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In a general unbounded uniform C?-domain Q C R*,n > 3,and 1 < ¢ < 00
consider the spaces L4(2) defined by

8 LY(Q) + L*(Q 2

Foy o [H@+ 2@, g <2

LYQ)NL2(Q), q>2,

and corresponding subspaces of solenoidal vector fields, f}g(Q) By study-
ing the complex and real interpolation spaces of these we derive embedding
properties for fractional order spaces related to the Stokes problem and LP-
Li-type estimates for the corresponding semigroup.

1 Introduction and main results

In the mathematical analysis of the Navier-Stokes equations or other equations from
fluid mechanics the Helmholtz decomposition plays a crucial role. However, it has been
pointed out by Bogovskij in [5] in 1986, that for certain unbounded domains € — no
matter how smooth their boundaries 92 — the Helmholtz decomposition fails to hold
in spaces L4(?), ¢ # 2. Therefore, Farwig, Kozono and Sohr proposed in [9] to study
slightly modified spaces of the form

- L)+ LA(Q), 1<q<2,
S L) N LAQ), 2<g< oo,
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where functions behave locally like L4-functions, but looking at decay at space infinity
they behave like L?-functions. In these spaces, the Helmholtz decomposition holds even
in smooth unbounded domains 2. They also showed in [8] certain solvability results
on the Stokes and Navier-Stokes equations in unbounded domains in spaces of the type
f)q(Q). Moreover, they proved for instance that the Stokes operator flq generates an
analytic semigroup e *4¢. This motivates the study of those sum and intersection spaces.
In this paper the author proves the following estimates for the semigroup:

Theorem 1.1. Let Q C R?, n > 3, be a uniform C?-domain and let

n (1 1
l<g<r<oo, 0Lai==|-—-].
2\q r

Then, for every 0 <t < oo the estimate
e fll iy < ™t 4+ 0% fllzagey

holds for all f € ig(ﬂ) with a constant C only depending on n, r, q, 6 and the type
type(2) of Q. The number § > 0 can be chosen arbitrarily small but positive. Moreover,
the estimate 5

HveftAqf”Zr(Q) < Ce(Sttfafl/Q(l + t)a+1/2Hf||I:q(Q)

holds for all f € LL(Q) with a constant C' as above.

For the precise meanings of all terms used here see below.
This can be used to find the following quite sharp estimate for the Stokes semigroup:

Theorem 1.2. Let Q C R?, n > 3, be a uniform C?-domain, 0 < T < oo, and
2
l<r<oo, 1<y <qg<oo, ;Jr—:—.

Then the estimate

T i 1/r
([ 15 0t) < CUlria

holds for all f € LY"(Q) with a constant C' depending onn, q, v, T and the type type(S2)
of Q.

Choosing v = n the exponents r and q are so-called Serrin exponents, i.e. they satisfy
2<r<oo,n<gqg<oo and % + % = 1. If additionally r > n, we find the estimate

T i 1/r
([ 1 i) < Uil
forall f € f/’;’(Q)

Again we refer to the sections below for the precise definitions of all terms. In a
forthcoming paper the author will use these results to develop the theory of very weak
solutions to the Navier-Stokes equations in general unbounded domains.



2 Notation and preliminaries

Definition 2.1. An open connected subset Q@ C R™, n > 2, is called uniform C*-
domain, k € N, if there are finite constants o > 0, 8 > 0, K > 0 such that for every
boundary point zy € 9f) there is a Cartesian coordinate system with origin at xg and
coodinates ¥ = (v, yn), ¥' = (Y1,--.,Yn_1), and a Ck-function h(y'), |y/| < «, with
C*-norm ||h||c» < K such that the neighborhood

Ua,pn(z0) :={(¥ s yn) ER": h(y') = B < yn < h(y) + B, |y| < a}

of z( satisfies

QN Ui = Uy g(0) = {(4/,yn) € R h(y) — B <y < h(y/).ly/] < a},

and
NN Uapn={,0)): Iy <a}.
The triple («, 8, K) will be called the type of 2 and will be denoted by type(£2).

For two vector spaces X and Y both being embedded in a common topological vector
space Z we can define the sum space X +Y = {z =z +y € Z: 2z € X,y € Y} with
norm

[zl x+y = inf{|lz]x + yly: v € X,y €Y,z +y =z}

and the intersection space X NY :={z € Z: z € X,z € Y} with norm

12l xny = max{[|z][x, [|z[ly}-

By [3, Theorem 8.III] the dual relations (X +Y) = X' NY and (X NY) = X' +Y’
hold, provided that X NY is dense both in X and in Y.

We let [X,Y]y denote the complex interpolation space and by (X,Y)g , the real in-
terpolation space for 0 < 6 < 1,1 < p < oo, cf. [4].

For any open set 2, £k € N and 1 < q¢ < oo we denote by L? = L(Q) the usual
Lebesgue spaces and by W*4 = 1W"4(Q) Sobolev spaces, see for example [1]. We will
also use the space Wy'? = W, 4(€2) being the closure with respect to the norm of W14(£)
of the subspace C§°(12) consisting of smooth functions being compactly supported in €.
By L?*(Q), 1 < ¢q,p < oo, we denote the usual Lorentz spaces as decribed e.g. in [4].
The Bochner-Lebesgue spaces will be denoted by L"(0,T; X) for some Banach space X,
0<T <o0,1<7r<o0. Wealso need the Bochner-Lorentz spaces L™ (0,T'; X), cf. [13]
or [4].

From now on let 1 < ¢,7 < 0o, 0 < T < oo and a uniform C?-domain be fixed.
Consider the space Cg%,(€2) consisting of C*°(€2) functions u having compact support in
Q and satisfying divu = 0. Its closure with respect to the L?-norm is denoted by

L4(Q) = O (@),



For k € Nand 1 < g < oo we define

wha(Q) + WE2(Q), ¢ <2,

wWha(Q) =
) {W’W(ﬂ)nw’f’?(m, .>2

and

foe(q) = LP(Q) + L2(Q) ¢ <2,
T LeP(Q) N LA(Q), q> 2,

where we leave the case ¢ = 2 undefined, and

fo(0) — L§(Q) + L2(Q), q<2,
LA NLA(Q), ¢>2

We define . "
E4(@) = T @) e

for 1 < ¢ < o0, q#2, 1< p< oo. Moreover, with D, := W24((Q) OWOLQ(Q) NLL(Q) we
let
~ D, () + Do (22 2
Dq(Q) — q( )+ 2( )7 q <z,
Dy(@) N Do(Q), ¢>2.

We collect now a number of results on the Helmholtz decomposition and the Stokes
operator in the spaces ig(ﬂ) These have been obtained by Farwig, Kozono, Sohr and
Kunstmann.

It was shown in [9] that the Helmholtz decomposition in LZ() holds true and that
the Helmholtz projection P, : u v ug: LI(Q) — LEL(Q) is a well defined bounded linear

operator. Moreover, as a consequence the authors obtained that LZ(Q) = Cgf’g(ﬂ)”'”’iq(m.

In [11] the authors considered the Stokes operator A,: D, C LL(Q) — LL(Q) defined
by Aqu = —Pun, u € f?q. They showed that it is a densely defined closed operator
and that it generates an analytic semigroup e~*4 in LZ(Q) with bound |e~*44f||;, <
Me®| f|| 74, where § > 0 can be chosen arbitrarily small, but positive. Here M > 0
only depends on ¢, § and type(€2). In [10] the authors even proved maximal Sobolev
regularity of the Stokes operator /Iq. In [12] the author even proved that the operator
s—i-flq, € > 0, even admits a bounded H“°-calculus and in particular bounded imaginary
powers.

We will write [)g, 0 < a < 1, for the domain of the fractional powers (1 4+ flq)o‘. It

is equipped by the norm [lul|p. = [|(1 + Ay)%u|/z,. For —1 < a < 0 we let Df;‘ be the
~ q ~
closure of LZ(£2) with respect to the norm ||(1 + A)*( Ny

Then it holds that [)(‘; = [LE(Q),Dyglas 0 < a < 1. Moreover, the dual relation

(Dg‘)’ = D;a, —1 < a <1 holds. These are consequences of the fact that 1 + /qu has
a bounded inverse and admits bounded imaginary powers, cf. [2, Section V]. Moreover,

by [12, Corollary 1.2], f);/2 = Wol’q(Q) NLL(N).



3 Interpolation of () spaces

The main result in this section will be the following;:

Theorem 3.1. Let Q C R" be a uniform C?*-domain. Let 1 < ¢q,r,s < 00, 0 < 0 < 1,
1 < p < oo such that

Then it holds that ~ ~ .
[L7(€), L™ (Q)]p = L*(2)

with equivalent norms. Moreover, in case s # 2, q # r, it holds that
(L), L7 (2))g,p = L ().

The main ideas for the proof result from a very helpful private communication with
M. Cwikel, [7]. For the proof we need the following notation: For 1 < ¢ < oo we write
19 for the sequence space (9 + (%, ¢ < 2, or [9N1%, g > 2. A simple argument shows that
19 = 12, but this notation will be helpful in the sequel. We shall also use the Lorentz-type
sequence spaces [?? and even l~‘1’p, which are defined by 19° + [?, ¢ < 2, and 19" N [?,
¢ > 2. Again it is not hard to see that [%? = (2 for all ¢ £ 2, 1 < p < o0.

Note also that L7(0,1) = L9(0,1), 1 < ¢, p < oo, and L9*(0,1) = L2*(0,1), q # 2.

For any function f € LY(M)+ L>(M), where M is a measure space, its nonincreasing
equimeasurable rearrangement is denoted by f*, cf. [4].

First we need a special case of a result due to Calderén, cf. [6, Theorem 1].

Proposition 3.2. Let My and My be o-finite measure spaces and let f; € L'(M;) +
L>(M;), i = 1,2, respectively, be fized functions. If they fulfill the estimate f5 < ff
almost everywhere on (0,00), then there exists a linear map L: L*(My) + L>®(My) —
LY(Ms) + L>®(My) with the property

Lfi=fa

and satisfying the estimates

ILull Ly < llullprany,  [Lwllpoe () < llwllzoo(ar)
for all uw € LY(My) or uw € L®(My), respectively.

Of course the map depends very crucially on the functions f; and fo. This proposition
can be used to prove the following powerful tool:

Theorem 3.3. Let Q C R" be a domain and let f € LY () + L>®(Q) be a given and
fized function. Then there exist linear maps

Si: LNQ) + L>®(Q) — LY(0,1), Sy: LY(Q) + L>®(Q) — I



and
Ty: L'0,1) — LY Q) + L®°(Q), Ty: 1> — LY(Q) + L>®(Q)

satisfying the equality
f=TS5f+TSf

almost everywhere. Moreover, these maps satisfy the estimates
[S1ull e 0,1y < Nullzey,  1S2ulle < lJulliro)

and
1Tullr ) < llullzeo),  [1T2ull ey < llullw

for all 1 < p < oo and all u in the respective LP-spaces.

Proof. First we define a linear operator P: L'(Q2) + L>=(Q) — L'(0,00) + L>(0,c0) by
choosing f1 := f, fo := f* in Proposition 3.2. It thus satisfies Pf = f*. We also define
linear operators by

Vi: L'0,00) + L>(0,00) = L'(0,1),  u = ul1),
Va: LY(0,00) + L(0,00) — I, u ( " u(s)ds) N
ne

Then the choice S := V3 0o P and S5 := V5 o P defines the first operators. The estimates
are easily checked for p = 1 and p = oo yielding the desired estimates for every 1 < p < oo
by the Riesz-Thorin theorem or complex interpolation.

We still have to construct 77 and 7. To this end we first define linear maps W, : Lt (0,1) —
L'(0,00) + L>®(0,00) by

u(t), 0<t<1l,
Wi(u)(t) :=
()2 {0’ .
and Wa: [ — L(0,00) + L>(0,00) by
0 0<t<l
Wo((an)n t) — ’ ’
2((@n)nen) (1) {an, n<t<n+1lneN

Then we define
g =WiVIiPf +WoVLbPf = W15 f + WySsf.

This means the following: g = f* identically on (0,1) and g = f:_l f*(s)ds identically on
the intervals [n,n 4+ 1), n € N. Clearly g(t) > f*(t) for 0 <t <l and forn <t <n-+1
we can estimate g(t) = [ | f*(s)ds > f*(n) > f*(t) for all n € N. Of course the
monotonicity of f* is crucial here. Altogether we get g > f* almost everywhere on
(0,00). Then it clearly also holds that g* > f* and we can again use Proposition 3.2
to find a linear map H: L'(0,00) + L>(0,00) — L(Q) + L*°(Q) satisfying all needed



estimates and having the property Hg = f. Now we set 71 := HoWj and T := H o Ws.
Consequently we get

Tlslf + TQSQf = HW1V1Pf + HWQVQPf
— HW\ViPf + WaVaPf) = Hg = f.

Moreover, all linear operators involved satisfy the necessary LP type estimates with
constants equal to 1. This is directly seen for p = 1 and p = co. Using the Riesz-Thorin
theorem we get the estimates for all 1 < ¢ < oo. O

Remark 3.4. Note that the operators S1, So, 11, T5 in the above Theorem also satisfy
the respective bounds in Lorentz spaces, i.e.

1S1ullLee) < llwllre),  [1S2ullir < flullLe.r(e)

and
|Thul| ooy < ullzre),  1Toulliee@) < llullive

for all 1 < p < 00, 1 < p < oo. This is directly seen by real interpolation.
Proof of Theorem 3.1. First we treat the complex interpolation space. Let first f €

fﬁ(Q) and let the linear maps S1, So, 11 and T be the maps from Theorem 3.3, for the
function f. Then

Sif € L*(0,1) = L%(0,1) = [L9(0,1), L"(0, 1)] = [L9(0,1), L"(0,1)]p.
By interpolation theory, we thus have 7181 f € [L9(Q), L"(9)]g. Similarly we have
Sof €U =1 =[%1%p=["T]

and hence THSyf € [I:‘Y(Q),D’(Q)]g. Together, this implies f = T1.51f + T2S2f €
[L9(Q), L" ()]s and we obtain the inequality 1 iz, ir @, < CLllfll s (o) with a con-
stant C7 only depending on ¢, r and s.

For the reverse implication let f € [L9(2), L"(Q)]s and let again Sy, Sz, Ty and Ty be
chosen as above for the function f. Then we get by interpolation that

Sif € [L9(0,1), L(0,1)]g = [L%(0,1), L7(0,1)]g = L*(0,1) = L*(0, 1)
and that
Sof €190 = [12,1%]g = 12 = I°.

This leads to T1S1f, TobSaf € L*(Q) and by f = T1S1f + ToSf this implies f € L5(Q)
and the inequality || f|| 7. < CQHfH[Eq(Q),ET(Q)]e with a constant Cy only depending on
q, v and s. This finishes the proof for the complex interpolation spaces.

Now we treat the real interpolation spaces. The proof will be similar. Let f €

(L9(2), L"(2))g,, and define by Theorem 3.3 the maps Sy, Sa, Ty and T for f. Then

Slf € (Eq(o’ 1)7 Er(o’ 1))970 = (Lq(07 1)a LT(Oa 1))0,p = LS’p(Oa 1) = E&p(O? 1)7



and hence T;S1 f € L5*(£2). Concerning the second term we get Saf € (12,12)g, = I? =
[ implying that ThSof € L*P(Q). Together we see that f = T1S1f + T2Sof is an
element of L**(Q).

For the reverse inclusion let f € L*(Q). Then

Sif € L*P(0,1) = L*(0,1) = (L9(0,1), L"(0,1))s,, = (L%(0,1), L"(0,1))g.,,
yielding that 7151 f € (iq(Q),I:’”(Q))g,p. Moreover,
Saf € Zs,p = l2 = (12, l2)9,p = (ZNqa Zr)o,p

and hence TS, f € (L(Q), L" (£2))s,p, proving also this inclusion. The proof is finished.
U

By density arguments and using the projection operator ]5q we find the following
corollary.

Corollary 3.5. Let 1 < q,r < 00, 0 < 0 <1, and let s be defined by % = 1%19+$. Then,

[L2(9), Ly ()]s = L5(%).

(e

Assume that also 1 < p < 0o is given and that s # 2, q # r. Then,
(L), L5 (D))o, = LY ().
The Sobolev embedding theorem can be carried over to the context of Li-spaces:

Proposition 3.6. Let m € N, 1 < g < oo and Q C R" be a uniform C?-domain. Then
the embedding . .
Wrma(Q) — L"(Q)

holds, i.e.
[ull iy < Cllullymag)
foru e Wm’q(Q) holds with the following choice of exponents:
1. ¢ <r <o ifmg>n,
2. g <r<ooifmqg=n,
3. qgrgnf—fnq if mqg <mn.

The constant C' above only depends on q, r, m, n and the type type(QQ) of Q.

Proof. Assume first that ¢ > 2. This implies that » > 2. Then we obtain for f €
Wm™4(Q) that

[ llr < NAllzr + 17l 2 < ClFllwma + [ fllwmz < Cllfllyrm.a,



where we use the classical Sobolev embedding, cf. [1, Theorem 4.12], yielding a constant
C of the desired type. }
Now consider the case ¢ < 2, r > 2. Let f € W™4(Q) and let f; € W™I(Q),

fo e W2(Q), f = fi+ fo, | Allwma) + I fallwme@) < I1fljjma + € € > 0. Now
observe that [|f1[[2 < C[/fillwmae and || filler < C|fillwma and |[falz2 < Ol fallwme
and || fal|zr < C|f1llwm.2 . This implies that fi, f» € L™ = L2 L" and

Iz < Al + [1F2ll 7
< fuller + fallez + fallr + [1f2ll 2
< Ol frllwma + [ f2llwm.2)
< C(lflma +€)

with a constant as above. Since € > 0 can be chosen arbitrarily small, this finishes this
case.

For ¢ < 2,7 < 2let f € W™4(Q) and let f; € W™9(Q) and fo € W™2(Q) satisfy
fi+ fo=fand |[fillwma@) + | follwm2@) < 1 flljirma + € where € > 0. Then we have

Iz < faller + 11 f2llz2 < Cllfllwma + [ fallwmz < CUfllyma +€)

with a constant as above. This proves the result, since ¢ can be chosen arbitrarily
small. 0

Now we are in the position to prove the following important embedding estimates.

Proposition 3.7. Let Q C R" be a uniform C?-domain, n > 3. Let 0 < a < 1 and

1< g <r<oo satisfy
1 1 2«

r q n

Then we have the embedding property
||U||Lr(Q) < Cll(1+ Aq)aunfﬂ(g)

for all u € bg‘ with a constant C' = C(type(2),n, q, a).

Proof. We need three steps.
Step I. First we consider the case o < % and ¢ < n. We can express the domains of
the fractional powers of 1 + A, as complex interpolation spaces, i.e.

N _ [T 1
D? - [LZ(Q)’Dq]a-

By reiteration, we can — because of the assumption a < % — also write
- Fq PH1/2
D% = [LE, D}/*sa.

Since D;/Q = Wol’q N L we obtain

DE s [E9, W)y,



Now let v be defined by % = 1220 4 29 o1 equivalently, v = 2L

et Here we need the
assumption ¢ < n. We can now use the Sobolev embedding theorem, cf. Proposition
3.6, to see that W14 < LY. We get then

(L9, Wh9gq = [L9, L)20 = L7 (),
using Theorem 3.1, which proves the embedding for a < %
Step 1I. Now we consider the case % < a <1 and still ¢ < n. In this case we define p
by

1 1 1

1% n r

and find that ¢ < p < n by r < co. Hence we can use the result just proved to get that

<1
[ullzr < CI(L+ Ap)2ul -
By the definition of p it holds furthermore that

P q n
and we can again use the result from above, implying that

1_1_2(04—%)

<1 cqol <1 5\
11+ Ap)zullp, < ClI(1+ Ag)* 2 (1 + Ap)2ullpe = Cll(1+ Ag)%ul| 4,
and this finishes the proof also in the case % <a<1landgq<n.

Step I11. We still need to consider ¢ > n. In this case we use duality. Welet ¢ € C§%(€2)
and first of all calculate

|(u, )l < (1 + Ag)%ullzq (1 + Ag) " 1
We abbreviate v := (1 + A,)~“¢ and note furthermore that

P 1 1 2«
r<qs=n<n, —=—--—

g r n’

Here the assumption n > 3 is needed. Consequently, Step I. (in case o < %) or Step II.
(in case o > 1) can be used to find

1A+ Ag) Gl = vz < O+ Ap) [ = Cl][ -
Combining the estimates we get the duality estimate

[(u, @)l < Cll(L+ Ag)*ul|z4 ¢l for all ¢ € GG, (),

and since C§5, () is dense in L7 (Q), the estimate holds for every ¢ € L7’ . This implies
that u € L7 and the desired estimate

lullzr < CIA+ Ag)*ul| -
This finishes Step III. and the proof of the proposition.

10



4 Proofs of the main results

Proof of Theorem 1.1. Let f € LL(Q). Assume first that o < 1. Then
le™ 4 fllzr < CII(L+ Ag) e flzy < CI(1+ Ag)e™ e f||g, [le™ A f|1 e
using Proposition 3.7 and we continue by noting that

”(1 + Aq)eitAqu[ﬂq < ||€7tAqf||f,q + HAqeitAquf/q
< (M + Mt )| £l 4
= Mt 1+ )| £l

where we used the analyticity of the semigroup, cf. [2, Remark 5.1.2]. Combining the
estimates we get

le=t 4 fll < GO+ 0%

proving the first part of the theorem for « < 1. If 1 < a < 2, we write et =
e~ t4a/2¢144/2 and apply the argument as above twice. Similarly, we can argue for any
a > 0, repeating the arguments sufficiently often.

To prove the second part assume first a < 1/2. Note that

|’V€7tAqu[~ﬁ < CH(l + Ar)l/QeitAqufﬂ"’

since Dcl/ ?= Wol 9(Q) N LL(R) with equivalent norms. Applying Proposition 3.7 we find
that : } :
[Ve 4 fllzr < CllL+ Ag)e2e e f

and then we continue as above for the proof of the desired estimate as long as a < 1/2.
For o > 1/2 we need to again repeat the argument finitely many times as above. O

Proof of Theorem 1.2. We will need real interpolation for this proof. We define a linear
map B by i
frse taf,

Assume first that f € LZ(Q). Then the bound for the semigroup yields for all 0 < ¢t < T
the estimate

IBf®)llza < Cllfllza
with a constant C' which depends on T' < co, showing that

B: LU(Q) — L®(0,T; L4(Q))

as a bounded linear operator. )
Choose any 1 < p < 7. Then Theorem 1.1 yields for all f € L5(£2) the bound

IBf®)llze < CNf 7

11



q

with a = 5 (% - l) showing that

B: LE(Q) — LY*>(0,T; LL(Q))

as a bounded linear operator.
Real interpolation theory thus shows that

B: (L(9), E2(2))o, — (E2(0,T5 E4(9)), L/*=(0,T; E4(0))

as a linear bounded linear operator, where 0 < 8 < 1 is chosen such that % =100

q p

By Corollary 3.5 we find that (L&(Q), L5(Q))s, = Ly (). On the other hand [13,
Theorem 1.18.6.2] implies that

(L2075 La(), LYo (0, T3 L4(9) ) = L7(0,T3 ()

= L"(0,T; LL(Q)),

which proves that B maps L) (Q) continuously into L”(0,T; LL(Q)), which finishes the
proof of the first assertion.

For the second assertion assume that v = n and that » > n. In that case, it is readily
seen that L(Q) ¢ L)' (Q), from which the rest of the proof follows.

O
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