ON THE ANALYTICITY AND THE ALMOST PERIODICITY OF THE
SOLUTION TO THE EULER EQUATIONS WITH NON-DECAYING
INITIAL VELOCITY

OKIHIRO SAWADA AND RYO TAKADA

ABSTRACT. The Cauchy problem of the Euler equations in the whole space is considered
with non-decaying initial velocity in the frame work of B<1>o,1' It is proved that if the
initial velocity is real analytic then the solution is also real analytic in spatial variables.
Furthermore, a new estimate for the size of the radius of convergence of Taylor’s expan-
sion is established. The key of the proof is to derive the suitable estimates for the higher
order derivatives of the bilinear terms. It is also shown the propagation of the almost
periodicity in spatial variables.

1. INTRODUCTION AND MAIN RESULTS

Let us consider the Euler equations in R™ with n > 2, describing the motion of perfect
incompressible fluids,

0

a—?—i—(u'V)u—l—Vp:O in R" x (0,7),
(E) divu =0 in R™ x (0,7),

u(x,0) = up(x) in R",
where the unknown functions v = u(x,t) = (u'(z,t),...,u"(x,t)) and p = p(z,t) de-
note the velocity field and the pressure of the fluid, respectively, while ug = ug(x) =
(up(x), ..., ul(z)) denotes the given initial velocity field.

The purpose of this paper is to show the propagation properties of the analyticity and
the almost periodicity in spatial variables for the solution of (E) with non-decaying initial
velocity. For the local-in-time existence and uniqueness of solutions for (E), Kato [5]
proved that for the given initial velocity field vy € H™(R"™)™ with m > n/2 + 1, there
exist T = T'(||ug|| gm) and a unique solution u of (E) in the class C([0,T]; H™(R™)"). Kato
and Ponce [6] extended this result to the fractional-ordered Sobolev spaces W*P(R™)"

(1 — A)2LP(R™)" for s > n/p+ 1,1 < p < oo. In order to treat the initial velocity
with the minimal regularity, Pak and Park [8] studied in the framework of B]_ ,(R") and
obtained the following result.

Theorem 1.1 (Pak-Park [8]). For every ug € B, (R")" with divug = 0, there exists a
T > 0 such that (E) possesses a unique solution u € C([0,T]; BL, ;(R™)") with the pressure
Vp =37 V(=A) 10,00 '
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2 O. SAWADA AND R. TAKADA

The definition of the Besov space B;OJ(R”) and its properties will be explained in
Section 2. The reader can find the other results concerning the local-in-time existence
and uniqueness of solutions to (E) in the reference of [8].

It has already been known that Kato’s solution is real analytic in spatial variables if
up € C¥(R™)™; see Alinhac and Métivier [2], Kukavica and Vicol [7] and the references
therein. In this paper, we prove the propagation of analyticity of Pak-Park’s solutions.
In particular, we give an improvement for the estimate for the size of the radius of con-
vergence of Taylor’s expansion.

Before stating our result about the analyticity, we set some notation. Let Ny := NU{0},
where N is the set of all positive integers. For k € Ny, put

k!
C(k—+1)2’

mp ‘=

where ¢ is a positive constant such that one has

(0%
> <5>ﬂﬂm"wkﬂ|<7ma, o € Ng,

0<B<a

a n n
E: <5>”Mm—ﬂnm—m+1<!ahnaw a e Ng\ {0}

0<fB<a

For example, it suffices to take ¢ < 1/16. For the detail, see Kahane [4] and Alinhac and
Métivier [1]. Our result on the propagation of the analyticity now reads:

Theorem 1.2. Let ug € Bl ;(R")" with divug = 0, and let u € C([0,T]; BL, ,(R™)") be
the solution of (E). Suppose that ug € C¥(R™)™ in the following sense : there exist positive
constants Ky and py such that

|02 w051, < Kopg “'mia

for all « € Nj. Then, u(-,t) € C*(R™)" for all t € [0,T] and satisfies the following
estimate : there exist positive constants K := K(n, Ky),L := L(n,Ky) and X\ := \(n)
such that

163 p —|CY| maxy |o|— !
(1.1) [[ogu(-t)]se , <K(f°) Mgy (1 + ¢)mextlel 1’°}exp{A\a|/ Hu(-,T)HBéo’ldT}
0

for all o € Ny and t € [0,T.

Remark 1.3. (i) Since K, L and X\ do not depend on T, (1.1) gives a grow-rate estimate
for large time behavior of Pak-Park’s solutions provided fot [u(T)| gL d7 is uniformly

bounded in time. When ug € (BY, 1N Bl 1) (R™)™, we may obtain the similar estimates of
(1.1) replaced fo lu(T)|| g1, dT by fo ||Vu Y| peedT or fo [ rot u(r)[| 0 dr.

(ii) From (1.1), one can demve the estimate for the size of the uniform analyticity radius
of the solutions as follows :

1
2u(t)||poo \ ol
l|1(£1|r:1£10f (W) 2%(1+t exp{ /Hu s dT}
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Recently, Kukavica and Vicol [7) considered the vorticity equations of (E) in H*(T*)® with
s > 7/2, and obtained the following estimate for uniform analyticity radius :

o <\ T
lim inf (H@Jj rot u(®)ll. ) > p(1+1%) eXp{ / | Vu(r HLoodT}

|or] =00 o!

with some p = p(r,rotug) and X\ = XN(r). Hence our result is an improvement of the
previous analyticity-rate in the sense that (14 t*)~1 is replaced by (1+t)~, and clarifies
that p = po/L.

The proof of Theorem 1.2 is based on the inductive argument with respect to |«|. The
key of the proof is to derive the suitable estimates for the higher order derivatives of the
nonlinear term of (E). To this end, we appeal to the technique due to [4], and use the
commutator type estimates, the bilinear estimates (see Lemma 2.2 and Lemma 2.3 below)
and the trajectory flow argument.

We next consider the almost periodicity in spatial variables. We recall the definition of
the almost periodicity in the sense of Bohr.

Definition 1.4. Let f be a bounded continuous function on R". Put
Sp={ref | €RF(CLYRY), 7ef = f(-+&).
Then, f is called almost periodic in R™ if ¥ is relatively compact in L>(R").

We now state the second result of this paper.

Theorem 1.5. Let ug € BL (R")" with divug = 0 and let v € C([0,T]; BY, (R™)") be
the solution of (E). Suppose that ug is almost-periodic in R™, then the solution u(-,t) of
(E) is almost-periodic in R™ for all t € [0,T].

The same assertion is known for the solutions to the Navier-Stokes equations by Giga,
Mahalov and Nicolaenko [3]. Recently, Taniuchi, Tashiro and Yoneda [9] proved the
almost periodicity of weak solutions to (E) in the whole plane R? when ug € L>*(R?)%.
On the other hand, in the Theorem 1.5, we treat the classical solutions and all space-
dimensions n > 2. The proof of Theorem 1.5 is based on the argument given by [3]. The
key of the proof is to use the estimate concerning the continuity with respect to the initial
velocities, see Lemma 4.1 below.

This paper is organized as follows. In Section 2, we introduce the notation that will be
used throughout the paper, and recall the key lemmas which play important roles in our
proof. In Sections 3 and 4, we present the proof of Theorems 1.2 and 1.5, respectively.

2. PRELIMINARIES

In this section, we introduce some notation and the function spaces. Let .#(R™) be
the Schwartz class of all rapidly decreasing functions, and let .#”/(R™) be the space of all
tempered distributions. We first recall the definition of the Littlewood-Paley operators.
Let ® and ¢ be the functions in .(R™) satisfying the following properties :

suppCD C {5 e R"” | €] < 5/6} supp @ C {£ e R" ‘ 3/5 < [¢] < 5/3}

_'_290](5):17 feRn>
=0
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where p;(z) = 2"p(27z) and f denotes the Fourier transform of f € . (R™) on R™.
Given f € '(R ) we denote
P f, Jj=-1
Aif=Seixf,  §=0 Sef =Y Nif, ke,
07 j 5; 27 sk

where * denotes the convolution operator. Then, we define the Besov spaces B;Q(R”) by
the following definition.

Definition 2.1. For s € R and 1 < p,q < 0o, the Besov space B, (R") is defined to be
the set of all tempered distributions f € .’(R") such that the norm

15, = {29 125110} ez

’zg
is finite.

Note that B, (R") is a Banach space with its norm || - |

> NS

jET

B, It is easy to see that

[fllze = <A fllz= = 11F e,

Lo JEZ

Therefore BY ;(R") € L>(R"), and this embedding is continuous. It is also easily ob-
tained that By, | (R") C BUC(R"), where BUC(R") is the space of all bounded uniformly
continuous functions on R". Analogously, we can prove that BJ ,(R") c W'>(R"),
which is continuous embedding. Moreover, Béo,l(R) contains some non-decaying func-

et —e” "

i |- For more details,

tions, for example, [z — sinz], [z + cos z] and [m — tanhz =

see Triebel [10].
We now prepare the commutator type estimates and the bilinear estimates for nonlinear
terms of (E).

Lemma 2.2 (Pak-Park [8]). There exists a positive constant C' = C(n) such that
S22 1(8) 20 V)AL — Ag((w- V)Pl < Clllls I Flme,

jET
holds for all (u, f) € BY, ;(R")""" with divu = 0.
Lemma 2.3. There exists a positive constant C = C(n) such that
1alls, < CU e lgls, + lgle s )
holds for all f,g € BL, ;(R").

The proof of Lemma 2.3 follows from the characterization by differences of Besov norm,
easily ; see [10]. Hence we skip the detail of the proof. Next, we give the estimate for the
gradient of pressure 7 = Vp.

Lemma 2.4 (Pak-Park [8]). There exists a positive constant C' = C(n) such that

I, 0)ll s, < Cllulla, llells,
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holds for all u,v € Bl |(R")" with divu = dive = 0, where

m(u,v) = Z V(=A) 0, u" 0,07 = V(=A) " div {(u- V)v}.

k=1
Finally, we recall the Gronwall inequality.

Lemma 2.5 (The Gronwall inequality). Let A > 0, and let f,g and h be non-negative,
continuous functions on [0, T] satisfying

<A+ ds + h d
f(t) < /0 g(s)ds /o (s)f(s)ds
for all t € [0, T)]. Then it holds that

t
F(1) < Al / eJ1 MO g 5)ds
0

for allt € [0,T].

3. PROOF OF THEOREM 1.2

Proof of Theorem 1.2. We first notice that u € C([0,T]; B, (R")") for all s > 1, if
ug € B (R")" for all s > 1. Hence u(-,t) € C®(R")" for all t € [0,7] and then
u e C®°(R™"x [0, T))", if up € C>°(R™)". Moreover, the time-interval in which the solution
exists does not depend on s. Indeed, T" > C/|lug| . with some constant C' depending
only on n, and the solution u satisfies Y

(3.1) sup [lu(t)||p1, , < Colluolls
te€[0,7 ’ ’

with some positive constant Cy depending only on n.

Now let ug satisfy the assumption of Theorem 1.2. We discuss with the induction
argument. In the case a = 0, (1.1) follows from (3.1) with K = CyK,. Next, we consider
the case |a| > 1. We first introduce some notation. For I € N and A, L > 0, we put

Xi(t) = ma |ogu(t) s, ¢ € 071,

M. (t
Y, = Y := max sup { il )Xk(t)},

Isk<lieo,r) U Mk

where )
—Ak u(T dr
Mi(t) = MME(t) == ph LG (1 4 )Mo lelar ar
The similar notation were used in [1] and [2]. In what follows, we shall show that Y}, <
2K, for all @ € Nj with |a| > 1 when A and L are sufficiently large. We now consider the
case |a| = 1. Let k be an integer with 1 < k < n. Taking the differential operation 0,,

to the first equation of (E), we have
(3.2) Ot (Op ) + (O u - V)u+ (w - V)Op w4 Oy, m(u,u) =0,
where

Vp =mn(u,u) = Z V(=A) 10,1 0,0 = V(=A) " div{(u- V)u}.

Jvkzl
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Applying the Littlewood-Paley operator A; and adding the term (S;_ou - V)A;(0,,u) to
the both sides of (3.2), we have

(3.3) 01D (0, u) + (Sjau - V)A;(0,u)

' = (Sj—2u - V)A;(0n,u) = Aj((w- V)0p,u) = Aj((Opu - V)u) — Aj(O, 7 (u, u)).

Here we consider the family of trajectory flows {Z;(y,t)} defined by the solution of the
ordinary differential equations

0
(3.4) 5121 1) = Sj-au(Z;(y, 1), 1),
Zi(y,0) = y.
Note that Z; € C*'(R™ x [0,7])", and div S;_ou = 0 implies that each y — Z;(y,t) is a

volume preserving mapping from R” onto itself. From (3.3) and (3.4), we see that

O (Ory0) + ()20 V) (D) = 28,00, 0)(Z, . 1),1)).

(:ﬂ,t):(Zj(y,t),t)
which yields that
(3.5)

A (Do) (Z;(5.£),8) = A, (Do) (4) — / Ay (o YY) (Z(y. ), )ds
n / ((S)att- V) A (B 1) — Aj((- V)0u0)} (Z,(w, ), 5)ds

~ [ A i@urtu (.. s)ds.

0

Since the map y — Z;(y, t) is bijective and volume-preserving for all ¢ € [0, 7], by taking
the L>-norm with respect to y to both sides of (3.5), we have

14 (@) (8) 2 < 1Ay (Do) o + / 1A ((Boytr - V)u)(s) g dis
(3.6) T / (82t - V) A (Do) — A (1 V)Bgy)} (5)]] o ds

n / 1A (Do (1 ) (5) | .

Multiplying both sides of (3.6) by 27 and then taking the ¢!-norm in j, we obtain that
t t
om, < 1omtollan, + [ Nu- Dy s + [ 10nmtu )6

t
+ /O D P (S -0u - VYA (1) — Aj((w- V)Duy)} (5)|] oo s
JEL
(37) = Il+[2+13—|—f4.
It follows from the assumption on uq that

(38) [1 < Kopalml.
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From Lemma 2.3, we see that

39 <0 [ IVl Vel s < /nuny,am

where we used the continuous embedding ||V f|[z~ < C|[f[[g . For the pressure term
13, it follow from Lemma 2.4 that

t t
(3.10) k<2/Hﬂ%%@@%@wéC/WM@M@X@MS
0 ’ 0 ’

For the estimate of I, we have from Lemma 2.2 that

t t
E1) LSO [ uls)n Jnus, ds < C [ uls)la Xi(s)ds
0 0

Substituting (3.8), (3.9), (3.10) and (3.11) into (3.7), we have

t
(3.12) 10z, u(t)| 52, < Kopg ma + Cl/ [u(s)ll gz, , X1(s)ds
, ; ,

with some positive constant C depending only on n. Since k € {1,...,n} is arbitrary, it
follows from (3.12) that

t
m@<mm%wa/mwm%m@w
0 |

which implies by Lemma 2.5 that

(313) Xl(t) < Kopal 1601 fo H“(T)HBéo’ld-r‘

By choosing A > (', we obtain from (3.13) that

M (t)

C1=N) [F||lu(r dr
X (t) < Koo' @V B IOy

< KO;

which yields that
(3.14) Y; < K.

Next, we consider the case |a] > 2. Let o be a multi-index with || > 2. Taking the
dlfferentlal operation 0% to the first equation of (E), we have

(3.15) 0,(0%u) + - V)02 Pu + 9% (u,u) = 0.
= (e

Applying the Littlewood-Paley operator A; and adding the term (S;_ou - V)A;(0%u) to
the both sides of (3.15), we have

A (O u) + (Sj—2u - V)A;(07u)
= (Sj_ou - V)A;(0%u) — A;((u- V)0 u)

S (ﬁ) Pu - V)0 u) — A (00w (u, )

0<f<La

(3.16)
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Similarly to the case of |a] = 1, we have from (3.16) that

(3.17)
185020 )l < 1450702 + > ( ) / 125 (0 - )22 ) (5)]] 1 ds

0<f<a

n / 1A (0% (11, 10))(8) | s
n / (S5t - V) A, (0%0) — Ay((u - V)Ow)} (5)]] o .

Multiplying both sides of (3.17) by 2/ and then taking the ¢'-norm in j, we obtain that

O, < 10ualss, + 3 (5) [ @0 9108 2u(o) ., s
0<pB<a ’

+/ H@gﬂ(u,u)(s)HBl ds

# [ TS 0 V)80 — 80 )50} 0l
JEZ
(318) = Jl + J2 + J3 + J4.
It follows from the assumption on wug that

(3.19) Jr < Kopy “'myg-

For the estimate of J5, we have from Lemma 2.3 and the continuous embedding that

t
<0 3 (5) ] (102l Vo P uts i, + 1902 (o) 020t )

0<B<a

t
o .
:CZQ)/ 0,190 ), s
j=1 J 0
t
(0%
+C Z (ﬁ)/o ||afu(5)||]f>o||Va$_ﬂu(s)||3émds

0<fB<La

18122
t
o _
+C [ IVu e t0pu sy ds+0 3 (4) [ 190 2u(o)u 10700,
0<fB<a 0
cyay/ ()|l 51, Xjai(s)ds +C > (6)/0 Xi51-1(8) X a_pp41(s)ds

0<B<La
18122

(3.20)

+C Y <g) /OtXIﬁI(S)Xa—BI(S)dS‘

0<f<a
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For the pressure term J3, from Lemma 2.4, we have

ne ¥ (5) [ @200 s 05
0<B<a 1
< 1 =By 1 d
c;(ﬂ) [ 10206 1)
820 <0 [ Iu)lan, Xils s+ 3 (%) [ a6ty

For the estimate of Jy, it follows from Lemma 2.2 that

(3.22) / ()l N02u(s) 1 ds < / J($)ll 1, X (5)ds

Substituting (3.19), (3.20), (3.21) and (3.22) to (3.18), we have
0O, < Ko™ s+ Clal [ (o)l X5

(3.23) +C (5)/0 Xipt-1(8) Xja-pi+1(s)ds

0<fB<La
181=2

+C Y (g) /OtXm(S)Xmm(S)dS-

0<f<a

Furthermore, for the third term of the right-hand side of (3.23), we see that

O;Q (g) /Ot Xig1-1(8) Xja—p+1(s)ds

18122

= < > LU A L e S O L L LT H

0<B<a mg|-1 Mia—p|+1 M|ﬁ|_1<5) M|a_/3‘+1 (S)
18122
t
2 : a —leal 7 lal— al—2 AMal [§ ()]l dr
s ( )m|ﬁ|—1m|a—ﬁ|+1pol Ll 2(Y|a—1)2/ (14 s)l=2e7 0 e s
0<B<a ﬁ 0

18122

(3.24)
_la t ol e .
< lafmiaipy’ L“'_z(hal)z/o (L4 5) e o ley, 47y

Similarly, for the fourth term of the right hand side of (3.23), we have

= (3) [ vt

(325) 0<B<a
0 A fg llu(r dr
< Myalpy '“'L'“"Q(YQH)Z/ (1 4 s)lal-2 Mo Ol ar )
0
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Substituting (3.24) and (3.25) to (3.23), we have

0O, < Kopi" i+ Clal [ u(o)ls, X5

dr

—la - _o AMa] [§ [Ju(r
+ Clafmya pg 1L 2(Y|a|—1)2/ (1 4 s)lal-2 N WOy by
0

which implies that

Xiai(8) < Kopy @iy + Clal / (), Xjag(s)ds
(3.26)

A ; d
jaf—2 Mol J5 Iuligy ar

+ Clalmyapy L2 (Vo)1) / (1+5) ds.
0

By Lemma 2.5, we obtain from (3.26) that

ol Colal f{ ()l dr lal 7 ol
Xial(£) < Kopy “mygie 0250 4 Colafmygpg L2 (Vo1 )?

t t S
_o Colaf [Jllu()llg1  dr+Ael [ llu(T)lg dr
x/(1+3)°‘| %e oot 0 Poor ™ ds
0

with some positive constant Cy depending only on n. By choosing A > Cs and L > 1, we
thus have

Mo (t)

Ml

Lol 3 (1) < KoL ol=D(1 4 )~ (lal=n L=Vl TeOllay o

t Co—=N|a| [f |lu(r dr
+ ClalL 7 (L) D) [ gt 2SI
0

t
< Ko+ C’Q\Oz|L_1(1 + t)_(|a|_1)(Y|a|1)2/ (1+ s)|a|_2ds

0
2C
< Ko+ 72(5/'&‘_1)2.

The above estimate with (3.14) implies that

2C
(3.27) Yio < Ko + TQ(Y|a\—1)2
for all & € N with || > 2. From (3.14) and (3.27), we obtain by the standard inductive

argument that
(3.28) Yy < 2K,

for all @« € Ny with |a] > 1, provided A > max{C},C>} and L > max{1l,8Cy2K}.
Therefore, it follows from (3.28) that

2K, —lal al [ u(r T
(329)  oRullsy, < 2 (%) (1 gyt RO
forallt € [0, 7] and @ € N§ with |a| > 1. From (3.1) and (3.29) with K = K max{Cy,2/L},

we complete the proof of Theorem 1.2. [l
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4. PROOF OF THEOREM 1.5

In this section, we present the proof of Theorem 1.5. To this end, we will use the
following lemmas.

Lemma 4.1 (Pak-Park [8]). Let ug,vg € BJ (R")" with divuy = divey = 0, and let
u,v € C([0,T]; B, ;(R™)") be the solutions of (E) with u(z,0) = uo(z) and v(z,0) =
vo(x). Then, there exists a positive constant C' = C(n) such that

t
Jott) = o0, < o = ol e { € [ (R, + Il ) s}
0
holds for all t € [0,T].

Lemma 4.2. Let f € Bgojl(]R"). Then, f is almost periodic in R™ if and only if X is
relatively compact in BSO’I(R").

Note that ¥y C BY ,(R") if f € BY ,(R"). We can prove Lemma 4.2 by the similar

argument in Giga, Mahalov and Nicolaenko [3], where they proved the case of ngl(R”).
Hence we omit the proof.

Proof of Theorem 1.5. Let {S(t)}oci<r be the solution maps, that is, S(t) : Bl ;(R") —
Bl 1 (R") is defined by S(t)ug = u(-,t). Since (E) is translation invariant with respect to
the space variables, it follows from the uniqueness that S(t)7,uo = 7,u(-,t). Hence the
map S(t) is surjective from X, onto X, 4.

Let {u;(-,1)}32, be an arbitrary sequence in ¥, ;. Note that u; can be written as
uj(-,t) = m,u(-,t) with some 7; € R”. Moreover, it holds that w;(-,t) = S(t)7,,uo by the
surjectivity of S(t). Since ug € Bl |(R") is almost periodic, by Lemma 4.2, there exists
a subsequence of {7, uo}32,, again denoted by {7,,u0}32,, such that

(4.1) I7ayt0 = Lo, — 0

as j,k — co. We remark that the norm of B] ,(R") is invariant under the translation.
Hence from Lemma 4.1 and (4.1), we obtain that

T
oy (0) = ), < 0 =l x0 { € [ (s, + a6, ) s}
0

T
=m0 =l o {20 [ ol ] 0
) 0 ’

as j, k — oo, which implies that u(-,¢) is almost periodic in R™ for all ¢ € [0, T7. O
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