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In a general unbounded uniform C2-domain Ω ⊂ Rn, n ≥ 3, and 1 ≤ q ≤ ∞
consider the spaces L̃q(Ω) defined by

L̃q(Ω) :=

{
Lq(Ω) + L2(Ω), q < 2,

Lq(Ω) ∩ L2(Ω), q ≥ 2,

and corresponding subspaces of solenoidal vector fields, L̃qσ(Ω). By study-
ing the complex and real interpolation spaces of these we derive embedding
properties for fractional order spaces related to the Stokes problem and Lp-
Lq-type estimates for the corresponding semigroup.

1 Introduction and main results

In the mathematical analysis of the Navier-Stokes equations or other equations from
fluid mechanics the Helmholtz decomposition plays a crucial role. However, it has been
pointed out by Bogovskij in [5] in 1986, that for certain unbounded domains Ω – no
matter how smooth their boundaries ∂Ω – the Helmholtz decomposition fails to hold
in spaces Lq(Ω), q 6= 2. Therefore, Farwig, Kozono and Sohr proposed in [9] to study
slightly modified spaces of the form

L̃q(Ω) :=

{
Lq(Ω) + L2(Ω), 1 < q < 2,

Lq(Ω) ∩ L2(Ω), 2 ≤ q <∞,

∗The author was supported by the Studienstiftung des deutschen Volkes

1



where functions behave locally like Lq-functions, but looking at decay at space infinity
they behave like L2-functions. In these spaces, the Helmholtz decomposition holds even
in smooth unbounded domains Ω. They also showed in [8] certain solvability results
on the Stokes and Navier-Stokes equations in unbounded domains in spaces of the type
L̃q(Ω). Moreover, they proved for instance that the Stokes operator Ãq generates an

analytic semigroup e−tÃq . This motivates the study of those sum and intersection spaces.
In this paper the author proves the following estimates for the semigroup:

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 3, be a uniform C2-domain and let

1 < q ≤ r <∞, 0 ≤ α :=
n

2

(
1

q
− 1

r

)
.

Then, for every 0 < t <∞ the estimate

‖e−tÃqf‖L̃r(Ω) ≤ Ce
δtt−α(1 + t)α‖f‖L̃q(Ω)

holds for all f ∈ L̃qσ(Ω) with a constant C only depending on n, r, q, δ and the type
type(Ω) of Ω. The number δ > 0 can be chosen arbitrarily small but positive. Moreover,
the estimate

‖∇e−tÃqf‖L̃r(Ω) ≤ Ce
δtt−α−1/2(1 + t)α+1/2‖f‖L̃q(Ω)

holds for all f ∈ L̃qσ(Ω) with a constant C as above.

For the precise meanings of all terms used here see below.
This can be used to find the following quite sharp estimate for the Stokes semigroup:

Theorem 1.2. Let Ω ⊂ Rn, n ≥ 3, be a uniform C2-domain, 0 < T <∞, and

1 < r <∞, 1 < γ < q <∞, 2

r
+
n

q
=
n

γ
.

Then the estimate (∫ T

0
‖e−tÃqf‖r

L̃q(Ω)
dt

)1/r

≤ C‖f‖L̃γ,r(Ω)

holds for all f ∈ L̃γ,rσ (Ω) with a constant C depending on n, q, r, T and the type type(Ω)
of Ω.

Choosing γ = n the exponents r and q are so-called Serrin exponents, i.e. they satisfy
2 < r <∞, n < q <∞ and 2

r + n
q = 1. If additionally r ≥ n, we find the estimate(∫ T

0
‖e−tÃqf‖r

L̃q(Ω)
dt

)1/r

≤ C‖f‖L̃n(Ω)

for all f ∈ L̃nσ(Ω).

Again we refer to the sections below for the precise definitions of all terms. In a
forthcoming paper the author will use these results to develop the theory of very weak
solutions to the Navier-Stokes equations in general unbounded domains.
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2 Notation and preliminaries

Definition 2.1. An open connected subset Ω ⊂ Rn, n ≥ 2, is called uniform Ck-
domain, k ∈ N, if there are finite constants α > 0, β > 0, K > 0 such that for every
boundary point x0 ∈ ∂Ω there is a Cartesian coordinate system with origin at x0 and
coodinates y = (y′, yn), y′ = (y1, . . . , yn−1), and a Ck-function h(y′), |y′| ≤ α, with
Ck-norm ‖h‖Ck ≤ K such that the neighborhood

Uα,β,h(x0) :=
{

(y′, yn) ∈ Rn : h(y′)− β < yn < h(y′) + β, |y′| < α
}

of x0 satisfies

Ω ∩ Uα,β,h = U−α,β,h(x0) :=
{

(y′, yn) ∈ Rn : h(y′)− β < yn < h(y′), |y′| < α
}
,

and
∂Ω ∩ Uα,β,h =

{
(y′, h(y′)) : |y′| < α

}
.

The triple (α, β,K) will be called the type of Ω and will be denoted by type(Ω).

For two vector spaces X and Y both being embedded in a common topological vector
space Ξ we can define the sum space X + Y := {z = x + y ∈ Ξ: x ∈ X, y ∈ Y } with
norm

‖z‖X+Y := inf{‖x‖X + ‖y‖Y : x ∈ X, y ∈ Y, x+ y = z}

and the intersection space X ∩ Y := {z ∈ Ξ: z ∈ X, z ∈ Y } with norm

‖z‖X∩Y := max{‖z‖X , ‖z‖Y }.

By [3, Theorem 8.III] the dual relations (X + Y )′ = X ′ ∩ Y ′ and (X ∩ Y )′ = X ′ + Y ′

hold, provided that X ∩ Y is dense both in X and in Y .
We let [X,Y ]θ denote the complex interpolation space and by (X,Y )θ,ρ the real in-

terpolation space for 0 < θ < 1, 1 ≤ ρ ≤ ∞, cf. [4].
For any open set Ω, k ∈ N and 1 ≤ q ≤ ∞ we denote by Lq = Lq(Ω) the usual

Lebesgue spaces and by W k,q = W k,q(Ω) Sobolev spaces, see for example [1]. We will
also use the space W 1,q

0 = W 1,q
0 (Ω) being the closure with respect to the norm of W 1,q(Ω)

of the subspace C∞0 (Ω) consisting of smooth functions being compactly supported in Ω.
By Lq,ρ(Ω), 1 ≤ q, ρ ≤ ∞, we denote the usual Lorentz spaces as decribed e.g. in [4].
The Bochner-Lebesgue spaces will be denoted by Lr(0, T ;X) for some Banach space X,
0 < T ≤ ∞, 1 ≤ r ≤ ∞. We also need the Bochner-Lorentz spaces Lr,ρ(0, T ;X), cf. [13]
or [4].

From now on let 1 < q, r < ∞, 0 < T < ∞ and a uniform C2-domain be fixed.
Consider the space C∞0,σ(Ω) consisting of C∞(Ω) functions u having compact support in
Ω and satisfying div u = 0. Its closure with respect to the Lq-norm is denoted by

Lqσ(Ω) := C∞0,σ(Ω)
‖·‖Lq(Ω)

.
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For k ∈ N and 1 < q <∞ we define

W̃ k,q(Ω) :=

{
W k,q(Ω) +W k,2(Ω), q < 2,

W k,q(Ω) ∩W k,2(Ω), q ≥ 2,

and

L̃q,ρ(Ω) :=

{
Lq,ρ(Ω) + L2(Ω) q < 2,

Lq,ρ(Ω) ∩ L2(Ω), q > 2,

where we leave the case q = 2 undefined, and

L̃qσ(Ω) :=

{
Lqσ(Ω) + L2

σ(Ω), q < 2,

Lqσ(Ω) ∩ L2
σ(Ω), q ≥ 2.

We define
L̃q,ρσ (Ω) := C∞0,σ(Ω)

‖·‖L̃q,ρ(Ω)

for 1 < q <∞, q 6= 2, 1 ≤ ρ <∞. Moreover, with Dq := W 2,q(Ω)∩W 1,q
0 (Ω)∩Lqσ(Ω) we

let

D̃q(Ω) :=

{
Dq(Ω) +D2(Ω), q < 2,

Dq(Ω) ∩D2(Ω), q ≥ 2.

We collect now a number of results on the Helmholtz decomposition and the Stokes
operator in the spaces L̃qσ(Ω). These have been obtained by Farwig, Kozono, Sohr and
Kunstmann.

It was shown in [9] that the Helmholtz decomposition in L̃qσ(Ω) holds true and that
the Helmholtz projection P̃q : u 7→ u0 : L̃q(Ω)→ L̃qσ(Ω) is a well defined bounded linear

operator. Moreover, as a consequence the authors obtained that L̃qσ(Ω) = C∞0,σ(Ω)
‖·‖L̃q(Ω) .

In [11] the authors considered the Stokes operator Ãq : D̃q ⊂ L̃qσ(Ω) → L̃qσ(Ω) defined
by Ãqu := −P̃q∆u, u ∈ D̃q. They showed that it is a densely defined closed operator

and that it generates an analytic semigroup e−tÃq in L̃qσ(Ω) with bound ‖e−tÃqf‖L̃q ≤
Meδt‖f‖L̃q , where δ > 0 can be chosen arbitrarily small, but positive. Here M > 0
only depends on q, δ and type(Ω). In [10] the authors even proved maximal Sobolev
regularity of the Stokes operator Ãq. In [12] the author even proved that the operator
ε+ Ãq, ε > 0, even admits a bounded H∞-calculus and in particular bounded imaginary
powers.

We will write D̃α
q , 0 ≤ α ≤ 1, for the domain of the fractional powers (1 + Ãq)

α. It

is equipped by the norm ‖u‖D̃αq = ‖(1 + Ãq)
αu‖L̃q . For −1 ≤ α < 0 we let D̃α

q be the

closure of L̃qσ(Ω) with respect to the norm ‖(1 + Ãq)
α(·)‖L̃qσ(Ω).

Then it holds that D̃α
q = [L̃qσ(Ω), D̃q]α, 0 < α < 1. Moreover, the dual relation

(D̃α
q )′ = D̃−αq′ , −1 ≤ α ≤ 1 holds. These are consequences of the fact that 1 + Ãq has

a bounded inverse and admits bounded imaginary powers, cf. [2, Section V]. Moreover,

by [12, Corollary 1.2], D̃
1/2
q = W̃ 1,q

0 (Ω) ∩ L̃qσ(Ω).

4



3 Interpolation of L̃q(Ω) spaces

The main result in this section will be the following:

Theorem 3.1. Let Ω ⊂ Rn be a uniform C2-domain. Let 1 ≤ q, r, s ≤ ∞, 0 < θ < 1,
1 ≤ ρ ≤ ∞ such that

1

s
=

1− θ
q

+
θ

r
.

Then it holds that
[L̃q(Ω), L̃r(Ω)]θ = L̃s(Ω)

with equivalent norms. Moreover, in case s 6= 2, q 6= r, it holds that

(L̃q(Ω), L̃r(Ω))θ,ρ = L̃s,ρ(Ω).

The main ideas for the proof result from a very helpful private communication with
M. Cwikel, [7]. For the proof we need the following notation: For 1 ≤ q ≤ ∞ we write
l̃q for the sequence space lq + l2, q < 2, or lq ∩ l2, q ≥ 2. A simple argument shows that
l̃q = l2, but this notation will be helpful in the sequel. We shall also use the Lorentz-type
sequence spaces lq,ρ and even l̃q,ρ, which are defined by lq,ρ + l2, q < 2, and lq,ρ ∩ l2,
q > 2. Again it is not hard to see that l̃q,ρ = l2 for all q 6= 2, 1 ≤ ρ ≤ ∞.

Note also that L̃q(0, 1) = Lq(0, 1), 1 ≤ q, ρ ≤ ∞, and L̃q,ρ(0, 1) = Lq,ρ(0, 1), q 6= 2.
For any function f ∈ L1(M)+L∞(M), where M is a measure space, its nonincreasing

equimeasurable rearrangement is denoted by f∗, cf. [4].
First we need a special case of a result due to Calderón, cf. [6, Theorem 1].

Proposition 3.2. Let M1 and M2 be σ-finite measure spaces and let fi ∈ L1(Mi) +
L∞(Mi), i = 1, 2, respectively, be fixed functions. If they fulfill the estimate f∗2 ≤ f∗1
almost everywhere on (0,∞), then there exists a linear map L : L1(M1) + L∞(M1) →
L1(M2) + L∞(M2) with the property

Lf1 = f2

and satisfying the estimates

‖Lu‖L1(M2) ≤ ‖u‖L1(M1), ‖Lu‖L∞(M2) ≤ ‖u‖L∞(M1)

for all u ∈ L1(M1) or u ∈ L∞(M1), respectively.

Of course the map depends very crucially on the functions f1 and f2. This proposition
can be used to prove the following powerful tool:

Theorem 3.3. Let Ω ⊆ Rn be a domain and let f ∈ L1(Ω) + L∞(Ω) be a given and
fixed function. Then there exist linear maps

S1 : L1(Ω) + L∞(Ω)→ L1(0, 1), S2 : L1(Ω) + L∞(Ω)→ l∞
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and
T1 : L1(0, 1)→ L1(Ω) + L∞(Ω), T2 : l∞ → L1(Ω) + L∞(Ω)

satisfying the equality
f = T1S1f + T2S2f

almost everywhere. Moreover, these maps satisfy the estimates

‖S1u‖Lp(0,1) ≤ ‖u‖Lp(Ω), ‖S2u‖lp ≤ ‖u‖Lp(Ω)

and
‖T1u‖Lp(Ω) ≤ ‖u‖Lp(0,1), ‖T2u‖Lp(Ω) ≤ ‖u‖lp

for all 1 ≤ p ≤ ∞ and all u in the respective Lp-spaces.

Proof. First we define a linear operator P : L1(Ω) + L∞(Ω)→ L1(0,∞) + L∞(0,∞) by
choosing f1 := f , f2 := f∗ in Proposition 3.2. It thus satisfies Pf = f∗. We also define
linear operators by

V1 : L1(0,∞) + L∞(0,∞)→ L1(0, 1), u 7→ u|(0,1),

V2 : L1(0,∞) + L∞(0,∞)→ l∞, u 7→
(∫ n

n−1 u(s)ds
)
n∈N

.

Then the choice S1 := V1 ◦P and S2 := V2 ◦P defines the first operators. The estimates
are easily checked for p = 1 and p =∞ yielding the desired estimates for every 1 ≤ p ≤ ∞
by the Riesz-Thorin theorem or complex interpolation.

We still have to construct T1 and T2. To this end we first define linear mapsW1 : L1(0, 1)→
L1(0,∞) + L∞(0,∞) by

W1(u)(t) :=

{
u(t), 0 < t < 1,

0, t ≥ 1,

and W2 : l∞ → L1(0,∞) + L∞(0,∞) by

W2((an)n∈N)(t) 7→

{
0, 0 < t < 1,

an, n ≤ t < n+ 1, n ∈ N.

Then we define
g := W1V1Pf +W2V2Pf = W1S1f +W2S2f.

This means the following: g = f∗ identically on (0, 1) and g =
∫ n
n−1 f

∗(s)ds identically on
the intervals [n, n+ 1), n ∈ N. Clearly g(t) ≥ f∗(t) for 0 < t < 1 and for n ≤ t ≤ n+ 1
we can estimate g(t) =

∫ n
n−1 f

∗(s)ds ≥ f∗(n) ≥ f∗(t) for all n ∈ N. Of course the
monotonicity of f∗ is crucial here. Altogether we get g ≥ f∗ almost everywhere on
(0,∞). Then it clearly also holds that g∗ ≥ f∗ and we can again use Proposition 3.2
to find a linear map H : L1(0,∞) + L∞(0,∞) → L1(Ω) + L∞(Ω) satisfying all needed
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estimates and having the property Hg = f . Now we set T1 := H ◦W1 and T2 := H ◦W2.
Consequently we get

T1S1f + T2S2f = HW1V1Pf +HW2V2Pf

= H(W1V1Pf +W2V2Pf) = Hg = f.

Moreover, all linear operators involved satisfy the necessary Lp type estimates with
constants equal to 1. This is directly seen for p = 1 and p =∞. Using the Riesz-Thorin
theorem we get the estimates for all 1 ≤ q ≤ ∞.

Remark 3.4. Note that the operators S1, S2, T1, T2 in the above Theorem also satisfy
the respective bounds in Lorentz spaces, i.e.

‖S1u‖Lp,ρ(0,1) ≤ ‖u‖Lp,ρ(Ω), ‖S2u‖lp,ρ ≤ ‖u‖Lp,ρ(Ω)

and
‖T1u‖Lp,ρ(Ω) ≤ ‖u‖Lp,ρ(0,1), ‖T2u‖Lp,ρ(Ω) ≤ ‖u‖lp,ρ

for all 1 < p <∞, 1 ≤ ρ ≤ ∞. This is directly seen by real interpolation.

Proof of Theorem 3.1. First we treat the complex interpolation space. Let first f ∈
L̃s(Ω) and let the linear maps S1, S2, T1 and T2 be the maps from Theorem 3.3, for the
function f . Then

S1f ∈ L̃s(0, 1) = Ls(0, 1) = [Lq(0, 1), Lr(0, 1)]θ = [L̃q(0, 1), L̃r(0, 1)]θ.

By interpolation theory, we thus have T1S1f ∈ [L̃q(Ω), L̃r(Ω)]θ. Similarly we have

S2f ∈ l̃s = l2 = [l2, l2]θ = [l̃q, l̃r]θ

and hence T2S2f ∈ [L̃q(Ω), L̃r(Ω)]θ. Together, this implies f = T1S1f + T2S2f ∈
[L̃q(Ω), L̃r(Ω)]θ and we obtain the inequality ‖f‖[L̃q(Ω),L̃r(Ω)]θ

≤ C1‖f‖L̃s(Ω) with a con-
stant C1 only depending on q, r and s.

For the reverse implication let f ∈ [L̃q(Ω), L̃r(Ω)]θ and let again S1, S2, T1 and T2 be
chosen as above for the function f . Then we get by interpolation that

S1f ∈ [L̃q(0, 1), L̃r(0, 1)]θ = [Lq(0, 1), Lr(0, 1)]θ = Ls(0, 1) = L̃s(0, 1)

and that
S2f ∈ [l̃q, l̃r]θ = [l2, l2]θ = l2 = l̃s.

This leads to T1S1f, T2S2f ∈ L̃s(Ω) and by f = T1S1f + T2S2f this implies f ∈ L̃s(Ω)
and the inequality ‖f‖L̃s(Ω) ≤ C2‖f‖[L̃q(Ω),L̃r(Ω)]θ

with a constant C2 only depending on
q, r and s. This finishes the proof for the complex interpolation spaces.

Now we treat the real interpolation spaces. The proof will be similar. Let f ∈
(L̃q(Ω), L̃r(Ω))θ,ρ and define by Theorem 3.3 the maps S1, S2, T1 and T2 for f . Then

S1f ∈ (L̃q(0, 1), L̃r(0, 1))θ,ρ = (Lq(0, 1), Lr(0, 1))θ,ρ = Ls,ρ(0, 1) = L̃s,ρ(0, 1),
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and hence T1S1f ∈ L̃s,ρ(Ω). Concerning the second term we get S2f ∈ (l2, l2)θ,ρ = l2 =
l̃s,ρ implying that T2S2f ∈ L̃s,ρ(Ω). Together we see that f = T1S1f + T2S2f is an
element of L̃s,ρ(Ω).

For the reverse inclusion let f ∈ L̃s,ρ(Ω). Then

S1f ∈ L̃s,ρ(0, 1) = Ls,ρ(0, 1) = (Lq(0, 1), Lr(0, 1))θ,ρ = (L̃q(0, 1), L̃r(0, 1))θ,ρ,

yielding that T1S1f ∈ (L̃q(Ω), L̃r(Ω))θ,ρ. Moreover,

S2f ∈ l̃s,ρ = l2 = (l2, l2)θ,ρ = (l̃q, l̃r)θ,ρ

and hence T2S2f ∈ (L̃q(Ω), L̃r(Ω))θ,ρ, proving also this inclusion. The proof is finished.

By density arguments and using the projection operator P̃q we find the following
corollary.

Corollary 3.5. Let 1 < q, r <∞, 0 < θ < 1, and let s be defined by 1
s = 1−θ

q + θ
r . Then,

[L̃qσ(Ω), L̃rσ(Ω)]θ = L̃sσ(Ω).

Assume that also 1 ≤ ρ <∞ is given and that s 6= 2, q 6= r. Then,

(L̃qσ(Ω), L̃rσ(Ω))θ,ρ = L̃s,ρσ (Ω).

The Sobolev embedding theorem can be carried over to the context of L̃q-spaces:

Proposition 3.6. Let m ∈ N, 1 ≤ q <∞ and Ω ⊆ Rn be a uniform C2-domain. Then
the embedding

W̃m,q(Ω) ↪→ L̃r(Ω)

holds, i.e.
‖u‖L̃r(Ω) ≤ C‖u‖W̃m,q(Ω)

for u ∈ W̃m,q(Ω) holds with the following choice of exponents:

1. q ≤ r ≤ ∞ if mq > n,

2. q ≤ r <∞ if mq = n,

3. q ≤ r ≤ nq
n−mq if mq < n.

The constant C above only depends on q, r, m, n and the type type(Ω) of Ω.

Proof. Assume first that q ≥ 2. This implies that r ≥ 2. Then we obtain for f ∈
W̃m,q(Ω) that

‖f‖L̃r ≤ ‖f‖Lr + ‖f‖L2 ≤ C‖f‖Wm,q + ‖f‖Wm,2 ≤ C‖f‖W̃m,q ,
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where we use the classical Sobolev embedding, cf. [1, Theorem 4.12], yielding a constant
C of the desired type.

Now consider the case q < 2, r ≥ 2. Let f ∈ W̃m,q(Ω) and let f1 ∈ Wm,q(Ω),
f2 ∈ Wm,2(Ω), f = f1 + f2, ‖f1‖Wm,q(Ω) + ‖f2‖Wm,2(Ω) ≤ ‖f‖W̃m,q + ε, ε > 0. Now
observe that ‖f1‖L2 ≤ C‖f1‖Wm,q and ‖f1‖Lr ≤ C‖f1‖Wm,q and ‖f2‖L2 ≤ C‖f2‖Wm,2

and ‖f2‖Lr ≤ C‖f1‖Wm,2 . This implies that f1, f2 ∈ L̃r = L2 ∩ Lr and

‖f‖L̃r ≤ ‖f1‖L̃r + ‖f2‖L̃r
≤ ‖f1‖Lr + ‖f1‖L2 + ‖f2‖Lr + ‖f2‖L2

≤ C(‖f1‖Wm,q + ‖f2‖Wm,2)

≤ C(‖f‖W̃m,q + ε)

with a constant as above. Since ε > 0 can be chosen arbitrarily small, this finishes this
case.

For q < 2, r < 2 let f ∈ W̃m,q(Ω) and let f1 ∈ Wm,q(Ω) and f2 ∈ Wm,2(Ω) satisfy
f1 + f2 = f and ‖f1‖Wm,q(Ω) + ‖f2‖Wm,2(Ω) ≤ ‖f‖W̃m,q + ε, where ε > 0. Then we have

‖f‖L̃r ≤ ‖f1‖Lr + ‖f2‖L2 ≤ C‖f1‖Wm,q + ‖f2‖Wm,2 ≤ C(‖f‖W̃m,q + ε)

with a constant as above. This proves the result, since ε can be chosen arbitrarily
small.

Now we are in the position to prove the following important embedding estimates.

Proposition 3.7. Let Ω ⊆ Rn be a uniform C2-domain, n ≥ 3. Let 0 ≤ α ≤ 1 and
1 < q ≤ r <∞ satisfy

1

r
=

1

q
− 2α

n
.

Then we have the embedding property

‖u‖L̃r(Ω) ≤ C‖(1 + Ãq)
αu‖L̃q(Ω)

for all u ∈ D̃α
q with a constant C = C(type(Ω), n, q, α).

Proof. We need three steps.
Step I. First we consider the case α ≤ 1

2 and q < n. We can express the domains of

the fractional powers of 1 + Ãq as complex interpolation spaces, i.e.

D̃α
q = [L̃qσ(Ω), D̃1

q ]α.

By reiteration, we can – because of the assumption α ≤ 1
2 – also write

D̃α
q = [L̃qσ, D̃

1/2
q ]2α.

Since D̃
1/2
q = W̃ 1,q

0 ∩ L̃qσ we obtain

D̃α
q ↪→ [L̃q, W̃ 1,q]2α.
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Now let γ be defined by 1
r = 1−2α

q + 2α
γ or, equivalently, γ = nq

n−q . Here we need the
assumption q < n. We can now use the Sobolev embedding theorem, cf. Proposition
3.6, to see that W̃ 1,q ↪→ L̃γ . We get then

[L̃q, W̃ 1,q]2α ↪→ [L̃q, L̃γ ]2α = L̃r(Ω),

using Theorem 3.1, which proves the embedding for α ≤ 1
2 .

Step II. Now we consider the case 1
2 < α ≤ 1 and still q < n. In this case we define ρ

by
1

ρ
− 1

n
=

1

r

and find that q ≤ ρ < n by r <∞. Hence we can use the result just proved to get that

‖u‖L̃r ≤ C‖(1 + Ãρ)
1
2u‖L̃ρ .

By the definition of ρ it holds furthermore that

1

ρ
=

1

q
−

2(α− 1
2)

n

and we can again use the result from above, implying that

‖(1 + Ãρ)
1
2u‖L̃ρ ≤ C‖(1 + Ãq)

α− 1
2 (1 + Ãρ)

1
2u‖L̃q = C‖(1 + Ãq)

αu‖L̃q ,

and this finishes the proof also in the case 1
2 < α ≤ 1 and q < n.

Step III. We still need to consider q ≥ n. In this case we use duality. We let φ ∈ C∞0,σ(Ω)
and first of all calculate

|(u, φ)Ω| ≤ ‖(1 + Ãq)
αu‖L̃q‖(1 + Ãq′)

−αφ‖L̃q′ .

We abbreviate v := (1 + Ãq′)
−αφ and note furthermore that

r′ ≤ q′ ≤ n′ < n,
1

q′
=

1

r′
− 2α

n
.

Here the assumption n ≥ 3 is needed. Consequently, Step I. (in case α ≤ 1
2) or Step II.

(in case α ≥ 1
2) can be used to find

‖(1 + Ãq′)
−αφ‖L̃q′ = ‖v‖L̃q′ ≤ C‖(1 + Ãr′)

αv‖L̃r′ = C‖φ‖L̃r′ .

Combining the estimates we get the duality estimate

|(u, φ)Ω| ≤ C‖(1 + Ãq)
αu‖L̃q‖φ‖L̃r′ for all φ ∈ C∞0,σ(Ω),

and since C∞0,σ(Ω) is dense in L̃r
′
σ (Ω), the estimate holds for every φ ∈ L̃r′σ . This implies

that u ∈ L̃rσ and the desired estimate

‖u‖L̃r ≤ C‖(1 + Ãq)
αu‖L̃q .

This finishes Step III. and the proof of the proposition.
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4 Proofs of the main results

Proof of Theorem 1.1. Let f ∈ L̃qσ(Ω). Assume first that α ≤ 1. Then

‖e−tÃqf‖L̃r ≤ C‖(1 + Ãq)
αe−tÃqf‖L̃q ≤ C‖(1 + Ãq)e

−tÃqf‖α
L̃q
‖e−tÃqf‖1−α

L̃q

using Proposition 3.7 and we continue by noting that

‖(1 + Ãq)e
−tÃqf‖L̃q ≤ ‖e

−tÃqf‖L̃q + ‖Ãqe−tÃqf‖L̃q
≤ (Meδt +Mt−1eδt)‖f‖L̃q
= Mt−1(1 + t)eδt‖f‖L̃q ,

where we used the analyticity of the semigroup, cf. [2, Remark 5.1.2]. Combining the
estimates we get

‖e−tÃqf‖L̃r ≤ Ct
−α(1 + t)αeδt‖f‖L̃q ,

proving the first part of the theorem for α ≤ 1. If 1 < α < 2, we write e−tÃq =
e−tÃq/2e−tÃq/2 and apply the argument as above twice. Similarly, we can argue for any
α ≥ 0, repeating the arguments sufficiently often.

To prove the second part assume first α ≤ 1/2. Note that

‖∇e−tÃqf‖L̃r ≤ C‖(1 + Ãr)
1/2e−tÃqf‖L̃r ,

since D
1/2
q = W̃ 1,q

0 (Ω)∩ L̃qσ(Ω) with equivalent norms. Applying Proposition 3.7 we find
that

‖∇e−tÃqf‖L̃r ≤ C‖(1 + Ãq)
α+1/2e−tÃqf‖L̃q

and then we continue as above for the proof of the desired estimate as long as α ≤ 1/2.
For α > 1/2 we need to again repeat the argument finitely many times as above.

Proof of Theorem 1.2. We will need real interpolation for this proof. We define a linear
map B by

f 7→ e−tÃqf.

Assume first that f ∈ L̃qσ(Ω). Then the bound for the semigroup yields for all 0 < t < T
the estimate

‖Bf(t)‖L̃q ≤ C‖f‖L̃q

with a constant C which depends on T <∞, showing that

B : L̃qσ(Ω)→ L∞(0, T ; L̃qσ(Ω))

as a bounded linear operator.
Choose any 1 < p < γ. Then Theorem 1.1 yields for all f ∈ L̃pσ(Ω) the bound

‖Bf(t)‖L̃q ≤ Ct
−α‖f‖L̃p
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with α = n
2

(
1
p −

1
q

)
showing that

B : L̃pσ(Ω)→ L1/α,∞(0, T ; L̃qσ(Ω))

as a bounded linear operator.
Real interpolation theory thus shows that

B : (L̃qσ(Ω), L̃pσ(Ω))θ,r →
(
L∞(0, T ; L̃qσ(Ω)), L1/α,∞(0, T ; L̃qσ(Ω))

)
θ,r

as a linear bounded linear operator, where 0 < θ < 1 is chosen such that 1
γ = 1−θ

q + θ
p .

By Corollary 3.5 we find that (L̃qσ(Ω), L̃pσ(Ω))θ,r = L̃γ,rσ (Ω). On the other hand [13,
Theorem 1.18.6.2] implies that(

L∞(0, T ; L̃qσ(Ω)), L1/α,∞(0, T ; L̃qσ(Ω))
)
θ,r

= Lr,r(0, T ; L̃qσ(Ω))

= Lr(0, T ; L̃qσ(Ω)),

which proves that B maps L̃γ,rσ (Ω) continuously into Lr(0, T ; L̃qσ(Ω)), which finishes the
proof of the first assertion.

For the second assertion assume that γ = n and that r ≥ n. In that case, it is readily
seen that L̃nσ(Ω) ⊂ L̃γ,rσ (Ω), from which the rest of the proof follows.
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