Interpolation of sum and intersection spaces of L^q -type and applications to the Stokes problem in general unbounded domains

Paul Felix Riechwald * Technische Universität Darmstadt Schlossgartenstr. 7, 64289 Darmstadt

November 7, 2011

In a general unbounded uniform C^2 -domain $\Omega \subset \mathbb{R}^n$, $n \geq 3$, and $1 \leq q \leq \infty$ consider the spaces $\tilde{L}^q(\Omega)$ defined by

$$\tilde{L}^{q}(\Omega) := \begin{cases} L^{q}(\Omega) + L^{2}(\Omega), & q < 2, \\ L^{q}(\Omega) \cap L^{2}(\Omega), & q \ge 2, \end{cases}$$

and corresponding subspaces of solenoidal vector fields, $\tilde{L}^{q}_{\sigma}(\Omega)$. By studying the complex and real interpolation spaces of these we derive embedding properties for fractional order spaces related to the Stokes problem and L^{p} - L^{q} -type estimates for the corresponding semigroup.

1 Introduction and main results

In the mathematical analysis of the Navier-Stokes equations or other equations from fluid mechanics the Helmholtz decomposition plays a crucial role. However, it has been pointed out by Bogovskij in [5] in 1986, that for certain unbounded domains Ω – no matter how smooth their boundaries $\partial\Omega$ – the Helmholtz decomposition fails to hold in spaces $L^q(\Omega)$, $q \neq 2$. Therefore, Farwig, Kozono and Sohr proposed in [9] to study slightly modified spaces of the form

$$\tilde{L}^{q}(\Omega) := \begin{cases} L^{q}(\Omega) + L^{2}(\Omega), & 1 < q < 2, \\ L^{q}(\Omega) \cap L^{2}(\Omega), & 2 \le q < \infty, \end{cases}$$

^{*}The author was supported by the Studienstiftung des deutschen Volkes

where functions behave locally like L^q -functions, but looking at decay at space infinity they behave like L^2 -functions. In these spaces, the Helmholtz decomposition holds even in smooth unbounded domains Ω . They also showed in [8] certain solvability results on the Stokes and Navier-Stokes equations in unbounded domains in spaces of the type $\tilde{L}^q(\Omega)$. Moreover, they proved for instance that the Stokes operator \tilde{A}_q generates an analytic semigroup $e^{-t\tilde{A}_q}$. This motivates the study of those sum and intersection spaces. In this paper the author proves the following estimates for the semigroup:

Theorem 1.1. Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a uniform C^2 -domain and let

$$1 < q \le r < \infty$$
, $0 \le \alpha := \frac{n}{2} \left(\frac{1}{q} - \frac{1}{r} \right)$.

Then, for every $0 < t < \infty$ the estimate

$$\|e^{-t\tilde{A}_q}f\|_{\tilde{L}^r(\Omega)} \le Ce^{\delta t}t^{-\alpha}(1+t)^{\alpha}\|f\|_{\tilde{L}^q(\Omega)}$$

holds for all $f \in \tilde{L}^{q}_{\sigma}(\Omega)$ with a constant C only depending on n, r, q, δ and the type type(Ω) of Ω . The number $\delta > 0$ can be chosen arbitrarily small but positive. Moreover, the estimate

$$\|\nabla e^{-t\bar{A}_q}f\|_{\tilde{L}^r(\Omega)} \le Ce^{\delta t}t^{-\alpha-1/2}(1+t)^{\alpha+1/2}\|f\|_{\tilde{L}^q(\Omega)}$$

holds for all $f \in \tilde{L}^{q}_{\sigma}(\Omega)$ with a constant C as above.

For the precise meanings of all terms used here see below.

This can be used to find the following quite sharp estimate for the Stokes semigroup:

Theorem 1.2. Let $\Omega \subset \mathbb{R}^n$, $n \geq 3$, be a uniform C^2 -domain, $0 < T < \infty$, and

$$1 < r < \infty, \ 1 < \gamma < q < \infty, \quad \frac{2}{r} + \frac{n}{q} = \frac{n}{\gamma}.$$

Then the estimate

$$\left(\int_0^T \|e^{-t\tilde{A}_q}f\|_{\tilde{L}^q(\Omega)}^r dt\right)^{1/r} \le C\|f\|_{\tilde{L}^{\gamma,r}(\Omega)}$$

holds for all $f \in \tilde{L}^{\gamma,r}_{\sigma}(\Omega)$ with a constant C depending on n, q, r, T and the type type(Ω) of Ω .

Choosing $\gamma = n$ the exponents r and q are so-called Serrin exponents, i.e. they satisfy $2 < r < \infty$, $n < q < \infty$ and $\frac{2}{r} + \frac{n}{q} = 1$. If additionally $r \ge n$, we find the estimate

$$\left(\int_0^T \|e^{-t\tilde{A}_q}f\|_{\tilde{L}^q(\Omega)}^r dt\right)^{1/r} \le C\|f\|_{\tilde{L}^n(\Omega)}$$

for all $f \in \tilde{L}^n_{\sigma}(\Omega)$.

Again we refer to the sections below for the precise definitions of all terms. In a forthcoming paper the author will use these results to develop the theory of very weak solutions to the Navier-Stokes equations in general unbounded domains.

2 Notation and preliminaries

Definition 2.1. An open connected subset $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is called *uniform* C^k domain, $k \in \mathbb{N}$, if there are finite constants $\alpha > 0$, $\beta > 0$, K > 0 such that for every boundary point $x_0 \in \partial \Omega$ there is a Cartesian coordinate system with origin at x_0 and coordinates $y = (y', y_n), y' = (y_1, \ldots, y_{n-1})$, and a C^k -function $h(y'), |y'| \leq \alpha$, with C^k -norm $||h||_{C^k} \leq K$ such that the neighborhood

$$U_{\alpha,\beta,h}(x_0) := \{ (y', y_n) \in \mathbb{R}^n : h(y') - \beta < y_n < h(y') + \beta, |y'| < \alpha \}$$

of x_0 satisfies

$$\Omega \cap U_{\alpha,\beta,h} = U_{\alpha,\beta,h}^{-}(x_0) := \left\{ (y', y_n) \in \mathbb{R}^n \colon h(y') - \beta < y_n < h(y'), |y'| < \alpha \right\},\$$

and

$$\partial \Omega \cap U_{\alpha,\beta,h} = \left\{ (y', h(y')) \colon |y'| < \alpha \right\}.$$

The triple (α, β, K) will be called the *type* of Ω and will be denoted by type (Ω) .

For two vector spaces X and Y both being embedded in a common topological vector space Ξ we can define the sum space $X + Y := \{z = x + y \in \Xi : x \in X, y \in Y\}$ with norm

 $||z||_{X+Y} := \inf\{||x||_X + ||y||_Y \colon x \in X, y \in Y, x+y=z\}$

and the intersection space $X \cap Y := \{z \in \Xi : z \in X, z \in Y\}$ with norm

$$||z||_{X\cap Y} := \max\{||z||_X, ||z||_Y\}.$$

By [3, Theorem 8.III] the dual relations $(X + Y)' = X' \cap Y'$ and $(X \cap Y)' = X' + Y'$ hold, provided that $X \cap Y$ is dense both in X and in Y.

We let $[X, Y]_{\theta}$ denote the complex interpolation space and by $(X, Y)_{\theta,\rho}$ the real interpolation space for $0 < \theta < 1$, $1 \le \rho \le \infty$, cf. [4].

For any open set Ω , $k \in \mathbb{N}$ and $1 \leq q \leq \infty$ we denote by $L^q = L^q(\Omega)$ the usual Lebesgue spaces and by $W^{k,q} = W^{k,q}(\Omega)$ Sobolev spaces, see for example [1]. We will also use the space $W_0^{1,q} = W_0^{1,q}(\Omega)$ being the closure with respect to the norm of $W^{1,q}(\Omega)$ of the subspace $C_0^{\infty}(\Omega)$ consisting of smooth functions being compactly supported in Ω . By $L^{q,\rho}(\Omega)$, $1 \leq q, \rho \leq \infty$, we denote the usual Lorentz spaces as decribed e.g. in [4]. The Bochner-Lebesgue spaces will be denoted by $L^r(0,T;X)$ for some Banach space X, $0 < T \leq \infty$, $1 \leq r \leq \infty$. We also need the Bochner-Lorentz spaces $L^{r,\rho}(0,T;X)$, cf. [13] or [4].

From now on let $1 < q, r < \infty$, $0 < T < \infty$ and a uniform C^2 -domain be fixed. Consider the space $C_{0,\sigma}^{\infty}(\Omega)$ consisting of $C^{\infty}(\Omega)$ functions u having compact support in Ω and satisfying div u = 0. Its closure with respect to the L^q -norm is denoted by

$$L^{q}_{\sigma}(\Omega) := \overline{C^{\infty}_{0,\sigma}(\Omega)}^{\|\cdot\|_{L^{q}(\Omega)}}.$$

For $k \in \mathbb{N}$ and $1 < q < \infty$ we define

$$\tilde{W}^{k,q}(\Omega) := \begin{cases} W^{k,q}(\Omega) + W^{k,2}(\Omega), & q < 2, \\ W^{k,q}(\Omega) \cap W^{k,2}(\Omega), & q \ge 2, \end{cases}$$

and

$$\tilde{L}^{q,\rho}(\Omega) := \begin{cases} L^{q,\rho}(\Omega) + L^2(\Omega) & q < 2\\ L^{q,\rho}(\Omega) \cap L^2(\Omega), & q > 2 \end{cases}$$

where we leave the case q = 2 undefined, and

$$\tilde{L}^{q}_{\sigma}(\Omega) := \begin{cases} L^{q}_{\sigma}(\Omega) + L^{2}_{\sigma}(\Omega), & q < 2, \\ L^{q}_{\sigma}(\Omega) \cap L^{2}_{\sigma}(\Omega), & q \ge 2. \end{cases}$$

We define

$$\tilde{L}^{q,\rho}_{\sigma}(\Omega) := \overline{C^{\infty}_{0,\sigma}(\Omega)}^{\|\cdot\|_{\tilde{L}^{q,\rho}(\Omega)}}$$

for $1 < q < \infty$, $q \neq 2$, $1 \le \rho < \infty$. Moreover, with $D_q := W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega) \cap L^q_{\sigma}(\Omega)$ we let

$$\tilde{D}_q(\Omega) := \begin{cases} D_q(\Omega) + D_2(\Omega), & q < 2, \\ D_q(\Omega) \cap D_2(\Omega), & q \ge 2. \end{cases}$$

We collect now a number of results on the Helmholtz decomposition and the Stokes operator in the spaces $\tilde{L}^{q}_{\sigma}(\Omega)$. These have been obtained by Farwig, Kozono, Sohr and Kunstmann.

It was shown in [9] that the Helmholtz decomposition in $\tilde{L}_{\sigma}^{q}(\Omega)$ holds true and that the Helmholtz projection $\tilde{P}_{q}: u \mapsto u_{0}: \tilde{L}^{q}(\Omega) \to \tilde{L}_{\sigma}^{q}(\Omega)$ is a well defined bounded linear operator. Moreover, as a consequence the authors obtained that $\tilde{L}_{\sigma}^{q}(\Omega) = \overline{C_{0,\sigma}^{\infty}(\Omega)}^{\|\cdot\|_{\tilde{L}^{q}(\Omega)}}$. In [11] the authors considered the Stokes operator $\tilde{A}_{q}: \tilde{D}_{q} \subset \tilde{L}_{\sigma}^{q}(\Omega) \to \tilde{L}_{\sigma}^{q}(\Omega)$ defined by $\tilde{A}_{q}u := -\tilde{P}_{q}\Delta u, \ u \in \tilde{D}_{q}$. They showed that it is a densely defined closed operator and that it generates an analytic semigroup $e^{-t\tilde{A}_{q}}$ in $\tilde{L}_{\sigma}^{q}(\Omega)$ with bound $\|e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}} \leq Me^{\delta t}\|f\|_{\tilde{L}^{q}}$, where $\delta > 0$ can be chosen arbitrarily small, but positive. Here M > 0only depends on q, δ and type(Ω). In [10] the authors even proved maximal Sobolev regularity of the Stokes operator \tilde{A}_{q} . In [12] the author even proved that the operator $\varepsilon + \tilde{A}_{q}, \varepsilon > 0$, even admits a bounded H^{∞} -calculus and in particular bounded imaginary powers.

We will write \tilde{D}_q^{α} , $0 \leq \alpha \leq 1$, for the domain of the fractional powers $(1 + \tilde{A}_q)^{\alpha}$. It is equipped by the norm $\|u\|_{\tilde{D}_q^{\alpha}} = \|(1 + \tilde{A}_q)^{\alpha}u\|_{\tilde{L}^q}$. For $-1 \leq \alpha < 0$ we let \tilde{D}_q^{α} be the closure of $\tilde{L}_{\sigma}^q(\Omega)$ with respect to the norm $\|(1 + \tilde{A}_q)^{\alpha}(\cdot)\|_{\tilde{L}_{\sigma}^q(\Omega)}$.

Then it holds that $\tilde{D}_q^{\alpha} = [\tilde{L}_{\sigma}^q(\Omega), \tilde{D}_q]_{\alpha}, \ 0 < \alpha < 1$. Moreover, the dual relation $(\tilde{D}_q^{\alpha})' = \tilde{D}_{q'}^{-\alpha}, \ -1 \leq \alpha \leq 1$ holds. These are consequences of the fact that $1 + \tilde{A}_q$ has a bounded inverse and admits bounded imaginary powers, cf. [2, Section V]. Moreover, by [12, Corollary 1.2], $\tilde{D}_q^{1/2} = \tilde{W}_0^{1,q}(\Omega) \cap \tilde{L}_{\sigma}^q(\Omega)$.

3 Interpolation of $\tilde{L}^q(\Omega)$ spaces

The main result in this section will be the following:

Theorem 3.1. Let $\Omega \subset \mathbb{R}^n$ be a uniform C^2 -domain. Let $1 \leq q, r, s \leq \infty, 0 < \theta < 1$, $1 \leq \rho \leq \infty$ such that

$$\frac{1}{s} = \frac{1-\theta}{q} + \frac{\theta}{r}$$

Then it holds that

$$[\tilde{L}^q(\Omega), \tilde{L}^r(\Omega)]_{\theta} = \tilde{L}^s(\Omega)$$

with equivalent norms. Moreover, in case $s \neq 2$, $q \neq r$, it holds that

$$(\tilde{L}^q(\Omega), \tilde{L}^r(\Omega))_{\theta,\rho} = \tilde{L}^{s,\rho}(\Omega).$$

The main ideas for the proof result from a very helpful private communication with M. Cwikel, [7]. For the proof we need the following notation: For $1 \leq q \leq \infty$ we write \tilde{l}^q for the sequence space $l^q + l^2$, q < 2, or $l^q \cap l^2$, $q \geq 2$. A simple argument shows that $\tilde{l}^q = l^2$, but this notation will be helpful in the sequel. We shall also use the Lorentz-type sequence spaces $l^{q,\rho}$ and even $\tilde{l}^{q,\rho}$, which are defined by $l^{q,\rho} + l^2$, q < 2, and $l^{q,\rho} \cap l^2$, q > 2. Again it is not hard to see that $\tilde{l}^{q,\rho} = l^2$ for all $q \neq 2$, $1 \leq \rho \leq \infty$.

Note also that $\tilde{L}^{q}(0,1) = L^{q}(0,1), 1 \leq q, \rho \leq \infty$, and $\tilde{L}^{q,\rho}(0,1) = L^{q,\rho}(0,1), q \neq 2$.

For any function $f \in L^1(M) + L^{\infty}(M)$, where M is a measure space, its nonincreasing equimeasurable rearrangement is denoted by f^* , cf. [4].

First we need a special case of a result due to Calderón, cf. [6, Theorem 1].

Proposition 3.2. Let M_1 and M_2 be σ -finite measure spaces and let $f_i \in L^1(M_i) + L^{\infty}(M_i)$, i = 1, 2, respectively, be fixed functions. If they fulfill the estimate $f_2^* \leq f_1^*$ almost everywhere on $(0, \infty)$, then there exists a linear map $L: L^1(M_1) + L^{\infty}(M_1) \to L^1(M_2) + L^{\infty}(M_2)$ with the property

$$Lf_1 = f_2$$

and satisfying the estimates

$$||Lu||_{L^1(M_2)} \le ||u||_{L^1(M_1)}, \quad ||Lu||_{L^{\infty}(M_2)} \le ||u||_{L^{\infty}(M_1)}$$

for all $u \in L^1(M_1)$ or $u \in L^{\infty}(M_1)$, respectively.

Of course the map depends very crucially on the functions f_1 and f_2 . This proposition can be used to prove the following powerful tool:

Theorem 3.3. Let $\Omega \subseteq \mathbb{R}^n$ be a domain and let $f \in L^1(\Omega) + L^{\infty}(\Omega)$ be a given and fixed function. Then there exist linear maps

$$S_1: L^1(\Omega) + L^\infty(\Omega) \to L^1(0,1), \quad S_2: L^1(\Omega) + L^\infty(\Omega) \to l^\infty$$

and

$$T_1: L^1(0,1) \to L^1(\Omega) + L^\infty(\Omega), \quad T_2: l^\infty \to L^1(\Omega) + L^\infty(\Omega)$$

satisfying the equality

$$f = T_1 S_1 f + T_2 S_2 f$$

almost everywhere. Moreover, these maps satisfy the estimates

 $||S_1u||_{L^p(0,1)} \le ||u||_{L^p(\Omega)}, \quad ||S_2u||_{l^p} \le ||u||_{L^p(\Omega)}$

and

$$T_1 u \|_{L^p(\Omega)} \le \|u\|_{L^p(0,1)}, \quad \|T_2 u\|_{L^p(\Omega)} \le \|u\|_{l^p}$$

for all $1 \leq p \leq \infty$ and all u in the respective L^p -spaces.

11

Proof. First we define a linear operator $P: L^1(\Omega) + L^{\infty}(\Omega) \to L^1(0, \infty) + L^{\infty}(0, \infty)$ by choosing $f_1 := f, f_2 := f^*$ in Proposition 3.2. It thus satisfies $Pf = f^*$. We also define linear operators by

$$V_1 \colon L^1(0,\infty) + L^\infty(0,\infty) \to L^1(0,1), \qquad u \mapsto u|_{(0,1)},$$

$$V_2 \colon L^1(0,\infty) + L^\infty(0,\infty) \to l^\infty, \qquad u \mapsto \left(\int_{n-1}^n u(s)ds\right)_{n \in \mathbb{N}}.$$

Then the choice $S_1 := V_1 \circ P$ and $S_2 := V_2 \circ P$ defines the first operators. The estimates are easily checked for p = 1 and $p = \infty$ yielding the desired estimates for every $1 \le p \le \infty$ by the Riesz-Thorin theorem or complex interpolation.

We still have to construct T_1 and T_2 . To this end we first define linear maps $W_1: L^1(0,1) \to L^1(0,\infty) + L^{\infty}(0,\infty)$ by

$$W_1(u)(t) := \begin{cases} u(t), & 0 < t < 1, \\ 0, & t \ge 1, \end{cases}$$

and $W_2: l^{\infty} \to L^1(0,\infty) + L^{\infty}(0,\infty)$ by

$$W_2((a_n)_{n \in \mathbb{N}})(t) \mapsto \begin{cases} 0, & 0 < t < 1, \\ a_n, & n \le t < n+1, n \in \mathbb{N} \end{cases}$$

Then we define

$$g := W_1 V_1 P f + W_2 V_2 P f = W_1 S_1 f + W_2 S_2 f.$$

This means the following: $g = f^*$ identically on (0, 1) and $g = \int_{n-1}^n f^*(s)ds$ identically on the intervals $[n, n+1), n \in \mathbb{N}$. Clearly $g(t) \ge f^*(t)$ for 0 < t < 1 and for $n \le t \le n+1$ we can estimate $g(t) = \int_{n-1}^n f^*(s)ds \ge f^*(n) \ge f^*(t)$ for all $n \in \mathbb{N}$. Of course the monotonicity of f^* is crucial here. Altogether we get $g \ge f^*$ almost everywhere on $(0, \infty)$. Then it clearly also holds that $g^* \ge f^*$ and we can again use Proposition 3.2 to find a linear map $H: L^1(0,\infty) + L^\infty(0,\infty) \to L^1(\Omega) + L^\infty(\Omega)$ satisfying all needed estimates and having the property Hg = f. Now we set $T_1 := H \circ W_1$ and $T_2 := H \circ W_2$. Consequently we get

$$T_1S_1f + T_2S_2f = HW_1V_1Pf + HW_2V_2Pf$$
$$= H(W_1V_1Pf + W_2V_2Pf) = Hg = f$$

Moreover, all linear operators involved satisfy the necessary L^p type estimates with constants equal to 1. This is directly seen for p = 1 and $p = \infty$. Using the Riesz-Thorin theorem we get the estimates for all $1 \le q \le \infty$.

Remark 3.4. Note that the operators S_1 , S_2 , T_1 , T_2 in the above Theorem also satisfy the respective bounds in Lorentz spaces, i.e.

$$||S_1u||_{L^{p,\rho}(0,1)} \le ||u||_{L^{p,\rho}(\Omega)}, \quad ||S_2u||_{l^{p,\rho}} \le ||u||_{L^{p,\rho}(\Omega)}$$

and

$$||T_1u||_{L^{p,\rho}(\Omega)} \le ||u||_{L^{p,\rho}(0,1)}, \quad ||T_2u||_{L^{p,\rho}(\Omega)} \le ||u||_{l^{p,\rho}}$$

for all $1 , <math>1 \le \rho \le \infty$. This is directly seen by real interpolation.

Proof of Theorem 3.1. First we treat the complex interpolation space. Let first $f \in \tilde{L}^{s}(\Omega)$ and let the linear maps S_1, S_2, T_1 and T_2 be the maps from Theorem 3.3, for the function f. Then

$$S_1 f \in \tilde{L}^s(0,1) = L^s(0,1) = [L^q(0,1), L^r(0,1)]_{\theta} = [\tilde{L}^q(0,1), \tilde{L}^r(0,1)]_{\theta}.$$

By interpolation theory, we thus have $T_1S_1f \in [\tilde{L}^q(\Omega), \tilde{L}^r(\Omega)]_{\theta}$. Similarly we have

$$S_2 f \in \tilde{l}^s = l^2 = [l^2, l^2]_{\theta} = [\tilde{l}^q, \tilde{l}^r]_{\theta}$$

and hence $T_2S_2f \in [\tilde{L}^q(\Omega), \tilde{L}^r(\Omega)]_{\theta}$. Together, this implies $f = T_1S_1f + T_2S_2f \in [\tilde{L}^q(\Omega), \tilde{L}^r(\Omega)]_{\theta}$ and we obtain the inequality $||f||_{[\tilde{L}^q(\Omega), \tilde{L}^r(\Omega)]_{\theta}} \leq C_1||f||_{\tilde{L}^s(\Omega)}$ with a constant C_1 only depending on q, r and s.

For the reverse implication let $f \in [\tilde{L}^q(\Omega), \tilde{L}^r(\Omega)]_{\theta}$ and let again S_1, S_2, T_1 and T_2 be chosen as above for the function f. Then we get by interpolation that

$$S_1 f \in [\tilde{L}^q(0,1), \tilde{L}^r(0,1)]_{\theta} = [L^q(0,1), L^r(0,1)]_{\theta} = L^s(0,1) = \tilde{L}^s(0,1)$$

and that

$$S_2 f \in [\tilde{l}^q, \tilde{l}^r]_{\theta} = [l^2, l^2]_{\theta} = l^2 = \tilde{l}^s.$$

This leads to $T_1S_1f, T_2S_2f \in \tilde{L}^s(\Omega)$ and by $f = T_1S_1f + T_2S_2f$ this implies $f \in \tilde{L}^s(\Omega)$ and the inequality $||f||_{\tilde{L}^s(\Omega)} \leq C_2||f||_{[\tilde{L}^q(\Omega),\tilde{L}^r(\Omega)]_{\theta}}$ with a constant C_2 only depending on q, r and s. This finishes the proof for the complex interpolation spaces.

Now we treat the real interpolation spaces. The proof will be similar. Let $f \in (\tilde{L}^q(\Omega), \tilde{L}^r(\Omega))_{\theta,\rho}$ and define by Theorem 3.3 the maps S_1, S_2, T_1 and T_2 for f. Then

$$S_1 f \in (\tilde{L}^q(0,1), \tilde{L}^r(0,1))_{\theta,\rho} = (L^q(0,1), L^r(0,1))_{\theta,\rho} = L^{s,\rho}(0,1) = \tilde{L}^{s,\rho}(0,1),$$

and hence $T_1S_1f \in \tilde{L}^{s,\rho}(\Omega)$. Concerning the second term we get $S_2f \in (l^2, l^2)_{\theta,\rho} = l^2 = \tilde{l}^{s,\rho}$ implying that $T_2S_2f \in \tilde{L}^{s,\rho}(\Omega)$. Together we see that $f = T_1S_1f + T_2S_2f$ is an element of $\tilde{L}^{s,\rho}(\Omega)$.

For the reverse inclusion let $f \in \tilde{L}^{s,\rho}(\Omega)$. Then

$$S_1 f \in \tilde{L}^{s,\rho}(0,1) = L^{s,\rho}(0,1) = (L^q(0,1), L^r(0,1))_{\theta,\rho} = (\tilde{L}^q(0,1), \tilde{L}^r(0,1))_{\theta,\rho},$$

yielding that $T_1S_1f \in (\tilde{L}^q(\Omega), \tilde{L}^r(\Omega))_{\theta,\rho}$. Moreover,

$$S_2 f \in \tilde{l}^{s,\rho} = l^2 = (l^2, l^2)_{\theta,\rho} = (\tilde{l}^q, \tilde{l}^r)_{\theta,\rho}$$

and hence $T_2S_2f \in (\tilde{L}^q(\Omega), \tilde{L}^r(\Omega))_{\theta,\rho}$, proving also this inclusion. The proof is finished.

By density arguments and using the projection operator \tilde{P}_q we find the following corollary.

Corollary 3.5. Let $1 < q, r < \infty, 0 < \theta < 1$, and let s be defined by $\frac{1}{s} = \frac{1-\theta}{q} + \frac{\theta}{r}$. Then,

$$[\tilde{L}^q_{\sigma}(\Omega), \tilde{L}^r_{\sigma}(\Omega)]_{\theta} = \tilde{L}^s_{\sigma}(\Omega).$$

Assume that also $1 \le \rho < \infty$ is given and that $s \ne 2, q \ne r$. Then,

$$(\tilde{L}^{q}_{\sigma}(\Omega), \tilde{L}^{r}_{\sigma}(\Omega))_{\theta,\rho} = \tilde{L}^{s,\rho}_{\sigma}(\Omega).$$

The Sobolev embedding theorem can be carried over to the context of \tilde{L}^{q} -spaces:

Proposition 3.6. Let $m \in \mathbb{N}$, $1 \leq q < \infty$ and $\Omega \subseteq \mathbb{R}^n$ be a uniform C^2 -domain. Then the embedding

$$W^{m,q}(\Omega) \hookrightarrow L^r(\Omega)$$

holds, i.e.

$$\|u\|_{\tilde{L}^r(\Omega)} \le C \|u\|_{\tilde{W}^{m,q}(\Omega)}$$

for $u \in \tilde{W}^{m,q}(\Omega)$ holds with the following choice of exponents:

- 1. $q \leq r \leq \infty$ if mq > n,
- 2. $q \leq r < \infty$ if mq = n,
- 3. $q \leq r \leq \frac{nq}{n-mq}$ if mq < n.

The constant C above only depends on q, r, m, n and the type $type(\Omega)$ of Ω .

Proof. Assume first that $q \geq 2$. This implies that $r \geq 2$. Then we obtain for $f \in \tilde{W}^{m,q}(\Omega)$ that

$$||f||_{\tilde{L}^r} \le ||f||_{L^r} + ||f||_{L^2} \le C ||f||_{W^{m,q}} + ||f||_{W^{m,2}} \le C ||f||_{\tilde{W}^{m,q}},$$

where we use the classical Sobolev embedding, cf. [1, Theorem 4.12], yielding a constant C of the desired type.

Now consider the case $q < 2, r \ge 2$. Let $f \in \tilde{W}^{m,q}(\Omega)$ and let $f_1 \in W^{m,q}(\Omega)$, $f_2 \in W^{m,2}(\Omega), f = f_1 + f_2, \|f_1\|_{W^{m,q}(\Omega)} + \|f_2\|_{W^{m,2}(\Omega)} \le \|f\|_{\tilde{W}^{m,q}} + \epsilon, \varepsilon > 0$. Now observe that $\|f_1\|_{L^2} \le C \|f_1\|_{W^{m,q}}$ and $\|f_1\|_{L^r} \le C \|f_1\|_{W^{m,q}}$ and $\|f_2\|_{L^2} \le C \|f_2\|_{W^{m,2}}$ and $\|f_2\|_{L^r} \le C \|f_1\|_{W^{m,2}}$. This implies that $f_1, f_2 \in \tilde{L}^r = L^2 \cap L^r$ and

$$\begin{split} \|f\|_{\tilde{L}^{r}} &\leq \|f_{1}\|_{\tilde{L}^{r}} + \|f_{2}\|_{\tilde{L}^{r}} \\ &\leq \|f_{1}\|_{L^{r}} + \|f_{1}\|_{L^{2}} + \|f_{2}\|_{L^{r}} + \|f_{2}\|_{L^{2}} \\ &\leq C(\|f_{1}\|_{W^{m,q}} + \|f_{2}\|_{W^{m,2}}) \\ &\leq C(\|f_{1}\|_{\tilde{W}^{m,q}} + \varepsilon) \end{split}$$

with a constant as above. Since $\varepsilon > 0$ can be chosen arbitrarily small, this finishes this case.

For q < 2, r < 2 let $f \in \tilde{W}^{m,q}(\Omega)$ and let $f_1 \in W^{m,q}(\Omega)$ and $f_2 \in W^{m,2}(\Omega)$ satisfy $f_1 + f_2 = f$ and $\|f_1\|_{W^{m,q}(\Omega)} + \|f_2\|_{W^{m,2}(\Omega)} \le \|f\|_{\tilde{W}^{m,q}} + \epsilon$, where $\epsilon > 0$. Then we have

$$\|f\|_{\tilde{L}^r} \le \|f_1\|_{L^r} + \|f_2\|_{L^2} \le C\|f_1\|_{W^{m,q}} + \|f_2\|_{W^{m,2}} \le C(\|f\|_{\tilde{W}^{m,q}} + \epsilon)$$

with a constant as above. This proves the result, since ϵ can be chosen arbitrarily small.

Now we are in the position to prove the following important embedding estimates.

Proposition 3.7. Let $\Omega \subseteq \mathbb{R}^n$ be a uniform C^2 -domain, $n \geq 3$. Let $0 \leq \alpha \leq 1$ and $1 < q \leq r < \infty$ satisfy

$$\frac{1}{r} = \frac{1}{q} - \frac{2\alpha}{n}$$

Then we have the embedding property

$$||u||_{\tilde{L}^{r}(\Omega)} \leq C ||(1+\tilde{A}_{q})^{\alpha}u||_{\tilde{L}^{q}(\Omega)}$$

for all $u \in \tilde{D}_q^{\alpha}$ with a constant $C = C(\text{type}(\Omega), n, q, \alpha)$.

Proof. We need three steps.

Step I. First we consider the case $\alpha \leq \frac{1}{2}$ and q < n. We can express the domains of the fractional powers of $1 + \tilde{A}_q$ as complex interpolation spaces, i.e.

$$\tilde{D}_q^{\alpha} = [\tilde{L}_{\sigma}^q(\Omega), \tilde{D}_q^1]_{\alpha}.$$

By reiteration, we can – because of the assumption $\alpha \leq \frac{1}{2}$ – also write

$$\tilde{D}_q^{\alpha} = [\tilde{L}_{\sigma}^q, \tilde{D}_q^{1/2}]_{2\alpha}.$$

Since $\tilde{D}_q^{1/2} = \tilde{W}_0^{1,q} \cap \tilde{L}_{\sigma}^q$ we obtain

$$\tilde{D}_q^{\alpha} \hookrightarrow [\tilde{L}^q, \tilde{W}^{1,q}]_{2\alpha}.$$

Now let γ be defined by $\frac{1}{r} = \frac{1-2\alpha}{q} + \frac{2\alpha}{\gamma}$ or, equivalently, $\gamma = \frac{nq}{n-q}$. Here we need the assumption q < n. We can now use the Sobolev embedding theorem, cf. Proposition 3.6, to see that $\tilde{W}^{1,q} \hookrightarrow \tilde{L}^{\gamma}$. We get then

$$[\tilde{L}^q, \tilde{W}^{1,q}]_{2\alpha} \hookrightarrow [\tilde{L}^q, \tilde{L}^\gamma]_{2\alpha} = \tilde{L}^r(\Omega),$$

using Theorem 3.1, which proves the embedding for $\alpha \leq \frac{1}{2}$.

Step II. Now we consider the case $\frac{1}{2} < \alpha \leq 1$ and still q < n. In this case we define ρ by

$$\frac{1}{\rho} - \frac{1}{n} = \frac{1}{r}$$

and find that $q \leq \rho < n$ by $r < \infty$. Hence we can use the result just proved to get that

$$||u||_{\tilde{L}^r} \le C ||(1+\tilde{A}_{\rho})^{\frac{1}{2}}u||_{\tilde{L}^{\rho}}.$$

By the definition of ρ it holds furthermore that

$$\frac{1}{\rho} = \frac{1}{q} - \frac{2(\alpha - \frac{1}{2})}{n}$$

and we can again use the result from above, implying that

$$\|(1+\tilde{A}_{\rho})^{\frac{1}{2}}u\|_{\tilde{L}^{\rho}} \leq C\|(1+\tilde{A}_{q})^{\alpha-\frac{1}{2}}(1+\tilde{A}_{\rho})^{\frac{1}{2}}u\|_{\tilde{L}^{q}} = C\|(1+\tilde{A}_{q})^{\alpha}u\|_{\tilde{L}^{q}},$$

and this finishes the proof also in the case $\frac{1}{2} < \alpha \leq 1$ and q < n.

Step III. We still need to consider $q \ge n$. In this case we use duality. We let $\phi \in C_{0,\sigma}^{\infty}(\Omega)$ and first of all calculate

$$|(u,\phi)_{\Omega}| \le ||(1+\tilde{A}_q)^{\alpha}u||_{\tilde{L}^q} ||(1+\tilde{A}_{q'})^{-\alpha}\phi||_{\tilde{L}^{q'}}.$$

We abbreviate $v := (1 + \tilde{A}_{q'})^{-\alpha} \phi$ and note furthermore that

$$r' \le q' \le n' < n, \quad \frac{1}{q'} = \frac{1}{r'} - \frac{2\alpha}{n}$$

Here the assumption $n \ge 3$ is needed. Consequently, Step I. (in case $\alpha \le \frac{1}{2}$) or Step II. (in case $\alpha \ge \frac{1}{2}$) can be used to find

$$\|(1+\tilde{A}_{q'})^{-\alpha}\phi\|_{\tilde{L}^{q'}} = \|v\|_{\tilde{L}^{q'}} \le C\|(1+\tilde{A}_{r'})^{\alpha}v\|_{\tilde{L}^{r'}} = C\|\phi\|_{\tilde{L}^{r'}}.$$

Combining the estimates we get the duality estimate

$$|(u,\phi)_{\Omega}| \le C ||(1+\tilde{A}_q)^{\alpha} u||_{\tilde{L}^q} ||\phi||_{\tilde{L}^{r'}} \text{ for all } \phi \in C^{\infty}_{0,\sigma}(\Omega),$$

and since $C_{0,\sigma}^{\infty}(\Omega)$ is dense in $\tilde{L}_{\sigma}^{r'}(\Omega)$, the estimate holds for every $\phi \in \tilde{L}_{\sigma}^{r'}$. This implies that $u \in \tilde{L}_{\sigma}^{r}$ and the desired estimate

$$||u||_{\tilde{L}^r} \le C ||(1+\tilde{A}_q)^{\alpha}u||_{\tilde{L}^q}$$

This finishes Step III. and the proof of the proposition.

4 Proofs of the main results

Proof of Theorem 1.1. Let $f \in \tilde{L}^q_{\sigma}(\Omega)$. Assume first that $\alpha \leq 1$. Then

$$\|e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{r}} \leq C\|(1+\tilde{A}_{q})^{\alpha}e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}} \leq C\|(1+\tilde{A}_{q})e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}}^{\alpha}\|e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}}^{1-\alpha}$$

using Proposition 3.7 and we continue by noting that

$$\begin{aligned} \|(1+\tilde{A}_{q})e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}} &\leq \|e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}} + \|\tilde{A}_{q}e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}} \\ &\leq (Me^{\delta t} + Mt^{-1}e^{\delta t})\|f\|_{\tilde{L}^{q}} \\ &= Mt^{-1}(1+t)e^{\delta t}\|f\|_{\tilde{L}^{q}}, \end{aligned}$$

where we used the analyticity of the semigroup, cf. [2, Remark 5.1.2]. Combining the estimates we get

$$\|e^{-tA_q}f\|_{\tilde{L}^r} \le Ct^{-\alpha}(1+t)^{\alpha}e^{\delta t}\|f\|_{\tilde{L}^q},$$

proving the first part of the theorem for $\alpha \leq 1$. If $1 < \alpha < 2$, we write $e^{-t\tilde{A}_q} = e^{-t\tilde{A}_q/2}e^{-t\tilde{A}_q/2}$ and apply the argument as above twice. Similarly, we can argue for any $\alpha \geq 0$, repeating the arguments sufficiently often.

To prove the second part assume first $\alpha \leq 1/2$. Note that

$$\|\nabla e^{-t\tilde{A}_q}f\|_{\tilde{L}^r} \le C \|(1+\tilde{A}_r)^{1/2}e^{-t\tilde{A}_q}f\|_{\tilde{L}^r}$$

since $D_q^{1/2} = \tilde{W}_0^{1,q}(\Omega) \cap \tilde{L}_{\sigma}^q(\Omega)$ with equivalent norms. Applying Proposition 3.7 we find that

$$\|\nabla e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{r}} \leq C\|(1+\tilde{A}_{q})^{\alpha+1/2}e^{-t\tilde{A}_{q}}f\|_{\tilde{L}^{q}}$$

and then we continue as above for the proof of the desired estimate as long as $\alpha \leq 1/2$. For $\alpha > 1/2$ we need to again repeat the argument finitely many times as above.

Proof of Theorem 1.2. We will need real interpolation for this proof. We define a linear map B by

$$f \mapsto e^{-t\hat{A}_q}f.$$

Assume first that $f \in \tilde{L}^{q}_{\sigma}(\Omega)$. Then the bound for the semigroup yields for all 0 < t < T the estimate

$$\|Bf(t)\|_{\tilde{L}^q} \le C \|f\|_{\tilde{L}^q}$$

with a constant C which depends on $T < \infty$, showing that

$$B: \tilde{L}^{q}_{\sigma}(\Omega) \to L^{\infty}(0,T;\tilde{L}^{q}_{\sigma}(\Omega))$$

as a bounded linear operator.

Choose any $1 . Then Theorem 1.1 yields for all <math>f \in \tilde{L}^p_{\sigma}(\Omega)$ the bound

$$\|Bf(t)\|_{\tilde{L}^q} \le Ct^{-\alpha} \|f\|_{\tilde{L}^p}$$

with $\alpha = \frac{n}{2} \left(\frac{1}{p} - \frac{1}{q} \right)$ showing that

$$B: \tilde{L}^{p}_{\sigma}(\Omega) \to L^{1/\alpha,\infty}(0,T;\tilde{L}^{q}_{\sigma}(\Omega))$$

as a bounded linear operator.

Real interpolation theory thus shows that

$$B\colon (\tilde{L}^q_{\sigma}(\Omega), \tilde{L}^p_{\sigma}(\Omega))_{\theta, r} \to \left(L^{\infty}(0, T; \tilde{L}^q_{\sigma}(\Omega)), L^{1/\alpha, \infty}(0, T; \tilde{L}^q_{\sigma}(\Omega))\right)_{\theta, r}$$

as a linear bounded linear operator, where $0 < \theta < 1$ is chosen such that $\frac{1}{\gamma} = \frac{1-\theta}{q} + \frac{\theta}{p}$.

By Corollary 3.5 we find that $(\tilde{L}^{q}_{\sigma}(\Omega), \tilde{L}^{p}_{\sigma}(\Omega))_{\theta,r} = \tilde{L}^{\gamma,r}_{\sigma}(\Omega)$. On the other hand [13, Theorem 1.18.6.2] implies that

$$\begin{split} \left(L^{\infty}(0,T;\tilde{L}^{q}_{\sigma}(\Omega)), L^{1/\alpha,\infty}(0,T;\tilde{L}^{q}_{\sigma}(\Omega)) \right)_{\theta,r} &= L^{r,r}(0,T;\tilde{L}^{q}_{\sigma}(\Omega)) \\ &= L^{r}(0,T;\tilde{L}^{q}_{\sigma}(\Omega)), \end{split}$$

which proves that B maps $\tilde{L}^{\gamma,r}_{\sigma}(\Omega)$ continuously into $L^r(0,T;\tilde{L}^q_{\sigma}(\Omega))$, which finishes the proof of the first assertion.

For the second assertion assume that $\gamma = n$ and that $r \ge n$. In that case, it is readily seen that $\tilde{L}^n_{\sigma}(\Omega) \subset \tilde{L}^{\gamma,r}_{\sigma}(\Omega)$, from which the rest of the proof follows.

References

- [1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Oxford (2003)
- [2] Amann, H.: Linear and Quasilinear Parabolic Problems. Vol.I: Abstract Linear Theory, *Monographs in Mathematics*, vol. 89. Birkhäuser, Basel, Boston, Berlin (1995)
- [3] Aronszajn, N., Gagliardo, E.: Interpolation spaces and interpolation methods. Ann. Mat. Pura Appl., IV. Ser. 68, 51–117 (1965)
- [4] Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction, Grundlehren der mathematischen Wissenschaften, vol. 223. Springer, New York (1976)
- [5] Bogovskij, M.E.: Decomposition of $L_p(\Omega; \mathbb{R}^n)$ into the direct sum of subspaces of solenoidal and potential vector fields. Sov. Math. Dokl. **33**, 161–165 (1986)
- [6] Calderón, A.P.: Spaces between L¹ and L[∞] and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1965)
- [7] Cwikel, M.: (2005). Private communication
- [8] Farwig, R., Kozono, H., Sohr, H.: An L^q-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195(1), 21–53 (2005)

- [9] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains. Arch. Math. 88(3), 239–248 (2007)
- [10] Farwig, R., Kozono, H., Sohr, H.: Maximal Regularity of the Stokes Operator in General Unbounded Domains. In: H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds.) Functional Analysis and Evolution Equations. The Günter Lumer Volume., pp. 257–272. Birkhäuser Verlag (2008)
- [11] Farwig, R., Kozono, H., Sohr, H.: On the Stokes operator in general unbounded domains. Hokkaido Math. J. 38(1), 111–136 (2009)
- [12] Kunstmann, P.C.: H^{∞} -calculus for the Stokes operator on unbounded domains. Arch. Math. **91**(2), 178–186 (2008)
- [13] Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland Publishing Company, Amsterdam (1978)