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Abstract. In this article we compare the set of integer points in the homothetic copy nΠ of a
lattice polytope Π ⊆ Rd with the set of all sums x1 + · · ·+ xn with x1, ..., xn ∈ Π ∩ Zd and n ∈ N.
We give conditions on the polytope Π under which these two sets coincide and we discuss two notions
of boundary for subsets of Zd or, more generally, subsets of a finitely generated discrete group.
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1 Introduction

Throughout, we denote by N, Z, Q and R the natural, integer, rational and real numbers,
respectively, and we fix a number d ∈ N. For arbitrary n ∈ N, we compare the set of all integer
points in the homothetic copy nΠ of a lattice polytope Π ⊆ Rd (that means Π is the convex hull
of a finite number of points in Zd) with the set of sums x1 + · · ·+ xn with x1, . . . , xn ∈ Π∩Zd.
It is easy to see that the latter set is always contained in the first – but in general, they are
different. We give conditions on the polytope under which these two sets coincide and we
discuss two notions of boundary for subsets of Zd and, more generally, of a finitely generated
(not necessarily commutative) discrete group.

The motivation for this paper stems from the study of projection methods for the approximate
solution of operator equations. Let A be a bounded linear operator acting on a Banach space.
To solve the operator equation Au = f numerically, one chooses a sequence (Qn) of projections
(usually assumed to be of finite rank and to converge strongly to the identity operator) and
replaces the equation Au = f by the sequence of the linear systems QnAQnun = Qnf . What
one expects is that, under suitable conditions, the solutions un of these systems converge to the
solution u of the original equation. If the Banach space on which A lives consists of functions on
a countable set Y (think of a sequence space l2(Y ), for example) then it is convenient to choose
an increasing sequence (Yn) of finite subsets of Y and to specify Qn as the operator PYn which
restricts a function on Y to Yn.

In this paper, we will be concerned with the case when Y is a finitely generated discrete group
Γ. In case Γ is the additive group Zd, a typical (rather geometric) approach [15, 17, 13, 14] to
design a projection method is to fix a compact set (for example a lattice polytope) Π ⊆ Rd and
to consider the operator PΠn of restriction to (likewise, the operator of multiplication by the
characteristic function of) the set

Πn := (nΠ) ∩ Zd (1)
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for n ∈ N. If we assume that the origin is in the interior of Π then it follows that

Πn ⊆ Πn+1 for all n ∈ N and
⋃
n∈N

Πn = Zd, (2)

whence the sequence (Πn)n∈N gives rise to an increasing sequence of finite-dimensional projection
operators on l2(Zd) that strongly converges to the identity operator as n →∞.

In the case of a general finitely generated group Γ, this geometric approach is clearly infeasible.
A natural idea here is to fix a finite set Ω ⊆ Γ of generators of Γ (that is, we assume that Ω
generates Γ as a semi-group) and to consider the set

Ωn := {x1x2 · · ·xn : x1, x2, . . . , xn ∈ Ω} (3)

of all words of length n ≥ 1 over the alphabet Ω in place of (1). If Ω is symmetric (in the sense
that x−1 ∈ Ω if x ∈ Ω), contains the identity element e of Γ (in analogy to the above approach
in Zd) and if Γ is equipped with the word metric over Ω then Ωn is the disk of radius n in Γ
around the identity e. Moreover, one gets that also (Ωn)n∈N yields an increasing sequence of
finite-dimensional projections with strong limit identity, i.e., (2) holds with Πm replaced by Ωm

and Zd by Γ.

A natural question before proposing the latter approach for general finitely generated groups
Γ is whether or not the geometric approach (1) and the algebraic approach (3) coincide if we
have Γ = Zd and use Ω := Π ∩ Zd as finite set of generators in (3) with a symmetric lattice
polytope Π ⊆ Rd containing the origin in its interior. This question is discussed in Section 2.
We will give conditions on the polytope Π under which (1) and (3) coincide – but in general
they do not.

In Section 3 we address a further question that arises in the study of projection methods. In
[19] it has been pointed out that the “boundaries” ∂ΩΩn (if appropriately defined) of the sets
Ωn (or Πn) hold the key to the answer to whether or not the projection method

PΩnAPΩnun = PΩnf, n ∈ N,

yields stable approximations un to the solution u of Au = f . In Section 3 we give special empha-
sis to the question whether the “algebraic boundaries” ∂ΩΩn coincide with the corresponding
“numerical boundaries” Ωn \ Ωn−1.

2 Lattice polytopes, enlargements and integer points

Now fix d ∈ N, let e1, ..., ed be the standard unit vectors of Rd, and denote the unit simplex
conv{0, e1, ..., ed} by σd. (For standard notions on convex polytopes we recommend [9, 8, 22];
for lattice polytopes see [3, 6, 7, 20, 21].)

Given a non-empty subset S of Rd and a positive integer n, we write

nS := {ns : s ∈ S} and n ∗ S := {s1 + · · ·+ sn : s1, ..., sn ∈ S} = S + · · ·+ S

for the ratio-n homothetic copy and n-fold Minkowski sum of S, respectively. For convenience,
we also set 0S := {0} and 0 ∗ S := {0}. It is easy to see that nS = n ∗ S holds for all n ∈ N if S
is convex. Indeed, the inclusion nS ⊆ n ∗ S is always true, and, by convexity of S, s1 + · · ·+ sn
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can be written as ns with s = (s1 + · · ·+ sn)/n ∈ S for all n ∈ N and s1, ..., sn ∈ S. (Note that
equality of nS and n ∗ S for all n ∈ N does not imply convexity of S, as S = Q shows.)

For a convex set Π ⊆ Rd containing at least two integer points, it is clear that (nΠ) ∩ Zd 6=
n(Π ∩ Zd) as soon as n > 1. But (as motivated in the introduction) a much more interesting
question is whether or not

(nΠ) ∩ Zd = n ∗ (Π ∩ Zd) (4)

is true for all n ∈ N. We will study this question for certain polytopes Π.

Let v1, ..., vk be points of Zd with their affine hull equal to Rd and put Π = conv{v1, ..., vk}.
Π is a so-called lattice polytope as all its vertices are in Zd. We will suppose that there is no
proper subset I of {1, ..., k} with Π = conv{vi : i ∈ I}, so that v1, ..., vk are the vertices of Π. If
Π ∩ Zd only consists of the vertices of Π then Π is called an elementary polytope [10, 20] (or a
lattice-(point-)free polytope [2, 11]). The following lemma is fairly standard:

Lemma 2.1 Let A ∈ Zd×d be a matrix and a1, ..., ad ∈ Zd its columns.

a) The following conditions are equivalent:

(i) A(Zd) = Zd.
(ii) A−1 is an integer matrix.
(iii) det A = ±1.
(iv) The parallelotope A([0, 1]d) spanned by a1, ..., ad has volume 1.
(v) The parallelotope A([0, 1]d) is elementary.

b) The condition

(vi) The simplex A(σd) = conv{0, a1, ..., ad} is elementary.

is necessary for (i)–(v); it is moreover sufficient iff d ∈ {1, 2}.

If (i)–(v) hold then A is called an integer unimodular matrix [7, 20] and the simplex A(σd)
has volume 1/d! and is sometimes called a primitive (or unimodular) simplex (e.g. [10]). So
primitive simplices are elementary, and the converse holds iff d ∈ {1, 2}.

For the sake of completeness, we give a short sketch of the proof of Lemma 2.1:

Proof. Part a) follows by standard arguments using detA−1 = 1/ det A and vol(A([0, 1]d)) =
|det A| vol([0, 1]d). The implication (v) ⇒ (vi) holds by σd ⊆ [0, 1]d. For d = 1, the implication
(vi) ⇒ (v) is clear by σ1 = [0, 1]1. For d = 2, if x is an integer non-vertex point in A([0, 1]2),
then also a1 + a2 − x is an integer non-vertex point in A([0, 1]2). But one of the two points is
in A(σ2), so that (vi) ⇒ (v) holds. For d ≥ 3, there are elementary but not primitive simplices
(see Examples 2.2 a and b below).

Here are two slightly different constructions leading to elementary but not primitive simplices
in dimension d ≥ 3.

Example 2.2 a) Let d ≥ 3, fix an m ∈ N, take a1 := e1, a2 := e2, ... , ad−1 := ed−1 ∈ Zd and
ad := (−1, ...,−1,m)>, and let A ∈ Zd×d be the matrix with columns a1, ..., ad. Then

Σd,m := A(σd) = conv{0, a1, ..., ad}

is primitive iff m = det A = 1. On the other hand, the number of integer points in Σd,m

apart from its d + 1 vertices is equal to k = bm/dc (integer division), and these k other integer
points are 1ed, ..., ked. (To see this, look at the projection of Σd,m to the hyperplane spanned
by e1, ..., ed−1.) So for m ∈ {2, ..., d− 1} we have an elementary but not primitive simplex.
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b) If we change the last column in the above example from ad = (−1, ...,−1,m)> to a′d :=
(1, ..., 1,m)> with m ∈ N and call the new matrix A′ then, again, the simplex

Σ′
d,m := A′(σd) = conv{0, a1, ..., ad−1, a

′
d}

is not primitive for m = det A′ ≥ 2 but now it is elementary for all m ∈ N. So this simplex
Σ′

d,m can have arbitrarily large volume m/d! without containing any integer points other than
its vertices. The simplices Σ′

d,m were first considered (because of this property) by Reeve [16]
in case d = 3 and have since been termed Reeve simplices. There are results that relate the
maximal volume of an elementary polytope in Rd to its surface area [5] or its inradius [2].

Given a full-dimensional lattice polytope Π ⊆ Rd and a set T of full-dimensional lattice
simplices S1, ..., Sm ⊆ Π with

m⋃
i=1

Si = Π and Si ∩ Sj is a face of both Si and Sj , ∀i, j,

then the set T = {S1, ..., Sm} is called a triangulation of Π. The triangulation T is called
elementary or primitive if all its elements Si are, respectively, elementary or primitive simplices.

Here is our main result on the equality (4):

Proposition 2.3 If a full-dimensional lattice polytope Π ⊆ Rd possesses a primitive triangula-
tion then equality (4) holds for all n ∈ N.

Proof. Let n ∈ N and x ∈ n ∗ (Π ∩ Zd). Then x = p1 + ... + pn for some p1, ..., pn ∈ Π ∩ Zd, so
that x ∈ Zd and x = np with p = (p1 + ... + pn)/n. But p ∈ Π by convexity of Π.

Now let x ∈ (nΠ) ∩ Zd, so x = np is an integer point with p ∈ Π. Let T = {S1, ..., Sm} be
a primitive triangulation of Π and let w0, ..., wd be the vertices of a simplex Si that contains
p. Now there is a unique way to write p as a convex combination of w0, ..., wd. So there are
α0, ..., αd ∈ [0, 1] so that p = α0w0 + ... + αdwd and α0 + ... + αd = 1. Together with x = np this
implies 

| | |
w0 w1 · · · wd

| | |

1 1 · · · 1




nα0

nα1
...

nαd

 = n


|
p
|

1

 =


|
x
|

n

 . (5)

If we refer to the matrix in (5) as M then, after subtracting the first column from all the others
and then expanding by the last row,

det M = det


| | |

w0 w1 − w0 · · · wd − w0

| | |

1 0 · · · 0


= (−1)d+1 det

 | |
w1 − w0 · · · wd − w0

| |

 ∈ {±1}
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by Lemma 2.1 since w1 − w0, · · · , wd − w0 span the primitive simplex Si − w0. So M−1 exists
and is an integer matrix. By (5), it follows that β0 := nα0, · · · , βd := nαd are integers since
M−1 and x have integer entries. Summarizing, we get that

β0w0 + β1w1 ... + βdwd = x, (6)

where β0, ..., βd ∈ {0, ..., n} and β0 + ... + βd = n, so that (6) is the desired decomposition of x
into a sum of n elements from Π ∩ Zd.

It is not clear to us whether the existence of a primitive triangulation is necessary for equality
(4) to hold for all n ∈ N. (Is it possible that every p ∈ Π is contained in a primitive simplex
S(p) ⊂ Π without the existence of a “global” primitive triangulation of Π?)

It is not hard to see that every lattice polytope Π possesses an elementary triangulation.
(Existence of a triangulation can be shown by induction over the number of vertices of Π, and
every non-elementary simplex Si can be further triangulated with respect to its integer non-
vertex points.) Existence of a primitive triangulation however is a different question – at least
in dimensions d ≥ 3.

Corollary 2.4 If Π is a full-dimensional lattice polytope in Rd with d ∈ {1, 2} then equality (4)
holds for all n ∈ N.

Proof. Every lattice polytope has an elementary triangulation. In dimensions d ∈ {1, 2}, by
Lemma 2.1 b), an elementary triangulation is always primitive. Now apply Proposition 2.3.

In dimension d ≥ 3, it is generally a difficult question whether or not a given lattice polytope
Π has a primitive triangulation (see e.g. [4, 10]). The simplices Σd,m in Example 2.2 a) with
m ∈ {2, ..., d− 1} and Σ′

d,m in 2.2 b) with m ∈ {2, 3, ...} are examples of lattice polytopes that
have no primitive triangulation. They are also examples, where (4) is not valid for general n ∈ N.
For example, 2Σ3,2 contains e3, which cannot be written as the sum of two integer points from
Σ3,2. It is even possible to give examples Π where, for a given k ∈ N, (4) starts to fail at n > k
while holding true for n = 1, 2, ..., k. As an example, take Π = Σ2k+1 , 2.

The more specific question posed in the introduction is whether the fact that Ω := Π ∩ Zd

(i) contains the origin, (ii) is symmetric (i.e. −x ∈ Ω if x ∈ Ω), and (iii) generates Zd, i.e.⋃
n∈N

n ∗ Ω = Zd, (7)

guarantees equality (4) for all n ∈ N. But also that has to be answered in the negative, as
the example Π = conv(Σ3,3 ∪ −Σ3,3) = conv{±e1 , ±e2 , ±(−1,−1, 3)>} ⊆ R3 shows. Indeed,
(−1,−1, 1)> is in 2Π but not in 2 ∗ Ω with Ω = Π ∩ Z3 = {±e1 , ±e2 , ±e3 , ±(−1,−1, 3)> , 0}.

After all these examples, here are some results on the positive side:

The symmetric hypercube [−1, 1]d is the union of 2d shifted copies of [0, 1]d, each of which has
a primitive triangulation. The cross-polytope conv{±e1, ...,±ed} triangulates into 2d unit sim-
plices around the origin. Much more involved, there is the following result by Kempf, Knudsen,
Mumford and Saint-Donat [12]:

Lemma 2.5 For every lattice polytope Π ⊆ Rd, there is an integer k ∈ N such that kΠ possesses
a primitive triangulation.
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Consequently, for every lattice polytope Π, there is a k ∈ N such that kΠ satisfies (4) in place
of Π for all n ∈ N.

Remark 2.6 The two conditions (7) with Ω := Π ∩ Zd, which says that Ω generates all of Zd,
and 0 ∈ int(Π), which implies that n ∗Ω ⊆ (n + 1) ∗Ω, are connected with each other and with
the validity of (4) for all n ∈ N. Firstly, if (4) holds for all n ∈ N and 0 ∈ int(Π) then

⋃
n∈N

n ∗ (Π ∩ Zd) =
⋃
n∈N

(nΠ) ∩ Zd =

(⋃
n∈N

nΠ

)
∩ Zd = Zd

so that (7) holds. On the other hand, from (7) it follows, by the trivial inclusion “⊇” in (4),
that

Zd =
⋃
n∈N

n ∗ (Π ∩ Zd) ⊆
⋃
n∈N

(nΠ) ∩ Zd =

(⋃
n∈N

nΠ

)
∩ Zd ⊆ Zd,

whence, by the convexity of Π, ∪nΠ = Rd and hence 0 ∈ int(Π).

3 Boundaries of subsets of a group Γ

Let Γ be a finitely generated discrete group with identity element e. We are going to introduce
some notions of topological type. Note that the standard topology on Γ is the discrete one; so
every subset of Γ is open with respect to this topology.

Let Ω be a finite subset of Γ which contains the identity element e and which generates Γ
as a semi-group, i.e., if we set Ω0 := {e} and if we let Ωn denote the set of all words of length
at most n with letters in Ω for n ≥ 1, then ∪n≥0Ωn = Γ. Note also that the sequence (Ωn) is
increasing; so the operators PΩn can play the role of the finite section projections PYn from the
introduction, and in fact we will obtain some of the subsequent results exactly for this sequence.

With respect to Ω, we define the following “algebro-topological” notions. Let A ⊆ Γ. A point
a ∈ A is called an Ω-inner point of A if Ωa := {ωa : ω ∈ Ω} ⊆ A. The set intΩA of all Ω-inner
points of A is called the Ω-interior of A, and the set ∂ΩA := A \ intΩA is the Ω-boundary of
A. Note that we consider the Ω-boundary of a set always as a part of that set. (In this point,
the present definition of a boundary differs from other definitions in the literature; see [1] for
instance.) One easily checks that

Ωn−1 ⊆ intΩΩn ⊆ Ωn and ∂ΩΩn ⊆ Ωn \ Ωn−1 (8)

for each n ≥ 1.

Recall from [19] that there are at least two reasons for the interest in the boundaries ∂ΩΩn:

• The sequence (P∂ΩΩn)n≥1 belongs to the C∗-algebra S(Sh(Γ)) which is generated by all
finite sections sequences (PΩnAPΩn)n≥1 where A runs through the operators on l2(Γ) of
left shift by elements in Γ (i.e., they are given by the left-regular representation of Γ on
l2(Γ)), and it generates the quasicommutator ideal of that algebra.

• There is a criterion for the stability of sequences in S(Sh(Γ)) which can be formulated by
means of limit operators, and it turns out that it is sufficient to consider limit operators
with respect to sequences taking their values in the boundaries ∂ΩΩn.

6



For details, see [19]. In many instances one observes that the “algebraic” boundary ∂ΩΩn

coincides with the “numerical” boundary Ωn \ Ωn−1; in fact, one inclusion holds in general as
mentioned in (8). We will see now that the reverse inclusion can be guaranteed if Γ = Zd and
if Ω arises from a lattice polytope Π such that (4) holds for all n ∈ N.

Proposition 3.1 Let Π be a lattice polytope in Zd which satisfies (4) and set Ω := Π ∩ Zd.
Then

∂Ω(n ∗ Ω) = (n ∗ Ω) \ ((n− 1) ∗ Ω) (9)

holds for all positive integers n.

Proof. As mentioned above, it is sufficient to show that

(n ∗ Ω) \ ((n− 1) ∗ Ω) ⊆ ∂Ω(n ∗ Ω).

We start with working on the continuous level and check first the implication

If x ∈ nΠ \ (n− 1)Π, then Π + x 6⊂ nΠ. (10)

Indeed, write x as tω with ω ∈ ∂Π (= the usual topological boundary of Π) and n− 1 < t ≤ n.
Then x + ω = (t + 1)ω with t + 1 > n, whence x + ω 6∈ nΠ.

In the next step we show that ω can be chosen such that x + ω becomes a grid point for x
a grid point. Indeed, let x ∈ (nΠ \ (n− 1)Π) ∩ Zd. Consider the points x + ωi where the ωi,
i = 1, . . . , k, run through the (integer) vertices of Π. If we would have x + ωi ∈ nΠ for each i,
then we would have

x + Π = conv{x + ωi : i = 1, . . . , k} ⊆ nΠ

by convexity of Π, which contradicts (10). Hence, for each x ∈ (nΠ \ (n− 1)Π) ∩ Zd, there is a
vertex ωi of Π such that

x + ωi ∈ ((n + 1)Π \ nΠ) ∩ Zd.

Employing the assumption (4) we conclude that, for each x ∈ n∗Ω\ (n−1)∗Ω there is a ωi ∈ Ω
such that x + ωi ∈ (n + 1) ∗ Ω \ n ∗ Ω. Hence, x is in the Ω-boundary of n ∗ Ω.

We proceed with an example which shows that the generalized version of (9),

∂ΩΩn = Ωn \ Ωn−1 , (11)

does not hold for general subsets Ω of a finitely generated discrete group Γ and n ∈ N. Consider
the matrices

ω0 :=
(

1 0
0 1

)
, ω1 :=

(
0 1
1 0

)
, ω2 :=

(
1 1
0 1

)
and

ω3 := ω2ω1 =
(

1 1
1 0

)
, ω4 := ω−1

2 =
(

1 −1
0 1

)
, ω5 := ω4ω1 =

(
−1 1
1 0

)
.

Then Ω := {ωi : i = 0, . . . , 5} generates the group GL(2, Z) as a semi-group (clearly, Ω is not
minimal as a generating system: ω0, ω1, ω2, ω4 already generate this group). One easily checks
that ω0ω1 = ω1, ω1ω1 = ω0, ω2ω1 = ω3, ω3ω1 = ω2, ω4ω1 = ω5 and ω5ω1 = ω4, whence
Ωω1 ⊆ Ω. Thus, ω1 ∈ Ω1 \ Ω0, but ω1 6∈ ∂ΩΩ1. So, (11) is violated already for n = 1.
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Let us conclude with a curious consequence of the coincidence (9) of the boundaries. We
mentioned above that the sequence (P∂ΩΩn)n≥1 always belongs to the C∗-algebra S(Sh(Γ)) gen-
erated by the finite sections sequences (PΩnAPΩn)n≥1 where A is constituted by operators of left
shift by elements of Γ. Under the conditions of Proposition 3.1, we conclude that the sequence
(PΩn−PΩn−1) belongs to S(Sh(Zd)). In particular, the sequence (PΩn−1) = (PΩn)−(PΩn−PΩn−1)
belongs to S(Sh(Zd)). Consequently, with each sequence (PΩnAPΩn)n≥1, the sequence

(PΩn−1) (PΩnAPΩn) (PΩn−1) = (PΩn−1APΩn−1)

(with the operators PΩn−1APΩn−1 considered as acting on the range of PΩn) also belongs to
S(Sh(Zd)). In particular, the algebra S(Sh(Zd)) contains a shifted copy (hence, infinitely many
shifted copies) of itself. The same fact clearly holds for every algebra which is generated by finite
sections sequences (QnAQn) and contains the sequence (Qn − Qn−1). A less trivial example
where this happens is the algebra of the finite sections method for operators in (a concrete
representation of) the Cuntz algebra ON with N ≥ 2 [18].
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