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Abstract

This paper addresses consistency and stability of W-methods up to order three for
nonlinear ODE-constrained control problems with possible restrictions on the control.
The analysis is based on the transformed adjoint system and the control uniqueness
property. These methods can also be applied to large-scale PDE-constrained optimiza-
tion, since they offer an efficient way to compute gradients of the discrete objective
function.
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1 Introduction

Suppose one is given the nonlinear optimal control problem

minimize C(x(1)) (1.1)
subject to x′(t) = f(x(t),u(t)), u(t) ∈ U, t ∈ (0, 1], (1.2)

x(0) =x0, (1.3)

where the state x(t) ∈ Rd, the control u(t) ∈ Rm, f : Rd×Rm 7→ Rd, the objective function
C : Rd 7→ R, and U ⊂ Rm is closed and convex. Assuming sufficient smoothness for f and
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C (see, e.g., [5]), there exists associated Lagrange multipliers ψ∗ such that the first-order
optimality conditions are satisfied at (x∗, ψ∗,u∗):

x′(t) = f(x(t),u(t)), t ∈ (0, 1], x(0) = x0, (1.4)
ψ′(t) = −ψ∇xf(x(t),u(t)), t ∈ [0, 1), ψ(1) = ∇C(x(1)), (1.5)

−ψ∇uf(x(t),u(t)) ∈ NU (u(t)), t ∈ [0, 1]. (1.6)

Here, ψ is a row vector in Rd, ∇xf and ∇uf are the Jacobian matrices of f with respect to
x and u, and the normal cone mapping NU (u) is defined for any u ∈ U as follows

NU (u) = {w ∈ Rm : wT (v − u) ≤ 0 for all v ∈ U}. (1.7)

More details on the first-order optimality equations are given in the Appendix.
In the first-optimize-than-discretize approach the system (1.4)-(1.6) is discretized by

applying the numerical solver of choice. The focus of this paper is to analyze discrete
adjoints which are derived from W-method discretizations of (1.2)-(1.3). They are useful in
optimization since the allow the efficient computation of gradients of the discretized objective
function, i.e., the numerical function that is being numerically minimized. This approach is
known as first-discretize-than-optimize.

Hager [5] has studied discrete Runge-Kutta adjoints with strictly positive weights and
found that additional order conditions have to be satisfied to achieve order three and higher
for optimal control problems, while any first- or second-order Runge-Kutta scheme retains its
order. All fourth-order 4-stage explicit Runge-Kutta schemes automatically satisfy the order
conditions for optimal control. His analysis utilizes a transformed adjoint system and the
control uniqueness property, which will be also used in our context of W-methods. It turned
out that the consistency analysis of Runge-Kutta schemes coming from the discretization
of optimal control problems can be elegantly done in the class of partitioned symplectic
Runge-Kutta schemes. Applying the technique of oriented free trees, Bonnans and Laurent-
Varin [1] have computed the corresponding order conditions up to order seven by means of
an appropriate computer program. The same number of conditions were already given by
Murua [12]. A larger class of non-symplectic second-order Runge-Kutta methods has been
investigated by Pulova [13]. Reverse mode automatic differentiation on explicit Runge-
Kutta methods has been considered by Walter [15], who concluded that the order of the
discretization is always preserved by the discrete adjoints. For problems where only the
initial conditions are the control variables, consistency properties of discrete adjoint Runge-
Kutta and linear multistep methods are presented by Sandu [16, 17].

Many practical optimal control problems demand for stiff ODE integrators, especially
when the constraints are derived from semi-discretizations of nonlinear time-dependent
parabolic PDEs. In this case, the inherent nonlinear coupling of all stages values of a
fully implicit Runge-Kutta scheme may become a severe structural disadvantage and com-
putational bottleneck. Linearly implicit methods of Runge-Kutta-Rosenbrock type are quite
less expensive and have proven successful at the numerical solution of a wide range of stiff
and large-scale systems [4, 11, 14, 23]. Among this class of time integrators, W-methods are
very popular, since they allow the use of an arbitrary matrix in place of the Jacobian matrix
while maintaining the order of accuracy and thus have the potential to significantly reduce
the computational costs [4, 22]. W-methods fulfill the order conditions for explicit Runge-
Kutta methods. This makes them also attractive for (automatic) partitioning strategies,
where stiff and non-stiff components are treated in an implicit and explicit way, respectively
[2, 23].
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2 Discrete optimal control problem

We discretize the differential equations (1.2) using an s-stage W-method [22] on a uniform
mesh of width h = 1/N , where N is a natural number. Let xn denote the sequence of
approximations to the exact solution values x(tn) with tn =nh. Then the discrete optimal
control problem reads

minimize C(xN ) (2.1)

subject to xn+1 =xn +
s∑

i=1

biyni, x0 given, (2.2)

yni = hf(xn +
i−1∑

j=1

αijynj ,uni) + hTn

i∑

j=1

γijynj , uni ∈ U, (2.3)

1 ≤ i ≤ s, 0 ≤ n ≤ N − 1. (2.4)

The vectors yni and uni are intermediate state and control variables on the interval [tn, tn+1].
If h is small enough, the yni in (2.3) are uniquely determined in the neighbourhood of
(x∗,u∗). The coefficients bi, αij , and γij are chosen to obtain a desired order of consistency
and A-stability or even L-stability. As usual, all coefficients γii are taken constant, γii =γ,
so that per time step only linear systems with the same matrix I − hγTn have to be solved.
We formally set αij =0, j ≥ i, and γij =0, j > i. The matrices Tn are arbitrary and constant
within each time step. Thus in the analysis that follows, we will exploit the property that all
derivatives of Tn vanish. Note that Tn =0 yields a standard explicit Runge-Kutta method.

Suppose that multipliers λni are introduced for the intermediate state equations (2.3)
and that ψn+1 is the associated (discrete) multiplier for equation (2.2). Then the first-order
optimality conditions are the following (see also the Appendix):

xn+1 =xn +
s∑

i=1

biyni, x0 given, (2.5)

yni = hf(xn +
i−1∑

j=1

αijynj ,uni) + hTn

i∑

j=1

γijynj , (2.6)

ψn −ψn+1 = h

s∑

i=1

λni∇xf(xn +
i−1∑

j=1

αijynj ,uni), ψN = ∇C(xN ), (2.7)

λni = biψn+1 + h

s∑

j=1

λnj

(
αji∇xf(xn +

j−1∑

k=1

αjkynk,unj) + γjiTn

)
, (2.8)

uni ∈ U, − λni∇uf(xn +
i−1∑

j=1

αijynj ,uni) ∈ NU (uni), (2.9)

1 ≤ i ≤ s, 0 ≤ n ≤ N − 1. (2.10)

Remember that all dual multipliers are treated as row vectors. In the case that bi 6= 0 for each
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i, equations (2.7)-(2.8) can be reformulated in terms of new variables ξni =λni/bi, 1 ≤ i ≤ s,

ψn =ψn+1 + h

s∑

i=1

biξni∇xf(xn +
i−1∑

j=1

αijynj ,uni), ψN = ∇C(xN ), (2.11)

ξni =ψn+1 + h

s∑

j=1

bj

bi
ξnj

(
αji∇xf(xn +

j−1∑

k=1

αjkynk,unj) + γjiTn

)
. (2.12)

Condition (2.9) is replaced by

uni ∈ U, − biξni∇uf(xn +
i−1∑

j=1

αijynj ,uni) ∈ NU (uni). (2.13)

Remark 2.1 A usual way to solve the first-order optimality conditions is to apply a gradient
method. Let u ∈ RmsN denote the vector of all intermediate control variables uni. Since
xN depends on all components of u, we can consider the minimization of the discrete cost
function Ĉ(u)=C(xN (u)). A short calculation shows

∇uni
Ĉ(u) = hbiξni∇uf(xn +

i−1∑

j=1

αijynj ,uni). (2.14)

Suppose a current iterate of the control variables is given. Using these values, the discrete
state equations (2.5)-(2.6) can be solved for xn and yni by marching forward from n=0 to
n=N−1. Then all variables are given to solve the discrete costate equations (2.11)-(2.12)
for ψn and ξni by marching backward from n = N −1 to n = 0. Notice that the special
structure of the parameters αji and γji allows a convenient way to successively compute the
intermediate values ξni for i = s, s−1, . . . , 1, in each time step. Finally, the gradient is
computed from (2.14) and the control iterate is updated.

We observe that the transformed adjoint equations (2.11)-(2.12) march backwards in
time while the W-method (2.5)-(2.6) marches forwards in time. Following the approach
used in [5] to facilitate the consistency analysis, we first reverse the order of time in the
discrete adjoint equations. That is, we solve for ψn+1 in (2.11) and substitute in (2.12) to
obtain the following forward marching scheme:

ψn+1 = ψn − h

s∑

i=1

biξni∇xf(xn +
i−1∑

j=1

αijynj ,uni), (2.15)

ξni = ψn − h

s∑

j=1

ᾱijξnj∇xf(xn +
j−1∑

k=1

αjkynk,unj)− h

s∑

j=1

γ̄ijξnjTn. (2.16)

with the new coefficients

ᾱij =
bibj − bjαji

bi
, γ̄ij = −bjγji

bi
. (2.17)

Next we will remove the control variables u by use of the control uniqueness property
introduced in [5]. If (x,ψ) is sufficiently close to (x∗, ψ∗), then there exists a locally unique
minimizer u=u(x, ψ) of the Hamiltonian ψf(x,u) and we can define functions

φ(x,ψ) = −ψ∇xf(x,u)|u=u(x,ψ), g(x, ψ) = f(x,u(x,ψ)). (2.18)
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Assuming that the intermediate control variables have the special form

uni = u(xn +
i−1∑

j=1

αijynj , ξni), 0 ≤ n ≤ N − 1, 1 ≤ i ≤ s, (2.19)

and introducing intermediate values xni for the state, the complete forward marching scheme
can be written as

xn+1 =xn +
s∑

i=1

biyni, x0 given, (2.20)

ψn+1 = ψn + h

s∑

i=1

biφ(xni, ξni), ψN = ∇C(xN ), (2.21)

yni = hg(xni, ξni) + hTn

i∑

j=1

γijynj , (2.22)

ξni = ψn + h

s∑

j=1

ᾱijφ(xnj , ξnj)− h

s∑

j=1

γ̄ijξnjTn, (2.23)

xni =xn +
i−1∑

j=1

αijynj , (2.24)

1 ≤ i ≤ s, 0 ≤ n ≤ N − 1. (2.25)

The key for consistency analysis is the observation that this scheme can be viewed as a
discretization of the following two-point boundary-value problem:

x′(t) =g(x(t),ψ(t)), x(0) = x0, (2.26)
ψ′(t) = φ(x(t),ψ(t)), ψ(1) = ∇C(x(1)). (2.27)

The same problem can be derived by solving (1.6) for u in terms of (x,ψ) and substituting
in (1.4)-(1.5).

In order to make sure that the control approximations have the same order of accuracy
as that of the discrete state and costate, we compute discrete controls un, obtained by
minimization of the Hamiltonian ψnf(xn,u). In other words, we solve

un ∈ U, −ψn∇uf(xn,un) ∈ NU (un) , 0 ≤ n ≤ N, (2.28)

for given pairs (xn, ψn).
Eventually, we would like to emphasize that there are essentially two main hypotheses

in the analysis presented so far. The class of considered W-methods has to be restricted to
those methods having non-vanishing weights, i.e., bi 6= 0 for i = 1, . . . , s. Second, we have to
assume sufficient smoothness of the optimal control problem, so that the Hamiltonian has
a locally unique minimizer in the control and an equivalent, reduced scheme for state and
costate can be established. This is in accordance with the analysis used by Hager [5] for
Runge-Kutta discretizations.
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3 Order conditions

In this section we shall derive order conditions for the discretization (2.20)-(2.25) to reach
order two and three. Since the scheme does not fit into any classical form, we follow the
general approach of substituting the continuous solution into the discrete equations, applying
Taylor expansions and comparing the error terms with those obtained from the Taylor
expansion of the exact solution.

Let z and δ denote the following pairs:

z =
(

x
ψ

)
, δ(z) =

(
g(z)
φ(z)

)
. (3.1)

Then the system of differential equations (2.26)-(2.27) has the form z′(t) = δ(z(t)). The
standard Taylor expansion for z(t) around t= tn reads

z(tn+1) = z(tn) + δh +
1
2
∇zδ δh2 +

1
6

(∇2
zδ δ2 +∇zδ∇zδ δ

)
h3 +O(h4), (3.2)

where ∇zδ is the Jacobian matrix of δ with respect to z and ∇2
zδ denotes its Hessian tensor

which operates on the pair δ2 (to give a vector). The function δ and all its derivatives are
evaluated at z(tn).

An analogous expansion can be derived for the numerical solution zn+1 =(xn+1, ψn+1)
when the initial values xn and ψn in (2.20)-(2.25) are replaced by the exact solutions x(tn)
and ψ(tn). For given values xn and ψn, the intermediate values yni, ξni and xni are
functions of the step size h. Substituting yni(h) in (2.20) gives

zn+1(h) = z(tn) + hG(yn1(h), ξn1(h),xn1(h), . . . ,yns(h), ξns(h),xns(h)), (3.3)

where

G(h) =
s∑

i=1

bi

(
δ(xni(h), ξni(h)) +

(
Tn

∑i
j=1 γijynj(h)

0

))
. (3.4)

Combining successive substitution of the intermediate values yni(h), ξni(h) and xni(h) in
G with Taylor expansions around h=0, we have

zn+1(h) = z(tn) + C1h + C2h
2 + C3h

3 +O(h4), (3.5)

where the vector-valued coefficients Ci depend on the function δ, its first and second
derivatives (all evaluated at z(tn)), the matrix Tn and its transpose, and the coefficients
bi, αij , and γij . We say that the W-method (2.20)-(2.25) for the system (2.26)-(2.27)
has the order p if the expansions (3.2) and (3.5) agree through terms of order hp, i.e.,
z(tn+1)− zn+1(h)=O(hp+1).

Let us define

βij =αij + γij , βi =
i−1∑

j=1

βij , ci =
i−1∑

j=1

αij , (3.6)

β̄ij = ᾱij + γ̄ij , β̄i =
s∑

j=1

β̄ij , c̄i =
s∑

j=1

ᾱij . (3.7)

As usual, we formally set βij =0 for all i ≤ j.
Following straightforward the approach described above to derive the expansion of the

local error z(tn+1)− zn+1(h), we can state (after a quite lengthy calculation)
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Order Number Order Conditions

1 A1
∑

bi = 1

2 A2
∑

bici = 1
2

A3
∑

biβi = 1
2 − γ

3 A4
∑

bic
2
i = 1

3

A5
∑

biαijcj = 1
6

A6
∑

biαijβj = 1
6 − γ

2

A7
∑

biβijcj = 1
6 − γ

2

A8
∑

biβijβj = 1
6 − γ + γ2

A9
∑

bic̄
2
i = 1

3

A10
∑

biβ
2
i = 1

3

A11
∑

biβ̄
2
i = 1

3

Table 3.1: Order of W-methods for optimal control. The summation is over
each index, taking values from 1 to s.

Theorem 3.1 The W-method (2.20)-(2.25) has order p=1, 2, or 3, if the order conditions
of Table 3.1 are satisfied.

Notice that the order conditions A1−A8 are the usual order conditions associated with a
W-method when applied to a system of ordinary differential equations [4]. As a consequence,
any classical W-method of order p=2 maintains its order for optimal control. Only at order
p=3, three new conditions emerge in the control context. Condition A9 yields together with
A2 the additional order condition for Runge-Kutta methods of order p=3 as found in [5].
Clearly, this reflects the fact that with Tn =0 all explicit Runge-Kutta methods are covered.
Conditions A10 and A11 guarantee order p=3 for arbitrary matrices Tn.

4 Stability

Since we aim at handling stiff and even very stiff problems in (1.2), we would like to construct
L-stable methods, see [4], Section IV.3, for a discussion. From Remark 2.1, we observe that
in practical computations the discrete state and costate equations are solved one after the
other if iterates of the control variables are given. Thus it is reasonable to consider the
famous Dahlquist test equation

x(t) ∈ R1 : x′=λx, x(0) = x0, λ ∈ C, Re(λ) < 0, t > 0, (4.1)

for stability investigations. As in [23], we follow classical stability concepts for W-methods
and set Tn = λ, which is now a constant. The corresponding adjoint test equation acting
backwards in time reads

ψ(t) ∈ R1 : ψ′=−λψ, ψ(0) = ψ0, λ ∈ C, Re(λ) < 0, t < 0, (4.2)

where ψ0 is given.
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s p=s-1 p=s

2 1− 1
2

√
2 ≤ γ ≤ 1 + 1

2

√
2 γ = 1± 1

2

√
2

4 0.22364780 ≤ γ ≤ 0.57281606 γ = 0.57281606

Table 4.1: Regions of γ for L-stability with as = 0.

Let us introduce the notations

bT =(b1, . . . , bs), B = (βij)s
i,j=1, z = λh, 1T = (1, . . . , 1) ∈ Rs. (4.3)

If we apply method (2.5)-(2.6) to the test equation (4.1) then the numerical solution becomes
xn+1 =Rx(z)xn with the stability function

Rx(z) = 1 + zbT (I − zB)−11. (4.4)

Properties of such functions are well known from diagonally implicit Runge-Kutta methods,
see e.g. [4], Section IV.6. Applying method (2.7)-(2.8) to the test equation (4.2), we find
ψn =Rψ(z)ψn+1 with

Rψ(z) = 1 + z1T (I − zBT )−1b. (4.5)

Since (I − zBT )−1 =((I − zB)−1)T , the stability functions are equal, i.e., Rx(z) = Rψ(z).
Thus it is sufficient to consider Rx(z) defined by the discrete state solver.

A W-method with Tn = λ and stability function Rx(z) is called A-stable if its stability
domain S = {z ∈ C : |Rx(z)| ≤ 1} is a subset of the left complex half-plane C−={z ∈ C :
Re(z) ≤ 0}. If in addition Rx(−∞)=0 then it is called L-stable. For W-methods of order
p, Rx(z) is a rational function which satisfies

ez −Rx(z) = C zp+1 +O(zp+2) for z → 0, (4.6)

where C 6= 0 is the error constant. Its form is given by

Rx(z) =
P (z)

(1− γz)s
, P (z) = det(I − zB + z1bT ), (4.7)

where the numerator P (z) is a polynomial of degree s at most. Let P (z) =
∑

i=0,...,s aiz
i.

In order to have Rx(−∞)=0 for L-stability, the highest coefficient as of the numerator is set
to zero, which can be ensured by a proper choice of the matrix B and the vector b. Then,
if the method has order p≥ s−1, the remaining coefficients and the error constant in (4.6)
are uniquely determined by γ and we have

ai = (−1)sL(s−i)
s

(
1
γ

)
γi, i = 0, . . . , s− 1, C = (−1)sLs

(
1
γ

)
γs. (4.8)

Here,

Ls(y) =
s∑

j=0

(−1)j

(
s

j

)
yj

j!
(4.9)

denotes the s-degree Laguerre polynomial and L
(k)
s (y) its k-th derivative. As a consequence,

regions of L-stability and small error constants can now be determined by varying the
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parameter γ. For an overview of known results, we refer to Table 6.4 in [4]. For later use,
we collect the corresponding γ-values for s=2, 4 in Table 4.1.

Next we will describe a method of order 2, which belongs to a family of already known
ROS2-methods, and construct a new method of order 3 for optimal control.

5 Construction of W-methods for optimal control

5.1 Second-order W-method

As stated above, any classical second-order W-method is also suitable for optimal control.
Let s = 2. Then method (2.20)-(2.25) is second-order consistent for any Tn iff

b1 = 1− b2, γ21 = − γ

b2
, c2 = α21 =

1
2b2

, (5.1)

where b2 6= 0 and γ are free parameters. We choose γ = 1−√2/2 to get an L-stable method
with a small error constant and select b2 = 1/2 as proposed in [24] for ROS2. A short
calculation shows that the intermediate values xn +yn1 and ψn+1 + hξn1∇xf(xn,un1) give
first-order approximations which can be used for local error estimation to control variable
step sizes.

5.2 Third-order W-method

From a practical point of view, we would like to have an as small as possible stage number s.
The method’s coefficients have to satisfy the 11 order conditions plotted in Tab. 3.1, beside
a few restrictions on the stability parameter γ. Let us start with s=3. In this case, we have
10 parameters to be chosen. Not surprising, there is only a negative result.

Theorem 5.1 There is no third-order three-stage W-method (2.20)-(2.25) which satisfies
the order conditions A1-A11 with γ 6= 0.

Proof. To prove this statement, it is sufficient to consider conditions A5-A8. They read

(A5) b3c2α32 =
1
6
, (A6) b3α32β2 =

1
6
− γ

2
, (5.2)

(A7) b3β32c2 =
1
6
− γ

2
, (A8) b3β32β2 =

1
6
− γ + γ2. (5.3)

We compute α32 from A5 and substitute it in A6. This gives β2 = c2(1− 3γ). Then, from
A8, we derive a condition for the product b3β32c2, which can be compared to that given in
A7. Thus, we find (

1
6
− γ

2

)
(1− 3γ) =

1
6
− γ + γ2. (5.4)

This relation gives γ =0 as unique solution. ¦

Hence, it is reasonable to look for a third-order W-method with s=4. Now 17 parameters
are available to fit all conditions. Our main design criteria are the following: (i) L-stability,
i.e., γ ∈ [0.22364780, 0.57281606] and a4 = 0 (highest coefficient of the polynomial P (z)
in (4.7)), (ii) small error constant, and (iii) ci ∈ [0, 1], which is a desirable property for
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γ = 0.223759330902105371590

α21 = 0.000000000000000000000 γ21 = 0.623049256951860600835
α31 = 0.698846114833891907304 γ31 = −0.216811733839707314472
α32 = −0.010792511694314818149 γ32 = −0.124384420370820678006
α41 = −0.875766153727439547710 γ41 = 1.082999399651621891524
α42 = −0.284712566376614012866 γ42 = 0.477656694656746273489
α43 = 1.711394585188391020112 γ43 = −1.148821521873721639940

b1 = 0.361905316834060643619 b̂1 = 0.234497405714121809339
b2 = −0.116803401606996147966 b̂2 = 0.038815025587002997820
b3 = 0.613359019695417437058 b̂3 = 0.726687568698875185902
b4 = 0.141539065077518067289 b̂4 = 0.000000000000000000000

Table 5.1: Coefficients for the L-stable third-order ROS3WO-method.

non-autonomous differential equations. Following the advise given in [18], Remark 4.13, for
Runge-Kutta methods, we also ensure positivity of the summarized weights that correspond
to distinct values of the constants ci. We set α21 = 0, which gives c1 = c2 = 0, and request
b1 + b2 >0, b3 >0, and b4 >0. Newton’s method is applied to find appropriate roots of the
system of nonlinear equations.

For local error estimation, we construct embedded second-order solutions

x̂n+1 =xn +
4∑

i=1

b̂iyni, (5.5)

ψ̂n =ψn+1 + h

4∑

i=1

b̂iξni∇xf(xn +
i−1∑

j=1

αijynj ,uni). (5.6)

Replacing bi by b̂i for i = 1, . . . , 4, and setting b̂4 = 0, i.e., we only use the first three stage
values, the order conditions A1-A3 can be uniquely solved for the remaining coefficients b̂1,
b̂2, and b̂3. As usual, norms of the differences xn+1 − x̂n+1 and ψn − ψ̂n can be used to
determine variable step sizes.

The new W-method constructed along these principles is called ROS3WO, which is an
abbreviation for Rosenbrock, W-method and optimal control. In Table 5.1, we give the
method defining coefficients with 20-digit accuracy.

6 Numerical illustrations

Numerical results are given for optimal control problems, where the underlying ODE system
ranges from linear and nonstiff to nonlinear and very stiff. We study (i) a nonstiff problem
with known exact solution [5], (ii) the nonlinear Rayleigh problem [8], (iii) the stiff van
der Pol oscillator, and (iv) a nonlinear boundary control problem for the heat equation
with control constraints [3, 9]. These types of problems are often used in optimal control
benchmarking.
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To report on numerically observed convergence orders, we perform a least square fit of
the errors to a function of the form chp. The order thus obtained is denoted by pfit.

6.1 A nonstiff problem

We first study a simple test problem from [5] to illustrate the convergence behaviour of
classical explicit and implicit Runge-Kutta-Rosenbrock methods and our newly designed
W-methods. Let us consider the following quadratic problem with a linear ODE given as
constraint:

Minimize
1
2

∫ 1

0

u(t)2 + 2x(t)2 dt (6.1)

subject to x′(t) =
1
2
x(t) + u(t), t ∈ (0, 1], (6.2)

x(0) = 1, (6.3)

with the optimal solution

x∗(t) =
2e3t + e3

e3t/2(2 + e3)
, u∗(t) =

2(e3t − e3)
e3t/2(2 + e3)

. (6.4)

The first-order optimality system reads

x′(t) =
1
2
x(t) + u(t), t ∈ (0, 1], x(0) = 1, (6.5)

ψ′(t) = − 1
2
ψ(t)− 2x(t), t ∈ [0, 1), ψ(1) = 0, (6.6)

0 = u(t) + ψ(t). (6.7)

That is, we have u(t)=−ψ(t) and therefore the following boundary-value problem:

x′(t) =
1
2
x(t)− ψ(t), x(0) = 1, (6.8)

ψ′(t) = − 1
2
ψ(t)− 2x(t), ψ(1) = 0. (6.9)

Numerical results for the classical Runge-Kutta-methods RK3a, RK3b, RK4 (for example,
see [5] and references therein), the fourth-order Rosenbrock method RODAS [4], ROS2 and
ROS3WO are given in Table 6.1 and Table 6.2. Only RK3a, RK4, ROS2, and ROS3WO
fulfill the additional consistency conditions for optimal control and show their full order. In
contrast, the control discretization of the explicit RK3b and the implicit RODAS drops down
to second-order accuracy. This behaviour is typical for all Runge-Kutta and Rosenbrock
methods that violate one of the new conditions.

We also varied the arbitrary matrix Tn, i.e., we used Tn = 0 (which yields the embedded
explicit method), Tn = 0.5 (the exact Jacobian), and Tn = 1.0. In all cases, the full order is
obtained for the state and control variables.

6.2 The nonlinear unconstrained Rayleigh problem

The following problem is taken from [8]. It describes the behaviour of a so-called tunnel-
diode oscillator. The state variable is the electric current x1(t) at time t ∈ [0, T ] and the
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N 10 20 40 80 160 pfit

RK3a 8.82e−5 9.72e−6 1.11e−6 1.32e−7 1.61e−8 3.10
RK3b 7.24e−4 1.73e−4 4.23e−5 1.05e−5 2.60e−6 2.03
RK4 5.98e−6 3.85e−7 2.44e−8 1.54e−9 3.98
RODAS 9.93e−4 2.65e−4 6.82e−5 1.73e−5 4.35e−6 1.96

ROS2, Tn = 0 2.96e−3 7.23e−4 1.78e−4 4.42e−5 1.10e−5 2.02
ROS2, Tn = 0.5 2.60e−3 6.16e−4 1.50e−4 3.68e−5 9.13e−6 2.04
ROS2, Tn = 1 2.38e−3 5.43e−4 1.29e−4 3.15e−5 7.77e−6 2.06
ROS3WO, Tn = 0 5.78e−5 8.39e−6 1.12e−6 1.45e−7 1.84e−8 2.91
ROS3WO, Tn = 0.5 6.53e−5 8.80e−6 1.14e−6 1.44e−7 1.82e−8 2.95
ROS3WO, Tn = 1 1.05e−4 1.29e−5 1.60e−6 1.98e−7 2.47e−8 3.01

Table 6.1: Test problem 1: Order of L∞ convergence of the discrete state errors
x(tn)− xn, n = 0, . . . , N , for classical Runge-Kutta and Rosenbrock methods, ROS2
and ROS3WO applied to solve (6.8)-(6.9). The exact Jacobian is Tn =0.5.

control u(t) is a transformed voltage at the generator. The unconstrained Rayleigh problem
is defined as follows:

Minimize
∫ T

0

u(t)2 + x1(t)2 dt (6.10)

subject to x′′1(t) = − x1(t) + x′1
(
1.4− 0.14x′1(t)

2
)

+ 4u(t), t ∈ (0, T ], (6.11)
x1(0) =x′1(0) = −5. (6.12)

The ODE is of second order and nonlinear. To transform this problem to our setting, we
introduce x2(t) = x′1(t) and the additional equation x′3(t) = u(t)2 + x1(t)2 with the initial
value x3(0) = 0. This gives the new formulation

Minimize x3(T ) (6.13)
subject to x′1(t) = x2(t), (6.14)

x′2(t) = − x1(t) + x2

(
1.4− 0.14x2(t)2

)
+ 4u(t), (6.15)

x′3(t) = u(t)2 + x1(t)2, t ∈ (0, T ], (6.16)
x1(0) = − 5, x2(0) = −5, x3(0) = 0. (6.17)

As final time we set T = 2.5.
Computing the gradients of the right hand side in (6.14)-(6.16) with respect to x and u,

the adjoint equations and the condition for the control can be easily derived. We find

ψ′1(t) = ψ2(t)− 2x1(t)ψ3(t), (6.18)

ψ′2(t) = − ψ1(t)− (1.4− 0.42x2(t)2)ψ2(t), (6.19)
ψ′3(t) = 0, (6.20)

ψ1(T ) = 0, ψ2(T ) = 0, ψ3(T ) = 1, (6.21)
0 =4ψ2(t) + 2u(t)ψ3(t), t ∈ (0, T ]. (6.22)
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N 10 20 40 80 160 pfit

RK3a 2.06e−4 2.78e−5 3.58e−6 4.52e−7 5.68e−8 2.96
RK3b 3.65e−3 9.59e−4 2.46e−4 6.21e−5 1.56e−5 1.97
RK4 2.02e−6 1.37e−7 8.82e−9 5.58e−10 3.94
RODAS 6.08e−3 1.50e−3 3.74e−4 9.32e−5 2.33e−5 2.01

ROS2, Tn = 0 2.11e−3 6.09e−4 1.63e−4 4.21e−5 1.07e−5 1.91
ROS2, Tn = 0.5 1.90e−3 5.12e−4 1.32e−4 3.37e−5 8.49e−6 1.95
ROS2, Tn = 1 1.49e−3 3.75e−4 9.41e−5 2.35e−5 5.89e−6 2.00
ROS3WO, Tn = 0 5.00e−5 4.97e−6 5.35e−7 6.14e−8 7.33e−9 3.18
ROS3WO, Tn = 0.5 9.18e−5 9.49e−6 1.05e−6 1.23e−7 1.48e−8 3.15
ROS3WO, Tn = 1 1.84e−4 1.94e−5 2.20e−6 2.60e−7 3.16e−8 3.12

Table 6.2: Test problem 1: Order of L∞ convergence of the discrete control errors
u(tn)− un, n = 0, . . . , N , for classical Runge-Kutta and Rosenbrock methods, ROS2
and ROS3WO applied to solve (6.8)-(6.9). The exact Jacobian is Tn =0.5.

We get the trivial solution ψ3(t) ≡ 1. The control is then computed from (6.22), which
yields u(t) = −2ψ2(t). We can separate the equation (6.16) for x3(t), which only serves to
compute the objective function, from the set of ordinary differential equations and eliminate
the control in the first order optimality conditions. This finally gives the following nonlinear
boundary value problem in [0, T ]:

x′1(t) = x2(t), (6.23)

x′2(t) = − x1(t) + x2

(
1.4− 0.14x2(t)2

)− 8ψ2(t), (6.24)
x1(0) = −5, x2(0) = −5, (6.25)

ψ′1(t) = ψ2(t)− 2x1(t), (6.26)

ψ′2(t) = − ψ1(t)− (1.4− 0.42x2(t)2)ψ2(t), (6.27)
ψ1(T ) = 0, ψ2(T ) = 0. (6.28)

To study convergence orders of our W-methods, we computed a reference solution by apply-
ing the classical 4th order RK4 with N = 320. In our numerical tests, we chose for Tn the
zero matrix, the exact Jacobian and a partitioned matrix that treats the first state variable
implicitly and the second one explicitly. More precisely, we used

T1,n = 0, T2,n =
(

0 1
−1 1.4− 0.42x2

2,n

)
, T3,n =

(
0 0
−1 0

)
, 0 ≤ n ≤ N − 1.

Numerical results for ROS2 and ROS3WO are given in Table 6.3 and Table 6.4. They
clearly show orders close to two and three independently from the choice of the matrix Tn as
predicted by the theory. The better order four for ROS3WO in the case of inexact Jacobian
matrices results from a relatively huge improvement in the first two refinement steps. The
last three values are close to order three.
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N 20 40 80 160 320 pfit

ROS2, Tn = T1,n

1st state variable 2.23e−1 6.28e−2 1.27e−2 2.90e−3 6.98e−4 2.11
2nd state variable 6.59e−1 1.62e−1 3.12e−2 7.08e−3 1.71e−3 2.17
control variable 2.28e−0 3.46e−1 4.82e−2 1.03e−2 2.46e−3 2.48

ROS2, Tn = T2,n

1st state variable 5.60e−2 3.41e−2 8.99e−3 2.20e−3 5.43e−4 1.73
2nd state variable 3.94e−1 1.50e−1 3.73e−2 9.10e−3 2.25e−3 1.89
control variable 2.05e−0 4.74e−1 8.89e−2 1.85e−2 4.20e−3 2.25

ROS2, Tn = T3,n

1st state variable 2.19e−1 6.17e−2 1.24e−2 2.82e−3 6.78e−4 2.11
2nd state variable 6.47e−1 1.59e−1 3.06e−2 6.93e−3 1.67e−3 2.17
control variable 2.27e−0 3.42e−1 4.69e−2 1.01e−2 2.42e−3 2.48

Table 6.3: Rayleigh problem: Order of L∞ convergence of the discrete state errors
xi(tn) − xi,n, i = 1, 2, n = 0, . . . , N , and the discrete control errors u(tn) − un, n =
0, . . . , N , for ROS2 applied to solve (6.23)-(6.28).

6.3 The stiff van der Pol oscillator

Our third example is an optimal control problem for the van der Pol oscillator, which is
considered in the stiff region. The unconstrained problem reads as follows:

Minimize
∫ T

0

u(t)2 + x(t)2 + x′(t)2 dt (6.29)

subject to εx′′(t)− (1− x(t)2)x′(t) + x(t) = u(t), t ∈ (0, T ], (6.30)
x(0) = 0, x′(0) = 2. (6.31)

Small positive values of ε give rise to extremely steep profiles in x(t), making the van
der Pol equation a challenging test example for any ODE integrator [4]. The control u(t)
is used to smooth the solution again. We introduce Lienhard’s coordinates x2(t) = x(t),
x1(t) = εx′(t) + x(t)3/3 − x(t), and the variable x3(t) through the ordinary differential
equation x′3(t) = u(t)2 + x(t)2 + x′(t)2 with initial value x3(0) = 0, to derive the following
first order setting:

Minimize x3(T ) (6.32)
subject to x′1(t) = − x2(t) + u(t), (6.33)

x′2(t) =
1
ε

(
x1(t) + x2(t)− x2(t)3

3

)
, (6.34)

x′3(t) =
1
ε2

(
x1(t) + x2(t)− x2(t)3

3

)2

+ x2(t)2 + u(t)2, t ∈ (0, T ], (6.35)

x1(0) = 2ε, x2(0) = 0, x3(0) = 0. (6.36)
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N 20 40 80 160 320 pfit

ROS3WO, Tn = T1,n

1st state variable 7.69e−1 2.52e−2 1.13e−3 1.01e−4 1.06e−5 4.02
2nd state variable 4.33e−0 8.35e−2 2.96e−3 2.46e−4 2.54e−5 4.32
control variable 9.10e−0 4.40e−1 1.63e−2 1.30e−3 1.31e−4 4.06

ROS3WO, Tn = T2,n

1st state variable 1.85e−2 3.03e−3 3.83e−4 4.63e−5 5.46e−6 2.95
2nd state variable 1.54e−2 3.26e−3 4.15e−4 4.82e−5 5.42e−6 2.90
control variable 4.95e−1 4.86e−2 4.61e−3 4.87e−4 5.45e−5 3.29

ROS3WO, Tn = T3,n

1st state variable 7.76e−1 2.60e−2 1.15e−3 1.01e−4 1.07e−5 4.03
2nd state variable 4.38e−0 8.64e−2 3.04e−3 2.51e−4 2.59e−5 4.32
control variable 9.10e−0 4.54e−1 1.67e−2 1.33e−3 1.34e−4 4.05

Table 6.4: Rayleigh problem: Order of L∞ convergence of the discrete state errors
xi(tn) − xi,n, i = 1, 2, n = 0, . . . , N , and the discrete control errors u(tn) − un, n =
0, . . . , N , for ROS3WO applied to solve (6.23)-(6.28).

We defined T =2 as final time and considered the case ε=0.01.
Applying the approach described above and eliminating the control and the auxiliary

variable x3(t) and its adjoint, we finally get the following nonlinear boundary value problem
in [0, T ] for the state and costate variables:

x′1(t) = − x2(t)− ψ1(t)
2

, (6.37)

x′2(t) =
1
ε

(
x1(t) + x2(t)− x2(t)3

3

)
, (6.38)

x1(0) = 2ε, x2(0) = 0, (6.39)

ψ′1(t) = − 1
ε
ψ2(t)− 2

ε2

(
x1(t) + x2(t)− x2(t)3

3

)
, (6.40)

ψ′2(t) = ψ1(t)− 1
ε

(
1− x2(t)2

)
ψ2(t)

− 2
ε2

(
x1(t) + x2(t)− x2(t)3

3

) (
1− x2(t)2

)− 2x2(t), (6.41)

ψ1(T ) = 0, ψ2(T ) = 0. (6.42)

For later use in our convergence study, we note that u(t)=−0.5ψ1(t). Since the factor ε−2

appears in the adjoint equations, this system is even stiffer and hence harder to solve than
the original van der Pol equation. Due to the stiffness, an explicit integrator as RK4 works
no longer efficiently.

We computed a reference solution by applying ROS3WO with N = 2560. To test the
robustness with respect to the choice of the matrix Tn, we considered the exact Jacobian and
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N 160 320 640 1280 2560 pfit

ROS2, Tn = T1,n

1st state variable 6.30e−3 1.59e−3 3.73e−4 8.74e−5 2.03e−5 2.07
2nd state variable 6.24e−3 1.59e−3 3.73e−4 8.79e−5 2.05e−5 2.07
control variable 4.62e−1 1.06e−1 2.44e−2 5.65e−3 1.31e−3 2.12

ROS2, Tn = T2,n

1st state variable 6.27e−3 1.59e−3 3.70e−4 8.67e−5 2.01e−5 2.08
2nd state variable 6.21e−3 1.58e−3 3.71e−4 8.72e−5 2.03e−5 2.07
control variable 4.64e−1 1.05e−1 2.42e−2 5.59e−3 1.30e−3 2.12

Table 6.5: Van der Pol oscillator: Order of L∞ convergence of the discrete state errors
xi(tn) − xi,n, i = 1, 2, n = 0, . . . , N , and the discrete control errors u(tn) − un, n =
0, . . . , N , for ROS2 applied to solve (6.37)-(6.42).

N 160 320 640 1280 pfit

ROS3WO, Tn = T1,n

1st state variable 1.47e−2 1.02e−3 1.01e−4 9.27e−6 3.52
2nd state variable 1.46e−2 1.01e−3 1.00e−4 9.17e−6 3.52
control variable 1.35e−0 9.29e−2 9.08e−3 8.18e−4 3.54

ROS3WO, Tn = T2,n

1st state variable 1.48e−2 1.02e−3 1.01e−4 9.31e−6 3.53
2nd state variable 1.48e−2 1.02e−3 1.01e−4 9.20e−6 3.53
control variable 1.36e−0 9.26e−2 9.06e−3 8.18e−4 3.54

Table 6.6: Van der Pol oscillator: Order of L∞ convergence of the discrete state errors
xi(tn) − xi,n, i = 1, 2, n = 0, . . . , N , and the discrete control errors u(tn) − un, n =
0, . . . , N , for ROS3WO applied to solve (6.37)-(6.42).

a partitioned matrix that treats the first equation explicitly and the second one implicitly.
More precisely, we used

T1,n =

(
0 −1

ε−1 ε−1
(
1− x2

2,n

)
)

, T2,n =

(
0 0

ε−1 ε−1
(
1− x2

2,n

)
)

, 0 ≤ n ≤ N − 1.

Numerical results for ROS2 and ROS3WO are given in Table 6.5 and Table 6.6. In ac-
cordance to the theory, ROS2 clearly shows orders close to two. The observed order for
ROS3WO is slightly better than three independently from the choice of the matrix Tn.
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6.4 Nonlinear boundary control for the heat equation

For a practical illustration, we consider the nonlinear boundary control problem

minimize
1
2

∫ 1

0

(
x(y, T )− 1

2
(1− y2)

)2

dy +
λ

2

∫ T

0

u(t)2 dt (6.43)

subject to the heat equation with nonlinear boundary conditions of Stefan-Boltzmann type

∂tx(y, t)− ∂yyx(y, t) = 0, (y, t) ∈ (0, 1)× (0, T ], (6.44)
∂yx(0, t) = 0, t ∈ (0, T ], (6.45)

∂yx(1, t) + x(1, t) + x4(1, t) = u(t), t ∈ (0, T ], (6.46)
x(y, 0) = 0, y ∈ [0, 1], (6.47)

and the box constraints for the control,

−0.5 ≤ u(t) ≤ 0.5, for almost all t ∈ [0, T ]. (6.48)

We considered this problem for final time T =1.58 and regularization parameter λ=0.1 as
stated in [9] (see also [3] for theoretical aspects). Standard second order finite differences on
an equidistant mesh yi = i4y, i = 0, . . . , M , with 4y=1/M and M being a natural number,
are used to discretize the nonlinear heat equation in space, which gives approximations
xi+1(t) ≈ x(yi, t), i = 0, . . . ,M . Approximating the spatial integral of the objective function
by the linear interpolating spline associated with the spatial mesh, and introducing an
additional component xM+2(t) to transform the remaining control term, we get the following
optimal control problem:

Minimize C(x(T )) =
1
2
(x(T )− xy)T My(x(T )− xy) + xM+2(T ) (6.49)

subject to x′(t) = Ayx(t) + Gy(x(t), u(t)), t ∈ (0, T ], (6.50)
x(0) = 0, (6.51)

where xy = 1
2 (1− y2

0 , . . . , 1− y2
M , 0)T and

My =
4y

6




2 1
1 4 1

. . .
1 4 1

1 2
0




, Ay =
1

(4y)2




−2 2
1 −2 1

. . .
1 −2 1

2 −2
0




,

as well as

(Gy)i =





0, i = 1, . . . , M,

2
4y

(
u(t)− xM+1 − x4

M+1

)
, i = M + 1,

λ

2
u(t)2, i = M + 2.
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The dimension of the ODE system is d=M+2. We set M =400 to keep spatial discretization
errors small with respect to the overall error.

The control u(t) is approximated through a continuous piecewise linear function uh(t)
that correspond to the temporal mesh 0 = t0 < t1 < . . . < tN = T , tn = nh:

uh(t) =
un+1 − un

h
(t− tn) + un, t ∈ [tn, tn+1], 0 ≤ n ≤ N − 1. (6.52)

We consider the vector u = (u0, u1, . . . , uN )T ∈ RN+1 as finite dimensional set of controls
and determine the Ns intermediate control variables uni from

uni = uh(tn + cih) = ciun+1 + (1− ci)un, 0 ≤ n ≤ N − 1, 1 ≤ i ≤ s. (6.53)

The discrete first-order optimality system (2.5)-(2.10) was solved using the source code for
ASA CG, Version 1.3 [7]. ASA CG is an active set algorithm for solving bound constrained
optimization problems [6]. We checked the results with those obtained by the DONLP2
software package [19]. In DONLP2, a sequential quadratic programming with an active set
strategy and only equality constrained subproblems is implemented [20, 21]. Both, ASA CG
and DONLP2, gave similar results for a gradient tolerance 1.0e−11.

To apply the optimization routines, we have to provide the value and the gradient of the
reduced objective function Ĉ(u) = C(xN (u)) and the control constraints. Given a vector
u, the final state vector xN (u) is derived from the discrete state equations (2.5)-(2.6) by
marching forward from n = 0 to n = N − 1. Within each time step, the stage variables
yni, i=1, . . . , s, can be computed one after another by solving linear systems with one and
the same (tridiagonal) matrix I − hγTn. Then all variables are given to solve the discrete
costate equations (2.7)-(2.8) for ψn and λni by marching backward from n=N − 1 to n=0.
Again, the intermediate values λni, i = s, . . . , 1, are successively computable by solving a
sequence of linear systems with the matrix I − hγTT

n within each time step. The gradient
of the objective function is determined by the following expressions:

∇unĈ(u) =





h

s∑

i=1

(1− ci)λ0i∇uf(x0i, u0i), n = 0,

h

s∑

i=1

(ciλn−1,i∇uf(xn−1,i, un−1,i)

+(1− ci)λni∇uf(xni, uni)) , n = 1, . . . , N − 1,

h

s∑

i=1

ciλN−1,i∇uf(xN−1,i, uN−1,i), n = N,

(6.54)

where f is the right hand side in the ODE system (6.50).
We discretized the optimal control problem using the methods ROS2, ROS3WO, RODAS

and GRK4A [10]. The latter method is a classical four-stage fourth-order Rosenbrock solver
suitable for stiff equations, but it does not fulfill the additional order conditions for optimal
control. The exact Jacobian and a constant matrix that represents only the discrete diffusion
operator were used for the matrix Tn:

T1,n = Ay + diag(0, . . . , 0,− 2
4y

(1 + 4x3
M+1,n), 0), T2,n = Ay, 0 ≤ n ≤ N − 1.
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For comparison purposes, we computed a reference solution with the exact Jacobian T1,n

for N = 800, from which we derived the reference value for the objective function, Cref =
0.02319494. All methods converge to this value. The corresponding optimal control is
plotted in Fig. 6.1.
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Figure 6.1: Nonlinear heat equation: Reference optimal control computed with 401
equidistant spatial points and 800 uniform time steps, and piecewise linear continuous
approximation of −2ψM+1(t)/(λ4y) using numerical approximations of the values
ψM+1(tn) at the time points. The control constraints are active in two regions.

The gradient of the reduced version of the objective function in (6.49) can be computed
from ∇uĈ(u)=−2ψN+1/4y − ψN+2λu. Since ψN+2 ≡ 1, the optimal control satisfies the
projection relation

u(t) = P[−0.5,0.5]{−2ψN+1(t)/(λ4y}. (6.55)

The piecewise linear continuous approximation of −2ψM+1(t)/(λ4y) using numerical ap-
proximations of the values ψM+1(tn) at the time points, is also shown in Fig. 6.1. Outside
the active region of the control constraints, it fits the numerical approximation of uh(t) very
well.

Numerical results for the time integrators tested are given in Fig. 6.2. Using Tn =T1,n, the
exact Jacobian, ROS3WO converges very fast to the reference solution. ROS2 and also the
fourth-order GRK4A behave like second-order methods, whereas RODAS performs slightly
better. Fig. 2(b) shows for the W-methods ROS2 and ROS3WO the differences between
the values of the objective function if the discrete diffusion matrix T2,n is used as matrix
Tn. Note that in this case, the matrix is independent of the state vector. Although the
absolute values are worse, they are still quite good. Obviously, convergence is maintained.
Not surprisingly, the Rosenbrock solvers RODAS and GRK4A give unsatisfactory results
due to their loss of consistency. We omit the values obtained by these two methods.

7 Summary and main conclusions

We have developed and discussed W-methods of linearly implicit structure for the numeri-
cal approximation of optimal control problems within the first-discretize-then-optimize ap-
proach. Following the concept of transformed adjoint equations, which was introduced in
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(a) Values for exact Jacobian.

100 150 200 250 300 350 400
0.023190

0.023195

0.023200

0.023205

NUMBER OF TIME STEPS

V
A

LU
E

 O
F

 O
B

JE
C

T
IV

E
 F

U
N

C
T

IO
N

 

 

reference value

ros2 with exact Jacobian

ros2 with approximate Jacobian

ros3wo with exact Jacobian

ros3wo with approximate Jacobian

(b) Values for exact and approximate Jacobian.

Figure 6.2: Nonlinear heat equation: Comparison of different time integrators, which
are applied to solve (6.49)-(6.51). The methods tested are ROS2, GRK4A, RODAS,
and ROS3WO. Values of the discrete objective function for different numbers of time
steps, N =100, 150, . . . , 400, are shown. The reference value is Cref =0.02319494.

[5] for Runge-Kutta methods, we analyzed the approximation order and derived novel order
conditions that have to be satisfied by the coefficients of the W-method so that the Taylor
expansions of the continuous and discrete state and costate solutions match to order three.
On the basis of this analysis, two main conclusions can be drawn: (i) Any classical W-method
of second order maintains its order for optimal control. (ii) For order three, three additional
order conditions have to be fulfilled. These conditions include the one already found in [5]
for Runge-Kutta methods. There is no implicit third-order three-stage W-method suitable
for optimal control.

As base integrators for comparisons, we have taken an L-stable two-stage W-method
of second order from the ROS2 family [24] and have constructed a novel L-stable four-
stage W-method ROS3WO of third-order. We have also given embedded formulas for local
error control. Both methods and other selected Runge-Kutta and Rosenbrock methods were
applied to four example problems, ranging from linear and nonstiff to nonlinear and stiff.
A semi-discretized nonlinear heat equation was considered to demonstrate the use of the
developed W-methods in numerical optimization techniques that require the gradient of the
discrete objective functional. From our numerical experience, we have come to two main
conclusions. (i) All methods tested show their theoretical orders when they are applied to
solve the two-point boundary-value problem (2.26)-(2.27), which is derived from the first-
order optimality system. The W-methods are remarkably robust with respect to varying
approximations of the Jacobian matrix. This allows for partitioning to treat stiff and nonstiff
components more efficiently in the linear algebra. One even could set the Jacobian equal
to zero and mimic an explicit method without loosing the order. (ii) Most notable for the
W-methods is their structural advantage when they are applied within a gradient approach
to solve state and costate equations separately. Only a sequence of linear equations with
one and the same system matrix has to be solved to compute the stages values. We expect
that this property will become even more important for the numerical solution of large scale
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PDE-constrained optimal control problems.
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9 Appendix: First-order optimality conditions

Consider the nonlinear optimal control problem (1.1)-(1.3) and set up the Lagrangian

L(x,u, ψ) = C(x(1)) +
∫ 1

0

(ψ(t)(f(x(t),u(t))− x′(t))) dt. (9.1)

Standard Lagrangian recipe requests differentiation with respect to u and x. The problem
is how to differentiate x′(t) with respect to x(t). Using integrating by parts and the initial
condition on the state variables, we can rewrite the Lagrangian as

L(x,u, ψ) = C(x(1)) +
∫ 1

0

(ψ(t)f(x(t),u(t)) + ψ′(t)x(t)) dt + ψ(0)x0 −ψ(1)x(1). (9.2)

In the spirit of calculus of variation we consider small perturbations around the optimal
path (x∗(t),u∗(t)):

u(t) = u∗(t) + εδ1(t), x(t) = x∗(t) + εδ2(t), t ∈ [0, T ], (9.3)

where ε is a scalar value, δ1(t) and δ2(t) are some perturbation functions. Note that for
any choice of δ1(t), δ2(t) is determined by the ODE system (1.2)-(1.3) that governs the
evolution of x(t). The central insight is that slight perturbations around the optimal path
yields only slight variations in the Lagrangian. That is, in the limit, ε=0, the derivative of
L must be zero for any possible perturbations δ1(t) and δ2(t). Therefore, we have

∂L

∂ε
=

∫ 1

0

(ψ(t)∇uf(x(t),u(t))δ1(t)

+ (ψ(t)∇xf(x(t),u(t)) + ψ′(t))δ2(t)
)

dt + (∇C(x(1))−ψ(1))δ2(1) = 0. (9.4)

Since δ1(t) and δ2(t) are arbitrary functions, the following conditions must be satisfied:

ψ(t)∇uf(x(t),u(t)) = 0, ψ(t)∇xf(x(t),u(t)) + ψ′(t) = 0, ψ(1) = ∇C(x(1)). (9.5)

Together with the equations for x, this gives the first-order optimality conditions (1.4)-(1.6)
in the unconstrained case U =Rm, i.e., NU ≡0.

In the constraint case, we have to make sure that u(t) ∈ U in (9.3). Let v(t) ∈ U be
an arbitrary function and consider u(t) = u∗(t) + ε(v(t)− u∗(t)) with ε ∈ (0, 1]. Since U is
convex and u∗(t) ∈ U , we have u(t) ∈ U . From the optimality of u∗(t) it follows

1
ε

(L(x∗(t),u∗(t),ψ∗(t))− L(x∗(t),u∗(t) + ε(v(t)− u∗(t)), ψ∗(t))) ≤ 0. (9.6)
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After letting ε → 0, we conclude that ∂L/∂u (v − u) ≤ 0 must be satisfied for all v ∈ U .
This gives

−ψ(t)∇uf(x(t),u(t)) ∈ NU (u(t)) := {w ∈ Rm : wT (v − u) ≤ 0 for all v ∈ U}. (9.7)

We can analogously proceed in the discrete case. First set up the (discrete) Lagrangian

L(x0, . . . ,xN ,y01, . . . ,yN−1,s,u01, . . . ,uN−1,s,ψ0, . . . , ψN , λ01, . . . , λN−1,s)

= C(xN ) + ψ0(a− x0) +
N−1∑
n=0

(
ψn+1(xn − xn+1 +

s∑

i=1

biyni) (9.8)

+
s∑

i=1

λni(hf(xn +
i−1∑

j=1

αijynj ,uni) + hTn

i∑

j=1

γijynj − yni)


 , (9.9)

where a is the initial value for the state variable, above also denoted by x0. Using again
calculus of variations, we find that

∂L

∂xn
= 0, 0 ≤ n ≤ N,

∂L

∂yni
= 0,

∂L

∂uni
= 0, 1 ≤ i ≤ s, 0 ≤ n ≤ N − 1, (9.10)

have to be satisfied. This gives equations (2.7)-(2.9) with NU ≡ 0. In the constraint case,
we have to replace the last equation in (9.10) by the variational inequality

∂L

∂uni
(v − uni) ≤ 0 for all v ∈ U. (9.11)
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