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This is the second of two papers in which simple proofs of L%-estimates of
solutions to the steady-state three-dimensional Oseen and Stokes equations in
a rotating frame of reference are given. In this part, estimates are established
in terms of data in homogeneous Sobolev spaces of negative order.

1 Introduction

As in [6], we study the system

{—Av+Vp—R83v—7'(e3/\x-Vv—e3/\v):f inR3, (11)

dive =0 in R3,
where R > 0 and 7 > 0 are dimensionless constants. Here, v : R?> = R3 and p: R? - R

represents an Eulerian velocity and pressure term, respectively, of a Navier-Stokes liquid
in a frame of reference rotating with angular velocity 7T es relative to some inertial
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frame. The above system is the classical steady-state whole space Oseen (R > 0) or
Stokes (R = 0) problem with the extra term 7 (e3 Az - Vv — ez Av), which stems from
the rotating frame of reference. Due to the unbounded coefficient e3 Az, this term can
not be treated at a perturbation to the Oseen or Stokes operator.

In [6] we gave an elementary proof of L%-estimates of solutions (v, p) to (1.1) in terms
of data f € LY(R3)3, 1 < ¢ < oo. Such estimates had already been shown in [2] and
[1], but with very technical and non-trivial proofs based on an appropriate coupling of
the Littlewood-Payley decomposition theorem and multiplier theory. In [9] and [8] the
approach of [2] and [1] was used to prove L?-estimates of weak solutions to (1.1) in terms
of data f in the homogeneous Sobolev space D, 1’q(R?’)‘?’ of negative order. Our aim in
this paper is to extend our approach from [6] and give an elementary proof of these
estimates of weak solutions.

Our main theorem reads:

Theorem 1.1. Let 1 < ¢ < o0, Rg > 0, 0 < R < Ry, and T > 0. For any
fe Do_l’q(R‘g)3 there exists a solution (v,p) € DYI(R3)3 x LI(R3) to (1.1) that sat-
isfies

IVollg + llpllg < CLlf]-y 4 (1.2)
with Cy independent of Ro, R, and T. Moreover,

1
’Ra;ﬂ]‘fl’q + ‘7—(83 Ax - Vv —eg /\’U)’_l’q < (Cy (1 + 7_2> ‘f|717q, (1.3)

with Co = C3(Ro). Furthermore, if (0,p) € DV (R3)3 x L"(R3?), 1 < r < oo, is another
solution to (1.1), then

U =v+ae3 (1.4)
for some a € R.

Remark 1.2. In [8, Theorem 2.1 and Proposition 3.2] it is stated that a solution (v,p) €
DY(R3)3 x LI(R3) to (1.1) with f € Dy "(R3)? satisfies

RIsv| 4, + T (e3 Az - Vv — ez Av) ’—l,q < Cslfl_y,

with C3 independent of T. However, going through the proofs in [8], one finds out that
this is not the case, and that the constant C3 does, in fact, depend on 7T in the way
shown in (1.3). More specifically, in [8, Appendix 2] the constant in the estimate of the
Fourier multiplier clearly depends on 77 this estimate is later used in the proof of [8,
Proposition 3.2].

Before giving a proof of Theorem 1.1, we first recall some standard notation. By
L%(R3) we denote the usual Lebesgue space with norm ||-||,- For m € Nand 1 < ¢ < oo,
we use D™94(R3) to denote the homogeneous Sobolev space with semi-norm ||

ol o= (

.

1
> ra%<x>rqu)q,Dqu = {0 € LLu(R) | Jol,, , < oo}
R3 ’

laj=m



We put Dy"%(R3) := CSO(R3)H’”"1. We introduce homogeneous Sobolev spaces of neg-
ative order as the dual spaces Dy, ™(R?) := (Dg' A (RS))/, and denote their norms by
\-Lmﬂ. Here, and throughout the paper, ¢’ := ¢/(q—1) denotes the Holder conjugate of g.
For functions u : R¥xR — R, we let div u(z,t) := div, u(x,t), Au(z, t) :== Agu(z,t) ete.,
that is, unless otherwise indicated, differential operators act in the spatial variable x only.
We use Ff = f to denote the Fourier transformation. We put By, := {z € R3 | |z < m}.
Finally, note that constants in capital letters in the proofs and theorems are global, while
constants in small letters are local to the proof in which they appear.

2 Proof of Main Theorem

As in [6], we make use of an idea going back to [5] and transform solutions to (1.1) into
time-periodic solutions to the classical time-dependent Oseen and Stokes problem. For
this purpose, we introduce the rotation matrix corresponding to the angular velocity

Teg:

cos(7t) —sin(Tt) 0
Q(t) := | sin(Tt) cos(Tt) O
0 0 1

We split the proof into several lemmas. We begin to recall the following result; see [4]
or [11].

Lemma 2.1. Let R >0 and T > 0. For any h € C§°(R3)3*3 there is a solution

(v,p) € DV2(R3)3 N LS(R3)3 x L2(R?) (2.1)
to
—Av+Vp—R03U—T(e3/\:B-Vv—eg/\v):divh in R3,
{ dive =0 in R3 (2:2)
that satisfies
IVollz + llpllz < Callhll2, (2.3)
with C4 independent of R and T. Moreover
(v,p) € N>_, D™TL2(R3)3 x D™2(R3). (2.4)

In the next lemma we establish suitable L9-estimates of the solution introduced above.

Lemma 2.2. Let R >0 and T > 0. Let 1 < g < 0o and h € C§°(R3)3*3. The solution
(v,p) from Lemma 2.1 satisfies

IVollg + llpllg < Csllhllg, (2.5)
with Cs independent of R and T .



Proof. Assume first that ¢ > 2. Let T > 0. For (z,t) € R? x R put
u(z,t) = Q)o(Q(t) x — Ries), p(x,t):=p(Qt) = - Rtey),
H(z,t):= Q(t)h( )"z —Rteg)Q(t)T.

Then
du— Au+Vp=divH inR®x (0,T),
divu =0 in R3 x (0,7), (2.6)
u(z,0) = v(z) in R3.

By well-known theory of the time-dependent Stokes equations, see for example [10, Sec.
5, Theorem 6], the Cauchy problem

Opuy — Auy = divH — Vp in R® x (0,7),
divu; =0 in R? x (0,T),
li S t)|le =0

tgggllul(, e

has a solution with uy € L"(R? x (O,T))3 for all 1 <r < oo, and

[Vur | rmsxo,7)) < e1llH | Lr®sx0,1))5

with ¢; independent of T'. Put

ug(x, t) = (4mt)~3/2 /R3 e_|x_y|2/4tv(y) dy. (2.7)

An elementary calculation shows that ug € LS (R3 (0, )) Orus, Vug, Viuy € LS (R

(0,7)), and that uy solves

loc

Oy — Aug =0 in R? x (0,7,
divug = 0 in R x (0,7),
lim [us(-,6) = v() o = 0.

Taking derivatives on both sides in (2.7) and applying Young’s inequality, we obtain

_§ 1_1
IVua(, Dl o) < ot 2770 [Vola,

with ¢z independent of 7. We claim that u = u; + uz in R x (0,T). This follows from
the fact that u; + ug satisfies (2.6), combined with a uniqueness argument, for example
[7, Lemma 3.6]. We can now estimate

T
(T—1)Hvu||g:/ / IV, £)]¢ dedt
1 R3
T
< oIVl + [ 190l )

T a1t
< a1 Mooy + [ ¢ PIvelgar)
_3q¢c1_ 1
< es (TR + (T~ 2 @™ — 1)) wo)d),



with ¢5 independent of 7T, and also of R and 7. Dividing both sides with 7', and
subsequently letting T — oo, we conclude, recall ¢ > 2 by assumption, that ||Vv|, <
cs||hllg- Finally, we deduce directly from (2.2), applying div on both sides in (1.1)1, that
Ap = divdiv h, which implies that ||p|; < cs||h|lq, With c¢ independent of R and 7.
Hence (2.5) follows in the case g > 2.

The case ¢ = 2 is included in Lemma 2.1. Consider now 1 < g < 2. In this case we

will establish (2.5) by a duality argument. Consider for this purpose ¢ € C§(R?)3%3.
For notational purposes, we put
Lv:= —-Av —Rdz3v — ’T(eg Ax - Vv —eg /\v), (2.8)
L*v:= —Av + Rd3v + T( e3s A\r - Vv — e /\v). (2.9)

As in Lemma 2.1, one can show the existence of a solution (¢,7n), in the class (2.1) and
(2.4), to the adjoint problem

L' +Vn=divy in R?,
vV =dive ) (2.10)
divy =0 in R”.
By arguments as above, one can also show that
Vr € (2,00) : [Vl + lInllr < crllollr, (2.11)

with ¢7 independent of R and 7. The summability properties of (v, p) and (¢, 7), ensured
by Lemma 2.1 and supplemented by [6, Theorem 1], enables us to calculate

|/ Vv:godx|:|/ v-divcpdaz|:|/ v+ L™ dz|
R3 R3 R3

:|/ Lv.¢dx\:y/ divh-wd:c]:]/ b Vi del
R3 R3 R3
< [AllgliVelly < crlinllqliellq

(2.12)

where the third equality follows by partial integration in the same manner as in [6, Proof
of Lemma 2.3|, and last estimates from (2.11) since 2 < ¢’ < co. Having established
(2.12) for arbitrary ¢, we conclude that ||Vvl||; < ¢7||h]lq. Finally, the estimate ||p|lq <
cgllh||q follows simply from the fact that Ap = divdivh. We have thus established (2.5)
also in the case 1 < ¢ < 2. This concludes the lemma. O

In the next lemma we establish estimates of the lower order terms on the left-hand
side of (1.1).

Lemma 2.3. Let R >0 and T > 0. Let 1 < g < 0o and h € C§°(R3)3*3. The solution
(v,p) from Lemma 2.1 satisfies

1
\R&ngLq + ‘T(eg Ax - Vv —e3 /\’U) ’—Lq < Cs (1 + 7.2> Hth, (2.13)

with 06 = CG(R(]).



Proof. Consider first 1 < ¢ < 2. For (z,t) € R® x R put

u(z,t) == Qtw(QM)'z), p(x,t)=p(Q) =),
H(z,t) :== Q(t)h(Q(t) 'z)Q(t)".

Note that u, p, and H are smooth and 2%r—periodic in the ¢ variable. We can therefore
expand these fields in their Fourier-series. More precisely, we have

u(a,t) = up(@) e, plzt) =) pp(z)eTH,

keZ ke,
H(z,t) =Y Hy(z) ™M,
keZ
with
T [#/T » T 2T y
up(x) = or ; u(zx,t)e Tkt dt, pr(x) = 27r/0 p(z,t)e Tkt dt,
2w/ T .
Hy(z) == T H(z,t)e Tk g,

=5
As one may easily verify,

{ Ou— Au+Vp —ROzu =divH in R xR, 214)

divu =0 in R? x R.

Replacing in (2.14) u, p, and H with their respective Fourier series, we find that each
Fourier coefficient satisfies

(2.15)

iT kuy, — Auy, + Vpi, — ROsuy, = div Hy, in R3,
divu, =0 in R3.

In the case k = 0, (2.15) reduces to the classical Oseen system. By well-known theory,
see for example [3, Theorem VII.4.2],

[Vuollq + R|O5uo|_; , < e1l|Hollg < c2llhllq, (2.16)

with ¢o independent of R and 7. Consider now k£ # 0. By Minkowski’s integral inequality
and Lemma 2.2, we find that

T 2 /T 1/q
Vuglly < / Vu(z, )["dz ) dt = [[Vully < Cs[[llg,
2 0 R3

and similarly [|px|q < Cs||h|lq. We can thus conclude from (2.15) that

Tklluk|_y 4 < IVurllg + lIprllq + RIOsur|_y 4 < esllblly + RIOsur|_y 4 (2.17)



with c3 independent of R and 7. A simple interpolation argument yields
|O3ur|_y , < calelur] y, + e IVurllq) (2.18)

for all € > 0. We now choose ¢ = |Tk|/(2Rc4) in (2.18) and apply the resulting estimate
n (2.17). It follows that

1 R2
with c¢; independent of R and 7. We observe at this point that v(x) = u(z,0) =
> rez uk(x), and put
V] =0 — Ug. (2.20)
We then define
Uz, t) == Q(t)v1 (Q(t) @) = ulw,t) —uo = Y up(z) e’ ™.
kA0

The first equality above follows from the fact that Q(¢)uo(Q(t) " x) = ug(x) for all t € R,
which one easily verifies directly from the definition of ug. Now let p € C§°(R3)? and
put ®(z,t) := Q(t)o(Q(t)"z). Since ® is smooth and 27 /7T -periodic in ¢, we can write
® in terms of its Fourier-series:

)= ®p(z)eH,  By(a) = T

2
keZ

2 /T ]
D(z,t) e Th g,

We now compute, using Parseval’s identity and (2.19),

21 /T
|/ vy (z x)dz| = |/ / (x,t) - D(x,t) dadt]|
R3

/R > up(@) - Bp(x) d

k40
< Z [uk|_1 o[V @kl
k40
< a1+ )b, X 9l
k40
R\ 1
<C5<1+T>T’h"q<zlk’q> <ZHV¢)’“H(1>
k0 k0

Recalling that 1 < ¢ < 2, we employ the Hausdorff-Young inequality to estimate

(ZHV@qu) (/R Bﬂ /O%/TVCI)(x,t)]th]zdx>

k0

\\H
_Ur



Applying Minkowski’s integral inequality to the right-hand side above, we obtain

1
o

q/ q 7- QW/T q/ % % o
SoIvedy ) < (5 [ | [ IveG 0l de] " dr)" = 9ely

k0

We thus conclude that

2

R\ 1
[ o) -t del < o1+ 7 ) Vel

and consequently, since ¢ is arbitrary,

R?\ 1
orlsg < (145 ) 20l (2:21)

with ¢7 independent of R and 7. By the same interpolation argument as in (2.18), we
estimate

03v1]_y , < es(lvi]_y, + [[VUillg) (2.22)

Combining now (2.22), (2.21), (2.20), (2.16), and (2.5), we obtain

1
Vg e (1,2]: [Rpl_,, < c9<1 + TQ) Ihlq, (2.23)

with Cg = CQ(RO).
Consider now 2 < ¢ < oo. Let ¢ € Cg°(R3)3. Recall (2.8) and (2.9). By [6, Lemma
2.1] there is a solution (1,7) € DY2(R3)3 N LS(R3)? x LS(R3) to

L*+Vn=¢ inR?
vEVn=g \ (2.24)
divy =0 in R
satisfying (2.4). Moreover, since A commutes with L*, (A, An) satisfies
L*A¢ + VAn =divVey in R3,
AvEVAn s (2.25)
divAy =0 in R”.
Repeating the argument from above leading to (2.23), we also obtain
1
o e (12]: ROV, < cao( 1+ 73 ) 19l (2.26)

with ¢19 = ¢10(Ro). As in (2.12), we compute

/831)'g0dx:/ 831)~L*¢d:c:—/ Lv'ﬁgd)dx:—/ div h - 03¢ dx.
R3 R3 R3 R3



Put ©; := F! [éffg@(g)], i=1,2,3!. Then © € L"(R3)? for all r € (3/2,00), |[VO||, <
ci1||hllg, and A® = div h. It follows that

[ o odal =1 [ ©-0uida] < [VOIJ0sAUI < cral byl -

Since ¢’ € (1,2), we deduce by (2.26) that

1
[ 0w s < a1+ 25 ) Iyl Dl
R3

We conclude [Rd3v|_; , < c1a(1 + T2)||hllq, With c14 = c14(Ro).
Since T( es \x-Vv—es /\v) = Av—Vp+R0O3v+div h, the estimates already obtained
in (2.5) together with the estimate for Rdsv above imply

1
‘7—( es A\r - Vv —e3 /\1))’_17(1 < ci5 <1 + 7_2> Hth,

with ¢15 = ¢15(Ro). We have thus established (2.13) completely. O
We can now finalize the proof of the main theorem.

Proof of Theorem 1.1. Except for the uniqueness statement, Lemma 2.1-2.3 establish
the theorem in the case f = divh for some h € C§°(R3)3*3. It remains to extend
to the general case f € Do_l’q(]R?’)?’. Consider therefore f € Do_l’q(R?’)?’. Choose a
sequence {h, }22; C C§°(R3)3*3 with lim,,—e0 divh, = f in DO_I’Q(R3)3. Let (vp, pp) be
the solution from Lemma 2.1 corresponding to the right-hand side div h,,. Then choose
kn € R such that 0 = fB1 Uy — Kpdz. From Lemma 2.2 and Poincaré’s inequality, it
follows that {(vy, — kn,pn)}52; is a Cauchy sequence in the Banach space

Xim = {(v,) € Lie(R?)? x Lioe(R%) | [|(v,p)x,,, < 00},
10, D)X = [[Vllg + [Pllg + V]| o (B,0)

for all m € N. Consequently, there is an element (v,p) € NyenXy, with the property
that lim, o0 (v, — Kn, pn) = (v,p) in X, for all m € N. Recall (2.8). It follows that
limy, 00 [L(Vn—Kn ) +Vpp] = Lv+Vp in D'(R3)3. By construction, lim,, o[Lvn,+Vp,] =
f in Dal’q(R‘g)g. We thus deduce that lim, oo Lk, = f — [Lv + Vp]. Consequently,
f—[Lv+Vp| = Lk for some x € R3. Tt follows that (v+r,p) € DM (R3)3 x LY(R3) solves
(1.1). Moreover, since (vy, p,) satisfies (1.2) and (1.3) for all n € N, so does (v + &, p).
This concludes the first part of the theorem.

To prove the statement of uniqueness, assume that (9,5) € DV"(R3)? x L"(R3) is
another solution to (1.1). Put w := v — ¥ and q := p — p. It immediately follows that
Aq = 0, which, since q € LY(R3) + L"(R?), implies that q = 0. Now put U(z,t) :=

'Following the summation convention, we implicitly sum over repeated indices.



Q(t)w(Q(t)"x) for (x,t) € R® x R. Since U is smooth and 27 /T -periodic in ¢, we can
write U in terms of its Fourier-series

T 2 /T

Uz, t) = Z Up(x) e TH | Up(z) : Uz, t)e Tk qt.

~ o
kcZ 0

As one may easily verify, Uy, satisfies iTkUy, — AU, — RO3U, = 0 in .#/(R3)3. Thus,
Fourier transformation yields (i(Tk — R&s) + [€ |2)ﬁ; = 0. It follows that Uy = 0 for
all k # 0. Moreover, since ( — iR&s + |£\2)ﬁ\0 = 0, it follows that supp(Uy) C {0}.
Consequently, since Uy € DV4(R3)3 + DL (R3)3, Uy = b for some b € R3. Tt follows that
Uz,t) = b= Qt)w(Q(t)"x) for all t € R and = € R3. Thus, Q(¢) b is t-independent,
and so b = aes for some a € R. We conclude that w(z) = Up(x) = aes. O
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