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Abstract. We develop and analyze a framework for two-stage
methods with EB-splines, applicable to continuous and discrete
approximation problems. In particular, we propose a weighted
discrete least squares fit that yields optimal convergence rates for
sufficiently dense data on Lipschitz domains in R

d.

1. Introduction

When approximating functions defined on some domain Ω ⊂ R
d, one

can distinguish between meshless methods, like those using radial basis
functions, and methods which are based on a partition of Ω. Such a
partition may or may not be adapted to the geometry of Ω.
In the first case, which is standard for finite element discretizations

of PDEs, the cells of the partition are chosen to conform with the do-
main boundary. The big advantage is an easy treatment of boundary
data. However, stability and approximation properties of the result-
ing finite-dimensional function spaces depend on geometric properties
of the partition, and determining good partitions requires consider-
able care. A further problem is concerning the construction of smooth
piecewise polynomial bases whose complexity is rapidly growing with
the required order of smoothness and the space dimension d.
In the second case, which is typically used in geometric modeling,

the cells have a uniform structure independent of the shape of Ω. Here,
the well-known theory of tensor product B-splines or box-splines can be
used to define spline spaces of arbitrary smoothness, but the required
trimming of functions at the boundary is leading to severe problems:
First, it may be difficult to comply with prescribed boundary values.
Second, standard tensor product B-spline bases typically lose their sta-
bility when restricted to the domain. In [13], web-splines were in-
troduced to overcome these difficulties. B-splines supported near the
boundary of the domain are coupled with inner ones to stabilize the
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basis. Further, if homogenous boundary data are given, all basis func-
tions are multiplied by a common weight function vanishing at the
boundary.
In this paper, we will not consider boundary value problems so that

no weight function has to be used. Rather, we will investigate approxi-
mation properties of extended B-splines (EB-splines). While some basic
properties were already studied in [13, 11, 12], we will focus on local
two-stage methods, as introduced by Schumaker in [21]. Such methods
suggest optimal approximation rates without the need to solve large
linear systems. Further, by an appropriate choice of the local approxi-
mation schemes, varying characteristics of the data to be approximated
may be taken into account, see [7, 5, 6].
Clearly, the standard spline spaces on domains have the same opti-

mal approximation properties established in [11] for their subspaces of
EB-splines. Hence, ill-conditioning of, say, L2-Gramian systems with
respect to standard bases indicates numerical rather than principal
problems when approximating some function f : Ω → R. By the way,
simple diagonal preconditioning may be sufficient for stabilization, see
[19].
This situation changes completely when considering scattered data

problems, where f is known only at a finite set of data sites. Figures 1
and 2 illustrate the two main problems. In the first case, evenly dis-
tributed data sites and uniform knot vectors are used to approximate
the function f(x, y) = sin(x) + y2 on the unit disk in the discrete least
squares sense. Although the condition number of the Gramian is rela-
tively high, the solution can be computed reliably. While the l2-error at
the data sites is less than 1.6 ·10−2, Figure 1(b) reveals large deviations
near the boundary. This problem, shown here in a particularly drastic
case, is persistent, even when using very dense data sets. In the second
case, the function f(x, y) = 1− x2 − y2 is approximated on [−0.5, 0.5]2

by bilinear polynomials. Here, a large number of data points lies on a
segment of the circle obtained by projecting the intersection curve of
the graphs of s(x, y) = kx + 0.75 and f into the xy-plane. As illus-
trated in Figure 2(b), this uneven distribution of data sites forces the
discrete least squares fit to deviate from f by more than k/24, see the
calculations in Example 5.3. These examples show that, in general, it is
not possible to guarantee reasonably small approximation errors when
applying the ordinary discrete least squares fits. Remarkably, this is
still the method of choice in many applications, like reverse engineering
or car body design.
In this paper, we develop and analyze a framework for two-stage

methods with EB-splines, applicable to continuous and discrete approx-
imation problems. In particular, we propose a weighted least squares
fit which yields optimal convergence rates for sufficiently dense data on
Lipschitz domains in R

d.
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Figure 1. Large error near boundary
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Figure 2. Uneven data distribution

In the next section, we establish a Bramble-Hilbert-type lemma for
sufficiently small subsets of Ω in the particular form required later
on. In the third section, EB-splines and some of their basic properties
are introduced. Then, in Section 4, two-stage methods for EB-splines
are defined and analyzed. These results, which are fairly general, are
specialized to local least squares techniques in Section 5. While the
continuous case is easily settled, discrete problems require more care.
We consider both standard least squares techniques and a weighted fit.
The latter approach is easy to implement and yields qualitatively op-
timal approximation results for arbitrary, though dense, distributions
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of data sites. Finally, in Section 6, we confirm our theoretical results
by numerical analysis of a sample problem.

2. Local polynomial approximation

In this paper, we consider the approximation of functions on a bounded
connected Lipschitz domain Ω ⊂ R

d, characterized as follows: For some
numbers δ, µ > 0 and each ℓ in some finite index set Λ ⊂ N, there is an
open cube Yℓ := (0, ηℓ)

d−1, a function ζℓ : Yℓ → [δ,∞) with Lipschitz
constant

sup
y,y′∈Yℓ

|ζℓ(y)− ζℓ(y
′)|

‖y − y′‖∞
≤ µ,

and an isometric map Iℓ : R
d → R

d such that

Ω =
⋃

ℓ∈Λ

Iℓ(Ωℓ), Ωℓ := {(y, z) ∈ Yℓ × R : 0 < z < ζℓ(y)}.

Further, the sets Iℓ(Ωℓ) overlap such that the subsets Ω′
ℓ := {(y, z) ∈

Ωℓ : δ < y < ηℓ − δ, z > δ} still provide a covering of Ω, i.e., Ω =⋃
ℓ∈Λ Iℓ(Ω

′
ℓ).

Note that every bounded domain Ω with a locally Lipschitz boundary
satisfies the above conditions for suitable µ and δ. Indeed, in this
case every point inside the domain belongs to a cube contained in
Ω, and every point on the boundary of Ω has a neighborhood whose
intersection with the boundary is the graph of a Lipschitz continuous
function [1]. By choosing a suitable cube inside this neighborhood, and
then extracting a finite cover thanks to the compactness of Ω, we will
get the desired sets Ωℓ and isometries Iℓ. However, the parameter δ
introduced here plays a prominent role in our analysis as it provides an
upper bound on the size of subsets for which various estimates hold, see
e.g., Lemma 2.3 and equation (14). Therefore, for any given domain it
is desirable to have δ as large as possible. It is not difficult to show, for
example, that for the unit disk in 2D the above definition holds with
any δ <

√
2/2.

Let p, p′ ∈ [1,∞] be a pair of conjugate exponents, related by 1/p +
1/p′ = 1. As usual, we set 1/p = 0 for p = ∞. The Sobolev space
W n

p (Ω) of order n ∈ N is the closure of the set of smooth functions on
Ω with respect to the norm

‖f‖Wn
p (Ω) :=

∑

k≤n

|f |W k
p (Ω), |f |W k

p (Ω) :=
∑

|α|=k

‖f (α)‖Lp(Ω),

where |α| = α1 + · · ·+ αd and f (α) := ∂|α|f
∂α1x1···∂

αdxd
.

Let P be the space of real-valued d-variate polynomials. We define
the subspace Pn of polynomials of coordinate order n and the subspace
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P̃
n of polynomials of total order n by

P
n := {π ∈ P : π(α) = 0 for all α with max

i
αi = n},

P̃
n := {π ∈ P : π(α) = 0 for all α with |α| = n},

respectively. Clearly, P̃n ⊂ P
n.

Throughout the paper, the order n ∈ N, the space dimension d ≥ 2,
the exponent p ∈ [1,∞], and the domain Ω according to the above
construction, are regarded as fixed parameters. Equally, some size
factor r > 1 and some bound ̺ > 0 on the distortion of knot sequences,
to be introduced in the next section, are fixed. To formalize the concept
of generic constants, we introduce relations 4 and <, defined as follows.
Given the fixed parameters n, d, p,Ω, r, ̺, it is

A 4 B and B < A

if and only if there exists a positive real constant c such that A ≤ cB
for any instance of the real-valued terms A and B within some range
defined in the context.

Definition 2.1. Given a continuous function ζ : (0, 1)d−1 → [1, 2], and
an isometry I : Rd → R

d, the corresponding graph-bounded set γ ⊂ R
d

with scaling factor q > 0 is defined by

γ := I(qγ∗), γ∗ :=
{
(y, z) ∈ (0, 1)d−1 × R : 0 < z < ζ(y)

}
.

The Bramble-Hilbert Lemma is the key to establishing local approx-
imation properties of splines. In principle, the following variant for
the graph-bounded sets could be derived from results in [20], but we
include a proof for the sake of completeness.

Lemma 2.2. For any graph-bounded set γ with scaling factor q, and
for any function f ∈ W n

p (γ), there exists a polynomial π ∈ P̃
n with

(1) |f − π|Wm
p (γ) 4 qn−m |f |Wn

p (γ), m ≤ n.

Proof: Under isometries, P̃n is invariant and Sobolev semi-norms
change at most by a factor depending only on the order. Further, (1)
is invariant with respect to scaling. Hence, without loss of generality,
we may assume that the isometry I is the identity, and that q = 1,
i.e., γ = γ∗. Let γ0 := (0, 1)d ⊂ γ. By the Bramble-Hilbert Lemma [3],

there exists a polynomial π ∈ P̃
n such that

(2) |f − π|Wm
p (γ0) 4 |f |Wn

p (γ0), m ≤ n,

We show that the same polynomial π satisfies the required estimate on
γ. To this end, we prove

|f − π|Wm
p (γ) 4 |f |Wn

p (γ), m ≤ n,

by induction on m, decrementing from the case m = n, which is trivial.
Assume that the assertion is true for some m ≤ n. For any multi-index
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α of total order |α| = m − 1, consider the function ∆ := f (α) − π(α).
For y ∈ Y := (0, 1)d−1 and 0 < z < ζ(y), let

∆1(y, z) := ∆(y, z/ζ(y)), ∆2(y, z) :=

∫ ζ(y)

0

|∂z∆(y, t)| dt.

Clearly,

|∆(y, z)−∆1(y, z)| =
∣∣∣
∫ z

z/ζ(y)

∂z∆(y, t) dt
∣∣∣ ≤ ∆2(y, z),

which implies |∆| ≤ |∆1| + |∆2|. First, substituting u = z/ζ(y) and
using (2), we obtain

‖∆1‖pLp(γ) ≤
∫

Y

∫ ζ(y)

0

|∆(y, z/ζ(y))|p dzdy ≤ 2

∫

Y

∫ 1

0

|∆(y, u)|p dudy

= 2 ‖∆‖pLp(γ0)
4 |f |pWn

p (γ0)
≤ |f |pWn

p (γ).

Second, by Hölder’s inequality and the induction hypothesis,

‖∆2‖pLp(γ) =

∫

Y

∫ ζ(y)

0

|∆2(y, z)|p dzdy ≤ 2p/p
′

∫

Y

∫ ζ(y)

0

∫ ζ(y)

0

|∂z∆(y, t)|p dtdzdy

≤ 21+p/p′
∫

Y

∫ ζ(y)

0

|∂z∆(y, t)|p dtdy = 2p‖∂z∆‖pLp(γ) 4 |f |pWn
p (γ).

Combining the two estimates and summing over all α concludes the
proof. 2

The size |ω| of a set ω ⊂ Ω is defined as the max-norm of the diagonal
of its bounding box. Polynomial approximation in a neighborhood
of sufficiently small subsets of Ω will be established by the following
observation:

Lemma 2.3. For any subset γ ⊂ Ω of size |γ| ≤ δ/(2
√
d), there exists

a graph-bounded set γ∗ with scaling factor q :=
√
d|γ| and size |γ∗| ≤

(d + 1)|γ|, such that γ ⊂ γ∗ ⊂ Ω. Hence, there exists a polynomial

π ∈ P̃
n such that

|f − π|Wm
p (γ) 4 |γ|n−m |f |Wn

p (γ∗), m ≤ n.

Proof: Let the index ℓ ∈ Λ be chosen such that γ ∩ Iℓ(Ω
′
ℓ) is not

empty. There exists a cube γ′ := (y′, z′) + (0, q)d of size q containing
the pre-image of γ, i.e., I−1

ℓ (γ) ⊂ γ′. Since q ≤ δ/2 and γ′ contains
points in Ω′

ℓ, we have q ≤ y′ ≤ ηℓ − q and z′ ≥ q. Hence,

γ′′ :=
{
(y, z) ∈ (y′, y′ + q)d−1 × R : z′ − q < z < min(z′ + q, ζℓ(y))

}

is a graph-bounded set with scaling factor q and I−1
ℓ (γ) ⊂ γ′′ ⊂ Ωℓ,

implying that γ∗ := Iℓ(γ
′′) is a graph-bounded set with scaling factor

q and γ ⊂ γ∗ ⊂ Ω. The size of γ∗ is bounded by q
√
d+ 1 ≤ (d+ 1)|γ|.

The last statement follows from Lemma 2.2. 2
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3. Extended B-Splines

In this section, we give a brief introduction to the construction of
extended B-splines and to some of their properties. More details on
this topic can be found in the web-spline literature, e.g., in [11], [12].
Let

T := [T 1, T 2, . . . , T d]

be a multivariate knot sequence for tensor product splines on R
d. For

simplicity, we assume that the knots tιi forming the bi-infinite sequence
T ι are strictly monotone increasing and diverging, i.e.,

tιi < tιi+1, i ∈ Z,

and

lim
i→−∞

tιi = −∞, lim
i→∞

tιi = ∞

for all ι = 1, . . . , d. The grid cell Γk corresponding to the index k =
(k1, . . . , kd) ∈ Z

d is defined as the half-open box Γk := [t1k1 , t
1
k1+1) ×

· · · × [td
kd
, td

kd+1
). Let lιkι := tιkι+1 − tιkι , ι = 1, . . . , d, be the side lengths

of Γk. We assume that the cells are uniformly bounded, and define the
grid width h as the maximal side length of all cells,

h := sup
k∈Zd

max
ι=1,...,d

lιkι .

The distortion of the knot sequence T , defined as the maximal ratio of
side lengths, is assumed to be bounded by some constant ̺,

( inf
k∈Zd

min
ι=1,...,d

lιkι)
−1h ≤ ̺.

Thus, a lower bound for all side lengths is lιkι ≥ h/̺. Throughout, the
grid width h ∈ (0, h0) is regarded as a variable, while the bound ̺ on
the distortion is one of the fixed parameters. A specific value for the
maximal grid width h0 will be given in (14).
In the following definition of extended B-splines, we will not only

consider the domain Ω but also certain subsets thereof whose size is
comparable to the grid width. Given some size factor r > 1, belonging
to the list of fixed parameters, we define

WT :=
{
ω ⊂ Ω : ω is measurable and contains a grid cell Γk

}

W̃T :=
{
ω ⊂ Ω : ω is measurable and |ω| ≤ rh

}
,

W∗
T := WT ∩ W̃T .

Subsets ω ∈ W̃T are called local sets and those in W∗
T local domains.

Throughout, to avoid trivial cases, we assume that the knot sequence
is chosen fine enough to guarantee that Ω contains at least one grid
cell, i.e., WT and W∗

T are not empty. In particular, Ω ∈ WT .
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For k ∈ Z
d, the multivariate tensor product B-spline of coordinate

order n ∈ N with respect to the knot sequence T is denoted by

bk(x) := b1k1(x
1) · · · bdkd(xd),

where each bιkι is a univariate B-spline of order n with knots T ι. Its
support is the box

sk := [t1k1 , t
1
k1+n]× · · · × [tdkd , t

d
kd+n].

Given any ω ∈ WT , restricted grid cells and restricted supports are a
defined by

Γω,k := Γk ∩ ω, sω,k := sk ∩ ω, k ∈ Z
d,

respectively. With

Kω := {k ∈ Z
d : sω,k 6= ∅}

the index set of relevant B-splines, the space of restrictions to ω of all
tensor product splines of coordinate order n with respect to the knot
sequence T is given by

Bn
ω := span{bk|ω : k ∈ Kω}.

Multivariate extended B-splines (EB-splines) introduced by Höllig et
al [13, 12] form a stable basis of a subspace of Bn

ω, which is sufficiently
large to provide full approximation power. For the sake of complete-
ness, we briefly recall here the construction. The basic idea is to adjoin
the splines with small support in ω to those whose supports overlap
significantly with ω. More precisely, the relevant B-splines are divided
into two categories, namely the inner B-splines with indices in the set

Iω :=
{
i ∈ Z

d : sω,i contains a grid cell Γk

}
,

and the outer B-splines with indices in Jω := Kω \ Iω. A grid cell Γk is
called inner grid cell if it is entirely contained in ω, i.e., Γk = Γω,k. The
EB-splines Bω,i : ω → R are linear combinations of the inner B-splines
bi with outer B-splines,

Bω,i := bi|ω +
∑

j∈Jω

ei,jbj|ω, i ∈ Iω.

The weights ei,j, called extension coefficients, are given by

ei,j := λ∗jpi,j.

Here, λ∗j is the de Boor-Fix functional (see below) corresponding to the
B-spline bj, and pi,j is the polynomial in P

n that agrees with bi on the
inner grid cell “closest” in a sense to the center of the support of bj,
see [13, 12]. The support of Bω,i is denoted by Sω,i, and the relation

sω,i ⊂ Sω,i
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accounts for the ’E’ in EB-splines. By construction, each support Sω,i

contains at least one inner grid cell. Below, Γ′
i denotes one of these

inner grid cells,

(3) Γ′
i ⊂ Sω,i, i ∈ Iω.

The choice of Γ′
i is arbitrary in the sense that it does not affect the qual-

itative form of our estimates. However, in applications, an appropriate
choice might yield quantitative improvement.
The space eBn

ω of extended splines on ω is spanned by the set of
EB-splines,

eBn
ω := span {Bω,i : i ∈ Iω} ⊂ Bn

ω.

It is important to note that eBn
ω includes the space of all polynomials

of coordinate order n on ω,

(4) P
n ⊂ eBn

ω.

Collecting all EB-splines in a column vector Bω := [Bω,i]i∈Iω and a
sequence of real control points in a row vector aω := [ai]i∈Iω , extended
splines can be written as

aωBω :=
∑

i∈Iω

aiBω,i ∈ eBn
ω.

Both for local domains ω ∈ W∗
T and for the global domain Ω, EB-splines

are bounded in the following way:

Lemma 3.1. For ω ∈ W∗
T ∪{Ω}, the size of the support of EB-splines

satisfies

h 4 |Sω,i| 4 h, i ∈ Iω.

The extension coefficients are bounded by

(5)
∑

j∈Jω

|ei,j| 4 1, i ∈ Iω.

Proof: Clearly, |Sω,i| ≥ h/̺. In the local case ω ∈ W∗
T , we have

|Sω,i| ≤ rh by definition ofW∗
T . The bound on the extension coefficients

can be established as follows: By affine invariance of the EB-splines
construction, we may assume h = 1 without loss of generality. The
extension coefficients depend continuously on a finite number of knots
so that boundedness is implied by a compactness argument. In the
global case ω = Ω, the proof follows immediately by specializing the
arguments in [12] to the case of knot sequences with bounded distortion.
2

We note that the constants hidden in the inequalities of the lemma
depend crucially on r in the local case, and on µ in the global case.
The next lemma summarizes the key stability properties of EB-

splines: Up to a normalization factor, they are uniformly stable with
respect to p-norms, and satisfy a Bernstein-type inequality.
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Lemma 3.2. For any set ω ∈ W∗
T ∪ {Ω}, any sequence aω of control

points, and any m ≤ n, it is

hd/p‖aω‖p 4 ‖aωBω‖Lp(ω) 4 hd/p‖aω‖p(6)

|aωBω|Wm
p (ω) 4 hd/p−m‖aω‖p.(7)

Proof: The estimate (6) is an immediate consequence of Theorem 9
in [12]. To prove (7), we only consider the case p <∞, which is slightly
more involved than p = ∞. Let

Ik := {i ∈ Iω : Γω,k ∩ Sω,i 6= ∅}
Ki := {k ∈ Kω : Γω,k ∩ Sω,i 6= ∅},

and ak := [ai]i∈Ik . First, the number of indices in Ik is #Ik = nd so

that ‖ak‖1 ≤ nd/p′‖ak‖p. Second, it is known that ‖b(α)k ‖L∞(Rd) 4 h−|α|

for any k ∈ Z
d and any multi-index α with |α| = m. Hence, by (5),

‖B(α)
ω,i ‖L∞(Rd) 4 h−|α|, i ∈ Iω.

Third, the volume of Γω,k is bounded by vol(Γω,k) ≤ hd. Together, we
obtain

‖aωB(α)
ω ‖Lp(Γω,k) 4 h−|α| vol(Γω,k)

1/p‖ak‖1 ≤ hd/p−|α|‖ak‖p.
Therefore,

‖aωB(α)
ω ‖pLp(ω) =

∑

k∈Zd

∥∥∥
∑

i∈Iω

aω,iB
(α)
ω,i

∥∥∥
p

Lp(Γω,k)

4 hd−|α|p
∑

k∈Zd

∑

i∈Ik

|aω,i|p = hd−|α|p
∑

i∈Iω

∑

k∈Ki

|aω,i|p

≤ hd−|α|p
∑

i∈Iω

#Ki |aω,i|p.

By Lemma 3.1, the side lengths of supports are bounded by Sω,i 4 h,
while the side lengths of grid cells are bounded by lιkι ≥ h/̺. Hence,
we obtain #Ki 4 1, and the proof is complete. 2

We define the de Boor-Fix functionals λ∗i corresponding to global
EB-splines as follows: For a sufficiently smooth function f , let

(8) λ∗i f :=
∑

‖α‖∞<n

(−1)(n−1)d−|α|ψ
(n−1−α)
i (τi)f

(α)(τi), i ∈ IΩ.

Here, ψi(x) := ψ1
i (x

1) · · ·ψd
i (x

d),

ψι
i(x

ι) :=
1

(n− 1)!

n−1∏

l=1

(tιiι+l − xι),
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n− 1− α := (n− 1− α1, . . . , n− 1− αd), and τi is an arbitrary point
in the interior of sΩ,i. These functionals are bi-orthogonal to standard
B-splines [2, Lemma IX.1], and hence also to global EB-splines,

λ∗iBΩ,k = δi,k, i, k ∈ IΩ.

While being useful for many theoretical purposes, the de Boor-Fix
functionals are of limited use in practice since they are only applica-
ble to functions which are, at least locally, continuously differentiable
up to order (n − 1, . . . , n − 1). This limitation can be overcome, for
instance, by prepending an approximating polynomial, such as the av-
erage Taylor polynomial [3], before applying λ∗i . Here, we suggest a
different process: Since tensor-product polynomials are reproduced by
EB-splines, it is natural, and indeed computationally efficient to use the
L2-projection of f to the space of polynomials P

n as an intermediate
approximation.
More precisely, let piα denote the normalized tensor product Legendre

polynomials of degree α ∈ N
d
0 on the inner grid cell Γ′

i ⊂ SΩ,i,
∫

Γ′
i

piαp
i
β = δα,β, α, β ∈ N

d
0, i ∈ IΩ.

Then the local L2-projection operators Li : L
1(Γ′

i) → P
n are given by

Lif =
∑

‖α‖∞<n

(∫

Γ′
i

piαf
)
piα, i ∈ IΩ.

We assume that the points τi in (8) satisfy τi ∈ Γ′
i, i ∈ IΩ, and define

the functionals λi : L
1(Γ′

i) → R by

λif := λ∗i (Lif) =

∫

Γ′
i

pif, pi :=
∑

‖α‖∞<n

(λ∗i p
i
α)p

i
α ∈ P

n.

For any function f ∈ L1(Ω), we set λi(f) := λi(f|Γ′
i
).

Besides being applicable to functions which are barely integrable,
these functionals have the following properties:

Lemma 3.3. The functionals λi are biorthogonal to EB-splines,

(9) λiBΩ,k = δi,k, i, k ∈ IΩ.

Further, they reproduce polynomials according to

(10)
∑

i∈IΩ

(λiπ)BΩ,i = π for any π ∈ P
n.

and are bounded on Lp(Γ′
i) by

(11) |λif | 4 h−d/p‖f‖Lp(Γ′
i)
.
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Proof: Clearly, λiπ = λ∗i (Liπ) = λ∗iπ for any π ∈ P
n. Hence,

λiBΩ,k = λi(BΩ,k|Γ′
i
) = λ∗i (BΩ,k|Γ′

i
) = δi,k, which proves (9). By (4),

π = aΩBΩ for certain coefficients aΩ, and hence
∑

i∈IΩ

(λiaΩBΩ)BΩ,i =
∑

i∈IΩ

aiBΩ,i = π.

The estimate (11) is invariant under scaling and shifting knots. Hence,
we may assume Γ′

i = [0, 1]d without loss of generality. The number
of knots influencing the polynomial pi is at most (n − 1)d and, by
boundedness of the distortion, they all lie in the compact set [−n̺, n̺]d.
Hence, since pi is depending continuously on these knots, ‖pi‖Lp′ (Γ′

i)
4

1, and (11) follows from Hölder’s inequality. 2

4. Two-stage methods

Let Pi : F (ωi) → Lp(Γ′
i), i ∈ IΩ, be a sequence of local approximation

operators, where Γ′
i ⊂ SΩ,i as in (3), each local domain ωi ∈ W∗

T sat-
isfies Γ′

i ⊂ ωi, and F (ωi) ⊂ L1(ωi) is a suitable function space. Thus,
beforehand, we assume essentially nothing but that each local approxi-
mation Pi(f|ωi

), i ∈ IΩ, is L
p-integrable on the inner grid cell Γ′

i ⊂ SΩ,i.
Keeping in mind that the operator Pi must not make use of function
values outside the local domain ωi, we write Pif or Pi(f)instead if
Pi(f|ωi

) to simplify notation.
A two-stage method for EB-spline approximation proceeds as fol-

lows: First, the local approximations Pi(f) are determined. Second, a
corresponding extended spline is computed by applying suitable dual
functionals, for example λi defined in Section 3, to Pi(f).

Definition 4.1. The two-stage method P corresponding to the local
approximation operators [Pi]i∈IΩ is defined by

(12) Pf :=
∑

i∈IΩ

(λiPi(f|ωi
))BΩ,i.

The functionals λi used here could be replaced by any sequence of
functionals corresponding to a quasi-interpolant of order n, like the de
Boor-Fix functionals λ∗i . However, our special choice guarantees a wide
range of applicability by assuming low regularity of f and Pi(f), and
the results and arguments are prototypical.
Now, we are going to derive estimates on the error of the spline

approximation

∆ := f − Pf
from the errors of the local approximations

∆i := f − Pif, i ∈ IΩ.



TWO-STAGE APPROXIMATION METHODS WITH EXTENDED B-SPLINES13

For the sake of convenience, we introduce the notations

∆i,p := ‖∆i‖Lp(Γ′
i)
, ∆Ω,p := [∆i,p]i∈IΩ , ‖∆Ω,p‖p =

(∑

i∈IΩ

∆p
i,p

)1/p

.

We show that the Sobolev error of a two-stage method can be split
into two terms, one of which is similar to the O(hn−m)-error of the
best approximation by EB-splines, and the second one that depends
on the local errors ∆i.

Theorem 4.2. For any function f ∈ W n
p (Ω), the error ∆ = f − Pf

is bounded by

(13) |∆|Wm
p (Ω) 4 hn−m

(
|f |Wn

p (Ω) + h−n‖∆Ω,p‖p
)
, m ≤ n.

The proof is postponed until after Theorem 4.3 that gives a local
error bound.
According to Lemma 3.1 there exists a constant c > 0 depending

only on the fixed parameters n, d, p,Ω, ̺ such that |SΩ,i| ≤ ch for all
i ∈ IΩ. In the following, we assume that the grid width h is sufficiently
small,

(14) h ≤ h0 :=
δ

2
√
d (r + 2c)

.

For any σ ∈ W̃T , let

γ := σ ∪
⋃

i∈IΩ[σ]

Γ′
i,

where IΩ[σ] denotes the set of indices corresponding to EB-splines not
vanishing on σ,

IΩ[σ] := {i ∈ IΩ : SΩ,i ∩ σ 6= ∅}.
Since |SΩ,i| ≤ ch, we have

|γ| ≤ |σ|+ 2 max
i∈IΩ[σ]

|SΩ,i| ≤ (r + 2c)h ≤ δ

2
√
d
.

Thus, by Lemma 2.3, there exists a graph-bounded set γ∗ with scaling
factor

√
d|γ| ≤

√
d(r + 2c)h such that σ ⊂ γ ⊂ γ∗ ⊂ Ω. Lemma 2.2

guarantees

(15) |f − π|Wm
p (γ∗) 4 hn−m|f |Wn

p (γ∗), m ≤ n,

for any function f ∈ W n
p (γ

∗) and a suitable π ∈ P
n. Note that the size

of γ∗ is bounded by

(16) |γ∗| ≤ (d+ 1)|γ| ≤ 2d(r + 2c)h 4 h,

Theorem 4.3. Let σ be any local subset and γ∗ the corresponding
graph-bounded set as defined above. Then

(17) |∆|Wm
p (σ) 4 hn−m

(
|f |Wn

p (γ∗) + h−n max
i∈IΩ[σ]

∆i,p

)
, m ≤ n,

for any function f ∈ W n
p (γ

∗).
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Proof: Let π ∈ P
n be the polynomial approximating f on γ∗ accord-

ing to Lemma 2.2, and set ε := f − π. Reproduction of polynomials
according to (10) leads to the representation

∆ = ε−
∑

i∈IΩ

(λiε)BΩ,i +
∑

i∈IΩ

(λi∆i)BΩ,i

of the error. Hence, for m ≤ n and p < ∞, the Bernstein inequality
(7), applied to

∑
i∈IΩ[σ]

(λiε)BΩ,i and
∑

i∈IΩ[σ]
(λi∆i)BΩ,i, yields

|∆|Wm
p (σ) 4 |ε|Wm

p (σ) + hd/p−m
(( ∑

i∈IΩ[σ]

|λiε|p
)1/p

+
( ∑

i∈IΩ[σ]

|λi∆i|p
)1/p)

.

The number of indices in IΩ[σ] is bounded by #IΩ[σ] ≤ (r̺+ n)d 4 1.
Hence, by equivalence of norms on R

#IΩ[σ], we obtain the estimate

|∆|Wm
p (σ) 4 |ε|Wm

p (σ) + hd/p−m
(
max
i∈IΩ[σ]

|λiε|+ max
i∈IΩ[σ]

|λi∆i|
)
,

which is also valid for p = ∞. We obtain using (11)

|∆|Wm
p (σ) 4 |ε|Wm

p (σ) + h−m
(
max
i∈IΩ[σ]

‖ε‖Lp(Γ′
i)
+ max

i∈IΩ[σ]
‖∆i‖Lp(Γ′

i)

)
.

Since Γ′
i ⊂ γ∗ for all i ∈ IΩ[σ], the desired estimate follows from (15).

The case p = ∞ can be proven in a similar way. 2

We are now ready to prove our estimate for the global error.

Proof of Theorem 4.2: We only consider the case p < ∞ as it is
slightly more difficult than p = ∞. We use the restricted grid cells as

local subsets, σk := ΓΩ,k ∈ W̃T , and write

|∆|pWm
p (Ω) =

∑

k

|∆|pWm
p (σk)

.

By Theorem 4.3 and the equivalence of norms,

|∆|pWm
p (Ω) 4 h(n−m)p

(∑

k

|f |pWm
p (γ∗

k
) + h−np

∑

k

max
i∈IΩ[σk]

∆p
i,p

)
.

Since ΓΩ,k ⊂ γ∗k and |γ∗k| ≤ 2d(r + 2c)h, see (16), the number of sets
γ∗k containing any given point x ∈ Ω is bounded by some constant.
Equally, the number of times every term ∆p

i,p, i ∈ IΩ, appears in the
second sum is bounded by another constant. Hence,

|∆|pWm
p (Ω) 4 h(n−m)p

(
|f |pWn

p (Ω) + h−np
∑

i∈IΩ

∆p
i,p

)
,

and the claim follows by the equivalence of norms, again. 2

Remark 4.4. As mentioned before, the dual functionals λi in the defi-
nition of the two-stage method P could be replaced by other families of
functionals, and in particular by the de Boor-Fix functionals λ∗i . These
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functionals can be applied if Pif is sufficiently smooth. Using similar
arguments as above, one can show the error bounds

|∆|Wm
∞(Ω) 4 hn−m

(
|f |Wn

∞(Ω) +max
i∈IΩ

∑

‖α‖∞<n

h−n+|α|
∣∣∆(α)

i (τi)
∣∣
)
,

if f ∈ W n
∞(Ω), and

|∆|Wm
∞(σ) 4 hn−m

(
|f |Wn

∞(γ∗) + max
i∈IΩ[σ]

∑

‖α‖∞<n

h−n+|α|
∣∣∆(α)

i (τi)
∣∣
)
,

if f ∈ W n
∞(γ∗), analogous to (13) and (17), respectively. Recall that

τi are arbitrarily chosen points in the interiors of sΩ,i. This freedom
can be used to obtain particularly local error bounds. For example,
assume that x ∈ Ω lies in an inner grid cell ΓΩ,k, and σx ⊂ ΓΩ,k is any
open cube centered at x. Then we may choose γ∗x := σx as enclosing
graph-bounded set. Further, it is possible to choose τi = x, i ∈ IΩ[σx],
to obtain

|∆(m)(x)| 4 hn−m
(
|f |Wn

∞(σx) + max
i∈IΩ[σx]

∑

‖α‖∞<n

h−n+|α|
∣∣∆(α)

i (x)
∣∣
)
.

Now, we consider two-stage methods with additional properties. Re-
calling the bound (14) on the grid width h, we note that the local
domains ωi ∈ W∗

T used to define the local approximation operators Pi

are bounded by |ωi| ≤ rh ≤ δ/(2
√
d). The enclosing graph-bounded

domains corresponding to the ωi according to Lemma 2.3 are denoted
by ω∗

i , i ∈ IΩ.

Definition 4.5. A two-stage method P is said to be of type (n, p) if

• the local approximation operators reproduce polynomials accord-
ing to

Pi(π) = π

for all i ∈ IΩ and π ∈ P
n, and

• there exists νp ≥ 1 such that

‖Pi(f)− Pi(g)‖Lp(Γ′
i)
≤ νp

(
‖f − g‖Lp(ωi) + hn|f − g|Wn

p (ωi)

)

for all i ∈ IΩ and f, g ∈ W n
p (ωi).

Note that νp is just a bound on the Lipschitz constants of the oper-
ators Pi : W

n
p (ωi) → Lp(Γ′

i) with respect to suitably weighted Sobolev
norms. For sequences of linear operators, as they are typically used
in practice, νp is a bound on the norms of the operators Pi in the
appropriate function spaces. In particular, the stronger condition

(18) ‖Pif‖Lp(Γ′
i)
≤ νp‖f‖Lp(ωi)

implies (n, p)-type if Pi are linear operators.

For a two-stage method of type (n, p) the estimates of Theorems 4.2
and 4.3 simplify as follows:
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Theorem 4.6. Consider a two-stage method of type (n, p). For any
local subset σ ⊂ Ω there is a graph-bounded set σ̃ containing σ, with
|σ̃| 4 h, such that the approximation error ∆ := f − Pf σ is bounded
by

(19) |∆|Wm
p (σ) 4 νph

n−m |f |Wn
p (σ̃), m ≤ n,

for any function f ∈ W n
p (σ̃). Moreover,

(20) |∆|Wm
p (Ω) 4 νph

n−m |f |Wn
p (Ω), m ≤ n,

for any function f ∈ W n
p (Ω).

Proof: For a fixed i, let π be the polynomial approximating f on
ω∗
i according to Lemma 2.3. By reproduction of polynomials,

∆i = (f − π)− (Pi(f)− Pi(π)) on Γ′
i.

Hence, with ε := f − π, the (n, p)-type and Lemma 2.3 yield

∆i,p ≤ ‖ε‖Lp(Γ′
i)
+ ‖Pi(f)− Pi(π)‖Lp(Γ′

i)

≤ ‖ε‖Lp(Γ′
i)
+ νp

(
‖ε‖Lp(ωi) + hn|ε|Wn

p (ωi)

)

≤ (1 + νp)
(
‖ε‖Lp(ωi) + hn|ε|Wn

p (ωi)

)

4 νph
n|f |Wn

p (ω∗
i )
.

Substituting this estimate into (17) leads to (19), where

σ̃ =
(
σ ∪

⋃

i∈IΩ[σ]

ωi

)∗

is obtained according to Lemma 2.3. Similarly, the global bound (20)
follows by substituting the above estimate into (13) and using the fact
that the number of sets ω∗

i , i ∈ IΩ, containing any point x ∈ Ω is
bounded by a constant. 2

5. Local least squares

In this section, we discuss approximation properties of two-stage
methods based on continuous and discrete least squares fits in local
EB-spline spaces, respectively.
In general, local least squares fits Pi(f|ωi

) can be obtained with the
help of various approximation tools, such as polynomials or radial basis
functions, see e.g. [7, 5]. In this paper we study local approximations
from eBn

ωi
, which has the big computational advantage that in this case

the value of the dual functional λi(Pi(f|ωi
)) needed to form Pf coin-

cides with the coefficient ai of the i-th local EB-spline in the expansion
Pi(f|ωi

) = aωi
Bωi

∈ eBn
ωi
. Indeed, this follows from the fact that, since

Γ′
i ⊂ ωi, the functional λi satisfies λiBωi,k = δi,k for all k ∈ Iωi

, see
Lemma 3.3. Hence, as soon as all local approximations have been
computed, the control points of the two-stage fit Pf are obtained in
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no time by utilising appropriate coefficients of the local spline approxi-
mants. Note that methods with similar advantages have been discussed
in [16, 7, 18, 15] in the context of different spline spaces.

5.1. Continuous least squares. We start with considering local ap-
proximation in the L2-sense. As before, let ωi ∈ W∗

T , i ∈ IΩ, denote
the local domains used to define the two-stage method P , and let Γ′

i

denote the corresponding inner grid cells. It is important to note that,
in general, eBn

ωi
6⊂ eBn

Ω since the local rules for attaching outer to inner
B-splines may differ from the global ones. Now, we define the operator

P̃i : L
1(ωi) ∋ f 7→ ãωi

Bωi
∈ eBn

ωi

via the Gramian system G̃ãTωi
= F̃ , where

(21) G̃j,k :=

∫

ωi

Bωi,jBωi,k, F̃j :=

∫

ωi

Bωi,jf, j, k ∈ Iωi
.

By Lemma 3.1, |Sωi,j| < h, while |ωi| 4 h. Hence, the dimension of
the Gramian system is bounded by some constant, #Iωi

4 1. Clearly,
if f ∈ L2(ωi), then P̃if is the best L2-approximation of f in eBn

ωi
,

‖f − P̃if‖L2(ωi) = inf
s∈eBn

ωi

‖f − s‖L2(ωi).

It is easy to see that the two-stage method P̃ corresponding to the local
operators P̃i, i ∈ IΩ, has all desired properties.

Theorem 5.1. For any p ∈ [1,∞], the two-stage method P̃ is of type
(n, p), and νp 4 1.

Proof: Clearly, P̃ is reproducing polynomials of order n. Since P̃i

is linear, it suffices to show that

‖P̃if‖Lp(Γ′
i)
4 ‖f‖Lp(ωi), i ∈ IΩ,

for any f ∈ Lp(ωi). That is, the constant νp depends only on the
default parameters. Let us fix i ∈ IΩ and drop the index i of ω = ωi to
simplify notation. Using (6) for p = 2, the smallest eigenvalue λ̃min of
G̃ can be estimated from below by means of the Rayleigh quotient of
G̃ and Lemma 3.2,

(22) λ̃min = min
aω 6=0

〈aωG̃, aω〉
‖aω‖22

= min
aω 6=0

‖aωBω‖2L2(ω)

‖aω‖22
< hd.

As shown above, the dimension of G̃ is bounded by a constant. Hence,
by equivalence of norms, the inverse of G̃ is bounded by

‖G̃−1‖p 4 ‖G̃−1‖2 = λ̃−1
min 4 h−d.

Using Hölder’s inequality and (6), we see that the components of F̃ are
bounded by

|F̃j| ≤ ‖Bω,j‖Lp′ (ω)‖f‖Lp(ω) 4 hd/p
′‖f‖Lp(ω).
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Consequently, ‖ãω‖p ≤ ‖G̃−1‖p‖F̃‖p 4 h−d/p‖f‖Lp(ω), and, using (6)
again,

‖P̃if‖Lp(Γ′
i)
≤ ‖ãωBω‖Lp(ω) 4 ‖f‖Lp(ω).

2

Lemma 3.2 also yields the bound λ̃max 4 hd on the maximal eigen-
value of G̃, implying that the condition number is bounded uniformly in
h, i.e., cond2 G̃ = λ̃max/λ̃min 4 1 . Hence, the linear two-stage method
P̃ combines optimal error bounds with numerical stability.

5.2. Discrete least squares on scattered data. While the proper
functionality of continuous least squares fits depends on nothing but
our assumptions on the shape of Ω and upper bounds on the grid width,
the distortion, and the size of local domains, scattered data problems
require more care. For instance, as shown in the introduction, problems
may occur near the boundary and for unevenly distributed data.
Let Ξ := {ξℓ}ℓ be a finite set of data sites ξℓ ∈ Ω, and let fℓ := f(ξℓ)

be the corresponding values sampled from some function f ∈ C0(Ω).
Assuming continuity is necessary to make sure that point evaluation is
well defined. A straightforward approach to constructing local opera-
tors Pi is to compute a discrete least squares fit of the data (ξℓ, fℓ) in
SΩ,i or, more generally, in a local domain ωi ∈ W∗

T containing the inner
grid cell Γ′

i. Clearly, if no further assumptions on the data density and
distribution are made, the sets ωi have to be carefully chosen to ensure
that the data sites in Ξωi

:= Ξ ∩ ωi provide sufficient information to
compute reasonable local approximations Pif on Γ′

i.
Assuming that Ξωi

:= Ξ ∩ ωi is a total set for eBn
ωi
, i.e., s ∈ eBn

ωi
and

s|Ξωi
= 0 implies s = 0, the local discrete least squares fit P̄i, can be

defined uniquely by

‖(f − P̄if)|Ξωi
‖2 = min

s∈eBn
ωi

‖(f − s)|Ξωi
‖2.

This defines the operator P̄i : C0(ωi) → L∞(Γ′
i) for each i ∈ IΩ.

Clearly, the corresponding two-stage method P̄ is of type (n,∞) if
the norms ‖P̄i‖, i ∈ IΩ, of the above operators are uniformly bounded.
In general, this will not be the case.
If the scattered data Ξ are too sparse, it may be impossible to find

ωi such that Ξωi
is a total set for eBn

ωi
, and even if Ξωi

is a total set, it
may happen that the local data sites are ill-distributed such that the
norms ‖P̄i‖ cannot be bounded. To handle such data with a two-stage
method, more complicated adaptive algorithms may be applied. In
particular, the methodology of [4, 7] can be adopted, such that ‖P̄i‖ is
estimated using the minimum singular value of the collocation matrix
obtained by evaluating the local EB-splines at the data sites. We leave
the development of such algorithms for future research.
However, to begin with, we show the boundedness of ‖P̄i‖ under two

additional assumptions: sufficient density of the data and boundedness
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of the number of the data sites in each spline cell. As usual, the density
of a subset X ⊂ Y ⊂ R

d is measured by the fill distance

fd(X, Y ) := max
y∈Y

min
x∈X

‖x− y‖2.

Since s|Γ′
i
is a polynomial, by Markov inequality there exists a constant

β depending only on n and d (e.g., β = 2(n− 1)2
√
d), such that

(23) max
y∈Γ′

i

‖∇s(y)‖2 ≤
β

h
‖s‖L∞(Γ′

i)
, for all s ∈ Bn

Ω, i ∈ IΩ.

Theorem 5.2. Assume that

• the data sites Ξ are sufficiently dense in Γ′
i in the sense that

(24) fd(Ξ ∩ Γ′
i,Γ

′
i) ≤ h/(2β), i ∈ IΩ,

and
• the maximum number of data sites in each spline cell is bounded
by a constant κ,

(25) max
k∈Zd

#(Ξ ∩ Γk) ≤ κ.

Then P̄ is a two-stage method of type (n,∞) with ν∞ 4
√
κ.

Proof: As soon as the data are sufficiently dense to ensure that Ξωi

is a total set for eBn
ωi
, ‖P̄i‖ can be estimated as ρi ≤ ‖P̄i‖ ≤

√
#Ξωi

ρi,
where

ρi := max
{
‖s‖L∞(Γ′

i)
: s ∈ eBn

ωi
, ‖s|Ξωi

‖∞ ≤ 1
}
.

see [4, Proof of Theorem 2.1]. It is easy to see that Ξωi
is a total

set if and only if ρi < ∞. Since |ωi| ≤ rh, the number of cells Γk

satisfying Ξωi
∩ Γk 6= ∅ is bounded by a constant. Hence, by (25), we

have #Ξωi
4 κ, which implies

‖P̄i‖ 4
√
κ ρi.

To find a bound for ρi, we apply the techniques introduced in [14], see
also [22, Proof of Theorem 3.8]. For s ∈ eBn

ωi
, with ‖s|Ξωi

‖∞ ≤ 1, let
x ∈ Γ′

i be a point with the property |s(x)| = ‖s‖L∞(Γ′
i)
. It follows from

(24) that there is a data point ξ ∈ Ξ ∩ Γ′
i ⊂ Ξωi

such that ‖x− ξ‖2 ≤
h/(2β). Hence, using (23) we obtain

|s(x)− s(ξ)| ≤ max
y∈[x,ξ]

‖∇s(y)‖2‖x− ξ‖2 ≤
1

2
‖s‖L∞(Γ′

i)
.

Thus,

1 ≥ |s(ξ)| ≥ |s(x)|−|s(x)−s(ξ)| ≥ ‖s‖L∞(Γ′
i)
−1

2
‖s‖L∞(Γ′

i)
=

1

2
‖s‖L∞(Γ′

i)
,

and so ‖s‖L∞(Γ′
i)
≤ 2, which shows that ρi ≤ 2. 2

It is easy to see that conditions (24) and (25) are compatible. For ex-

ample, (24) is satisfied if Ξ is a uniform grid with side length h/(β
√
d).

In this case (25) holds true with κ = (β
√
d)d. Note that the numerical
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values for κ resulting from these estimates, e.g. 1296 for the above grid
in case d = 2, n = 4, have little practical importance as they are very
pessimistic. Indeed, our numerical results below show that the method
described in this section (with d = 2, n = 4, r = 14) performs very
well for random data with just four data points per cell on average.
Condition (25) may seem counterintuitive because it suggests that in

some circumstances the availability of additional data may be harmful.
In fact, a close inspection of the error bounds for global discrete least
squares from spline spaces with stable bases given in [9, 10] reveal
that they also depend on the maximum number κ of data sites in the
spline cells. A similar phenomenon has been discussed in [17] for the
moving least squares approximations. The following example shows
that this is a genuine phenomenon and in general, the approximation
error, and hence the norm of the discrete least squares operator, can
indeed become arbitrarily large as the number of data sites is growing.

Example 5.3. Assume that Γ = (−h
2
, h
2
)2 ⊂ ω ⊂ R

2 is a grid cell for
the space B2

ω and f(x, y) := 1 − x2 − y2. Choose k ≥ 2 and consider
the set of data sites Ξ = Ξ1 ∪ Ξ2, where Ξ1 := h

4
Z

2 ∩ ω, and Ξ2 is a
finite subset of the circle segment

σ :=

{
(x, y) ∈ [−h

2
,
h

2
]2 : f(x, y) = s(x, y) := khx+ 1− h2/4

}

(see Figure 2(a)), defined as follows. Set r := ‖f|Ξ1
− s|Ξ1

‖2, and

choose a positive integer N such that δ := r/
√
N < h2/72. Then

Ξ2 := {ξi = (xi, yi) : i = −3N, . . . , 3N}, where yi = ih
6N

and xi is
uniquely determined from the condition ξi ∈ σ. Let s∗ ∈ B2

ω be the
the discrete least squares approximation to f with respect to the data
sites in Ξ. We claim that

(26) ‖f − s∗‖L∞(Γ) >
kh2

24
.

As k can be chosen arbitrarily large, the approximation error is not
contained in O(h2).

Proof of (26): In view of s|σ = f|σ, we have ‖f|Ξ − s|Ξ‖2 = r. Since s
belongs to B2

ω, this implies ‖f|Ξ−s∗|Ξ‖2 ≤ r. It follows that there exists

i1 with 2N ≤ i1 ≤ 3N , such that |f(ξi1) − s∗(ξi1)| < δ and |f(ξ−i1) −
s∗(ξ−i1)| < δ. By a simple calculation we have |f(ξi1)| = |f(ξ−i1)| ≤
f(ξ2N) < 1 − h2/9. Hence max{s∗(ξi1), s∗(ξ−i1)} ≤ 1 − h2/9 + δ ≤
1− 7h2/72. Since s∗|Γ is linear along the line x = xi1 = x−i1 , it follows

that s∗(xi1 , 0) ≤ 1−7h2/72. Similarly, there exists i2 with 0 ≤ i2 ≤ N ,
such that |f(ξi2) − s∗(ξi2)| < δ and |f(ξ−i2) − s∗(ξ−i2)| < δ, and as
in the above it is easy to see that s∗(xi2 , 0) ≥ min{s∗(ξi2), s∗(ξ−i2)} >
1 − h2/16. Since s∗|Γ is linear along the line y = 0, and |xi1 − xi2 | ≤
h/(4k), we conclude that the slope of this linear function is at least
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kh/12. Therefore, s∗(h
2
, 0)− s∗(xi2 , 0) ≥ (2k− 1)h2/48, and we deduce

that s∗(h
2
, 0) − f(h

2
, 0) = [s∗(h

2
, 0) − s∗(xi2 , 0)] + s∗(xi2 , 0) − f(h

2
, 0) ≥

(2k− 1)h2/48+ (1− h2/16)− (1− h2/4) > kh2/24, and (26) follows.2

Clearly, (26) remains valid if B2
ω is replaced by eBn

ω. Note that the
density assumption (24) is satisfied in the above example as fd(Ξ∩Γ) =
h/(2β), with β = 2

√
2 in (23) for n = 2. Moreover, it is not difficult

to see that k <
√
κ if ω is a local domain, which shows that the

estimate ν∞ 4
√
κ in Theorem 5.2 cannot be improved. The example

also applies to the global least squares (ω = Ω), in which case however
κ < k2/h4. The estimate ‖f − s∗‖L∞(Γ) <

√
κh2 is obtained for the

global least squares if the example is modified as follows: Replace f by
the expansion of f|Γ as a linear combination of 9 biquadratic B-splines
whose supports contain Γ, and, similarly, replace s by the spline in B2

Ω

that interpolates s at the corners of Γ and vanishes at all other knots.
Precaution needs to be taken to avoid the effects demonstrated by

this example. A simple remedy is to perform data thinning by removing
“extraneous” data points while maintaining their sufficient density to
guarantee the same approximation order of the method P̄ . For exam-
ple, assume for simplicity that Ω is a d-dimensional cube and replace
(24) by a stronger bound on the fill distance, fd(Ξ∩Γ′

i,Γ
′
i) < h/(2β

√
d),

i ∈ IΩ. If we now choose in Ω a uniform d-dimensional grid with side
length ε ≤ h/(2β

√
d), then every cell of this grid will contain at least

one data point. By selecting a single point in each cell, and discarding
all points of Ξ that have not been selected for any cell, we arrive at the
thinned data Ξ′ satisfying (24). Moreover, the number of points of Ξ′

lying in a single spline cell Γk is bounded by (h/ε)d, which shows that

(25) is satisfied for Ξ′ with κ close to (2β
√
d)d. Alternatively, thinning

may be performed in the local approximation stage (i.e. effectively built
into the local operators P̄i) as described e.g. in [7].
If certain subregions of Ω are populated by significantly denser data,

and higher approximation quality is required there, then hierarchical
spline techniques [8] are more appropriate than data thinning. However,
an analysis of hierarchical spline methods is beyond the scope of this
paper.

5.3. Weighted discrete least squares. In this section, we develop
an alternative framework based on a suitably weighted discrete least
squares fit. It is leading to a two-stage method P̂ of type (n, p) for any
p > d/n with uniform bound νp 4 1, independent of the number or
distribution of data sites provided that the data are sufficiently dense.
Since p > d/n, Sobolev embedding theorem guarantees that every f ∈
W n

p (Ω) can be changed on a set of measure zero to become a continuous
function. Therefore the point evaluation is well defined for any f ∈
W n

p (Ω).
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We first group data as follows: given an integer µ ≥ 2, we define the
sequences U ι by piecewise uniform refinement of the knot sequences
T ι,

uιµℓ+m := tιℓ + lιℓ
m

µ
, ℓ ∈ Z, m = 0, . . . , µ− 1, ι = 1, . . . , d.

The corresponding subcells are denoted by

γk := [u1k1 , u
1
k1+1)× · · · × [udkd , u

d
kd+1), k ∈ Z

d.

In this way, always µd subcells of equal size form a disjoint union of
the grid cells. For all k ∈ Z

d, the side lengths of γk are bounded from
above by hµ := h/µ, and from below by hµ/̺.

To compute a local approximation P̂if , we select a subset Ξi ⊂ Ξ of
data sites such that

(27) |Ξi| ≤ (r − 2/µ)h and Γ′
i ⊂ ω̂i :=

⋃

ξ∈Ξi

γξ,

where γξ denotes the subcell containing the point ξ. This is possible
if the data are sufficiently dense in the sense that every subcell in the
inner grid cell Γ′

i contains at least one data site. This is guaranteed,
for example, when fd(Ξ ∩ Γ′

i,Γ
′
i) < hµ/̺. We remark that ω̂i is not

required to be a subset of Ω. However, ωi := ω̂i ∩ Ω is a local domain
since |ωi| ≤ |ω̂i| ≤ |Ξi|+ 2hµ ≤ hr.
Suitable local approximation schemes can be obtained by solving

weighted discrete least squares problems. For a fixed i ∈ IΩ, we define
the weight d(ξ) as the quotient of the volume of γξ and the number of
data sites in γξ,

d(ξ) :=
vol(γξ)

#{Ξi ∩ γξ}
.

Abbreviating ω := ωi and ω̂ := ω̂i, we define the operator

P̂i : C
0(ω) ∋ f 7→ âω̂Bω̂ ∈ eBn

ω̂

via the normal equation Ĝâω̂ = F̂ , where

Ĝj,k :=
∑

ξ∈Ξi

Bω̂,j(ξ)Bω̂,k(ξ)d(ξ), F̂j :=
∑

ξ∈Ξi

Bω̂,j(ξ)f(ξ)d(ξ), j, k ∈ Iω̂.

That is, the spline âω̂Bω̂ is minimizing the weighted error
∑

ξ∈Ξi

(
âω̂Bω̂(ξ)− f(ξ)

)2
d(ξ) → min

at the data sites in Ξi. Of course, in applications, âω̂ can be determined
numerically by more suitable methods, such as QR-factorisation, rather
than resorting to the normal equation.
The case p = ∞ is considered first.
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Theorem 5.4. For sufficiently large µ, let condition (27) be satisfied

for all i ∈ IΩ. Then the local operators P̂i, i ∈ IΩ, are well defined, and
the corresponding two-stage method P̂ is of type (n,∞) with ν∞ 4 1.

Proof: Clearly, P̂ is reproducing polynomials of order n as soon
as the matrix Ĝ is nonsingular, which will be shown below under the
assumption that µ is sufficiently large. Since P̂i is linear, it suffices to
show that

‖P̂if‖L∞(Γ′
i)
4 ‖f‖L∞(ω), f ∈ C0(ω),

for all i ∈ IΩ, where we drop the index i of ωi, again.
Let G̃ be the Gramian matrix of continuous least squares, as defined

in (21), for the set ω̂. We have Γ′
i ⊂ ω̂ and |ω̂| ≤ rh. Hence, following

the arguments used in the proof of Theorem 5.1, we conclude that the
smallest eigenvalue of G̃ is bounded from below by λ̃min < hd.
Next, we show that Ĝ, as a small perturbation of G̃, inherits this

property of the smallest eigenvalue. For a suitable set L ⊂ Z
d of indices,

the local domain ω̂ can be written as the disjoint union ω̂ =
⋃

ℓ∈L γℓ of
subcells. Abbreviating b := Bω̂,iBω̂,k and Ξi,ℓ := Ξi ∩ γℓ, we have

G̃i,k − Ĝi,k =
∑

ℓ∈L

(∫

γℓ

b−
∑

ξ∈Ξi,ℓ

b(ξ)d(ξ)
)
.

For a fixed ℓ, all points in the inner sum have the same weight d(ξ) =
vol(γξ)/#{Ξi ∩ γξ}. Since b is continuous on the connected set γℓ, the
intermediate value theorem implies existence of a point ηℓ ∈ γℓ with

b(ηℓ) =
1

#{Ξi ∩ γξ}
∑

ξ∈Ξi,ℓ

b(ξ).

Hence, by the mean value theorem,
∣∣∣
∫

γℓ

b−
∑

ξ∈Ξi,ℓ

b(ξ)d(ξ)
∣∣∣ =

∣∣∣
∫

γℓ

(
b− b(ηℓ)

)∣∣∣ ≤ hµ|b|W 1
∞(γℓ)

∫

γℓ

1.

By (7), the gradient of b is bounded by |b|W 1
∞(γℓ) 4 h−1 so that

|G̃i,k − Ĝi,k| 4
hµ
h

∑

ℓ∈L

∫

γℓ

1 =
vol(ω̂)

µ
4
hd

µ
.

#Iω̂ is bounded by a constant, implying that ‖G̃− Ĝ‖2 4 hd/µ. Since

G̃, Ĝ are symmetric, the smallest eigenvalue λ̂min of Ĝ satisfies

|λ̂min − λ̃min| ≤ ‖G̃− Ĝ‖2 4 hd/µ,

which together with λ̃min < hd implies

λ̂min ≥ λ̃min/2 < hd,

provided that µ is large enough.
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In particular, Ĝ is invertible, saying that P̂i is well defined. Further,
‖Ĝ−1‖∞ 4 h−d follows as in the proof of Theorem 5.1. The components

of F̂ are bounded by

|F̂j| ≤
∑

ℓ∈L

∑

ξ∈Ξi,ℓ

|Bj(ξ)| |f(ξ)|d(ξ)

4 ‖f‖L∞(ω)

∑

ℓ∈L

vol(γℓ) ≤ hd‖f‖L∞(ω).

Hence, ‖âω̂‖∞ ≤ ‖Ĝ−1‖∞‖F̂‖∞ 4 ‖f‖L∞(ω), and by (6),

‖P̂if‖L∞(Γ′
i)
≤ ‖âω̂Bω̂‖L∞(ω̂) 4 ‖âω̂‖∞ 4 ‖f‖L∞(ω),

as requested. 2

Results for the case d/n < p < ∞ can be derived if the sets Ξi

of data sites used for the local approximation are chosen such that
|Ξi| ≤ (r − 2/µ)h, as before, but now

(28) Γ′
i ⊂ ωi :=

⋃

ξ∈Ξi

γξ ⊂ Ω.

That is, data sites whose neighborhood γξ is not contained in the do-
main Ω are discarded.

Theorem 5.5. Let p > d/n. For sufficiently large µ, let condition

(28) be satisfied for all i ∈ IΩ. Then the local operators P̂i, i ∈ IΩ,

are well defined, and the corresponding two-stage method P̂ is of type
(n, p) with νp 4 1.

Proof: The properties of Ĝ derived in the preceding proof are valid
also here. In particular, by the equivalence of norms, ‖Ĝ−1‖p 4 h−d

for µ sufficiently large. The components of F̂ are bounded by

|F̂j| ≤
∑

ℓ∈L

∑

ξ∈Ξi,ℓ

|Bj(ξ)| |f(ξ)|d(ξ)

4

∑

ℓ∈L

vol(γℓ)‖f‖L∞(γℓ) ≤ hdµ
∑

ℓ∈L

‖f‖L∞(γℓ).

The side lengths of the subcells γℓ lie between hµ/̺ and hµ. Hence,
transferring the Sobolev inequality

‖f‖L∞(u) 4 ‖f‖Lp(u) + |f |Wn
p (u), u := [0, 1]d,

from the unit cube u to γℓ by scaling, we see that

‖f‖L∞(γℓ) 4 h−d/p
µ

(
‖f‖Lp(γℓ) + hnµ|f |Wn

p (γℓ)

)
.

The number #L of subcells γℓ forming ω is bounded by #L 4 µd.
Hence, by Hölder’s inequality, the 1-norm and the p-norm in R

#L are
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related by ‖ · ‖1 4 µd/p′‖ · ‖p, and we conclude

|F̂j| 4 hd/p
′

µ µd/p′
((∑

ℓ∈L

‖f‖pLp(γℓ)

)1/p

+ hnµ

(∑

ℓ∈L

|f |pWn
p (γℓ)

)1/p
)

≤ hd/p
′(‖f‖Lp(ω) + hn|f |Wn

p (ω)

)
.

Hence, ‖âω‖p ≤ ‖Ĝ−1‖p‖F̂‖p 4 h−d/p
(
‖f‖Lp(ω) + hn|f |Wn

p (ω)

)
. Finally,

by (6),

‖P̂if‖Lp(Γ′
i)
≤ ‖âωBω‖Lp(ω) 4 ‖f‖Lp(ω) + hn|f |Wn

p (ω),

and the proof is complete. 2

Note that the inequality ‖P̂if‖Lp(Γ′
i)

4 ‖f‖Lp(ω) does not hold in
general, and so we genuinely need here the second part of Definition 4.5
rather than the stronger condition (18) used in Theorems 5.1, 5.2 and
5.4.

6. Numerical Results

In this section we consider a scattered data approximation problem
on a trimmed domain, such as it may occur for example in reverse
engineering. We investigate the numerical performance of the two-
stage method, and compare it with global least squares approximations
in both standard B-spline and EB-spline spaces.
The sample domain Ω is a sector of angle 4π/3 and radius 4, centered

at the origin. Knot grids are chosen equidistant with grid width h rang-
ing between 1 and 1/64, and shifted such that the point (h/π, 17/46)
is a vertex for each grid, see Fig. 3(a). Given h, the data sites Ξ are
randomly chosen such that, on average, every inner grid cell contains
4 point. Some sites are moved close to the vertices of an auxiliary grid
with width h/2 to ensure sufficient local density. The data values are
sampled from the function f(x, y) = sin x · sin y.
We compare variants on bicubic spline approximation, i.e., n = 4:

First, a global discrete least squares fit (global B-LS) using standard
tensor product B-splines, second, a global discrete least squares fit us-
ing EB-splines (global EB-LS), and third, a two-stage weighted discrete
least squares fit with EB-splines (two-stage EB-WLS). We use the fol-
lowing local domains ωi to define the two-stage approximation operator
P according to Definition 4.1:

ωi := Ω ∩ [t1i1−6, t
1
i1+8]× · · · × [tdid−6, t

d
id+8], i ∈ IΩ.

We choose µ = 2 to define the subcells for the local weighted discrete
least squares, see Section 5.3.
Fig. 3 (right) shows the error of EB-spline approximants as it typi-

cally occurs for both global and two-stage least squares. (The results
for global and local methods are in fact very similar.) Thanks to the
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Figure 3. Domain, grid and data sites for h = 1/2
(left), and typical error plot for EB-splines (right).

stability of the basis, the errors in the interior and near the boundary
are of comparable size.
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Figure 4. The maximum error of global discrete least
squares with B-splines and two-stage weighted discrete
least squares with EB-splines.

Fig. 4 and Table 1 present numerical results, where the maximum,
respectively, mean errors are estimated by evaluation on a fine 800×800
grid. In Fig. 4, the error of the global least squares is not shown since
it is very close to the error of the two-stage method. The partially
large errors of the global B-spline algorithm indicate the corruptive
effect of straying coefficients of outer B-splines. This behavior is an
intrinsic property of the spline space rather than an artifact caused by
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Mean error
h global LS global LS two-stage WLS

B-Splines EB-splines ERC EB-splines ERC
1 9.01E-002 9.56E-004 9.66E-004
1/2 8.13E-003 3.95E-005 25 3.95E-005 24
1/4 5.22E-006 1.81E-006 22 1.83E-006 22
1/8 1.16E-007 1.07E-007 17 1.08E-007 17
1/16 7.16E-007 6.47E-009 17 6.49E-009 17
1/32 7.28E+009 4.00E-010 16 4.01E-010 16
1/64 3.62E+011 2.46E-011 16 2.50E-011 16

Table 1. Mean error. The experimental rate of conver-
gence (ERC) confirms the theoretical error bound O(h4).

numerical problems when solving potentially ill-conditioned Gramian
systems. By contrast, the algorithms based on EB-splines, in particular
the two-stage WLS method, reveal the theoretically optimal order of
convergence.

References

[1] Robert A. Adams and John J. F. Fournier. Sobolev Spaces, 2nd Edition. Aca-
demic Press, 2003.

[2] Carl de Boor. A Practical Guide to Splines. Springer, 1978.
[3] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite

Element Methods. Springer, New York, 2nd edition, 2002.
[4] Oleg Davydov. On the approximation power of local least squares polynomi-

als. In I. J. Anderson J. Levesley and J. C. Mason, editors, Algorithms for

Approximation IV, pages 346–353. University of Huddersfield, UK, 2002.
[5] Oleg Davydov, Rossana Morandi, and Alessandra Sestini. Local hybrid ap-

proximation for scattered data fitting with bivariate splines. Computer Aided

Geometric Design, 23(9):703–721, 2006.
[6] Oleg Davydov, Alessandra Sestini, and Rossana Morandi. Local RBF approxi-

mation for scattered data fitting with bivariate splines. In Detlef Mache, József
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