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Abstract

The ill-posedness of the Navier-Stokes equations in the critical space is concerned.
It is shown that the equicontinuity is not equipped within the biggest class of mild
solutions. The proof is based on the norm inflation argument by Bourgain. The
term-wise estimates for the successive approximation of the mild solutions and its
convergence or divergence are established.

1 Introduction

1.1 Problem

We consider the nonstationary incompressible viscous flow of the ideal fluid in the whole

space Rn (no boundary); n ∈ N and n ≥ 2. This is mathematically described as the

Cauchy problem of the Navier-Stokes equations:

(NS)


ut −∆u+ (u,∇)u+∇p=0 in Rn × (0, T ),

∇ · u=0 in Rn × (0, T ),
u|t=0=u0 in Rn.

This Cauchy problem is called (NS) in here. We define the notations of derivatives as

follows: ut := ∂tu := ∂u/∂t, ∂j := ∂/∂xj for j = 1, . . . , n, ∇ := (∂1, . . . , ∂n), ∆ :=∑n
j=1 ∂

2
j . Here, for vectors a = (a1, . . . , an) and b = (b1, . . . , bn), a · b or (a, b) denotes∑n

j=1 a
jbj. The velocity u = (u1, . . . , un) = (u1(x, t), . . . , un(x, t)) and the pressure p =

p(x, t) are unknown functions. The problem is to determine the solution (u, p) to (NS)

uniquely from the given initial velocity u0 in some function space. It is natural to impose

the compatibility condition on u0, that is, ∇ · u0 = 0 holds for all x ∈ R3.

The mathematical analysis of mechanics of viscous fluid has a long history. Historically,

(NS) is derived from the conscientious observation by Navier and Stokes in the nineteen

century. The mathematical studying of (NS) was started by Oseen [62] who established
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the time-local existence of a classical solution to (NS) with a regular initial datum. One

of the most important results on (NS) is obtained by Leray [52, 53] in 1930’s. In [52]

Leray showed that for n = 2 there exists a unique time-global classical solution, when

the initial velocity u0 is square-integrable with ∇ · u0 = 0 in the distribution sense. He

also constructed the time-global weak solutions for n = 3. His proof is based on the

following two methods, the Galerkin method and the Energy estimate. See [52, 53] or,

e.g. [30, 50, 55, 73] for the details. Briefly, the Galerkin method is to use the basis of L2

and determine the coefficient of Fourier expansion. It is a famous open problem whether

one can obtain the uniqueness and smoothness of Leray’s weak solutions, that is, (NS)

admits a time-global unique solution in L2(R3). In this note our aim is different to this,

so we do not penetrate into its detail.

By the Duhamel principle we derive the integral equation from (NS)

(INT) u(t) = et∆u0 −
∫ t

0

e(t−τ)∆P(u(τ),∇)u(τ)dτ.

See e.g. Fujita and Kato [20, 38]. This notion was also introduced by Browder in [10] to

study on the equations of parabolic type. We call the solution of (INT) a mild solution.

This derivation is understood via the following abstract equation of value in a Banach

space:

(ABS) u′ = ∆u− P(u,∇)u, u(0) = u0.

Here, we denote the heat semigroup et∆ := Gt∗, the Gauss kernel Gt(x) :=
1

(4πt)n/2 e
− |x|2

4t ,

convolution with respect to spatial variables f ∗g(x) :=
∫
Rn f(x−z)g(z)dz, the Helmholtz

projection P := (δij + RiRj)i,j=1,...,n, Kronecker’s delta δij = 1 if i = j, δij = 0 if i 6= j,

the Riesz transform Ri := ∂i(−∆)−1/2 := F−1
√
−1ξi
|ξ| F . The Fourier transform is defined

by

Ff(ξ) := f̂(ξ) :=
1

(2π)n/2

∫
Rn

e−
√
−1x·ξf(x)dx,

and F−1 is its inverse;

F−1f(x) := f̌(x) :=
1

(2π)n/2

∫
Rn

e
√
−1x·ξf(ξ)dξ.

If u is a mild solution, then it is expected that (u, p) satisfies (NS). For instance, (u, p) is

expected to be a classical solution, i.e. u is in C1 in t and C2 in x. This formal equivalency

between (INT) and (NS) can be justified when u has a sufficient regularity, provided if p

is under the suitable assumption, for example,

p =
n∑

i,j=1

RiRju
iuj. (1.1)
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We rather discuss (INT) and mild solutions than (NS) and classical solutions. Mild

solutions are usually constructed by the limit of the successive approximation

u1(t) := et∆u0 and uj+1(t) := u1 − B(uj) for j ∈ N (1.2)

in C([0, T ];X) for u0 ∈ X with a Banach space X, where

B(u, v) :=
∫ t

0

e(t−τ)∆P(u(τ),∇)v(τ)dτ and B(u) := B(u, u). (1.3)

In this paper we discuss on the time-local solvability, time-global solvability for small

data, uniqueness and ill-posedness of the Navier-Stokes equations in the whole space with

initial data in the critical spaces, due to the analysis of mild solutions. We will refer

to the definition of function spaces and their properties, in particular, the important

facts concerning with the mild solutions. This paper is contributed to understand of

the positive results by Koch and Tataru [42], and the negative one by Bourgain and

Pavlovic [9]. In [9] they showed that the mild solution does not equip the equicontinuity

in C(0, T ; Ḃ−1
∞,∞(R3)). We now state the main results of this paper:

Theorem 1.1. For T > 0 there exists a u0 such that ‖uj(T )‖Ḃ−1
∞,∞(R3) does not converge.

1.2 Motivation

In this subsection we refer to the motivation of recent works on (NS) in Besov spaces. The

definition of function spaces will be denoted in section 2. We, in here, mention several

known results on the solvability and uniqueness for the Navier-Stokes equations in several

function spaces.

To solve (NS) uniquely and time-globally in 3-dimension, one may consider the follow-

ing steps: firstly the smooth time-local solution is constructed, and secondly the solution

is extended uniquely and time-globally. Along this strategy, Kato and Fujita [38] in-

troduced the notion of mild solutions, and proved that (NS) admits a unique time-local

smooth solution, when u0 ∈ H
n
2
−1(Rn). They actually discussed that the approximation

sequence {uj} converges to the mild solution in the class C([0, T ];H
n
2
−1). Although they

established this results in smooth bounded domains with non-slip boundary conditions

originally, the proof can be applied to the whole space problem without any difficulty.

The details of the proof are shown in [20].

Since the results of Kato and Fujita are splendid, there are a lot of papers of the

applications of their method in many directions. Some researcher wanted to eliminate

the smoothness on the initial data, since the smoothness of the solutions is automatically

obtained by the usual smoothing effect of solutions to equations of parabolic type. For

this purpose Kato [37] (in the whole space) and Giga and Miyakawa [27] (in a bounded

domain) studied the properties of the heat semigroup in the Lebesgue spaces (using Lp−Lq
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L∞; [13], [25]

Ḃ−α
p,∞ for n < p <∞; [46], [13]

b−α
p,∞ for n < p <∞; [3]

Ḃ0
∞,∞; open

B0
∞,∞; [65]

Figure 1:

smoothing estimates), and they proved that (NS) admits a time-local unique smooth

solution in Ln(Rn) for all n ≥ 2. See Figure 1. Giga [22] also obtained the time-local

existence with initial data in Lp(Rn) for n ≤ p < ∞. The time-local existence for L∞

initial data is also constructed by Cannon and Knightly [12], Cannone [13], Giga, Inui

and Matsui [25] in general dimension.

We shall explain the scaling invariant space. For λ > 0

uλ(x, t) := λu(λx, λ2t), pλ(x, t) := λ2p(λx, λ2t).

If (u, p) is a solution to (NS), then (uλ, pλ) also satisfies (NS), automatically. If (uλ, pλ) =

(u, p), then that is called a self-similar solution. A study on the self-similar solutions

plays an important role for mathematical investigation on partial differential equations.

Meyer [57] proposed the notion of the scaling invariant spaces with respect to x as

follows: we regard X as a scaling invariant space if ‖u‖X = ‖λu(λ · +a)‖X for all λ > 0

and a ∈ Rn. Concretely, Ln(Rn) is scaling invariant; in fact, one may check ‖u‖Ln
x
=

‖λu(λ · +a)‖Ln
x
easily. Once the initial velocity u0 belongs to a scaling invariant space,

and small enough with respect to the norm, there is a chance to get the existence of a

time-global smooth unique solution. In 1984 Kato [37] pointed out this fact, he showed

it when u0 ∈ Ln(Rn). So, in this paper we call this fact Kato’s principle or, time-global

well-posedness for small data. This immediately implies that u = 0 is a stable stationary
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solution to (NS) in a small ball of Ln, that is to say, the local stability. We intend to say

that, around 1981, Giga and Miyakawa [27, 60, 61] also noticed this fact independently

of Kato [37]. Moreover, Giga [22] and von Wahl [76] pointed out that Kato’s principle is

applicable whence the function space of initial data is scaling invariant. This means that

one may not make sense the smallness in not scaling invariant spaces. After [37], there

are a lot of contributions on Kato’s principle in several scaling invariant spaces. Actually,

Kato and Ponce did it in Ḣ
n
2
−1

2 in [39], Kozono and Yamazaki showed it in Ḃ
−1+n/p
p,∞ for

p ∈ (n,∞) in [46], or Cannone et al. in [13, 14, 15, 63]. In addition, the weak-Ln(Rn)

space (which is equivalent to the Lorentz space Ln,∞) is also considered by Kozono and

Yamazaki [47]. In 2001 Koch and Tataru proved it by [42] in BMO−1. The function

spaces which are concerned are wider and wider:

Ḣ
n/2−1
2 ⊂ Ln ⊂ Ḃ−1+n/p

p,∞ ⊂ BMO−1 = Ḟ−1
∞,2 ⊂ Ḟ−1

∞,∞ = Ḃ−1
∞,∞

for p ∈ (n,∞). These embeddings are continuous (in the norms), and Ḃ−1
∞,∞ is the biggest

function space in the scaling invariant spaces. In fact, Meyer showed that all scaling

invariant space is a subspace of Ḃ−1
∞,∞. This implies that all self-similar solution belongs

to Ḃ−1
∞,∞. Therefore, from view point of pure mathematical interests, many researchers

tried and still try to investigate (NS) in such function spaces; see e.g. [4, 16, 21, 51].

Very recently, Bourgain and Pavlovic [9] showed the negative results in Ḃ−1
∞,∞, namely,

Kato’s principle does not work in the biggest space. Simply saying, (NS) is ill-posed in

Ḃ−1
∞,∞(R3). The purpose of this paper is to give a rigorous proof of their assertion.

We will refer to that many literatures on Kato’s principle in several domains are ap-

peared, although that is not the main issue in this paper. In the half space Kozono studied

by [44], in the exterior domains that was done by Iwashita [33], on the Riemannian man-

ifold by Taylor [72], in an aperture domain e.g. [17, 28, 48], in a compactly perturbed

half space e.g. [49]. It was also studied in the different partial differential equations of

parabolic type whether Kato’s principle is applicable. For example, the magnetohydro-

dynamic equations was concerned by e.g. [1, 77], compressible Navier-Stokes equations

by [18], moving obstacle in the fluid [41], rotating (and moving) obstacle in the fluid e.g.

[29], the Keller-Segel equations e.g. [45].

Furthermore, there are some results on the local existence of mild solutions in the

subcritical spaces (not scaling invariant, for example, B−α
p,q with α < 1 − n/p, below

of the critical line α = 1 − n/p in Figure 1); see [3, 27, 40, 54, 60, 65]. In the case

of supercritical spaces (upper than the critical line) it seems tough to construct mild

solutions by successive approximation, in general. Nevertheless, using L2-theory by Leray

and Hopf, one can obtain the existence of time-global weak solutions when u0 ∈ Lp(Rn)

for p ∈ (2, n); see e.g. [11].

This paper is organized as follows. In section 1 we have stated the problem, main

results and our motivation. In section 2 we define the function spaces, Besov spaces and
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Triebel-Lizorkin spaces, mainly. Section 3 is devoted to explain the positive results due to

Koch and Tataru [42] in BMO−1. We also mention the precise proof of negative results

due to Bourgain and Pavlovic [9] in Ḃ−1
∞,∞ and Theorem 1.1. In this paper we shall argue

the convergence of successive approximation, in stead of the method in [9].
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Before closing this section, we will refer to some notation in this paper. Hereafter, we

denote the numerical constants by C, which may differ to the others in lines, likely. We do

not distinguish scalar valued functions and vector valued, as well as the function spaces,

if no confusion occurs. We use Bourgain’s notation of an equivalency A ∼ B, which

means that there is a constant C such that C−1A ≤ B ≤ CA as well as ‖ · ‖A ∼ ‖ · ‖B
by C−1‖f‖A ≤ ‖f‖B ≤ C‖f‖A for all f ; we use it when we do not have interests in the

constant C, particularly.

2 Function spaces

2.1 Sobolev space

We introduce the function spaces in this section. Let n ∈ N, s ∈ R and let 1 ≤ p, q ≤ ∞.

The set of test functions is denoted by D or, C∞
c (Rn). Its topological dual stands for D′,

which is the set of distributions. The set of rapidly decreasing functions (in the sense

of Schwartz) is written as S; the set of tempered distributions is S ′. For p ∈ [1,∞],

Lp := Lp(Rn) := {f ∈ L1
loc; ‖f‖p <∞} is the Lebesgue space of p-th integrable functions

whose norm denotes

‖f‖p :=


(∫

Rn |f(x)|pdx
)1/p

if p <∞,

ess supx∈Rn|f(x)| if p = ∞.

We often omit the notation of the domain (Rn). Note that S ⊂ Lp ⊂ S ′, and the first

inclusion is dense when p ∈ [1,∞). So, we may define the operators (F , et∆, Ri, P, etc.)
as a tempered distribution.

The solenoidal subspace stands for Lp
σ := {f ∈ Lp; ∇ · f = 0}, where ∇ · f = 0 means
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in the distribution sense. For p ∈ (1,∞) it is well-known that

Lp
σ = C∞

c,σ

‖·‖p
:= closure of {f ∈ C∞

c ; ∇ · f = 0} in ‖ · ‖p.

For m ∈ N0 := N ∪ {0} and p ∈ [1,∞], the Sobolev space Wm,p is defined by

Wm,p :=
{
f ∈ Lp; ‖f‖Wm,p <∞

}
,

‖f‖Wm,p :=
∑
|α|≤m

‖∂αf‖p.

Here α = (α1, . . . , αn) ∈ Nn
0 is a multi-index; ∂α := ∂α1

1 · · · ∂αn
n and |α| := α1 + · · · +

αn. Usually, m is called the differentiability exponent, and p is called the integrability

exponent. We also use this terminology, throughout of this note. The inhomogeneous

Bessel-potential space is defined by

Hs
p := (1−∆)−s/2Lp := {F−1(1 + |ξ|2)−s/2f̂ ; f ∈ Lp}

with s ∈ R and p ∈ [1,∞]. Note that Wm,p = Hm
p for m ∈ N0.

The homogeneous Sobolev space is defined by

Ẇm,p :=
{
f ∈ Lp

loc; ‖f‖Ẇm,p <∞
}
,

‖f‖Ẇm,p :=
∑
|α|=m

‖∂αf‖p.

We denote Ḣs
p := (−∆)−s/2Lp := {F−1|ξ|−sf̂ ; f ∈ Lp} by the homogeneous Bessel-

potential space. One can also see that Ẇm,p = Ḣm
p for m ∈ N0.

Concerning to the fractional order of Sobolev space, we analogously define the Slo-

bodeckij space

W s,p := {f ∈ W [s],p; ‖f‖W [s],p +
∑

|α|=[s]

(∫ ∫
|∂αf(x)− ∂αf(y)|p

|x− y|n+{s}p dxdy

)1/p

<∞}

for s ∈ R+ \ N and p ∈ (1,∞). Here we have used the Gauss notation; s = [s] + {s} and

[s] ∈ N0 and {s} ∈ (0, 1). There are many characterization of these function spaces, in

particular, using the interpolation theory; see e.g. [5, 74]. However, we omit the details.

2.2 H1 and BMO

From view points of application of pure mathematical theory, (e.g. the image processing;

see [56]) function spaces L1 and L∞ are interesting. For example, by numerical simulations

it is often used the approximation in phase space (the image of Fourier transform). Fourier

transform maps from L1 to the set of bounded and continuous functions, and one can easily

compute such bounded functions. Also, from view point of meteorological observation,
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it is sometimes better to treat L∞ data which do not decay at spatial infinity. A pure

mathematical motivation for treating L∞ comes from the fact that L∞ is Banach algebra

with respect to point-wise multiplication, which makes obviously sense to the bilinear

terms. However, L1 and L∞ are difficult spaces for applying harmonic analysis and

singular integral method. Although we must use the Helmholtz projection P, or essentially
the Riesz transform Ri, they are not bounded in neither L1 nor L∞. In other word,

Rif /∈ L1 even if f ∈ L1 as well as Rig /∈ L∞ even if g ∈ L∞. What is the suitable

domain and range? The answer is the Hardy space H1 corresponding to L1, and BMO

corresponding to L∞. In fact, we see that

Ri : H1 → L1 and H1 → H1 bounded,

Ri : L
∞ → BMO and BMO → BMO bounded. (2.1)

Here we define H1 by

H1 := {f ∈ L1; ‖f‖H1 := ‖f‖1 +
n∑

i=1

‖Rif‖1 <∞}.

In e.g. the book of Sogge [69] one can find the fact that {f ∈ S;
∫
f = 0} is a densely

subset of H1.

Now we consider BMO (Bounded Mean Oscillation) functions:

BMO := {f ∈ L1
loc; [[f ]]BMO <∞},

[[f ]]BMO := sup
Q⊂Rn

1

|Q|

∫
Q

|f(y)− fQ|dy,

fQ :=
1

|Q|

∫
Q

f(z)dz.

Note that [[·]]BMO is a seminorm, however, not a norm. In fact, [[f ]]BMO = 0 if

and only if f is constant. This comes from the following inequality shown by John and

Nirenberg [34]: for all ε > 0 there exists a positive constant C such that∫
Rn

|f(x)− fQ|
1 + |x|n+ε

dx ≤ C[[f ]]BMO, f ∈ BMO.

This estimate also gives us the growth condition at space infinity of BMO functions.

Since we choose arbitrarily ε > 0, f ∈ BMO may grow logarithmically, the growth-rate

is less than |x|ε for all ε. Actually, one can see that [x 7→ log |x|] ∈ BMO; see [34].

The fundamental solution Kn of −∆ in Rn is

Kn(x) =

{
− 1

2π
log |x| if n = 2,

1
ωn

1
|x|n−2 if n ≥ 3.

Here ωn is the volume of the unit sphere {x ∈ Rn; |x| = 1}. Once we obtain the precise

analysis in the function spaces which contain these Kn, there are a lot of application.
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Indeed, Kozono and Yamazaki [46, 47] studied the time-local existence and uniqueness

of mild solutions in Ḃ
−1+3/p
p,∞ (R3) for p ∈ (3,∞) and L3,∞(R3) = L3

w, since they contain

[x 7→ 1
|x| ] which is nothing else K3 in 3-dimension, the homogeneous function of degree

−1.

Open Problem Can one get a time-local unique mild solution when u0 ∈ BMO(R2)?

We should note that BMO/R (or, BMO/C if we deal with complex valued functions)

is a normed space, then a Banach space. Obviously, L∞ ⊂ BMO ⊂ S ′. Notice that

[[f ]]BMO ≤ 2‖f‖∞. We now introduce the Carleson measure due to Strichartz [71] and

this leads us the equivalent norms:

[[f ]]BMO ∼ sup
x∈Rn,R>0

(
1

|BR(x)|

∫
BR(x)

∫ R2

0

|et∆f(y)|2dt
t
dy

)1/2

(2.2)

for f ∈ BMO/R. Here we have used ∼ the notation of a norm-equivalency.

At the end of this subsection, we refer to the duality of H1 and BMO. In the article

of Fefferman and Stein [19], the reader find the facts that

BMO = (H1)′ and BMO′ ) H1.

This relationship is basically similar to that of between L1 and L∞. Therefore,

‖f‖∞ ∼ sup
g∈L1,‖g‖1=1

| 〈f, g〉 | and [[f ]]BMO ∼ sup
g∈H1,‖g‖H1=1

| 〈f, g〉 |.

2.3 Besov and Triebel-Lizorkin spaces

To define the Besov spaces and Triebel-Lizorkin spaces we now introduce the Paley-

Littlewood decomposition. Let us call {φj}∞j=−∞ the Paley-Littlewood decomposition if

φ̂0 ∈ C∞
c (Rn), supp φ̂0 ⊂

{
ξ; 1/2 ≤ |ξ| ≤ 2

}
, φ̂j(ξ) = φ̂0(2

−jξ) and
∑∞

j=−∞ φ̂j(ξ) = 1

except for ξ = 0. And also, let us denote ψ = F−1(1 −
∑∞

j=1 φ̂j), so {ψ̂, φ̂1, φ̂2, . . .} is a

dyadic decomposition of the unity in the phase space.

Notice that ψ, φj ∈ S. We can easily verify by dilation argument that

‖φj‖1 = ‖φ0‖1, j ∈ Z (2.3)

independently in j. Obviously,
∫
φj = 0 for all j ∈ Z. Also,

F−1(φ̂j · φ̂k) = φj ∗ φk = 0 if |j − k| ≥ 2, (2.4)

this fact is called Bony’s paraproduct lemma due to [6]. This yields that

φj ∗ f = φj ∗
( j+1∑
k=j−1

φk

)
∗ f. (2.5)
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As the same way, ψ ∗ φj = 0 for j ≥ 2. By (2.3) and (2.5) it holds true that for s ∈ R
there exists a positive constant C such that

‖(1−∆)s/2φj ∗ f‖p ≤ C2sj‖φj ∗ f‖p for j ∈ N,
‖(−∆)s/2φj ∗ f‖p ≤ C2sj‖φj ∗ f‖p for j ∈ Z,

which is a sort of Bernstein’s inequality; see e.g. [5].

Definition 2.1. Let s ∈ R, p ∈ [1,∞] and q ∈ [1,∞]. An inhomogeneous Besov space is

defined by

Bs
p,q :=

{
f ∈ S ′; ‖f‖Bs

p,q
<∞

}
,

‖f‖Bs
p,q

:=


[
‖ψ ∗ f‖∞ +

∑∞
j=1 2

jsq‖φj ∗ f‖qp
]1/q

if q <∞,

‖ψ ∗ f‖∞ + sup1≤j≤∞ 2js‖φj ∗ f‖p if q = ∞.

This Besov norm is understood as ‖ · ‖lq(Lp) in the sense that {‖fj‖p}∞j=0 ∈ lq, where

f 7→ {ψ ∗ f, 2sφ1 ∗ f, 22sφ2 ∗ f, . . .} =: {fj}∞j=0. Following Johnsen [35], we call s the

differentiability-exponent, p the integral-exponent and q the sum-exponent.

Definition 2.2. An inhomogeneous Triebel-Lizorkin space is defined by

F s
p,q :=

{
f ∈ S ′; ‖f‖F s

p,q
<∞

}
,

‖f‖F s
p,q

:=



∥∥∥|ψ ∗ f |+
(∑∞

j=1 2
jsq|φj ∗ f |q

)1/q∥∥∥
p

if p, q <∞,∥∥|ψ ∗ f |+ sup1≤j≤∞ 2js|φj ∗ f |
∥∥
p

if p <∞, q = ∞,

supk∈N0,x∈Rn
1

|B2−k (x)|

∫
B

2−k (x)

(∑
j≥k 2

sjq|φj ∗ f(y)|q
)1/q

dy if p = ∞, q <∞,

supk∈N0,x∈Rn
1

|B2−k (x)|

∫
B

2−k (x)
supj≥k 2

sj|φj ∗ f(y)|dy if p = q = ∞.

Similarly to the Besov norm, this Triebel-Lizorkin norm is understood as ‖ · ‖Lp(lq) in

the sense that
∥∥‖fj‖lq∥∥Lp .

Note. (1) Bs
p,q and F s

p,q are Banach spaces. One can easily check that the Cauchy

sequence converges. Clearly, S is a subset of Bs
p,q and F

s
p,q for all s ∈ R and p, q ∈ [1,∞];

and dense if p <∞ and q <∞.

(2) Bs
p,p = F s

p,p. Moreover, Bs
p,p = F s

p,p = W s,p if s ∈ R+ \ N.
(3) The following embeddings hold from Minkowski’s inequality (lq ⊂ lr for q ≤ r):

Bs
p,1 ⊂ Bs

p,p ⊂ Hs
p ⊂ Bs

p,∞ if p ≤ 2,

Bs
p,1 ⊂ Hs

p ⊂ Bs
p,p ⊂ Bs

p,∞ if p ≥ 2,

F s
p,1 ⊂ Hs

p = F s
p,2 ⊂ F s

p,∞ if p ∈ (1,∞).

The last one follows from the fact that F 0
p,2 = Lp (equivalent norms) and the Mikhlin-

Hörmander multiplier theorem.
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(4) The embeddings of Sobolev type

Bs1
p1,q1

⊂ Bs2
p2,q2

and F s1
p1,q1

⊂ F s2
p2,q2

hold if either “s1 > s2 and p1 = p2” or “s1 − n/p1 = s2 − n/p2, s1 > s2 and p1 < p2”

without any restriction on the sum-exponents q1 and q2.

(5) The equivalency between the Besov space and the Hölder class:

Bs
∞,∞ = Cs if s ∈ R+ \ N

holds. For s ∈ N the Besov space Bs
∞,∞ is equivalent to the Zygmund class Cs, which is

a natural extension for all s > 0 of Hölder class; see e.g. the book of Triebel [74].

(6) We easily see that

B0
∞,1 ⊂ BUC ⊂ L∞ ⊂ B0

∞,∞.

Here BUC stands for the space of bounded and uniformly continuous functions. Only

one typographical error in the book of Triebel [74] appears in here: B0
∞,1 seems to be a

Banach algebra with respect to the point-wise multiplication. However, that is not true;

the concrete explaining is found in the book of Runst and Sickel [64].

(7) For the cases p ∈ (0, 1) or q ∈ (0, 1), then one can analogously define Bs
p,q and F s

p,q

as quasi-Banach spaces, corresponding quasi-norms, that is, the triangle inequality does

not hold in general. We do not penetrate this situation, since we always need the triangle

inequality with almost every calculation in this paper, for instance, to construct mild

solutions by iteration arguments.

We are now position to define the homogeneous Besov and Triebel-Lizorkin spaces.

Let Z ′ be the topological dual space of

Z :=
{
f ∈ S ; ∂αf̂(0) = 0, ∀α ∈ Nn

0

}
.

Definition 2.3. For s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, we define the homogeneous

Besov space by (see e.g. [5, 64, 74, 75]):

Ḃs
p,q :=

{
f ∈ Z ′; ‖f‖Ḃs

p,q
<∞

}
,

‖f‖Ḃs
p,q

:=


[∑∞

j=−∞ 2jsq‖φj ∗ f‖qp
]1/q

if q <∞,

sup−∞≤j≤∞ 2js‖φj ∗ f‖p if q = ∞.

Also, we define the homogeneous Triebel-Lizorkin space by

Ḟ s
p,q :=

{
f ∈ Z ′; ‖f‖Ḟ s

p,q
<∞

}
,

‖f‖Ḟ s
p,q

:=

∥∥∥∥∥[
∞∑

j=−∞

2jsq|φj ∗ f |q
]1/q∥∥∥∥∥

p

if p, q <∞,

and define it for the cases p = ∞ or q = ∞ by the same modification of inhomogeneous

Triebel-Lizorkin space.
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Note. (8) By the definition of φj it is clear that ‖f‖Ḃs
p,q

= 0 if f ∈ P := {polynomials}.
Thus, ‖ · ‖Ḃs

p,q
and ‖ · ‖Ḟ s

p,q
are seminorms. The quotient spaces divided by polynomials

Ḃs
p,q/P and Ḟ s

p,q/P are Banach spaces.

(9) Clearly, Z is a subset of Ḃs
p,q and Ḟ

s
p,q, and dense if p, q <∞.

(10) Ḃs
p,q and Ḟ

s
p,q are subsets of S ′ if the exponents satisfy

either “s < n/p” or “s = n/p and q = 1”. (2.6)

Under this conditions, the operators F , et∆, P, Ri can be defined on the homogeneous

spaces as the tempered distribution sense. Also, it is natural to select the representative

element such that

f =
∞∑

j=−∞

φj ∗ f in S ′. (2.7)

See the details in Bourdaud [7] or Kozono and Yamazaki [46]. Throughout of this note,

we basically treat the homogeneous space under the exponents satisfying (2.6) only.

(11) The following equivalences are known:

H1 = Ḟ 0
1,2 and BMO = Ḟ 0

∞,2, (2.8)

which are equivalent norms. It holds true that Ḃs
p,p = Ḟ s

p,p. Also, the homogeneous

versions of the embeddings as the same to (3) and (4) hold.

(12) We are mainly interested in the case p = ∞, and following continuous embeddings

are easily seen:

Ḃ0
∞,1 ⊂ BUC ⊂ L∞ ⊂ BMO ⊂ Ḃ0

∞,∞.

Typically, thanks to (2.7), we get

‖f‖∞ = ‖
∞∑

j=−∞

φj ∗ f‖∞ ≤
∞∑

j=−∞

‖φj ∗ f‖∞ = ‖f‖Ḃ0
∞,1
.

(13) By dilation for any integer j there exists a positive constant C0 (independent of k

and j) such that ‖Rkφj‖1 ≤ C0. Hence, we see that the Riesz transform is bounded in

the homogeneous spaces as subspaces of S ′ when the exponents satisfy (2.6).

In this note we mainly deal with the case p = ∞. Define Ḃ−1
∞,∞/P by

Ḃ−1
∞,∞/P =

{
f ∈ S ′; ‖f‖Ḃ−1

∞,∞
<∞

}
, (2.9)

‖f‖Ḃ−1
∞,∞

∼ sup
ρ>0

√
ρ‖eρ∆f‖∞ for f ∈ Ḃ−1

∞,∞/P. (2.10)

The definition (2.9)-(2.10) and the general definition for s = −1 and p = q = ∞ are

equivalent except for the constant functions; see e.g. [2, 51]. Indeed, for a non-zero

constant function fc ≡ c ∈ Rn \ {0} we see that

sup
ρ>0

√
ρ‖eρ∆fc‖∞ = sup

ρ>0

√
ρ|c| = ∞ 6= sup

j∈Z
2−j‖φj ∗ fc‖∞ = 0.

The reader should note that the non-zero constant functions fc do not satisfy (2.7).
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3 Local well-posedness in ḟ−1
∞,2

3.1 Well-posedness in the sense of Hadamard

In this section we explain the results of Koch and Tataru [42]. They constructed time-

local unique mild solutions with initial data in vmo−1, and mild solutions can be extended

time-globally if BMO−1-norm of the initial velocity is small sufficiently. Before stating

their results, we now recall the notion of well-posedness in the sense of Hadamard.

Definition 3.1. We say that the Cauchy problem is (WP) well-posed in X if the following

three conditions are satisfied:

(i) A solution exist.

(ii) The solution is unique.

(iii) The solution equips the equicontinuity.

The property (iii) means that the solution depends on the initial data continuously

in some reasonable topology e.g. C([0,∞);X), that is, for all t > 0 and ε > 0 there

exists δ > 0 such that ‖u0 − ũ0‖X < δ then ‖u(t) − ũ(t)‖X < ε. Here u(t) and ũ(t) are

solutions at time t with initial data u0 and ũ0, respectively. If we only get the time-local

existence of unique solution, replacing ∞ by T for some T ∈ (0,∞) and t ∈ (0, T ) at

(i) and (iii), then it is called (TLWP) time-local well-posed. For the case one can obtain

the well-posedness if the initial data are small enough, it is called (GWSD) time-global

well-posedness for small data. From view point of the dynamical system, (GWSD) implies

the local stability of the zero solution. We call (IP) ill-posed if one of (i)− (iii) is failed.

This usual terminology is used throughout this paper.

Leray [52] showed that (NS) is (WP) in L2
σ(R2). The famous problem is to show

whether (NS) is (WP) in L2
σ(R3), or not. Kato [37], Giga and Miyakawa [27] proved that

(NS) is (TLWP) and (GWSD) in Ln
σ(Rn).

We will discuss well-posedness of (NS) in Besov or Triebel-Lizorkin spaces closed and

related to L∞, due to the mild solutions. We now focus into the continuity of solutions

in time at the initial time. Dealing with L∞-initial data, we have to take care about the

following fact:

Lemma 3.2. Let f ∈ L∞. Then et∆f → f in L∞ as t→ 0 if and only if f ∈ BUC.

In other words, et∆ is strongly continuous in BUC, but not in L∞. Or, et∆ is (C0)-

semigroup in BUC. Concerning the Heavyside function, h(x) = 1 for x ≥ 0 and h(x) = 0

for x < 0, it is easy to see that ‖et∆h− h‖∞ = 1
2
for all t > 0. The proof of this lemma is

found in e.g. [25].

Recall the integral equation (INT). It is clear that the second terms of right-hand-side

vanish as t → 0 whence it is integrable. So, in order to get the continuity of solutions in

time up to initial time, it is naturally required the restriction on u0 ∈ X satisfying that
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et∆ is strongly continuous at t = 0 in X. For this purpose we now introduce the little

Besov space and little Triebel-Lizorkin space.

Definition 3.3. Let s ∈ R, 1 ≤ p, q ≤ ∞. Subspaces of Bs
p,q and F s

p,q are defined by

bsp,q :=
{
g ∈ Bs

p,q; e
t∆g → g in Bs

p,q as t→ 0
}
,

f s
p,q :=

{
g ∈ F s

p,q; e
t∆g → g in F s

p,q as t→ 0
}
.

Assume, in addition, that exponents satisfy (2.6), the homogeneous version is defined by

ḃsp,q :=
{
g ∈ Ḃs

p,q; g =
∞∑

j=−∞

φj ∗ g in S ′, et∆g → g in Ḃs
p,q as t→ 0

}
,

ḟ s
p,q :=

{
g ∈ Ḟ s

p,q; g =
∞∑

j=−∞

φj ∗ g in S ′, et∆g → g in Ḟ s
p,q as t→ 0

}
.

They are closed subspace of usual Besov or Triebel-Lizorkin spaces, so Banach spaces.

It is easy to check that

C∞
c

‖·‖Bs
p,q ⊂ bsp,q = Bs+1

p,q

‖·‖Bs
p,q ⊂ Bs

p,q.

Also, one may see that bsp,q = Bs
p,q if and only if q < ∞. See more details of little Besov

spaces in [2, 65].

Next, we refer to the function spaces which are used by Koch and Tataru [42]. Let

BMO−1 be

BMO−1 :=
{
f ∈ S ′ ; ‖f‖BMO−1 <∞

}
,

‖f‖BMO−1 := sup
x∈Rn,R>0

(
1

|BR(x)|

∫ R2

0

∫
BR(x)

|et∆f(y)|2dydt

)1/2

,

where BR(x) is an open ball radius R > 0 centered at x ∈ Rn. One can easily see that

BMO−1 is equivalent to the set of first derivatives of BMO functions, and also they

coincide the specific homogeneous Triebel-Lizorkin space:

BMO−1 = ∂BMO = Ḟ−1
∞,2.

Recall (2.2). The reader may find the details of basic properties of BMO or Ḟ s
p,q in e.g.

[42, 64, 70, 71, 79].

One can see that the several interesting functions belong to BMO−1 (and then Ḃ−1
∞,∞),

for example, the trigonometric functions e.g. [x 7→ sinx] which are not decaying at space

infinity, [x 7→ sin x+sin(
√
2x)] is an almost periodic function, [x 7→ ex sin(ex)] is a growing

and oscillating function, [x 7→ p.v. 1
x
] has a singularity.
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For T ∈ (0,∞] we denote the norm of BMO−1
T by

‖f‖BMO−1
T

:= sup
x∈Rn,R∈(0,

√
T )

(
1

|BR(x)|

∫ R2

0

∫
BR(x)

|et∆f(y)|2dydt

)1/2

.

Let us now define the bmo−1 and vmo−1.

bmo−1 := {f ∈ S ′; ‖f‖bmo−1 := ‖f‖BMO−1
1
<∞} = F−1

∞,2 ⊃ BMO−1 = Ḟ−1
∞,2,

vmo−1 := {f ∈ bmo−1; lim
T→0

‖f‖BMO−1
T

= 0}

= {f ∈ bmo−1; lim
t→0

‖et∆f − f‖bmo−1 = 0} = f−1
∞,2.

Here vmo is the localized version of VMO the space of vanishing mean oscillation func-

tions. In the book of Stein [70] VMO functions are required the vanishing in both

limT→0 ‖f‖BMOT
= limT→∞ ‖f‖BMOT

= 0, which is slightly different to above.

Let T ∈ (0,∞], the function v of x and t we define ET -norm by

‖v‖ET := sup
0<t<T

√
t‖v(t)‖∞ + sup

x∈Rn,R∈(0,
√
T )

(
1

|BR(x)|

∫ R2

0

∫
BR(x)

|v(y, t)|2dydt

)1/2

.

This norm is associated to the natural class of solutions of the heat equation as well as

the Navier-Stokes equations. Actually, let v = et∆v0 with v0 ∈ BMO−1, we see that

‖et∆v0‖ET = sup
0<t<T

√
t‖et∆v0‖∞ + sup

x∈Rn,R∈(0,
√
T )

(
1

|BR(x)|

∫ R2

0

∫
BR(x)

|et∆v0(y)|2dydt

)1/2

≤ C‖v0‖Ḃ−1
∞,∞

+ C‖v0‖Ḟ−1
∞,2

≤ C‖v0‖Ḟ−1
∞,2

<∞,

the first inequality obviously holds for taking T = ∞. The discovering ET -norm is crucial.

3.2 In vmo−1 = f−1
∞,2

In this position we give the main results of Koch and Tataru:

Theorem 3.4 (Koch-Tataru [42]). (NS) is (TLWP) in vmo−1, i.e., ∀u0 ∈ vmo−1, ∃T > 0

and mild solution ∃1u ∈ ET ∩C([0, T ]; vmo−1). Moreover, (GWSD) in BMO−1, i.e., if we

assume, in addition, that ‖u0‖BMO−1 is small enough, then ∃1u ∈ E∞ ∩C([0,∞); vmo−1).

Remark 3.5. (i) When u0 ∈ bmo−1, there is a lack of continuity of mild solutions at

t = 0. Also, uniqueness is not known for large data; see Miura [58].

(ii) By definition of ET -norm it is shown that the mild solution u(t) ∈ L∞ for any small

t > 0. Thus, the pressure giving by (1.1) is made sense of value in BMO by (2.1) for

t > 0. Under this setting (u, p) satisfies (NS) in the classical sense, and the solution is

uniquely determined by u0; see Kato [36].
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(iii) By smoothing effect for any small t0 > 0 the mild solution u(t0) ∈ W 1,∞(Rn). So,

this t0 can be regarded as a new initial time, and u(t0) as a new bounded and smooth initial

velocity. By analysis in L∞-framework by e.g. [13, 25] we may observe the properties of

obtained mild solutions, more precisely. Moreover, for the case n = 2, one can get a time-

global unique smooth mild solutions without smallness assumption on the initial velocity.

Indeed, one can derive the a priori estimate

‖u(t)‖∞ ≤ C1‖u(t0)‖∞ exp{C2‖ω0‖∞t} for all t > t0 (3.1)

with numerical constants C1, C2, and we denote ω0 := rot u(t0). The key of the proof of

this a priori estimate is the uniform boundedness of the vorticity (scalar value) ω(t) :=

rotu(t) := ∂1u
2 − ∂2u

1

‖ω(t)‖∞ ≤ ‖ω0‖∞ for all t > t0,

which is yielded by the maximal principle for the vorticity equation (no stretching terms)

due to Oleinik et al. [31]:

(VOR)2D ωt −∆ω + (u,∇)ω = 0 for t > t0, ω|t=t0 = ω0.

See the details in [26, 66].

(iv) It is well-known that the Serrin’s class Ls(0, T ;Lr) with 2
s
+ n

r
≤ 1 satisfying s > 2

and r ∈ (n,∞) produces the regularity of solutions to (NS). In [68] Serrin proved that

u(t) ∈ C∞(Rn), and then u ∈ C∞(Rn × (0, T )) provided u ∈ Ls(0, T ;Lr(Rn)). Also,

he asked in [68] whether u(t) ∈ Cω(Rn), real analytic with respect to spatial variables

under this class, or not? Miura and the author [59] showed the positive answer, using

the embedding Ls(0, T ;Lr) ⊂ ET . Indeed, they derived the estimates for higher-order

derivatives of mild solutions obtained by Koch and Tataru; there exist positive constants

K1 and K2

‖∂βxu(t)‖∞ ≤ K1(K2|β|)|β|t−|β|/2−1/2

for all t ∈ (0, T ] and β ∈ Nn
0 . From this estimate, one can deduce the estimate for the

size of the radius of convergence of the Taylor’s expansion (=: ρ(t)) from below:

ρ(t) = lim
|β|→∞

(
‖∂βxu(t)‖∞

β!

)−1/|β|

≥ C
√
t for t ∈ (0, T ]

with some constant C. This calculation comes from Stirling’s formula and Cauchy’s

criterion, obviously. The spatial analyticity implies that the propagation speed of (NS)

in vmo−1 is infinite as well as the solutions of the heat equation, that is to say, the

support of u(t) coincides with Rn for any t > 0, even if the support of u0 is compact.

We use the iteration scheme (so-called successive approximation or fixed point argu-

ment) for the proof of Theorem 3.4. In fact, we successively define {uj} by (1.2) with
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(1.3). One can see that the approximation sequence {uj}∞j=1 is a Cauchy sequence in

ET ∩ C([0, T ]; vmo−1). The Key of the proof is the inequality for estimating to the bilin-

ear terms: there exists a positive constant C such that

‖B(u, v)‖ET ≤ C‖u‖ET ‖v‖ET for u, v ∈ ET . (3.2)

This inequality holds true even for T = ∞. One may find the proof of (3.2) due to the

point-wise estimates of the heat kernel in [42], and the estimates involving the higher

order differentiation in [59].

So far, it is not known the benefit bilinear estimates in neither C([0, T ]; vmo−1) to

which the solutions naturally belong, as long as the author knows. Remark that the

function spaces which contain non-decaying functions are usually not Banach algebra

with respect to point-wise multiplications, e.g. Ḃ0
∞,1, vmo

−1, BMO−1 and Ḃ−1
∞,∞, except

for L∞. Thus, it seems to be difficult to make sense the bilinear terms in such function

spaces, basically. The reader may find some estimates for point-wise multiplications in

some function spaces in [13, 35, 64, 65].

4 Ill-posedness in ḟ−1
∞,∞ = ḃ−1

∞,∞

4.1 Lack of equicontinuity

In this section we will give a rigorous proof of [9] and Theorem 1.1, that is, (NS) is (IP)

in ḟ−1
∞,∞ = ḃ−1

∞,∞ in R3. Firstly, it is shown a lack of equicontinuity of mild solutions. Also,

it seems to be difficult to construct a unique time-local mild solution.

Theorem 4.1 (Bourgain-Pavlovic [9]). For δ∈(0, 1) and T ∈(0, 1) there exists an initial

velocity u0∈ ḃ−1
∞,∞(R3) such that ‖u0‖Ḃ−1

∞,∞
<δ with ∇ · u0 = 0, there exists a mild solution

u in C([0, T ]; ḃ−1
∞,∞) and ‖u(T )‖Ḃ−1

∞,∞
>1/δ.

Remark 4.2. (i) This assertion indicates that in the class C([0, T ]; ḃ−1
∞,∞) to which

mild solutions ought to belong, mild solutions do not have the equicontinuity. Thus, this

assertion is to be said ill-posedness theorem. Namely, (NS) is not (TLWP) in ḃ−1
∞,∞

and wider spaces, for example, b−1
∞,∞ and the supercrtical spaces b−α

∞,∞ with α > 1. Also,

(NS) is not (WPSD) in ḃ−1
∞,∞, even though ḃ−1

∞,∞ is scaling invariant. Furthermore, to

show the uniqueness of mild solutions in this class seems to be difficult.

(ii) This assertion is still true for the case n ≥ 4 by the simple modification of the proof.

However, in the case n = 2 it is not clear whether the same results can be proved, or not.

(iii) It is supposed that one can also obtain the same statement in other function spaces.

Recently, the author was informed by Yoneda who wrote [78] for ill-posedness in Ḟ−1
∞,q

with q ∈ (2,∞), using the same argument of [9]. Moreover, the author thinks that the

similar results can be obtained for strong solutions to other equations of parabolic type,

particularly, the Keller-Segel equations; see e.g. Iwabuchi [32].
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4.2 Initial datum

Theorem 4.1 follows from the technique of Bourgain [8] for establishing the similar ill-

posedness theorem for the KdV equation. His method is so-called “norm inflation”. Before

stating the outline of the proof, we now fix the initial velocity, concretely. In what follows,

the initial velocity is fixed to be of the form

u0(x) :=
Q√
r

r∑
s=1

hs
[
e2 cos(ks · x) + e3 cos(ls · x)

]
=
(
0,

Q√
r

r∑
s=1

hs cos(hsx1),
Q√
r

r∑
s=1

hs cos(hsx1 − x2)
)

(4.1)

with parameters Q > 0 and large r ∈ N; other notations are as follows:

e2 :=
−→e 2 := (0, 1, 0) (= vs is the notation in [9]),

e3 :=
−→e 3 := (0, 0, 1) (= v′s in [9]),

hs := h(s) := 2s(s−1)/2γs−1η for s ∈ N,
ks := (hs, 0, 0),
ls := (hs,−1, 0) (= k′s in [9]).

Here γ, η ∈ N are also parameters. The specific time T when the inflation occurs can be

regarded as a parameter, replacing the time variable [t 7→ λt] with some λ > 0. Using this

scaling argument, we can relax the restriction T < 1. However, for the sake of simplicity

of the proof, and for the readers’ convenience, T remains as a given small number in this

paper.

It is clear by definition that u0(x) = (0, u20(x1), u
3
0(x1, x2)) and u0 ∈ Ḃ−1

∞,∞ by (4.4)

below. Moreover, u0 is a uniformly continuous function, so u0 ∈ ḃ−1
∞,∞; see [65]. It should

be emphasized that we are able to fix the directions of vs = e2 and v
′
s = e3 without loss of

generality, since (NS) is invariant under the Galilee transformation. In addition, it should

be more emphasized that the selections of vs and v′s are slightly different to those of [9];

that is a crucial point noticed by Yoneda.

The proof of the theorem is realized by the suitable selection of the parameters

(Q, r, γ, η) for each δ, T ∈ (0, 1). Since

hs+1/hs = 2(2s+1)/2γ, (4.2)

it follows that hs << hs+1 for large s or γ; this property is so-called ‘lacunary’. For the

sake of simplicity, h(z) := 2z(z−1)/2γz−1η denotes the function of z > 0. The compatibility

condition ∇ · u0 = 0 is satisfied by e2 · ks = 0 and e3 · ls = 0, obviously. It is clear that

u0 is a smooth periodic function (thus bounded) with the period 2π/h in x1 and 2π in

x2. This implies that the mild solution is also periodic with the period 2π, regarded as a

function on the torus (2πT)3, as long as the mild solution exists. So, the kinematic energy

is bounded by the initial energy 1
2
‖u0‖2L2((2πT)3); this is huge but finite. The periodicity
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of solutions is useful for the estimate of the Besov norm; see Proposition 4.3 below. And

also, û0 is a sum of Dirac’s delta functions, therefore, u0 ∈ FM0;

FM0 := {F−1v ∈ S ′; v = sumof finiteRadonmeasures, v(0) = 0}.

We refer to the detail of FM0 in [23, 24].

Let u1 be the first approximation of iteration scheme1, that is, the solution to the heat

equation with initial datum given by (4.1):

u1(x, t) := et∆u0(x) =
Q√
r

r∑
s=1

hs
[
e2e

−h2
st cos(hsx1) + e3e

−(h2
s+1)t cos(hsx1 − x2)

]
.

For t > 0 we obtain that u1(t) := u1(·, t) ∈ L∞ ∩ BMO−1, even though these norms are

large; see (4.28) and (4.29) in subsection 4.7. The function u1 is of the form

u1 = (0, u21(x1, t), u
3
1(x1, x2, t)).

It is well-known that one can construct the unique mild solution with initial velocity

given by (4.1) in the L∞-framework, which was shown by [12, 13, 25]. Moreover, in [25]

one can estimate for the possible existence time T∗ (until when we may construct a mild

solution by iteration scheme in C([0, T∗];L
∞)) bounded from below: T∗ ≥ C/‖u0‖2∞ ∼ h−2

r

with the universal constant C > 0. Indeed, by hr >> r we see that

‖u0‖∞ ∼ Q√
r

r∑
s=1

hs ∼ hr >> 1 if r >> 1.

Therefore, T∗ might be very tiny. Also, one may see that

‖u0‖BMO−1 ∼ Q
√
r >> 1 if r >> 1.

However, we observe the Besov norm ‖ · ‖Ḃ−1
∞,∞

= supρ>0

√
ρ‖eρ∆ · ‖∞ as

‖u0‖Ḃ−1
∞,∞

∼ Q√
r
<< 1 if r >> 1. (4.3)

In fact, by the definition of Besov norm from Paley-Littlewood decomposition it holds

true that

‖u0‖Ḃ−1
∞,∞

∼ sup
j∈Z

‖φj ∗ ∇−1u0‖∞

≤
√
2
Q√
r
sup
j

sup
x

|φj ∗
r∑

s=1

cos(ks·)(x)|

≤ 2
√
2 sup

j
‖φj‖1

Q√
r
<< 1 if r >> 1.

1The notation of u1 differs to that of [9]; they use u1 := −B(et∆u0).
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Here we have used the two facts that ‖φj‖1 = ‖φ0‖1 for j ∈ Z and for each s ∈ {1, . . . , r}
there are at most 2 indices j ∈ Z such that φj ∗ cos(ks · x) 6= 0. For reader’s convenience

we now give an elementally proof of (4.3) as follows; we will explain the details later:

‖u0‖Ḃ−1
∞,∞

= sup
ρ>0

√
ρ‖eρ∆u0‖∞

= sup
ρ>0

√
ρ
Q√
r
sup
x

∣∣∣∣∣
r∑

s=1

hs[ve
−h2

sρ cos(ks · x) + we−(h2
s+1)ρ cos(ls · x)]

∣∣∣∣∣
≤

√
2
Q√
r
sup
ρ>0

r∑
s=1

√
ρhse

−h2
sρ

≤
√
2
Q√
r

[
sup

0<ρ<h−2
r

r∑
s=1

√
ρhse

−h2
sρ + sup

ρ≥h−2
r

r∑
s=1

√
ρhse

−h2
sρ

]

≤
√
2
Q√
r

√h−2
r (2hr) + sup

ρ≥h−2
r

{ sρ∑
s=1

+
r∑

s=sρ+1

}√
ρhse

−h2
sρ


≤

√
2
Q√
r

[
2 + sup

ρ≥h−2
r

∫ sρ−1

0

√
ρh(z + 1)e−h(z+1)2ρdz

+
e−1/2

√
2

+ sup
ρ≥h−2

r

∫ r

sρ

√
ρh(z)e−h(z)2ρdz

]

≤
√
2
Q
√
ρ

[
2 +

e−1/2

√
2

+ sup
ρ≥h−2

r

∫ r

1

√
ρh(z)e−h(z)2ρdz

]
≤ C∗

Q√
r

(4.4)

with the numerical constant C∗ independent of parameters. We take g(ς) := ςe−ς2 , then g

is monotone increasing when ς < 1/
√
2, and monotone decreasing when ς > 1/

√
2. Thus,

we choose sρ ∈ {1, . . . , r} such that

√
ρhs ≤

√
ρhs+1 if s < sρ,

√
ρhs ≥

√
ρhs+1 if s ≥ sρ.

The maximal value of g is taken as max g = g(1/
√
2) = 1/

√
2e. By the monotonic-

ity we derive the estimate replaced from sum by integration. The last inequality fol-

lows from the fact that the derivation of
∫ r

1
· · · with respect to ρ is positive when ρ is

small, besides this is negative when ρ is large. In this section we often use the fact that

supρ>0

∑r
s=1

√
ρhse

−h2
sρ ≤ C∗ bounded uniformly in r.

Now we recall the successive approximation and its modification of convergence ver-

sion. A mild solution u is usually constructed as the limit of function series {uj}∞j=1 (or,

its subsequence if necessary) defined by (1.2). When u0 ∈ BUC, namely, a bounded uni-

formly continuous function, {uj}∞j=1 is a Cauchy sequence in C([0, T∗];BUC) provided T∗

is chosen small enough as h−2
r above, then it has a uniform convergence limit. In order to
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observe the norm inflation of mild solutions, we always concern at T > T∗. Throughout

this paper, we use the standard terminology that the bilinear terms denote by (1.3). Let

us put the sequence {vk}∞k=1 as

v1(t) := u1(t) := et∆u0,

vk+1(t) := uk+1(t)− uk(t) = −B(uk) + B(uk−1)

for k ∈ N. Therefore, we may rewrite uj and the mild solution u = limj→∞ uj as

uj(t) =

j∑
k=1

vk(t) and u(t) =
∞∑
k=1

vk(t). (4.5)

In what follows, we shall calculate vk(t) and estimate the Besov norm of them at t = T .

Moreover, we easily notice that

vk = (0, 0, v3k(x1, x2, t)) for k ≥ 2; (4.6)

see subsection 4.4 and 4.5.

4.3 Norm inflation

For all δ, T ∈ (0, 1), we correctly select parameters (Q, r, γ, η) to see that

‖v1(T )‖Ḃ−1
∞,∞

≤ ‖u0‖Ḃ−1
∞,∞

' C∗
Q√
r
=: S < δ, (4.7)

v2 =M2 +R2, M2 := e3
Q2

4
e−t sinx2,

‖v2(T )‖Ḃ−1
∞,∞

' ‖M2(T )‖Ḃ−1
∞,∞

= C[Q
2 =: L ≥ 2

δ
(4.8)

in subsection 4.4. Here A ' B means the almost equal, that is, A = B + R such that

|R| < 1
3
|B| for the scalar valued, and ‖R‖Ḃ−1

∞,∞
< 1

3
‖B‖Ḃ−1

∞,∞
for functions; C[ > 0 is a

numerical constant. We will see that M2 is the major term of v2 at t ' T in the next

subsection. Reversely, R2 is the collection of the remainder terms of v2 at t ' T . It is

remarkable that Mk(t) no longer might be the leading term if we take neither a different

norm nor t << T . We further prove that v3 =M3 +R3 with

M3 := − Q3

8
√
r
te−t

r∑
s=1

hse
−h2

st{cos(hsx1 + x2) + cos(hsx1 − x2)}e3,

‖v3(T )‖Ḃ−1
∞,∞

' ‖M3(T )‖Ḃ−1
∞,∞

' Q3
√
T

8
√
2er

' Q2

4η
S (4.9)

for t ' T ' η−2. Moreover, we see that for v4

v4(T ) =M4(T ) +R4(T ), M4(T ) = −KM2(T ), K :=
(1− 3e−2)Q2

8rη2
> 0,
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‖v4(T )‖Ḃ−1
∞,∞

' ‖M4(T )‖Ḃ−1
∞,∞

' KL. (4.10)

By induction one may also show that vk(T ) =Mk(T ) +Rk(T ) and

M2k−1(T ) = (−K)k−2M3(T ) and M2k(T ) = (−K)k−1M2(T ) (4.11)

for k ≥ 2 with t ' T ' η−2. For the proof of Theorem 4.1, taking parameters such that

K < 1/12, we may appeal to rough estimates for the remainder terms in the following

way. Since the number of terms of vk is 2k, and the biggest term in the Besov norm of

the components of vk is that of Mk, it is allowed to compute

‖v2k−1(T )‖Ḃ−1
∞,∞

≤ (] terms) · ‖M2k−1(T )‖Ḃ−1
∞,∞

≤ (4K)k−2S, (4.12)

‖v2k(T )‖Ḃ−1
∞,∞

≤ (] terms) · ‖M2k(T )‖Ḃ−1
∞,∞

≤ (4K)k−1L (4.13)

for k ≥ 3. Once we obtain (4.7)-(4.13), it follows from (4.5):

‖u(T )‖Ḃ−1
∞,∞

' ‖
∞∑
k=1

v2k(T )‖Ḃ−1
∞,∞

≥ ‖v2(T )‖Ḃ−1
∞,∞

−
∞∑
k=2

(4K)k−1‖v2(T )‖Ḃ−1
∞,∞

≥ L

2
,

if K < 1/12. We simply discard the sum of odd numbers above, since S is very small

compared with L. Finally, the choice of parameters yields that S ' δ and L ' 2
δ
, this

completes the proof of Theorem 4.1. Note that the gradient of pressure terms are always

annihilated; ∇p = 0 due to (1.1).

The choice of the parameter Q is essential, that is to say, the parameter Q plays an

important role for the behavior of the mild solution. Consider the following four cases:

1. It is possible to show that ‖uj(T )‖Ḃ−1
∞,∞

does not converge as j → ∞ when Q is large

so that K > 4. This implies that there is no hope to proceed the iteration scheme

(1.2) to construct the mild solution up to time T from the initial datum u0 given

by (4.1), even though there exists a unique mild solution at least up to T∗ ∼ h−2
r in

the class C([0, T∗];L
∞). We will see the details in subsection 4.6.

2. If Q is large, but not so large compared with r and η such that K < 1/12, then the

norm inflation occurs, likely. The author guesses that the norm inflation solution

can be extended time-global one with exponential decay as t → ∞, since Mk is

always the major part of vk and the estimates (4.7)− (4.13) are valid for all t > T .

3. On the other hand, if Q is small such that C]Q < 1, then the norm inflation does not

occur, although we can easily derive the estimate for y := u−u2; see subsection 4.7.

4. One can prove that there exists a unique time-global mild solution in the certain

class e.g. C([0,∞);L∞) if Q << 1, since the initial velocity is periodic; see [24].
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We will see the proofs of (4.7)− (4.10) in below. The induction argument yields (4.11)

and the estimates for remainder terms (4.12) and (4.13) as the similar way as (4.9) and

(4.10), so we omit them in this paper.

Once we get (4.8) with large L, it seems to be difficult to apply the fixed point

argument, directly. More precisely, the mapping from the initial data to the mild solutions

seems to be not of class C2; Germain intended to show it in [21]. The proof of Theorem 4.1

in this paper is slightly different to that of [9]. They actually intended to show

‖y(T )‖Ḃ−1
∞,∞

<< 1, (4.14)

where y := u − u2 := u − u1 + B(u1) =
∑∞

k=3 vk. For the details on y, we will mention

in subsection 4.7. Bourgain and Pavlovic [9] proceeded on the investigation to get (4.14).

However, it is not clear to the author how to choose the parameters such that (4.14)

and (4.8) are satisfied along their strategy, simultaneously. Although they mentioned the

way-out by new techniques (slicing the time-interval into many parts) due to Koch and

Tzvetkov e.g. [43], it is unlikely to get some advantage by their method in the situation

u, y ∈ C([0, T ]; ḃ−1
∞,∞). Remark that it seems to be hard to find the associate norm like

‖ · ‖ET for Koch-Tataru’s solution. As seen in (4.10), it is difficult to show (4.14) without

smallness of Q directly, even if y is relatively smaller than v2. Besides, if Q is small, then

the norm inflation does not occur.

Choice of parameters We now refer to the selection of the parameters (Q, r, γ, η) for

the proof of Theorem 4.1. Firstly, we always fix γ := 3. We impose that η ∈ N with η ≥ 2

large such that η ∼ T−1/2 for T ∈ (0, 1). For any δ ∈ (0, 1), we fix Q > 1 large such that

Q >
√

3
C[δ

. Finally, we choose r ∈ N large such that r > 4C2
∗δ

−4, T > h−2
r and K < 1

12
.

4.4 First and second approximation

In this section we calculate v1 and v2, deriving the estimates for BMO−1, Ḃ−1
∞,∞ and ET

norms. This section will be devoted to show (4.7) and (4.8) with appropriate selection of

parameters.

linear terms For each fixed t > 0, if we choose r large enough, then Ḃ−1
∞,∞ norm and

L∞ norm of u1 = v1 can be taken arbitrary small. In fact, we see that

‖v1(t)‖Ḃ−1
∞,∞

= ‖u1(t)‖Ḃ−1
∞,∞

≤ sup
ρ>0

√
ρ‖e(ρ+t)∆u0‖∞

≤
√
2
Q√
r
sup
ρ>0

r∑
s=1

√
ρhse

−h2
s(ρ+t)

≤ C∗
Q√
r
(= ‖u0‖Ḃ−1

∞,∞
< δ) (4.15)

Note that C∗ is a numerical constant independent of parameters. Note that (4.15) implies
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that for each δ, T , Q we may choose r large such that

‖v1(T )‖Ḃ−1
∞,∞

≤ δ/2. (4.16)

We next consider v2. Divide v2 into three parts. Let us see

(u1(τ),∇)u1(τ)

=
3∑

m=1

Q√
r

r∑
s=1

hs[e
m
2 e

−h2
sτ cos(ks · x) + em3 e

−(h2
s+1)τ ] cos(ls · x)]

× ∂m

(
Q√
r

r∑
q=1

hq[e2e
−h2

qτ cos(kq · x) + e3e
−(h2

q+1)τ ] cos(lq · x)]

)

=
Q2

r

r∑
s=1

r∑
q=1

hshqe3e
−(h2

s+h2
q+1)τ cos(ks · x) sin(lq · x)

=
Q2

r

r∑
s=1

h2se3e
−(2h2

s+1)τ

(
−1

2

)
sinx2

+
Q2

r

r∑
s=1

h2se3e
−(2h2

s+1)τ 1

2
sin(2hsx1 − x2)

+
Q2

r

r∑
s,q=1, s 6=q

hshqe3e
−(h2

s+h2
q+1)τ cos(ks · x) sin(lq · x)

=: N1 +N2 +N3.

For each ` = 1, 2, 3 we set

U` := U`(t) := −
∫ t

0

e(t−τ)∆PN`(τ)dτ.

Thus, v2 =
∑3

`=1 U`. In the conclusion U1 happens “inflation”, as the contrast to that

U2 and U3 are small, when Q and r are large. Notice that v2 satisfies (4.6). Therefore,

∇ ·N` = 0 and PN` = N` as well as ∇ · v2 = 0.

Estimate for U1 We obtain that

U1 = −
∫ t

0

e(t−τ)∆P
Q2

r

r∑
s=1

h2se
−(2h2

s+1)τe3

(
− 1

2

)
sinx2dτ

=
Q2

2r

r∑
s=1

h2s

∫ t

0

e−(2h2
s+1)τe(t−τ)∆e3 sinx2dτ

=
Q2

2r

r∑
s=1

h2s

∫ t

0

e−(2h2
s+1)τe−t+τe3 sin x2dτ

=
Q2

2r
(e3 sinx2)

r∑
s=1

h2se
−t1− e−2h2

st

2h2s
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=
Q2

4r
(e3 sinx2)e

−t

r∑
s=1

(1− e−2h2
st)

=M2 −
Q2

4r
(e3 sinx2)e

−t

r∑
s=1

e−2h2
st.

We now compute its Besov norm:

‖M2(t)‖Ḃ−1
∞,∞

= sup
ρ>0

√
ρ‖eρ∆M2(t)‖∞

=
Q2

4
e−t sup

ρ>0

√
ρe−ρ sup

x
|e3 sin x2| ≥ C[(t)Q

2 (4.17)

with C[(t) := 1
4et

√
2e
. Here, we denote the numerical constant C[ := C[(T ) = 1

4eT
√
2e

∈
( 1
4e

√
2e
, 1
4
√
2e
), when T ∈ (0, 1) is fixed. On the other hand, it is straightforward to show

‖Q
2

4r
(e3 sin x2)e

−t

r∑
s=1

e−2h2
st‖Ḃ−1

∞,∞
∼ Q2

r

r∑
s=1

1

hs
√
t
hs
√
2te−2h2

st

∼ Q2

r

r∑
s=1

η

hs
∼ Q2

r
. (4.18)

These are valid around t = T with T ' η−2 >> T∗. In what follows, we always assume

that t ' T ' η−2. Once we take Q >
√
3/C[δ, then (4.8) holds if U2 and U3 are small as

well as (4.18).

Estimate for U2 We show that ‖U2(T )‖Ḃ−1
∞,∞

is small. Note that PN2 = N2 as the same

as U1. We thus obtain that

U2 = −
∫ t

0

e(t−τ)∆P
Q2

r

r∑
s=1

h2se
−(2h2

s+1)τe3
1

2
sin(2hsx1 − x2)dτ

= −Q
2

2r

r∑
s=1

h2s

∫ t

0

e−(2h2
s+1)τe−(4h2

s+1)(t−τ)e3 sin(2hsx1 − x2)dτ

= −Q
2

2r

r∑
s=1

h2se3 sin(2hsx1 − x2)e
−(4h2

s+1)t e
2h2

st − 1

2h2s

= −Q
2

4r

r∑
s=1

e3 sin(2hsx1 − x2)e
−(4h2

s+1)t(e2h
2
st − 1).

We now derive the Besov norm of U2 at t:

‖U2(T )‖Ḃ−1
∞,∞

= sup
ρ>0

√
ρ‖eρ∆Q

2

4r

r∑
s=1

e3 sin(2hsx1 − x2)e
−(4h2

s+1)T (e2h
2
st − 1)‖∞

=
Q2

4r

r∑
s=1

(
sup
ρ>0

√
ρe−(4h2

s+1)ρ

)
e−(4h2

s+1)T (e2h
2
sT − 1)
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≤ Q2

4r

r∑
s=1

1

hs
' C†Q

2

4rη
. (4.19)

Here C† :=
∑∞

s=1
η
hs

∈ (1, 3/2) is a numerical constant. Therefore, we can take U2 small

as much as we want, provided r is taken large.

Estimate for U3 We now see that ‖U3(T )‖Ḃ−1
∞,∞

is taken small. Since PN3 = N3,

U3 = −
∫ t

0

e(t−τ)∆P
Q2

r

r∑
s,q=1, s 6=q

hshqe
−(h2

s+h2
q+1)τe3 cos(hsx1) sin(hqx1 − x2)dτ

= −Q
2

r

∫ t

0

e(t−τ)∆

r∑
s,q=1, s 6=q

hshqe
−(h2

s+h2
q+1)τe3

{
−1

2
sin(hsx1 − hqx1 + x2)

+
1

2
sin(hsx1 + hqx1 − x2)

}
dτ

=
Q2

2r
e3

∫ t

0

∑
s 6=q

hshqe
−(h2

s+h2
q+1)τ

{
e−[(hs−hq)2+1](t−τ) sin(hsx1 − hqx1 + x2)

−e−[(hs+hq)2+1](t−τ) sin(hsx1 + hqx1 − x2)
}
dτ

=
Q2

4r
e3
∑
s6=q

[
sin(hsx1 − hqx1 + x2)(e

2hshqt − 1)e−(h2
s−2hshq+h2

q+1)t

− sin(hsx1 + hqx1 − x2)(1− e−2hshqt)e−(h2
s+2hshq+h2

q+1)t
]
.

Notice that the sums over s < q and s > q are symmetric (these values are equivalent).

So, we only compute the sum for s > q at t = T ' η−2:

‖U3(T )‖Ḃ−1
∞,∞

= sup
ρ>0

√
ρ‖eρ∆U3(T )‖∞

≤ Q2

2r

r∑
s=2

s−1∑
q=1

(
sup
ρ>0

√
ρe−(h2

s−2hshq+h2
q+1)ρ

)
e−(h2

s+h2
q+1)T

+
Q2

2r

r∑
s=2

s−1∑
q=1

(
sup
ρ>0

√
ρe−(h2

s+2hshq+h2
q+1)ρ

)
e−(h2

s+2hshq+h2
q+1)T

≤ Q2

r

r∑
s=1

2(s− 1)

hs
∼ Q2

rη
. (4.20)

To deduce the last inequality we have used the property “lacunary” of hs:

h2s − 2hshq + h2q + 1 ≥ hs(hs − 2hs−1) = h2s(1− 2−s+2γ−1) ≥ h2s/2

whence s ≥ 2, q < s and γ ≥ 3. Here and hereafter, we fix γ = 3.

Gathering with (4.17), (4.18), (4.19) and (4.20), we get

‖v2(T )‖Ḃ−1
∞,∞

' ‖M2(T )‖Ḃ−1
∞,∞

' C[Q
2

and (4.8) provided if Q and r are large with T ' η−2.
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4.5 Calculi for v3 and v4

In this subsection we derive the form of v3 and v4, concretely. Let us invoke that

v3 = u3 − u2 = u1 − B(u2)− {u1 − B(u1)}
= −B(v1 + v2, v1 + v2) + B(v1, v1)
= −B(v1, v2)

= −
∫ t

0

e(t−τ)∆Pe3v21(τ)∂2v32(τ)dτ

= −
∫ t

0

e(t−τ)∆v21(τ)∂2v
3
2(τ)dτe3.

Since v1 and v2 are functions independent of x3, the fourth equality holds by v2 = (0, 0, v32),

and the last equality holds by divergence-free of the integrant. Clearly, v3 satisfies (4.6),

that is, v13 = v23 = 0. Analogously, we observe that (4.6) is valid and

vj+1(t) = −B(v1, vj) = −
∫ t

0

e(t−τ)∆v21(τ)∂2v
3
j (τ)dτe3 for j ≥ 2. (4.21)

We now calculate the concrete expression of v33 at t ' T ' η−2:

v33 = −
∫ t

0

e(t−τ)∆

[{
Q√
r

r∑
s=1

hse
−h2

sτ cos(hsx1)

}
· Q

2

4r

·

{
r∑

q=1

(1− e−2h2
qτ )e−τ cosx2 +

r∑
q=1

(e2h
2
qτ − 1)e−4(h2

q+1)τ cos(2hqx1 − x2)

+
r∑

q,p=1,q 6=p

(e2hqhpτ − 1)e−(h2
q+2hqhp+h2

p+1)τ cos(hqx1 + hpx1 − x2)

+
r∑

q,p=1,q 6=p

(1− e−2hqhpτ )e−(h2
q−2hqhp+h2

p+1)τ cos(hqx1 − hpx1 + x2)

}]
dτ

= − Q3

4
√
r

∫ t

0

r∑
s=1

hse
−(h2

s+1)τe(t−τ)∆{cos(hsx1) cos x2}dτ + (remainder)

= − Q3

8
√
r
te−t

r∑
s=1

hse
−h2

st {cos(hsx1 + x2) + cos(hsx1 − x2)}+ (remainder)

=:M3(t) +R3(t).

Here and hereafter, we do not distinguish the vector valued Mk and its third component

if no confusion occurs likely, since Mk = (0, 0,M3
k ) for all k ≥ 2 as well as Rk = (0, 0, R3

k).

It is easy to see that ‖M3(T )‖Ḃ−1
∞,∞

∼ Q3/
√
r << 1 and the remainder term R3 is small

compared with the leading term M3 as the similar to the estimates (4.18), (4.19) and

(4.20). Thus, it is straightforward to get that

‖v3(T )‖Ḃ−1
∞,∞

' Q3

4
√
r
Te−T

r∑
s=1

hse
−h2

sT sup
ρ>0

√
ρe−(h2

s+1)ρ ∼ Q3

√
r
<< 1 (4.22)
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with large r and T ' η−2, involving the remainder terms.

Next, we compute v4. By (4.21) it follows that at t ' T ' η−2

v34 = −
∫ t

0

e(t−τ)∆

[{
Q√
r

r∑
s=1

hse
−h2

sτ cos(hsx1)

}
·
(
− Q3

8
√
r

)

· τe−τ

r∑
q=1

hqe
−h2

qτ {− sin(hqx1 + x2) + sin(hqx1 − x2)}

]
dτ +R4

= −Q
4

8r

r∑
s=1

h2se
−t

∫ t

0

τe−2h2
sτdτ sin x2 +R4

= − Q4

32r
e−t sinx2

[
r∑

s=1

1

h2s

{
1− e−2h2

st(1 + 2h2st)
}]

+R4

= −(1− 3e−2)Q4

32rη2
e−t sin x2 +R4 = −KM2 +R4.

Here we move the summation over s ≥ 2 to the remainder terms; the remainder term R4

might differ to the others in lines, likely. Also, it is easy to see that the Besov norm of

R4 is relatively small compared with that of M4 = −KM2. Then, we have

‖v4(T )‖Ḃ−1
∞,∞

' KL. (4.23)

The same argument indicates (4.11) by (4.21), if T ' η−2. Therefore, the proof of

Theorem 4.1 now completes.

4.6 No convergence of approximation

For the case of huge Q, the successive approximation does not work in C(0, T ; Ḃ−1
∞,∞).

proof of Theorem 1.1. Let us assume T < 1/4 without loss of generality. We choose the

initial datum u0 given by (4.1). We will prove that

‖Rk(T )‖Ḃ−1
∞,∞

<
1

3
‖Mk(T )‖Ḃ−1

∞,∞
(4.24)

for k ∈ N. Once we get (4.24), one sees

‖u4j+2(T )‖Ḃ−1
∞,∞

≥
j∑

k=1

(K/4)k−1‖M2(T )‖Ḃ−1
∞,∞

→ ∞ as j → ∞ (4.25)

when K > 4. It suffices to show (4.24) under the suitable choice of parameters with k ≥ 3.

Determine γ = 3 and r = 2. Select η ∈ N as η ≥ 2 and η ' T−1/2. Let Q be taken large

such that K > 4. If ` is odd and ` ≥ 3, then we see

‖R`(T )‖Ḃ−1
∞,∞

‖M`(T )‖Ḃ−1
∞,∞

≤ 2`
( 2∑

s=1

e−h2
sT
)`

= 2`(e−1 + e−36)` <
1

3
.
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Analogously as the estimates for R2, in the case for even ` ≥ 4 one can prove the similar

inequality. This completes the proof of Theorem 1.1.

The calculation above implies that it seems hard to show the convergence of any

subsequence of {uj} in the class C(0, T ; ḃ−1
∞,∞). The author does not know whether mild

solutions exist up to T with the same u0, or not. Also, it is not clear whether another

successive approximation, for example,

w1 := u1 and wj+1 := w1 − B(wj, wj+1),

does converge, or not. Although one can easily observe that ‖uj(T )‖BMO−1 → ∞ as

j → ∞ by the continuous embedding BMO−1 ⊂ Ḃ−1
∞,∞, it is not clear to the author

whether another norms e.g. ‖ · ‖L3((2πT)3) or ‖ · ‖L∞ of {uj(T )} diverge as j → ∞, or

not. It is obvious that the assertion of Theorem 1.1 does not fit the situation in two-

dimension, since the time-global unique solvability in 2D with the initial data given by

(4.1) was shown by [26]. Indeed, (3.1) contradicts to Theorem 1.1 in 2D.

4.7 Estimate for y

In the end of this paper we express the remainder y and its property whence Q is relatively

small. Before computing the norms, we now establish a proposition of embedding type

for periodic functions.

Proposition 4.3. Let κ > 0 and n ∈ N. Assume that v ∈ L∞ ∩ Ḃ−1
∞,∞(Rn) is periodic

with period 2π/κ in xj for all j = {1, . . . , n}. Then

‖v‖Ḃ−1
∞,∞

≤ Cκ−n‖v‖∞ (4.26)

holds true with constant C depending only on n.

(Proof) Let n = 1. By the assumption v has an expansion given by

v(x) =
∞∑
`=1

α` sin(κ`x) + β` cos(κ`x)

with some α` and β`. Hence, we calculate that

‖v‖Ḃ−1
∞,∞

≤ sup
j∈Z

‖φj ∗ ∇−1v‖∞

≤ sup
x

sup
j

∣∣∣∣∣
∞∑
`=1

φj ∗
(
α`

`κ
sin(κ`·) + β`

`κ
cos(κ`·)

)
(x)

∣∣∣∣∣
≤ 2‖φ0‖1κ−1

(
sup
`

|α`|
`

+ sup
`

|β`|
`

)
≤ 4‖φ0‖1κ−1‖v‖∞.
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Here we have used the fact that for ` ∈ N there are at most 2 indices j ∈ Z such that

φj ∗ cos(κ`·) 6= 0. The proof for general n ∈ N is the same.

It is easy to see that for v ∈ ET enjoying the period 2π/κ in R3

‖v(T )‖Ḃ−1
∞,∞

≤ Cκ−n‖v(T )‖∞ = Cκ−3T− 1
2‖T

1
2v(T )‖∞ ≤ Cκ−3T− 1

2‖v‖ET

by (4.26) and the definition of ET -norm. This technique leads us to show the smallness

of Besov norm of functions at T by the smallness of ET -norm, even though it seems to be

tough to compute the Besov norm directly.

Now we estimate y. Let u be a mild solution, and let y := u − v1 − v2. A formal

calculation yields that

yt = ut − (v1)t − (v2)t

= ut −∆et∆u0 − P(u1(t),∇)u1(t)−
∫ t

0

∆e(t−τ)∆P(u1(τ),∇)u1(τ)dτ.

Subtracting this to ∆y = ∆u−∆v1 −∆v2, we have

yt −∆y = −P(u,∇)u+ P(u1,∇)u1

= G1 +G2 +G3 =: G.

Here we set

G1 := G1(t) := −P
{
(y,∇)(u1 − v2) + (u1 − v2,∇)y

}
,

G2 := G2(t) := −P(y,∇)y,

G3 := G3(t) := −P(u1,∇)v2.

Since

v1 = u1 = (0, u21(x1, t), u
3
1(x1, x2, t)) and v2 = (0, 0, v32(x1, x2, t)),

it is noticed that (v2,∇)u1 = 0 and (v2,∇)v2 = 0, easily. Furthermore, from B(u1)(0) = 0

it deduces that y(x, 0) ≡ 0. By Duhamel’s principle y can be regarded as the solution to

the following equation of integral form:

y(t) =

∫ t

0

e(t−τ)∆G(τ)dτ. (4.27)

In terms of B, we rewrite it by

y = −B(y, u1 − v2)− B(u1 − v2, y)− B(y)− B(u1, v2).

Moreover, we obviously seek that y = (0, 0, y3(x1, x2, t)) as well as (4.6). We now compute

ET -norm of them. For u1 we see

‖u1(t)‖∞ ≤
√
2
Q√
r

r∑
s=1

hse
−h2

st ≤ C∗
Q√
r
t−

1
2 (4.28)
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and

‖u1‖ET = sup
t∈(0,T )

√
t‖u1(t)‖∞ + sup

x∈Rn,R∈(0,
√
T )

(
1

|BR(x)|

∫ R2

0

∫
BR(x)

|u1(y, t)|2dydt

)1/2

≤ C
Q√
r
+ sup
x∈Rn,R∈(0,

√
T )

( √
2

|BR(x)|

∫ R2

0

∫
BR(x)

( Q√
r

r∑
s=1

hse
−h2

st
)2
dydt

)1/2

≤ C
Q√
r

[
1 + sup

R∈(0,
√
T )

{∫ R2

0

( r∑
s=1

hse
−h2

st
)2
dt
}1/2

]

≤ C
Q√
r

1 +{ r∑
s,q=1

hshq
h2s + h2q

(
1− e−(h2

s+h2
q)T
)}1/2

 ≤ CQ. (4.29)

Here the constant C does not depend on γ. The last inequality follows from removing

the term e−(h2
s+h2

q)T , simply. Next, we calculate v2. Recall that BMO−1 ⊂ Ḃ−1
∞,∞ and its

embedding is continuous, then ‖M2(T )‖BMO−1 is also large. Moreover, we figure out that

‖M2‖ET ≤ C
√
TQ2 (4.30)

by simple calculation. Here C is a numerical constant independent of parameters. Even if

we appeal to Proposition 4.3 for (4.30), it is still kept that ‖M2(T )‖Ḃ−1
∞,∞

≥ 3/δ, assuming

that Q is sufficiently large. One may also see that

‖U2‖ET ≤ C
Q2

r
→ 0 as

Q√
r

→ 0.

Although we have shown the smallness of ‖U2(T )‖Ḃ−1
∞,∞

directly, it is easily obtained by

gathering the above and the Proposition 4.3:

‖U2(T )‖Ḃ−1
∞,∞

≤ C√
T
‖U2‖ET ≤ CQ2

√
Tr

→ 0 as r → ∞.

Besides,

‖U3‖ET ≤ C
Q2

r
→ 0 as

Q√
r

→ 0.

As the same to estimate for U2, by Proposition 4.3 it turns out that

‖U3(T )‖Ḃ−1
∞,∞

≤ CQ2

√
Tr

→ 0 as r → ∞.

We now choose T small such that C
√
TQ2 < 1/4 as well as r large such that CQ/

√
r <

1/4. Compute (4.27) in ET -norm by using (4.30), (4.19), (4.20), (3.2) and the triangle-

inequality to have

‖y‖ET = ‖B(y, u1 − v2) + B(u1 − v2, y) + B(y) + B(u1, v2)‖ET
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≤ C {(‖u1‖ET + ‖v2‖ET + ‖y‖ET ) ‖y‖ET + ‖u1‖ET ‖v2‖ET }

≤ C

{(
Q+

√
TQ2 + ‖y‖ET

)
‖y‖ET +

√
TQ3

√
r

}
≤ (C]Q+ C‖y‖ET ) ‖y‖ET +

1

4C
(4.31)

with some positive constant C]. It is not difficult to show that y is small in this way if

C]Q < 1. However, y is out of control when Q is large.

In [9] Bourgain and Pavlovic compute ‖y‖ET , dividing the time-interval into many

parts. Although the author thinks that it is unnecessary for us to employ their method

on the proof of Theorem 4.1, it is supposed that their technique leads us to some new

idea and inspiration. So, the author would give an explaining of their method, in what

follows. Let T0 ∈ (0, T ) be fixed, and let T0 be assumed as a new initial time for the

equation (4.27) with initial datum y(T0). That is to say, for t > T0

y(t) = e(t−T0)∆y(T0) +

∫ t

T0

e(t−τ)∆G(τ)dτ. (4.32)

One can rewrite the second terms in the right hand side of (4.32) by∫ t

T0

e(t−τ)∆G(τ)dτ =

∫ t

0

e(t−τ)∆G(τ)χ[T0,t](τ)dτ

= −B(y], u]1 − v]2)− B(u]1 − v]2, y
])− B(y])− B(u]1, v

]
2)

in terms of B. Here we have denoted ] by

y] := y](t) :=

{
0 if t < T0,

y(t) if t ≥ T0.

Analogously, we define u]1 and v]2. By semigroup property we also rewrite the first terms

in the right hand side of (4.32) by

e(t−T0)∆y(T0) = e(t−T0)∆

∫ T0

0

e(T0−τ)∆G(τ)dτ

=

∫ t

0

e(t−τ)∆G(τ)χ[0,T0](τ)dτ

= −B(y[, u[1 − v[2)− B(u[1 − v[2, y
[)− B(y[)− B(u[1, v[2).

Here [ denotes

y[ := y[(t) :=

{
y(t) if t < T0,

0 if t ≥ T0.

Analogously, we define u[1 and v
[
2. When we settle T1 ∈ (T0, T ) small again to deduce that

‖y‖ET1 have a better estimate. By (3.2) and so on, we see

‖y‖ET1 ≤ C(‖u]1‖ET1 + ‖v]2‖ET1 + ‖y]‖ET1 )‖y
]‖ET1 + C‖u]1‖ET1‖v

]
2‖ET1
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+ C
(
‖u[1‖ET1 + ‖v[2‖ET1 + ‖y[‖EE1

)
‖y[‖ET1 + C‖u[1‖ET1‖v

[
2‖ET1

≤ C

(
Q√
r
+
√
T0Q

2 +
√
T1 − T0Q

2 + ‖y‖ET1

)
‖y‖ET1

+ C

√
T0 +

√
T1 − T0√
r

Q3.

One may have some improvements by this method, repeating and repeating.
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[17] F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: global

existence with bounded flux and time-periodic solutions, Math. Methods Appl. Sci.,

31 (2008), 249-277.

[18] R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly

not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.

[19] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math., 129 (1972),

137-193.

[20] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Ration.

Mech. Anal., 16 (1964), 269-315.

[21] P. Germain, The second iterate for the Naiver-Stokes equation, J. Funct. Anal., 255

(2008), 2248-2264.

[22] Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak

solutions of the Navier-Stokes system, J. Differential Equations, 61 (1986), 186-212.

[23] Y. Giga, K. Inui, A. Mahalov and S. Matsui, Uniform local solvability for the Navier-

Stokes equations with the Coriolis force, In ‘Kyoto Conference on the Navier-Stokes

Equations and their Applications’ (eds. Y. Giga, H. Kozono, H. Okamoto and Y. Shi-
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