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Abstract. Let u be a weak solution of the Navier-Stokes equations
in an exterior domain Ω ⊆ R3 and a time interval [0, T [ , 0 < T ≤ ∞,
with initial value u0 and external force f = divF . Here we address the
problem to find the optimal (weakest possible) initial value condition
in order to obtain a strong solution u ∈ Ls(0, T ;Lq(Ω)) in some time
interval [0, T [ , 0 < T ≤ ∞, where s, q with 3 < q <∞ and 2

s
+ 3
q

= 1 are
so-called Serrin exponents. Our main result states, for Serrin exponents
s, q with q ∈ [ 24

7
, 8], a smallness condition on

∫ T
0
‖e−ντAu0‖sq dτ to imply

existence of a strong solution u ∈ Ls(0, T ;Lq(Ω)); here A denotes the
Stokes operator. Moreover, for Serrin exponents s, q with 3 < q < ∞
we will prove the necessity of the condition

∫∞
0
‖e−ντAu0‖sq dτ < ∞ to

get a strong solution u on [0, T [, 0 < T ≤ ∞.

1. Introduction and main results

In this paper, Ω ⊆ R3 is an exterior domain, i.e. an open, connected subset
having a nonempty, compact complement in R3, with smooth boundary ∂Ω ∈
C2,1, and [0, T [ , 0 < T ≤ ∞, denotes the time interval. In [0, T [×Ω we
consider the instationary Navier-Stokes equations

ut − ν∆u+ u · ∇u+∇p = f in ]0, T [×Ω ,

div u = 0 in ]0, T [×Ω ,

u = 0 on ]0, T [×∂Ω ,

u = u0 for t = 0 ,

(1.1)

with constant viscosity ν > 0, an external force f = divF = (
∑3

i=1 ∂iFi,j)
3
j=1

and initial value u0. First we recall the definition of weak and strong solu-
tions. The space of test functions is defined to be

C∞0 ([0, T [;C∞0,σ(Ω)) := {u |[0,T [×Ω ;u ∈ C∞0 (]− 1, T [×Ω) ; div u = 0 }.

Definition 1.1. Let Ω ⊆ R3 be an arbitrary domain, let 0 < T ≤ ∞ , ν > 0,
let f = div F with F ∈ L1

loc([0, T [;L2(Ω)), and let u0 ∈ L2
σ(Ω). Then a

vector field u ∈ LHT , where LHT denotes the Leray-Hopf class

LHT := L∞loc([0, T [;L2
σ(Ω)) ∩ L2

loc([0, T [;W 1,2
0,σ (Ω)) , (1.2)
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is called weak solution (in the sense of Leray-Hopf ) of the instationary
Navier-Stokes system (1.1) with data f , u0 if the following identity is satis-
fied for all test functions w ∈ C∞0 ([0, T [;C∞0,σ(Ω)):∫ T

0

(
− 〈u,wt〉Ω + ν〈∇u,∇w〉Ω + 〈u · ∇u,w〉Ω

)
dt

= 〈u0, w(0)〉Ω −
∫ T

0
〈F,∇w〉Ω dt.

(1.3)

Given a weak solution u ∈ LHT of (1.1), after a possible redefinition on a
set of Lebesgue measure 0, we may assume that u : [0, T [→ L2

σ(Ω) is weakly
continuous and the initial value u0 is attained in the following sense:

〈u(t), φ〉Ω → 〈u0, φ〉Ω , t↘ 0 , ∀φ ∈ L2
σ(Ω).

Moreover, there exists a distribution p, called an associated pressure, such
that the equality

ut − ν∆u+ u · ∇u+∇p = f

holds in the sense of distributions on ]0, T [×Ω, see [21, V.1.7].
For exponents s, q with 1 < q, s <∞ we define the Serrin number by

S(s, q) :=
2

s
+

3

q
.

We recall that by the embedding W 1,2
0 (Ω) ⊂ L6(Ω) and Hölder’s inequality

u ∈ LHT satisfies u ∈ Ls(0, T ;Lq(Ω)) for all s ≥ 2, q ≥ 2 with S(s, q) = 3
2 .

A weak solution of (1.1) is called a strong solution if there exist Serrin
exponents s, q with S(s, q) = 1 such that additionally Serrin’s condition

u ∈ Ls(0, T ;Lq(Ω)) (1.4)

is satisfied. By Serrin’s uniqueness Theorem [21, V, Theorem 1.5.1] a weak
solution with (1.4) is unique within the class of weak solutions satisfying the
energy inequality, i.e. fulfilling

1

2
‖u(t)‖22 + ν

∫ t

0
‖∇u‖22 dτ ≤

1

2
‖u0‖22 −

∫ t

0
〈F,∇u〉Ω dτ (1.5)

for almost all t ∈ [0, T [. Moreover, such a strong solution satisfies u ⊗ u ∈
L2

loc([0, T [;L2(Ω)) and, after a redefinition on a set of vanishing Lebesgue
measure, u : [0, T [→ L2

σ(Ω) is strongly continuous and satisfies the energy
identity (1.8) below, cf. [21, V, Theorem 1.4.1]

The existence of weak solutions in smooth exterior domains satisfying (1.5)
is well known, see [20, 21]. Up to now, the existence of a strong solution u
of (1.1) could only be proven in a sufficiently small interval [0, T [ , 0 < T ≤ ∞,
and under additional assumptions on Ω, f , and u0. The first sufficient exis-
tence condition in this context seems to be due to [16], yielding a solution
class of so called local strong solutions. Since then there have been found
several sufficient initial value conditions for the existence of local strong solu-
tions, getting weaker step by step, see [2, 9, 10, 13, 15, 17, 19, 20, 21, 22] for
bounded and unbounded domains. In [7, 8] the authors considered (1.1) with
3 < q <∞ and S(s, q) = 1 in a smooth bounded domain with f = divF and
F ∈ L

s
2 (0, T ;L

q
2 (Ω)) and proved that the smallness conditions (1.6), (1.7)

below are sufficient for the existence of a strong solution u ∈ Ls(0, T ;Lq(Ω)).
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Using L2-theory of the Stokes operator they also proved in [7] that if Ω is a
general domain and q = 4 there exists an absolute constant ε∗, not depending
on Ω, such that the conditions (1.6), (1.7) are sufficient for the existence of a
strong solution u ∈ L8(0, T ;L4(Ω)). Our first main theorem gives a sufficient
criterion on u0 for the existence of a strong solution u ∈ Ls(0, T ;Lq(Ω)).

Theorem 1.2. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let
exponents 1 < s, q < ∞ be given such that S(s, q) = 1, and let 1 < s∗ , q∗ <
∞ satisfy S(s∗, q∗) = 2 where 1

3 + 1
q ≥

1
q∗
≥ 1

q . Let 0 < T ≤ ∞, ν > 0, let
F ∈ Ls∗(0, T ;Lq∗(Ω)) ∩ L2(0, T ;L2(Ω)), and u0 ∈ L2

σ(Ω).
(1) If q ∈ [24

7 , 8] there exists a constant ε∗ = ε∗(Ω, q, q∗) > 0 (independent
of T, ν, F , and u0) with the following property: If the conditions(∫ T

0
‖e−ντAu0‖sq dτ

) 1
s

≤ ε∗ν1− 1
s , (1.6)(∫ T

0
‖F (τ)‖s∗q∗ dτ

) 1
s∗
≤ ε∗ν1+ 3

2q∗ , (1.7)

are satisfied, then there exists a strong solution u ∈ Ls(0, T ;Lq(Ω))
of the Navier-Stokes equations (1.1). After a possible redefinition on
a set of Lebesgue measure 0, we get that u : [0, T [→ L2

σ(Ω) is strongly
continuous and satisfies the energy equality

1

2
‖u(t)‖22 + ν

∫ t

0
‖∇u‖22 dτ =

1

2
‖u0‖22 −

∫ t

0
〈F,∇u〉Ω dτ (1.8)

for all t ∈ [0, T [.
(2) If 3 < q < 24

7 or 8 < q < ∞, the conditions (1.6) and (1.7) imply
the existence of a strong solution u ∈ Ls(0, T ;Lq(Ω)) with the same
properties as in (1) under the following additional assumptions on
u0, F : There exist 1 < γ , γ∗ , ρ∗ < ∞ , ρ ∈ [24

7 , 8] with S(γ, ρ) = 1

and S(γ∗, ρ∗) = 2 where 1
3 + 1

ρ ≥
1
ρ∗
≥ 1

ρ such that the two conditions

e−νtAu0 ∈ Lγ(0, T ;Lρ(Ω)) , (1.9)
F ∈ Lγ∗(0, T ;Lρ∗(Ω)) (1.10)

are satisfied.

For the proof we refer to Section 4. The idea of the proof is to construct
u in the form u = E + ũ where E is the solution of the linear part and ũ is
constructed as a fixed point of a related nonlinear problem, see (2.18). Then
E, ũ satisfy certain representation formulae as in Lemma 3.2 which also helps
to get the needed integrability properties of E, ũ. The proof of regularity
differs from the case of bounded domains, see [7, 8], where the trivial inclusion
Lq(Ω) ⊆ Lr(Ω) , q > r, yielding also better imbedding properties of fractional
powers of the Stokes operator, was used several times. This is also the
reason why, without additional assumptions of u0, F , we are able to prove
the sufficiency of the condition (1.6), (1.7) only for q ∈ [24

7 , 8].
In Theorem 1.3 below we will formulate a necessary condition for the

existence of a strong solution u ∈ Ls(0, T ;Lq(Ω)). If Ω ⊆ R3 is a smooth
bounded domain the necessity of (1.11) for the existence of a strong solution
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u ∈ Ls(0, T ;Lq(Ω)) was proved in [8]; furthermore, for an arbitrary bounded
or unbounded domain Ω the condition (1.11) with s = 8, q = 4 is necessary
for the existence of a strong solution u ∈ L8(0, T ;L4(Ω)).

Theorem 1.3. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let 1 <
s, q < ∞ with S(s, q) = 1 be arbitrary Serrin exponents, let 1 < s∗ , q∗ < ∞
with S(s∗, q∗) = 2 where 1

3 + 1
q ≥

1
q∗
≥ 1

q . Furthermore, let 0 < T ≤ ∞, ν >
0, assume F ∈ Ls∗(0, T ;Lq∗(Ω))∩L2(0, T ;L2(Ω)), and u0 ∈ L2

σ(Ω). Then a
necessary condition for the existence of a strong solution u ∈ Ls(0, T ;Lq(Ω))
of the Navier-Stokes equations (1.1) is the condition∫ ∞

0
‖e−ντAu0‖sq dτ <∞. (1.11)

In the following corollary, which immediately follows from Theorems 1.2
and 1.3, the condition (1.11) on u0 defines the largest possible class of initial
values to get a strong solution u ∈ Ls(0, T ;Lq(Ω)) of (1.1) with q ∈ [24

7 , 8]
and the Serrin condition S(s, q) = 1.

Corollary 1.4. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let
1 < s < ∞ , q ∈ [24

7 , 8] with S(s, q) = 1. Further, let 1 < s∗ , q∗ < ∞
with S(s∗, q∗) = 2 where 1

3 + 1
q ≥

1
q∗
≥ 1

q , let 0 < T ≤ ∞ , ν > 0, assume
F ∈ Ls∗(0, T ;Lq∗(Ω)) ∩ L2(0, T ;L2(Ω)), and u0 ∈ L2

σ(Ω). Then∫ ∞
0
‖e−ντAu0‖sq dτ <∞

is a necessary and sufficient condition for the existence of a strong solution
u ∈ Ls(0, T ′;Lq(Ω)) of (1.1) in some interval [0, T ′[ , 0 < T ′ ≤ T .

After some preliminaries, see Section 2, we discuss the regularity of functions
fulfilling a certain class of representation formulae in Section 3. Finally,
Section 4 deals with the proofs of Theorems 1.2 and 1.3.

2. Preliminaries

Given 1 ≤ q ≤ ∞ , k ∈ N we need the usual Lebesgue and Sobolev spaces,
Lq(Ω) and W k,q(Ω) with norms ‖ · ‖Lq(Ω) = ‖ · ‖q and ‖ · ‖Wk,q(Ω) = ‖ · ‖k,q,
respectively. For two measurable functions f , g with the property f · g ∈
L1(Ω), where f · g means the usual scalar product of vector or matrix fields,
we set

〈f, g〉Ω :=

∫
Ω
f(x) · g(x) dx.

Note that the same symbol Lq(Ω) etc. will be used for spaces of scalar-,
vector- or matrix-valued functions. Let Cm(Ω) ,m = 0, 1, . . . ,∞, denote the
usual space of functions for which all partial derivatives of order |α| ≤ m
(|α| < ∞ when m = ∞) exist and are continuous. As usual, Cm0 (Ω) is the
set of all functions from Cm(Ω) with compact support in Ω. Further we need
the space of smooth solenoidal vector fields

C∞0,σ(Ω) := { v ∈ C∞0 (Ω)3; div v = 0 }.
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We define the spaces (1 < q <∞)

Lqσ(Ω) := C∞0,σ(Ω)
‖·‖q

,

W 1,2
0,σ (Ω) := C∞0,σ(Ω)

‖·‖W1,2
.

For 1 ≤ q ≤ ∞ let q′ be the dual exponent such that 1
q + 1

q′ = 1. It is well

known that Lqσ(Ω)′ ∼= Lq
′
σ (Ω) using the standard pairing 〈·, ·〉Ω.

Given a Banach space X, 1 ≤ p ≤ ∞, and an interval ]0, T [ we denote by
Lp(0, T ;X) the space of (equivalence classes of) strongly measurable func-
tions f : ]0, T [→ X such that

‖f‖p :=

(∫ T

0
‖f(t)‖pX dt

) 1
p

<∞

if 1 ≤ p < ∞ and ‖f‖∞ := ess supt∈]0,T [ ‖f(t)‖X < ∞ if p = ∞. Moreover,
we define the set of locally integrable functions

Lploc([0, T [;X) := {u : [0, T [→ X; u ∈ Lp(0, T ′;X) for all 0 < T ′ < T}.

IfX = Lq(Ω), 1 ≤ q ≤ ∞, we denote the norm in Lp(0, T ;Lq(Ω)) by ‖f‖q,p;T .
Given an exterior domain Ω ⊆ R3 with ∂Ω ∈ C2,1 and 1 < q < ∞, let

Pq : Lq(Ω)) → Lqσ(Ω) denote the Helmholtz projection with range R(Pq) =

Lqσ(Ω) and null space N(Pq) = {∇p ∈ Lq(Ω) ; p ∈ Lqloc(Ω)}. This operator is
consistent in the sense that

Pqf = Prf for f ∈ Lq(Ω) ∩ Lr(Ω). (2.1)

Furthermore, we get for the dual operator P ′q ∼= Pq′ which means that

〈Pqf, g〉Ω = 〈f, Pq′g〉Ω ∀f ∈ Lq(Ω), g ∈ Lq′(Ω). (2.2)

For 1 < q <∞ we define the Stokes operator by

D(Aq) = Lqσ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), (2.3)

Aqu := −Pq∆u , u ∈ D(Aq). (2.4)

The Stokes operator is consistent in the sense that for 1 < q, r <∞

Aqu = Aru ∀u ∈ D(Aq) ∩ D(Ar). (2.5)

Throughout this paper we will write A = A2. It is well known that −Aq
generates a uniformly bounded analytic semigroup { e−tAq : t ≥ 0 } on Lqσ(Ω)
satisfying the decay estimate

‖Aαq e−tAq‖q ≤ c t−α, t > 0 , (2.6)

where α ≥ 0 , q > 1, and c = c(Ω, q, α) > 0.
For α ∈ [−1, 1] the fractional power Aαq : D(Aαq ) → Lqσ(Ω) with dense

domain D(Aαq ) ⊆ Lqσ(Ω)) and dense range R(Aαq ) ⊆ Lqσ(Ω)) is a well defined,
injective, closed operator such that

(Aαq )−1 = A−αq , R(Aαq ) = D(A−αq ), and (Aαq )′ = Aαq′ .

In general, D(Aαq ) will be equipped with the graph norm ‖u‖D(Aq) := ‖u‖q +
‖Aαq ‖q for u ∈ D(Aαq ) which makes D(Aαq ) to a Banach space since Aαq is
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closed. In [11, Theorem A] it is proved that Aq has bounded imaginary
powers. Consequently, see [11, Theorem B],

[Lqσ(Ω),D(Aq)]s = D(Asq) for 0 ≤ s ≤ 1 , (2.7)

where [Lqσ(Ω),D(Aq)]s denotes the complex interpolation space; for the def-
inition of these spaces see e.g. [18, Ch. 2]. It holds D(Aq) ⊆ D(Aαq ) ⊆
D(Aβq ) ⊆ Lqσ(Ω) for 0 ≤ β ≤ α ≤ 1. Furthermore, we have

D(A1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) for 1 < q < 3, (2.8)

‖∇u‖q,Ω ≤ c‖A1/2
q u‖q,Ω for 1 < q < 3 and u ∈ D(A1/2

q ) (2.9)

with a constant c = c(Ω, q) > 0. Moreover, for all u ∈ D(Aαq ),

‖u‖γ,Ω ≤ c‖Aαq u‖q,Ω where 0 ≤ α ≤ 1

2
, 1 < q < 3 , 2α+

3

γ
=

3

q
, (2.10)

with a constant c = c(Ω, q, α, γ) > 0. Concerning further information on the
Helmholtz projection and the Stokes operator in exterior domains we refer
to [3, 4, 11, 12, 14].

Let 2 < q < ∞ and u0 ∈ L2
σ(Ω) be given. Then from [14, Theorem 1.2

(ii)] we see e−νtAu0 ∈ Lqσ(Ω) for all t > 0 and

‖e−νtAu0‖q ≤ c (ν t)
− 3

2

(
1
2
− 1
q

)
‖u0‖2 (2.11)

with a constant c = c(Ω, q) > 0. If 3 < q < ∞ with S(s, q) = 1 we get
from (2.11) that∫ ∞

0
‖e−ντAu0‖sq dτ <∞ ⇐⇒

∫ T0

0
‖e−ντAu0‖sq dτ <∞ (2.12)

for any (and consequently for all) 0 < T0 <∞.

Theorem 2.1. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let 1 <
q , s <∞, and let 0 < T ≤ ∞ , ν > 0. Further, let f ∈ Ls(0, T ;Lqσ(Ω)), and
let u0 ∈ Lqσ(Ω) such that

∫ T
0 ‖νAqe

−νtAqu0‖sq dt <∞. Then the instationary
Stokes system

ut + νAqu = f in (0, T ) ,

u(0) = u0
(2.13)

has a unique strong solution u ∈ Lsloc(0, T ;D(Aq)) with ut ∈ Ls(0, T ;Lqσ(Ω))
and u ∈ C([0, T [;Lqσ(Ω)). Moreover, u satisfies the maximal regularity esti-
mate

‖ut‖q,s,Ω;T +‖νAqu‖q,s,Ω;T ≤ c

[ (∫ T

0
‖νAqe−νtAqu0‖sq,Ω dt

)1/s

+‖f‖q,s,Ω;T

]
(2.14)

with a constant c = c(Ω, q, s) independent of T, ν and has the representation

u(t) = e−νtAqu0 +

∫ t

0
e−ν(t−τ)Aqf(τ) dτ (2.15)

for all t ∈ [0, T [. In the case T <∞ it even holds u ∈ Ls(0, T ;D(Aq)).

Proof. See [12, Theorem 4.2]. �
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Finally, we recall the Hardy-Littlewood inequality : Let 0 < α < 1, 1 < r <
q <∞ with α+ 1

q = 1
r , and let f ∈ Lr(R). Then the integral

u(t) :=

∫
R
|t− τ |α−1f(τ) dτ

converges absolutely for almost all t ∈ R and it holds

‖u‖Lq(R) ≤ c‖f‖Lr(R) (2.16)

with a constant c = c(α, q) > 0; see e.g. [23, Ch. V, 1.2].
The following theorem is central for the construction of the strong solution

u in Theorem 1.2.

Theorem 2.2. Let Ω ⊆ Rn be an exterior domain with ∂Ω ∈ C2,1, and let
3 < q < ∞ with S(s, q) = 1. Let α := 1 − 1

s . Then there exists a constant
c = c(Ω, q) > 0 with the following property: If 0 < T ≤ ∞ , ν > 0, and
E ∈ Ls(0, T ;Lq(Ω)) with

‖E‖q,s;T ≤ c να , (2.17)
then the nonlinear map

(F(u))(t) := −
∫ t

0
Aαq e

−ν(t−τ)AqA−αq Pqdiv((u+E)⊗ (u+E))(τ) dτ , (2.18)

defined for u ∈ Ls(0, T ;Lq(Ω)) and almost all t ∈ [0, T [, has a fixed point in
Ls(0, T ;Lqσ(Ω)).

Proof. See [6, §5]. �

The background for Theorem 2.2 is the notion of very weak solutions, see
e.g. [2], [5], [6]. To be more precise, in the setting of Theorem 2.2 a vector
field u ∈ Ls(0, T ;Lq(Ω)) is called a very weak solution of the Navier-Stokes
system (1.1) with data f = divF , F ∈ Ls(0, T ;Lr(Ω)), 1

3 + 1
q = 1

r , and
initial value u0 satisfying

∫∞
0 ‖Aqe

−νtAqA−1
q Pqu0‖sq dt <∞ iff∫ T

0

(
−〈u,wt〉Ω−ν〈u,∆w〉Ω−〈u⊗u,∇w〉Ω

)
dt = 〈u0, w(0)〉Ω−

∫ T

0
〈F,∇w〉Ω dt

for all test functions w ∈ C1
0 ([0, T );C2

0,σ(Ω̄)) where C2
0,σ(Ω̄) = {v ∈ C2(Ω̄) :

div v = 0, supp w compact in Ω̄, w|∂Ω
= 0}. We note that in our context F

lies in Ls∗(0, T ;Lq∗(Ω)) rather than in Ls(0, T ;Lr(Ω)); the crucial properties,
however, are (4.2), (4.3), (4.4) to be used in (2.17) of Theorem 2.2.

3. Representation Formulae

This section deals with integrability properties of functions satisfying rep-
resentation formulae as in Lemma 3.2 below. Since in the proof of Theo-
rems 1.2 and 1.3 the terms E2 and ũ satisfy such representation formulae,
the results in this section are crucial for the proof of these theorems. We
begin with the following technical lemma.

Lemma 3.1. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let p > 3
2 ,

F ∈ Lp(Ω). Choose r, σ ≥ 0 with

2σ +
3

r
=

3

p
, 0 ≤ σ ≤ 1

2
. (3.1)
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Then there exists a unique element in Lrσ(Ω) denoted by A−1/2−σ
r PrdivF ∈

Lrσ(Ω) with

〈A−1/2−σ
r PrdivF,A

1/2+σ
r′ w〉Ω = −〈F,∇w〉Ω (3.2)

for all w ∈ D(A
1/2+σ
r′ ). It holds

‖A−1/2−σ
r PrdivF‖r ≤ c‖F‖p (3.3)

with a constant c = c(Ω, p, r) > 0.

Proof. We have 2· 12 + 3
r ≥

3
p and consequently 2· 12 + 3

p′ ≥
3
r′ . Then Sobolev’s

imbedding theorem (see [1, Theorem 4.12]) yields the continuous imbedding

W 1,r′(Ω) ↪→ Lp
′
(Ω). (3.4)

From p > 3
2 it follows p′ < 3, and (2.8) yields

D(A
1/2
p′ ) = W 1,p′

0 (Ω) ∩ Lp′σ (Ω). (3.5)

Let w ∈ D(Ar′) be fixed. Using (3.4) and (3.5) we see that w ∈ D(A
1/2
p′ ). We

get with the consistency of the Stokes operator, see (2.5), A1/2
p′ w = A

1/2
r′ w

and A1/2
r′ w ∈ D(A

1/2
r′ ). Now it follows from (2.10) that

|〈F,∇w〉Ω| ≤ ‖F‖p‖∇w‖p′

≤ c‖F‖p‖A1/2
p′ w‖p′ = c‖F‖p‖A1/2

r′ w‖p′

≤ c‖F‖p‖Aσr′(A
1/2
r′ w)‖r′ = c‖F‖p‖A1/2+σ

r′ w‖r′

(3.6)

with a constant c = c(Ω, p, r) > 0. The identity (3.6) is true for all w ∈
D(Ar′). From (2.7) with s = 1

2+σ we know thatD(Ar′) is dense inD(A
1/2+σ
r′ )

with respect to the graph norm ‖ · ‖r′ + ‖A
1/2+σ
r′ · ‖r′ . Hence, by density, we

get from (3.6) that

|〈F,∇w〉Ω| ≤ c‖F‖p‖A1/2+σ
r′ w‖r′ for all w ∈ D(A

1/2+σ
r′ ) (3.7)

with c = c(Ω, p, r) > 0. By [5, Lemma 2.1] applied to (3.7) we obtain a
unique element, denoted by A−1/2−σ

r PrdivF , in Lrσ(Ω) fulfilling (3.2). �

The following lemma is a generalization of [5, Lemma 3.2].

Lemma 3.2. Let Ω ⊆ R3 be an exterior domain with ∂Ω ∈ C2,1, let 0 <
T ≤ ∞, ν > 0 , and let s > 1 , p > 3

2 , F ∈ L
s(0, T ;Lp(Ω)). Choose r, σ ≥ 0

with

2σ +
3

r
=

3

p
, 0 ≤ σ < 1

2
, (3.8)

(i.e. σ = 3
2(1
p −

1
r )) and let β := 1

2 + σ. Then

Φr(t) :=

∫ t

0
Aβr e

−ν(t−τ)ArA−βr PrdivF (τ) dτ (3.9)

is well defined as an element of Lrσ(Ω) for almost all t ∈ [0, T [. The following
statements are satisfied.
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(1) It holds for almost all t ∈ [0, T [∫ t

0
Aβr e

−ν(t−τ)ArA−βr PrdivF (τ) dτ = Aβr

∫ t

0
e−ν(t−τ)ArA−βr PrdivF (τ) dτ.

(3.10)
(2) For i ∈ {1, 2} choose ri, σi ≥ 0 satisfying (3.8) with r, σ replaced by

ri, σi. Then

Φr1(t) = Φr2(t) for almost all t ∈ [0, T [. (3.11)

Therefore, we can denote the term in (3.9), which is independent of
r, σ ≥ 0 satisfying (3.8), by Φ.

(3) Assume that s, p with 3
2 < p < ∞ satisfy S(s, p) = 2. Let r, σ ≥ 0

with r > 3
2 satisfy

2σ +
3

r
=

3

p
, 0 ≤ σ ≤ 1

2
, (3.12)

(i.e. σ = 1
2 is allowed) and let β = 1

2 + σ. Finally let 2 < γ <∞ be
defined by S(γ, r) = 1. Then

‖Φ‖r,γ;T ≤ cν−β‖F‖p,s;T (3.13)

with c = c(Ω, p, r) > 0.

Proof. (1), (2) See [5, Lemma 3.2].
(3) First let 0 ≤ σ < 1

2 in (3.12). From (3.3) we know ‖A−βr PrdivF‖r ≤
c‖F‖p with c = c(Ω, p, r) > 0. We use (3.11), (2.6) to get

‖Φ(t)‖r = ‖Φr(t)‖r

≤ cν−β
∫ t

0
|t− τ |−β‖A−βr PrdivF (τ)‖r dτ

≤ cν−β
∫ T

0
|t− τ |−β‖F (τ)‖p dτ

(3.14)

for almost all t ∈ [0, T [ with a constant c = c(Ω, p, r) > 0. Since (1−β)+ 1
γ =

1
s with S(γ, r) = 1, the Hardy-Littlewood inequality (2.16) yields

‖Φ‖r,γ;T ≤ cν−β‖F‖p,s;T
with c = c(Ω, p, r) > 0. Next, let σ = 1

2 in (3.12) and consequently 2 · 12 + 3
r =

3
p , γ = s. We use (3.10), (2.8) and (3.11) to get

‖Φ(t)‖r = ‖Φp(t)‖r

=
∥∥A1/2

p

∫ t

0
e−ν(t−τ)ApA−1/2

p PpdivF (τ) dτ
∥∥
r

≤ c
∥∥Ap ∫ t

0
e−ν(t−τ)ApA−1/2

p PpdivF (τ) dτ
∥∥
p

(3.15)

for almost all t ∈ [0, T [. Theorem 2.1 applied to (3.15) implies

‖Φ‖r,γ;T ≤ cν−1‖A−1/2
p PpdivF‖p,γ;T ≤ cν−1‖F‖p,γ;T

with c = c(Ω, p) > 0. It holds S(γ, r) = 1. �
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4. Proof of theorem 1.2 and theorem 1.3

Proof of Theorem 1.2.
Step 1. First, define

E(t) := E1(t) + E2(t)

:= e−νtAu0 +

∫ t

0
A1/2e−ν(t−τ)AA−1/2PdivF (τ) dτ

(4.1)

for almost all t ∈ [0, T [. We use [21, IV, Theorems 2.3.1 and 2.4.1] to get
that E1, E2 ∈ L∞(0, T ;L2

σ(Ω)) ∩ L2(0, T ;W 1,2
0,σ (Ω)) and that E is a weak

solution to the Stokes equations with external force divF and initial value
u0. Assumption (1.6) yields E1 ∈ Ls(0, T ;Lq(Ω)). We use (2.5) to obtain

E2(t) =

∫ t

0
A1/2
q∗ e

−ν(t−τ)Aq∗A−1/2
q∗ Pq∗divF (τ) dτ (4.2)

for almost all t ∈ [0, T [. From (3.13) it follows E2 ∈ Ls(0, T ;Lq(Ω)) and

‖E2‖q,s;T ≤ cν−
1
2
− 3

2
( 1
q∗
− 1
q

)‖F‖q∗,s∗;T (4.3)

with a constant c = c(Ω, q, q∗) > 0. From now on let α := 1
2 + 3

2q .
By Theorem 2.2 there exists a constant c = c(Ω, q) > 0 with the following

property: If
‖E‖q,s;T < cνα , (4.4)

then the map F defined by (2.18) has a fixed point in Ls(0, T ;Lqσ(Ω)). Look-
ing at (4.3) we find a constant ε∗ = ε∗(Ω, q, q∗) > 0 such that under the
conditions (1.6), (1.7) F has a fixed point ũ ∈ Ls(0, T ;Lqσ(Ω)).

In the rest of the proof assume that ũ is a fixed point of F , i.e.

ũ(t) = −
∫ t

0
Aαq e

−ν(t−τ)AqA−αq Pqdiv((ũ+ E)⊗ (ũ+ E))(τ) dτ (4.5)

for almost all t ∈ [0, T [. Then u = ũ+ E is a very weak solution of (1.1).
Step 2. In this step it will be proved that ũ ∈ L8(0, T ;L4(Ω)).
Case 1. Let q ∈ [24

7 , 8]. Then there exists σ ∈ [0, 1
2 ] such that

2σ +
3

4
=

3( q
2

) . (4.6)

Since ũ, E ∈ Ls(0, T ;Lq(Ω)) we can use (4.5), (4.6) and (3.13) to get that
ũ ∈ L8(0, T ;L4(Ω)). In this case, the additional assumptions (1.9) and (1.10)
on u0, F are not needed.
Case 2. Let 3 < q < 24

7 or 8 < q < ∞. Define q0 := q and s0 := s. We
choose k ∈ N, exponents 1 < sn, qn < ∞ with S(sn, qn) = 1 , n = 1, . . . , k
and qk = ρ such that there exist σn ∈ [0, 1

2 [ , n = 1, . . . , k, with

2σn +
3

qn
=

3( qn−1

2

) , n = 1, . . . , k. (4.7)

Further, as in Case 1, choose σk+1 ∈ [0, 1
2 ] with the property that with

qk+1 := 4 , sk+1 := 8 it holds

2σk+1 +
3

qk+1
=

3( qk
2

) . (4.8)
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It is easy to see that the sequence {qn} can be chosen strictly decreasing when
8 < q <∞ and strictly increasing when 3 < q < 24

7 . We already know that
E1, E2 ∈ Ls(0, T ;Lq(Ω)). The assumption (1.9) yields E1 ∈ Lγ(0, T ;Lρ(Ω)).
Since there exists σ ∈ [0, 1

2 ] with 2σ + 3
ρ = 3

ρ∗
, (1.10) and (3.13) imply

E2 ∈ Lγ(0, T ;Lρ(Ω)). Consequently, by interpolation

E1, E2 ∈ Lsn(0, T ;Lqn(Ω)) (4.9)

for n = 0, 1, . . . , k. We use an inductive argument to prove that ũ ∈
Lsn(0, T ;Lqn(Ω)) for n = 0, 1, . . . , k + 1. For s0, q0 this is true since we
know ũ ∈ Ls(0, T ;Lq(Ω)). Moreover, looking at (4.5) we define σ0 := 3

2q and
see that the representation (4.10) holds with q0, σ0. Let n ≥ 1. We assume
that ũ ∈ Lsn−1(0, T ;Lqn−1(Ω)) and that

ũ(t) = −A1/2+σn−1
qn−1

∫ t

0
e−ν(t−τ)Aqn−1A−1/2−σn−1

qn−1
Pqn−1div((ũ+E)⊗(ũ+E)) dτ

(4.10)
for almost all t ∈ [0, T [. If n < k + 1, we use (4.7), (4.9), (4.10) and (3.13)
to get ũ ∈ Lsn(0, T ;Lqn(Ω)). Further, since ũ, E ∈ Lsn(0, T ;Lqn(Ω)) we ap-
ply (3.11) to (4.10) to obtain that ũ satisfies the representation formula (4.10)
with qn−1 replaced by qn and σn−1 replaced by σn. If n = k + 1 we
use (4.8), (4.9), (4.10) and (3.13) to get ũ ∈ L8(0, T ;L4(Ω)). The itera-
tive argument is finished.
Step 3. Let u := E+ ũ. In this final step we prove that u is a weak solution
of (1.1). We define q1, s1 > 1 by

1

2
=

1

q
+

1

q1
,

1

2
=

1

s
+

1

s1
.

Since S(s1, q1) = 3
2 and E ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)) we obtain

by interpolation E ∈ Ls1(0, T ;Lq1(Ω)). Let 0 < T ′ ≤ T with T ′ <∞. From
Step 2 it follows ũ⊗ ũ ∈ L2(0, T ′;L2(Ω)) and we get
‖u⊗ u‖2,2;T ′ ≤ ‖ũ⊗ ũ‖2,2;T ′ + ‖ũ⊗ E‖2,2;T ′ + ‖E ⊗ ũ‖2,2;T ′ + ‖E ⊗ E‖2,2;T ′

≤ ‖ũ⊗ ũ‖2,2;T ′ + 2‖ũ‖q,s;T ‖E‖q1,s1;T ′ + ‖E‖q,s;T ′‖E‖q1,s1;T ′

<∞.
Now an application of (2.5) to (4.5) yields

ũ(t) = −
∫ t

0
A1/2e−ν(t−τ)AA−1/2Pdiv(u⊗ u)(τ) dτ

for almost all t ∈ [0, T [. Therefore, ũ can be considered as a weak solution
of the instationary Stokes system with initial value 0 and external force
div(−u ⊗ u) where u ⊗ u ∈ L2

loc([0, T ;L2(Ω)). Then linear theory (see [21,
IV, Theorems 2.3.1 and 2.4.1]) implies ũ ∈ LHT (if T < ∞ then even
ũ ∈ L∞(0, T ;L2

σ(Ω)) ∩ L2(0, T ;W 1,2
0,σ (Ω))).

Altogether, u = ũ+E ∈ Ls(0, T ;Lq(Ω)) is a strong solution of (1.1) with
initial value u0 and external force divF . Consequently, u : [0, T [→ L2

σ(Ω) is,
after a redefinition on a set of Lebesgue measure 0, strongly continuous and
satisfies the energy equality (1.8) for all t ∈ [0, T [. �

Proof of Theorem 1.3. We assume that u ∈ Ls(0, T ;Lq(Ω)) is a strong
solution of (1.1) with exponents q > 3 and S(s, q) = 1. From [21, IV,
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Theorem 2.4.1] we get the representation

u(t) := E1(t) + E2(t) + ũ(t)

:= e−νtAu0 +

∫ t

0
A1/2e−ν(t−τ)AA−1/2PdivF (τ) dτ

−
∫ t

0
A1/2e−ν(t−τ)AA−1/2Pdiv(u⊗ u)(τ) dτ

for almost all t ∈ [0, T [. By (2.5) we know that

E2(t) =

∫ t

0
A

1/2
q∗ e

−ν(t−τ)Aq∗A
−1/2
q∗ PdivF (τ) dτ (4.11)

for almost all t ∈ [0, T [. We apply (3.13) to (4.11) and getE2 ∈ Ls(0, T ;Lq(Ω)).
By (2.5), (3.11) it follows with β = σ + 1

2 , σ = 3
2q that

ũ(t) = −
∫ t

0
A

1/2
q/2e

−ν(t−τ)Aq/2A
−1/2
q/2 Pq/2div(u⊗ u)(τ) dτ

= −
∫ t

0
Aβq e

−ν(t−τ)AqA−βq Pqdiv(u⊗ u)(τ) dτ

for almost all t ∈ [0, T [. Then (3.13) yields ũ ∈ Ls(0, T ;Lq(Ω)). Therefore,

e−νtAu0 = (u− E2 − ũ) ∈ Ls(0, T ;Lq(Ω)).

Finally, from (2.12), we get (1.11).
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