
become evident from this proof that W (A) traces out a closed oriented curve
which does not pass through the origin; so the winding number of W (A) is well
defined.

We start with the observation that Theorem 3 remains true for matrix-valued
multipliers a, b ∈ (PCp)k×k: just replace µq, 1− µq and νq by the corresponding
k × k-diagonal matrices diagµq, diag (1 − µq) and diag νq, respectively. Also
Proposition 2 holds in the matrix setting: If

T (a) +H(b) := (diagP )L(a)(diagP ) + (diagP )L(b)(diagQJ)

is a Fredholm operator, then the identity

ind (T (a) +H(b)) = −windW (T (a) +H(b))

still holds if one replaces in the above definition of W all scalars by the determi-
nants of the corresponding matrices. These facts follow in a similar way as their
scalar counterparts.

Now let ajl, bjl ∈ PCp, consider the h× r-matrix β := (T (ajl) + H(bjl))
h,r
j,l=1,

and associate with β the operator

A := el(β) =
h∑
j=1

(T (aj1) +H(bj1)) . . . (T (ajr) +H(bjr)) ∈ TH(PCp)

as in (17). Further set γ := (L(ajl))
h,r
j,l=1 and δ := (L(bjl))

h,r
j,l=1. The linear

extensions of γ and δ are Laurent operators again; thus ext(γ) = L(a) and
ext(δ) = L(b) with certain multipliers a, b ∈ (PCp)s×s with s = h(r + 1) + 1.
Moreover, these extensions are related with the extension of β by

ext(β) = T (ext(γ)) +H(ext(δ)) = T (a) +H(b) ∈ L(lps)

(note that H(1) = 0). In Section 3 we noticed that if el(β) is Fredholm, then
(and only then) ext(β) is Fredholm and ind el(β) = ind ext(β). Further, if el(β)
is a Fredholm operator, then the matrices a(t±) are invertible for every t ∈ T.
Hence, a is invertible in (PCp)s×s. Now consider

smbp el(β) =
h∑
j=1

smbp (T (aj1) +H(bj1)) . . . smbp (T (ajr) +H(bjr)).

Let t 6= ±1. Then smbp (T (a) + H(b))(t, λ) is a matrix of size 2s × 2s. We put
the rows and columns of this matrix in a new matrix according to the following
rules: If j ≤ h(r+ 1) + 1, then the j th row of the old matrix becomes the 2j− 1
th row of the new one, whereas if j > h(r + 1) + 1, the j th row of the old
matrix becomes the 2(j−h(r+1)−1) th row of the new matrix. The columns of
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smbp (T (a) + H(b))(t, λ) are re-arranged in the same way. The matrix obtained
in this way is just smbp el(β)(t, λ). By these manipulations,

smbp el(β)(t, λ) = Psmbp (T (a) +H(b))(t, λ)PT

with a certain permutation matrix P and its transpose PT . Hence,

det smbp (T (a) +H(b))(t, λ) = det smbp (el(β))(t, λ)

for t 6= ±1. For t = ±1 we do not change the matrix smbp (T (a) +H(b))(t, λ).
For t 6= ±1, we write smbp (T (a) +H(b)(t, λ) = (amn(t, λ))2

m,n=1 and

smbp (T (ajl) +H(bjl))(t, λ)) = (ajlmn(t, λ))2
m,n=1.

Then

smbp el(β)(t, ±∞) =
h∑
j=1

r∏
l=1

(
ajl11(t, ±∞) 0

0 ajl22(t, ±∞)

)
,

and it follows that

det a22(t, ±∞) = det ext(ρ(t, ±∞))

where ρ(t, ±∞) := (ajl22(t, ±∞))hrj,l=1. It is now easy to see that

W (el(β))(t, λ) = W (T (a) +H(b))(t, λ) = W (ext(β))(t, λ)

for all (t, λ) ∈ T+ × R, which implies that ind el(β) = −wind T+W (el(β)) and,
thus, settles the proof of the index formula (25) for a dense subset of Fredholm
operators in TH(PCp).

Finally, we are going to prove estimate (3), i.e., we will show that there is a
constant M such that

‖smbpA‖∞ ≤M inf{‖A+K‖ : K compact} (26)

for every operator A ∈ TH(PCp). Once this estimate is shown, the validity of the
index formula (25) for an arbitrary Fredholm operator in TH(PCp) will follow by
standard approximation arguments as at the end of Section 3.

To prove (26), we consider TH(PCp) as a subalgebra of the smallest closed
subalgebra T0

J(PCp) of L(lp(Z)) which contains all Laurent operators L(a) with
a ∈ PCp, the projection P , and the flip J . The homomorphism smbt defined in
Section 3 cannot be extended to the algebra T0

J(PCp) unless t = ±1. Instead, we
are going to use ideas from [4] and introduce a related family of homomorphisms
smbt,t with t ∈ T0

+ from T0
J(PCp) onto (Σp

1(R))2×2. A crucial observation ([4]) is
that the strong limit

smbt,tA := s-limn→∞

(
At,n,0,0 At,n,0,1
At,n,1,0 At,n,1,1

)
(27)

with At,n,i,j := EnY
−1
t L(χT+)J iAJ jL(χT+)YtE−nLn exists for every operator A ∈

T0
J(PCp) and every t ∈ T0

+.
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Theorem 16 Let t ∈ T0
+. Then the mapping smbt,t is a bounded homomorphism

from T0
J(PCp) onto (Σp

1(R))2×2. In particular,
(a) smbt,t P = diag (χ+I, χ−I) with χ− = 1− χ+,

(b) smbt,t L(a) = diag (a(t+)QR + a(t−)PR, a(t
−

)QR + a(t
+

)PR) for a ∈ PCp,
(c) smbt,tK = 0 for every compact operator K,

(d) smbt,t J =

(
0 I
I 0

)
.

Sketch of the proof. The existence of the strong limits of the operators in
(a) - (d) and their actual values follow by straightforward computation. Let us
check assertion (a), for instance. For A = P , the strong limits of the diagonal
elements of the matrix (27) exist and are equal to χ+I and χ−I by Theorem
8 (a) and since JPJ = Q. Now consider the 01-entry of that matrix. It is
L(χT+)PJ = JL(χT−)Q and thus

EnY
−1
t L(χT+)PJL(χT+)YtE−nLn

=
(
EnY

−1
t JYtE−n

) (
EnY

−1
t L(χT−)QL(χT+)YtE−nLn

)
. (28)

The first factor on the right-hand side is uniformly bounded with respect to n,
whereas the second one tends strongly to 0 by Theorem 8 (note that χT−(t) = 0
for t ∈ T0

+). Thus, the sequence of the operators (28) tends strongly to zero. The
strong convergence of the 10-entry to zero follows analogously.

Another straightforward calculation shows that the mappings smbt,t are alge-
bra homomorphisms and that these mappings are uniformly bounded with respect
to t ∈ T0

+. Thus, the mappings smbt,t are well-defined on a dense subalgebra of
T0
J(PCp), and they extend to (uniformly bounded with respect to t) homomor-

phisms on all of T0
J(PCp) by continuity.

By assertion (c) of the previous theorem, every mapping smbt,t induces a quo-
tient homomorphism on T0

J(PCp)/K(lp(Z)) in a natural way. We denote this
homomorphism by smbt,t again.

Now we are ready for the last step. Let t ∈ T0
+ and a, b ∈ PCp. From

Theorem 16 we conclude that then the operator smbt,t(T (a) +H(b)) is given by
the matrix(

χ+(a(t+)QR + a(t−)PR)χ+I χ+(b(t+)QR + b(t−)PR)χ−I
χ−(b(t

−
)QR + b(t

+
)PR)χ+I χ−(a(t

−
)QR + a(t

+
)PR)χ−I

)
acting on Lp(R)2. This matrix operator has the complementary subspaces

L1 := {(χ−f1, χ+f2) : f1, f2 ∈ Lp(R)}, L2 := {(χ+f1, χ−f2) : f1, f2 ∈ Lp(R)}

of Lp(R)2 as invariant subspaces, and it acts as the zero operator on L1. So we
can identify smbt,t(T (a) + H(b)) with its restriction to L2, which we denote by
A0 for brevity.
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The space L2 can be identified with Lp(R) in a natural way. Under this
identification, the operator A0 can be identified with the operator

A1 := χ+(a(t+)QR + a(t−)PR)χ+I + χ+(b(t+)QR + b(t−)PR)χ−I

+χ−(b(t
−

)QR + b(t
+

)PR)χ+I + χ−(a(t
−

)QR + a(t
+

)PR)χ−I

which belongs to Σp(R). It is well known (see Section 4.2 in [19]) and not hard to
check that the algebra Σp(R) is isomorphic to Σp

2×2(R+), where the isomorphism
η acts on the generating operators of Σp(R) by

η(SR) =

(
SR+ Hπ

−Hπ −SR+

)
and η(χ+I) =

(
1 0
0 0

)
,

with Hπ referring to the Hankel operator

(Hπϕ)(s) :=
1

πi

∫
R+

ϕ(t)

t+ s
dt

on Lp(R+). The entries of the matrix η(A1) are Mellin operators, and the value
of the Mellin symbol of η(A1) at (t, λ) ∈ T0

+ × R is the matrix(
a(t+)µq(λ) + a(t−)(1− µq(λ)) (b(t+)− b(t−))νq(λ)

(b(t
−

)− b(t+))νq(λ) a(t
−

)(1− µq(λ)) + a(t
+

)µq(λ)

)
,

which evidently coincides with smbp (T (a)+H(b))(t, λ) given in (1). Summarizing
the above arguments we conclude that the homomorphisms

A+K(lp) 7→ (smbpA)(t, λ)

are uniformly bounded with respect to (t, λ) ∈ T0
+×R, which finally implies the

estimate (26).
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