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Abstract

A rigid body, B, moves in a Navier-Stokes liquid, L, filling the whole
space outside B. We assume that, when referred to a frame attached to
B, the nonzero translational velocity, ξ, and the angular velocity, ω, of B
are constant and that the flow of L is steady. Our main theorem implies
that every “weak” steady-state solutions in the sense of Leray is, in fact,
physically reasonable in the sense of Finn, for data of arbitrary “size”.
Such a theorem improves and generalizes an analogous famous result of
K.I. Babenko [1], obtained in the case ω = 0.

1 Introduction

Consider a rigid body, B, moving in a Navier-Stokes liquid, L, that fills the
whole three-dimensional space, Ω, outside B. We assume that the translational
velocity, ξ, and the angular velocity, ω, characterizing the motion of B, are
constant when referred to a frame, F , attached to B. We also assume that the
flow of L in F is time-independent, and that L is quiescent at large (infinite)
distance from B. Therefore, denoting by v = v(x), p = p(x) the velocity and
pressure fields of L, respectively, referred to F , we obtain that the generic flow
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of L is governed by the boundary-value problem (see, e.g. [13, §1])

(1.1)


µ∆v −∇p− v · ∇v + ξ · ∇v + ω ∧ x · ∇v − ω ∧ v = f in Ω,

div(v) = 0 in Ω,
v = v∗ on ∂Ω,

lim
|x|→∞

v(x) = 0.

In these equations, Ω is the “region of flow”, that is, an open, connected set
complement to a compact set of R3, the “body” B. Moreover, µ denotes the
(constant) kinematic viscosity coefficient of L, f is the body force acting on
it, and v∗ is a velocity distribution at the boundary of Ω. Both f and v∗ are
prescribed functions of x ∈ Ω.

The first contribution to the solvability of (1.1) traces back to the pioneering
work of J. Leray [21]. Specifically, Leray investigated the case ω = 0 (no spin),
and showed that, under suitable assumptions on f and on v∗ satisfying the zero-
flux condition

∫
∂Ω
v∗ · n = 0, problem (1.1) has, for any ξ ∈ R3, at least one

solution. This solution is characterized by the fact that the velocity field has a
finite Dirichlet integral:

(1.2)
∫
Ω

|∇v|2 dx ≤ C1,

where C1 is a positive constant depending only on the data. Moreover, if f is
smooth, then v and the corresponding pressure field p are equally smooth in Ω.
A solution to (1.1) satisfying (1.2) is called a Leray solution.

The most important feature of a Leray solution is that it exists for data of
arbitrary “size”. However, its main drawback resides in the fact that it is not
clear if it satisfies all the basic physical properties that a solution should possess
like, for example, (i) showing a “wake-like” behavior if ξ 6= 0, (ii) obeying the
equation of energy balance, and (iii) being unique for “small” data. Notice
that the proof of all these properties can be reduced to a detailed knowledge of
the structure of the solution at large |x|. For that matter, the only asymptotic
information that, at the outset, we have on a Leray solution is that it verifies
(1.2) along with

(1.3)
∫
Ω

|v|6 dx ≤ C2

(C2 depending only on the data), which is proved as a corollary to (1.2), (1.1)4,
and the Sobolev inequality.

For this reason, in 1959, R. Finn introduced the definition of a Physically
Reasonable solution, that is, a solution that satisfies the properties (i)–(iii) listed
above and, later on, in 1965, he was able to prove their existence; see [9]. How-
ever, Finn’s existence result – unlike Leray’s – is local, namely, it holds if the
size of the data is appropriately restricted. Thus, the natural and fundamental
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question that remained open was whether or not a Leray solution – that exists
for data of arbitrary size – is also physically reasonable in the sense of Finn 1.
This outstanding question, in the case ξ 6= 0, was positively answered in 1973
by Babenko [1] 2, even though a complete and more direct proof was available
only much later [10, 8].

All results described above refer to the case ω = 0. However, over the past
decade, there has been a growing interest, in both mathematical and applied
science communities, aimed at the study of the properties of solutions to (1.1)
in the general case, when also ω 6= 0; for a motivation, see, e.g., [13] and
the references there included. The most significant analytical results concern
existence, uniqueness, asymptotic behavior (in space) and stability, and the list
of their contributors is quite extended. Without claiming to be exhaustive, we
refer the reader to [16, 7, 5, 6, 15, 14, 17, 18, 19, 20, 4] and to the bibliography
cited therein.

It is important to emphasize that the case ω 6= 0 presents a fundamental
challenge, due to the presence of the term ω ∧ x · ∇v in the linear momentum
equation, whose coefficient becomes arbitrarily large at large distances from the
boundary ∂Ω. One consequence of this fact is that problem (1.1) can not, by any
means, be considered as a perturbation to the analogous problem when ω = 0,
and that, in particular, the linearized operator – obtained by disregarding v ·∇v
in (1.1) – is not a perturbation to the well-studied Oseen operator; see, e.g. [11,
Chapter VII]. Another and not less important consequence is that, as shown
in [7], the fundamental tensor solution, E = E(x, y), of the linearized operator
associated to (1.1) does not satisfy the fundamental estimate

(1.4) |E(x, y)| ≤ C

|x− y|
, ∀x, y ∈ R3,

with a constant C independent of x and y. The lack of property (1.4) strongly
suggests that one might not be able to obtain asymptotic estimates (at large
distances, that is) via the standard method 3 of representing the solution by
convolution integrals with kernels involving E, even for the linearized problem.

Notwithstanding this difficulty, thanks to the remarkable fact that the total
power of the “rotational term”,

∫
Ω

(ω∧x·∇u−ω∧u)·u, vanishes identically along
differentiable vector functions u of compact support in Ω, one can prove that
all solutions (in a suitable class) to problem (1.1) satisfy an a priori estimate
analogous to (1.2). As a consequence, by appropriately modifying the procedure
used for the case ω = 0, one can show existence of a Leray solution for data of
arbitrary “size”, also in the case when ω 6= 0; see [3, 25].

The question of existence of Physically Reasonable solutions was initiated
in [16], and continued and, to some extent, completed, in [14, 15]. Specifically,
by an entirely different approach than the one adopted by Finn in [9], in those
papers it is proved that if the data f and v∗ are “small” in a suitable sense,

1Notice that the converse is always true [9].
2If ξ = 0, to this day, the question is still open.
3 See, e.g., [11, Chapters V, VII].
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then problem (1.1) possess one (and, in fact, only one) Physically Reasonable
solution. As in the case ω = 0, while it is immediate to show that these solutions
are also Leray solutions, the converse property is in no way obvious, even for
“small” data.

Objective of this paper is to prove that, if

(1.5) ξ · ω 6= 0,

then every Leray solution to problem (1.1) is Physically Reasonable. In partic-
ular, we show in Theorem 5.1 that if (v, p) is a solution to (1.1) with f mildly
regular and of bounded support 4 and with v satisfying conditions (1.2) and
(1.3), then, for all sufficiently large |x|, |v(x)| ≤ C3/|x|, with C3 independent of
x. More precisely, v(x) is bounded by a function of |x| that decays as |x|−3/2+δ,
arbitrary δ > 0, if x is outside a “downstream” cone, C, with its axis having
the direction of ω, and as |x|−1, otherwise. Likewise, in Theorem 5.2, we show
that ∇v(x) is bounded by a function that decays like |x|−3/2, uniformly, and
as |x|−2+η, arbitrary η > 0, for all x outside C. This “anisotropic behavior” is
representative of the “wake-like” behavior of the flow. Finally, in Theorem 5.3
we prove that, for some p0 ∈ R, we have |p(x)− p0| ≤ C4 ln(|x|)/|x|2, where C4

is independent of x.
Notice that, for the above results to hold, no condition is imposed on the

flux of v∗ through ∂Ω.
Simple consequences of these theorems are, on one hand, that every Leray

solution is unique in its own class, if the data are “sufficiently small” (see
Theorem 5.4), and, on the other hand, that every Leray solution satisfies the
balance of energy equation (see Theorem 5.5).

Thus, an immediate corollary to the above results is the following global
existence theorem: for any given f and v∗ in suitable function classes, and for
any ξ, ω ∈ R3 satisfying (1.5), there exists at least one corresponding Physically
Reasonable solution to (1.1).

The proofs of the above theorems rely upon two fundamental results that
we would like to present next.

The first one (see Theorem 4.4) states that even though, at the outset, v
only satisfies the summability conditions (1.2) and (1.3), in fact, v and p possess
the following additional properties:

v ∈ Lq1(ΩR) ∀q1 ∈ (2,∞], ∇v ∈ Lq2(ΩR) ∀q2 ∈ (
4
3
, 6),

∇2v ∈ Lq3(ΩR) ∀q3 ∈ (1, 2),

(p− p0) ∈ L
3s

s−3 (ΩR), ∇p ∈ Ls(ΩR) ∀s ∈ (1, 2),

(1.6)

where ΩR := Ω∩ {|x| > R}, for a sufficiently large R, and Lq denotes the usual
Lebesgue space. This result is, in turn, established by combining an existence

4This latter assumption can be fairly weakened, by imposing only that f decays “sufficiently
fast” at large distances.
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theorem for the linearized problem 5 in the whole space R3, due to Farwig
[6], along with a corresponding new uniqueness result. The novelty of (and the
difficulty in obtaining) this latter result relies in the fact that it is established
in a class of functions merely satisfying the summability property (1.3).

The second result states that the properties (1.6) lead to the desired point-
wise decay for v, ∇v, and p, at large distances. However, due to the lack of basic
estimates, such as (1.4), for the fundamental solution to the linearized problem,
it appears very unlikely to prove this decay by means of the representation of
the solution in terms of E, as it happens in the case ω = 0. Thus, we need a new
idea. This new idea is inspired by the approach proposed in [16]. Precisely, by
a suitable orthogonal and time-dependent change of variables combined with a
standard “cut-off” procedure, we transform problem (1.1), formally, into a time-
dependent Oseen-like Cauchy problem, with suitable initial data. The solution
to this latter can then be represented in terms of the well-known Oseen (time-
dependent) fundamental solutions, for which appropriate estimates, uniform in
time, were already established in [14]. Our main result, given in Theorem 5.1,
is thus obtained by utilizing, in the representation, these estimates along with
(1.6), and then by transforming back to the original variables.

In order to prove the results mentioned above, it is convenient to rewrite
the original problem (1.1) in a suitable non-dimensional form, based on the
Mozzi-Chasles transformation; see [15]. In doing so, it will also become clear
why we need the assumption on ξ and ω made in (1.5). To this end, we take,
without loss of generality, the direction of ω to be the unit vector e1 in the
x1-axis direction 6, and set e := ξ/|ξ|. Thus, denoting by d a length scale 7, and
defining

x∗ := x− λ e1 ∧ e, λ := |ξ|d/|ω|,
Ω∗ = {x∗ ∈ R3 | x∗ = x− λ e1 ∧e, for some x ∈ Ω},
v∗(x∗) := v(x∗ + λ e1 ∧e), p∗(x∗) := p(x∗ + λ e1 ∧e),
f∗(x∗) := f(x∗ + λ e1 ∧e),

R :=
(
|ξ|d
ν

)
e · e1 (Reynolds number), T :=

|ω| d2

ν
(Taylor number),

the original system (1.1)1,2,3 becomes (stars omitted)

(1.7)


∆v −∇p+R

(
∂1v − v · ∇v

)
+ T

(
e1 ∧x · ∇v − e1 ∧v

)
= f in Ω,

div(v) = 0 in Ω,
v = v∗ on ∂Ω.

For our method to work, it is crucial that the linearized system, obtained from
(1.7) by disregarding the term v · ∇v, contains the term ∂1v ≡ e1 ·∇v, and this

5That is, the problem that results from (1.1) by disregarding the term v · ∇v in (1.1)1.
6We are, of course, assuming ω 6= 0, because, otherwise, as we already remarked, our main

theorem is well-known [12, Chapter IX].
7For example, the diameter of the body.
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happens if and only if R 6= 0, that is, if and only if ξ 6= 0 and e · e1 6= 0, which
explains the assumption (1.5). In more physical terms, we need that the body
produces a “wake”, and this happens if the translational velocity of the body
has a nonzero component along the direction of the spin. Only for the sake of
definiteness, we shall take throughout R > 0.

The plan of the paper is the following. After introducing certain basic defini-
tions and properties in Section 2, in Section 3 we prove some relevant properties
of solutions to the Cauchy problem associated to the time-dependent Oseen
equations. Successively, in Section 4, we show that a generic Leray solution en-
joys a number of summability properties in any neighborhood of infinity. Finally,
in Section 5, we prove our main result that every Leray solution is Physically
Reasonable.

2 Notation

As customary, given a scalar field p : R3 → R, and a base {ei}i=1,2,3 in R3,
we define ∇p = ∂ip ei

8. Likewise, for a vector field v : R3 → R3, we let
∇v : R3 → R3×3 be the tensor field with components in {ei ⊗ ej}i,j=1,2,3 given
by (

∇v
)
ij

:= ∂ivj , (i, j = 1, 2, 3).

Moreover, we define ∇′v : R3 → R3×2 by(
∇′v

)
ij

:= ∂ivj , (i = 2, 3; j = 1, 2, 3).

By the Greek letter Ω, we will denote an exterior domain of R3, namely, an
open connected set of R3 whose complement is a non-empty compact set. For
ρ > 0, we put Bρ := {x ∈ R3 | |x| < ρ}, Bρ := {x ∈ R3 | |x| ≥ ρ}, and set
Ωρ := Ω ∩ Bρ and Ωρ := Ω ∩ Bρ. Also, we define Bρ2,ρ1 := Bρ2 \Bρ1 .

We let Lq(Ω) and Wm,q(Ω) denote Lebesgue and Sobolev spaces, respec-
tively, and ‖·‖q, ‖·‖m,q the associated norms. We write Dm,q(Ω) and |·|m,q to
denote homogeneous Sobolev spaces and their (semi-)norms, respectively. We
will typically indicate when a function space consists of vector- or tensor-valued
functions, for example Lq(Ω)3, but may omit the indication when no confusion
arises.

For G ⊂ R3 an exterior domain or G = R3, and q ∈ (1, 2), we put

Xq(G) :=
{

(v, p) | v ∈ L
2q

2−q (G)3, ∇′v ∈ L
4q

4−q (G), ∂1v ∈ Lq(G),

∇2v ∈ Lq(G), p ∈ L
3q

3−q (G), ∇p ∈ Lq(G)
}

and

‖(v, p)‖Xq
:= ‖v‖ 2q

2−q
+ ‖∇′v‖ 4q

4−q
+ ‖∂1v‖q + ‖∇2v‖q + ‖p‖ 3q

3−q
+ ‖∇p‖q.

Clearly,
(
Xq(G), ‖·‖Xq

)
is a Banach space.

8Throughout this paper we shall use the summation convention over repeated indices.
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If T ∈ (0,∞] we set GT := G× (0, T ), and for q > 1 we define

W(1,2)
q (ΩT ) :=

{
w ∈ Lq(ΩT )3 | ∂tw,∇w,∇2w ∈ Lq

}
and introduce the norm

‖w‖W(1,2)
q (ΩT )

:=
( T∫

0

‖∂tw(·, t)‖q
q +

2∑
|α|=0

‖Dαw(·, t)‖q
q dt

) 1
q

.

Moreover, we put

W(1,2)
q,loc (ΩT ) :=

{
w ∈ Lq

loc(ΩT )3 | ∂tw,∇w,∇2w ∈ Lq
loc

}
,

D(0,1)
q (ΩT ) :=

{
π ∈ Lq

loc(ΩT ) | ∇π ∈ Lq
}
,

D(0,1)
q,loc(ΩT ) :=

{
π ∈ Lq

loc(ΩT ) | ∇π ∈ Lq
loc

}
, and

L∞,q(ΩT ) :=
{
u ∈ L1

loc(ΩT )3 | ess sup
t∈(0,T )

‖u(·, t)‖q <∞
}
.

For all functions f(x, t) depending on time, we always denote ∇f := ∇xf
and div f := divx f . In general, coordinates of domains that are subsets of
R3 × R are denoted by (x, t) and (y, τ).

For x ∈ R3 we put s(x) := |x|+ x1.
Finally, we use small letters (c1, c2, . . .) for constants that appear only in

a single proof, and capital letters (C1, C2, . . .) for constants appearing in the
statement of a result.

3 Time-Dependent Oseen Problem

As emphasized in the introduction, our method of proof relies on the validity of
basic properties of the solutions to the linearization of (1.1). These properties,
in turn, will be a direct consequence of analogous ones that we will prove for
the solutions to a suitable unsteady Oseen problem.

The objective of this section is to reproduce such properties, some of which
are well known.

We start by recalling the fundamental solution to the time-dependent Oseen
operator, i.e., the tensor Γ(x, t) and vector γ(x, t) satisfying (in the sense of
distributions) {

∂tΓij = ∆Γij − ∂jγi +R∂1Γij + δijδ(t)δ(x),
∂kΓik = 0,

for i, j = 1, 2, 3, where δij denotes the Kronecker delta and δ(·) the Dirac delta
distribution. The fundamental solution takes the form (see [23])

Γij := −δij∆Ψ + ∂i∂jΨ, γi := ∂i(∆− ∂t)Ψ,
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with

Ψ(x, t) :=
1

4π
3
2 t

1
2

1∫
0

e−
|x+Rt e1|

2r2

4t dr for t > 0 and Ψ(x, t) = 0 for t ≤ 0.

The following estimates hold.

Lemma 3.1. There exist constants C5, C6, C7, C8, C9 > 0 so that

|Γ(x, t)| ≤ C5

(
t+ |x+Rt e1|2

)− 3
2 ∀(x, t) ∈ R3

∞,(3.1)

|∇Γ(x, t)| ≤ C6

(
t+ |x+Rt e1|2

)−2 ∀(x, t) ∈ R3
∞,(3.2)

|∇2Γ(x, t)| ≤ C7

(
t+ |x+Rt e1|2

)− 5
2 ∀(x, t) ∈ R3

∞,(3.3)

∞∫
0

|∇Γ(x, τ)|dτ ≤ C8


R 1

2 |x|−
3
2
(
1 +Rs(x)

)− 3
2 for |x| ≥ 1

4R
,

|x|−2 for |x| < 1
4R

.

(3.4)

∞∫
0

|∇2Γ(x, τ)|dτ ≤ C9


R|x|−2(1 +Rs(x)

)−2 for |x| ≥ 1
4R

,

|x|−3 for |x| < 1
4R

.

(3.5)

Proof. For the proof of (3.1), (3.2), and (3.3), we refer to [23, §55 and §73] (see
also [24]). A proof of (3.4) can be found in [15, Lemma 1]. We shall now prove
(3.5). Consider first the case |x| < 1

4R . In this case,

t+ |x+Rt e1|2 = t+ |x|2 + 2Rtx1 +R2t2 ≥ 1
2
t+ |x|2,

and we thus find, applying (3.3),

∞∫
0

|∇2Γ(x, τ)|dτ ≤ C7

∞∫
0

(
1
2
τ + |x|2

)− 5
2

dτ ≤ 1
3
C7 |x|−3

.(3.6)

Next, let |x| ≥ 1
4R and 1 + 2Rx1 ≥ 0. Then,

t+ |x+Rt e1|2 = |x|2 + (1 + 2Rx1) t+R2t2 ≥ R2t2 + |x|2,

and thus
∞∫
0

|∇2Γ(x, τ)|dτ ≤ C7

∞∫
0

(
R2τ2 + |x|2

)− 5
2 dτ

= C7 |x|−5

∞∫
0

((
Rτ
|x|

)2

+ 1
)− 5

2

dτ ≤ c1
R
|x|−4

,
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which, since |x| ≥ 1
4R implies 1 +Rs(x) ≤ 6R|x|, yields

∞∫
0

|∇2Γ(x, τ)|dτ ≤ c2R|x|−2 (
1 +Rs(x)

)−2
.(3.7)

Finally, consider the case |x| ≥ 1
4R and 1 + 2Rx1 < 0. Utilizing that

4R2|x|2 − (1 + 2Rx1)2 =
(
2Rs(x) + 1

)(
2R|x| − (2Rx1 + 1)

)
,

we find

∞∫
0

|∇2Γ(x, τ)|dτ ≤ C7

∞∫
0

(
|x|2 + (1 + 2Rx1) τ +R2τ2

)− 5
2 dτ

= C7

∞∫
0

((
Rτ +

1 + 2Rx1

2R
)2 +

1
4R2

(
4R2|x|2 − (1 + 2Rx1)2

))− 5
2

dτ

≤ C7

R

∞∫
−∞

(
r2 +

1
4R2

(
2Rs(x) + 1

)(
2R|x| − (2Rx1 + 1)

))− 5
2

dr

≤ C7

R

∞∫
−∞

(
r2 +

1
2R

(
Rs(x) + 1

)
|x|

)− 5
2

dr

≤ c3R|x|−2 (
1 +Rs(x)

)−2
.

(3.8)

Combining (3.6), (3.7), and (3.8), we obtain (3.5).

We also need the following lemma.

Lemma 3.2. Let 1 ≤ q1 <
3
2 and 3

2 < q2. Then

∞∫
0

( ∫
R3∩{x2

2+x2
3<1}

(t+ |x+ t e1|2)−2q1dx
) 1

q1

dt <∞,(3.9)

∞∫
0

( ∫
R3∩{x2

2+x2
3≥1}

(t+ |x+ t e1|2)−2q2dx
) 1

q2

dt <∞.(3.10)

Proof. Using polar coordinates with respect to (x2, x3), one can verify (3.9) and
(3.10) by a direct calculation (see also [22, Lemma 3]).

The next lemma furnishes the existence of solutions to the unsteady Oseen
problem and corresponding estimates.
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Lemma 3.3. Let q > 1 and f ∈ Lq(R3
T )3. There exists a solution (w, π) with

(3.11) (w, π) ∈ W(1,2)
q (R3

T )×D(0,1)
q (R3

T )

to

(3.12)


∂tw = ∆w −∇π +R ∂1w + f in R3

T ,

div(w) = 0 in R3
T ,

lim
t→0

‖w(·, t)‖q = 0.

If, in addition, f ∈ Lr(R3
T ) for some r ∈ (1,∞), then

(3.13) (w, π) ∈ W(1,2)
r (R3

T )×D(0,1)
r (R3

T ).

Finally, if q > 3 and f ∈ L∞,q(R3
∞) with supp

(
f(·, t)

)
⊂ Bρ for all t > 0, then

(3.14) |w(x, t)| ≤ C10
ess supt>0‖f(·, t)‖q(
1 + |x|

)(
1 +Rs(x)

) ,
where C10 := C10(ρ, q,R).

Proof. Consider the volume potential

(3.15) w(x, t) =

t∫
0

∫
R3

Γ(x− y, t− τ) · f(y, τ) dydτ .

It is well known that w solves (3.12), for an appropriate choice of the associated
pressure π, and that (w, π) is in both classes (3.11) and (3.13) if f ∈ Lq(R3

T )3 ∩
Lr(R3

T )3; see [24, §13]. This shows the first part of the lemma. Next put

H(x, t) := ∇
[
E ∗ f(·, t)

]
(x),

where E(x) := 1
4π |x| is the fundamental solution to the Laplace equation in R3

and the convolution is with respect to the spatial variable only. One may easily
verify, by means of the Hölder inequality, that H ∈ L∞(R3

∞) with

(3.16) div(H) = f, and |H(x, t)| ≤ c1‖f(·, t)‖q,

where c1 = c1(q). Inserting div(H) for f in (3.15) and integrating by parts, we
obtain

(3.17)

w(x, t) =

t∫
0

∫
R3

Γ(x− y, τ) · f(y, τ) dydτ

=

t∫
0

∫
Bρ

∂kΓij(x− y, t)Hkj(y, τ) dydτ

+

t∫
0

∫
∂ Bρ

Γ(x− y, t) ·
(
H(y, τ) · n

)
dSdτ =: I1 + I2.
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Using Lemma 3.1, we get

I1 ≤ c2 |H(x, t)|
( ∫

Bρ

|x− y|−2 dy +
∫
Bρ

|x− y|−
3
2

(
1 +Rs(x− y)

)− 3
2 dy

)
,

with c2 = c2(R). Examining the cases |x| > 2ρ and |x| ≤ 2ρ separately, one
now verifies that

(3.18) I1 ≤ c3
|H(x, t)|(

1 + |x|
)(

1 +Rs(x)
) ,

with c3 = c3(ρ,R). Similarly, using again Lemma 3.1 and assuming, without
loss of generality, ρ > 1

4R , we deduce

(3.19)

I2 ≤ c4 |H(x, t)|
∫

∂ Bρ

|x− y|−
3
2

(
1 +Rs(x− y)

)− 3
2 dy

≤ c5
|H(x, t)|(

1 + |x|
)(

1 +Rs(x)
) ,

with c5 = c5(ρ,R). Combining now (3.16), (3.17), (3.18), and (3.19), we obtain
the desired estimate (3.14).

Lemma 3.4. Let q > 1 and u0 ∈ Lq(R3)3 with div(u0) = 0 (in the sense of
distributions). Then

(3.20) w(x, t) := (4πt)−
3
2

∫
R3

e−|x−y+R t e1|2/4t u0(y) dy

is a solution to the initial-value problem

(3.21)


∂tw = ∆w +R ∂1w in R3

∞,

div(w) = 0 in R3
∞,

lim
t→0

‖w(·, t)− u0(·)‖q = 0,

with

(3.22) w ∈ Lq(R3
T ) and w ∈ W(1,2)

q

(
R3 × (ε, T )

)
, ∀T, ε > 0.

Furthermore, Dα
xw(·, t) ∈ Lr(R3), |α| = 0, 1, for all r ∈ [q,∞] and all t > 0,

and the following estimate holds:

(3.23) ‖Dα
xw(·, t)‖r ≤ C11 t

− 3
2 ( 1

q−
1
r )− |α|

2 ‖u0‖q, for all t > 0, |α| = 0, 1,

where C11 := C11(r, q,R).

Proof. A standard calculation shows that (3.20) satisfies (3.21) and (3.22). A
direct application of Young’s inequality yields (3.23).
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Classical results for the heat equation ensure that the solution (3.20) is
unique in the class (3.22). However, for our purposes, we need a more general
uniqueness result. To this end, we begin to prove the following.

Lemma 3.5. Let q > 1 and w ∈ W(1,2)
q (R3

T ) with div(w) = 0 and w(·, T ) = 0 9.
Then, there is a sequence {wn}∞n=1 with wn ∈ C∞0

(
R3 × [0, T )

)3, div(wn) = 0,
and wn → w in W(1,2)

q (R3
T ) as n→∞. This sequence may be taken independent

of q.

Proof. We begin with the following simple remark. Suppose

(3.24) w ∈ W(1,2)
q (R3

T ), supp(w) ⊂ [0, T )× R3, div(w) = 0.

Then, for any ε > 0 there is wε ∈ C∞0
(
R3 × [0, T )

)3 so that

(3.25) ‖w − wε‖W(1,2)
q (R3

T )
< ε , div(wε) = 0.

In fact, it is enough to pick

wε; = jε ∗ w̃,

where jε is a standard mollifier, while w̃(·, t) = w(·, t) if t ≥ 0, and w̃(·, t) =
w(·,−t) if t < 0 10. The property (3.25) then follows from standard properties of
mollifiers. Thus, in order to show the result, it suffices to show that a function
w satisfying the assumption of the lemma can be approximated in the space
W(1,2)

q (R3
T ) by functions satisfying (3.24). To this end, let ϕη ∈ C∞(R; R),

η > 0, be a smooth “cut-off” function satisfying the properties:

(i) There is γ = γ(η), with 0 < γ < 1 and γ → 0 as η → 0, so that ϕη(t) = 0
if t ∈ [T − γ2/2, T ), while ϕη(t) = 1 if t ∈ [0, T − 2γ],

(ii) |ϕη(t)| ≤ 1 for all t ∈ [0, T ],

(iii) |ϕ′η(t)| ≤ η
T−t .

The existence of such a function is well known; see, e.g., [11, Lemma III.6.2].
Likewise, by ψη ∈ C∞(R3; R) we denote another smooth (spatial) “cut-off”
function with

ψη(x) = 1 for |x| ≤ 1/(2η), ψη(x) = 0 for |x| ≥ 1/η.

Next, we set

zη(x, t) := ϕη(t)ψη(x)w(x, t), (x, t) ∈ R3
T .

For all sufficiently small η > 0, we have, clearly, supp(zη) ⊂ B1/η ×[0, T ), and,
in addition, zη ∈ W(1,2)

q (R3
T ). Actually, in view of the properties of ϕη and ψη,

9Notice that, by the Sobolev embedding theorem, w(·, t) is well defined for all t ∈ [0, T ].
10See footnote 9.
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it is immediate to show that Dαzη ∈ Lq(R3
T ), |α| = 0, 1, 2. Furthermore, by the

property (iii) of the function ϕη, we find, in particular,

‖∂tzη(·, t)‖q
q < c1

‖w(·, t)‖q
q

|T − t|q
+ c2‖∂tw(·, t)‖q

q.

However, since w(·, T ) = 0 and thus ‖w(·, T )‖q = 0, we obtain, by Hardy’s and
Hölder’s inequalities,

(3.26)

T∫
0

‖w(·, t)‖q
q

|T − t|q
dt ≤ c3

T∫
0

|∂t‖w(·, t)‖q
q|dt ≤ c4‖w‖q

W(1,2)
q (R3

T )
,

which proves zη ∈ W(1,2)
q (R3

T ). It is now simple to show that

(3.27) ‖zη − w‖W(1,2)
q (R3

T )
→ 0 as η → 0.

Actually, again by the properties of the functions ϕη and ψη, one can easily
show that

(3.28) Dαzη → Dαw in Lq(R3
T ) as η → 0, |α| = 0, 1, 2.

Moreover, by the property (iii)

T∫
0

‖∂t(zη − w)(·, t)‖q
q ≤ c5 η

T∫
0

‖w(·, t)‖q
q

|T − t|q
dt+ o(1) as η → 0,

which, in turn, combined with (3.26), delivers

∂tz → ∂tw in Lq(R3
T ) as η → 0.

From this latter relation and (3.28), we conclude the proof of (3.27). Thus far,
we have proved that the functions zη satisfy the following properties: (i) they
are in W(1,2)

q (R3
T ), (ii) they have support contained in [0, T ) × B1/η, and (iii)

they tend to w in W(1,2)
q (R3

T ) as η → 0. We shall next modify zη appropriately
to obtain solenoidal fields wη satisfying the same above properties. To this end,
we recall a representation formula due to Bogovskĭı’s (see [2] or [11, Proof of
Lemma III.3.1]) based on the kernel

N(x, y) :=
x− y

|x− y|3

∞∫
|x−y|

ω

(
y + ξ

x− y

|x− y|3

)
dξ,

where ω ∈ C∞0 (R3) is some function with supp(ω) ⊂ B1 and
∫
B1
ωdx = 1.

Utilizing that
∫
BRη

div(zη) dx = 0 (note that supp zη ⊂ Bη), one can show (see
for example [11, Proof of Lemma III.3.1]) that

kη(x, t) :=
∫
R3

div(zη)(y, t)N(x, y) dy

13



satisfies{
div(kη) = div(zη), kη ∈ C∞0

(
R3 × [0, T ]

)
, supp kη ⊂ Bη ×[0, T ),

‖∇kη(·, t)‖q,R3 ≤ ‖div(zη)‖q,R3 , ‖∇kη(·, t)‖1,q,R3 ≤ c6‖div(zη)‖q,R3 ,

with c6 independent on t and η. It can be checked that kη → 0 in W(1,2)
q

(
R3

T

)
as η → ∞. For example, we have, by Poincaré’s inequality and the properties
of zη,

‖kη‖q

Lq
(

R3
T

) =

T∫
0

∫
B1/η

|kη(x, t)|q dxdt

≤ c7

T∫
0

(
‖∇kn‖q,R3/η

)q dt

≤ c7

T∫
0

(
‖div(zη)‖q,R3/η

)q dt ≤ c8

T∫
0

‖w‖q,B1/η,1/(2η) dt→ 0

as η → ∞. Similarly, one shows that ∂tkη → 0, ∇kη → 0, and ∇2kη → 0 in
Lq

(
R3

T

)3 as η → 0. We conclude that wη := zη − kη satisfies the conditions of
the lemma for a fixed q. However, if w ∈ W(1,2)

r (R3
T ), for some r 6= q, then by

repeating exactly the above argument, we show wn → w also in W(1,2)
r (R3

T ),
which completes the proof of the lemma.

We are now in a position to prove the following uniqueness result.

Lemma 3.6. Let (z,Π) be a solution to

(3.29)

{
∂tz = ∆z −∇Π +R ∂1z in R3

T ,

div(z) = 0 in R3
T ,

with the properties 11

z = z1 + z2, zi ∈ Lqi(R3
T ) for some qi ∈ (1,∞) (i = 1, 2),

z ∈ W(1,2)
s,loc (R3

T ), Π ∈ D(0,1)
s,loc(R3

T ) for some s ∈ (1,∞).
(3.30)

Then, if

(3.31) lim
t→0

‖z(·, t)‖r,Bρ = 0, for some r ∈ (1,∞) and all ρ > 0,

necessarily z ≡ ∇Π ≡ 0 a.e. in R3
T .

11The assumption made on Π in (3.30) is redundant, in that it is a consequence of those
made on z, and of the fact that z satisfies (3.29).
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Proof. Let H ∈ C∞0 (R3
T ). From Lemma 3.3, we deduce that there exists a

solution (v, p) to the problem

(3.32)


∂tv = −∆v −∇p+R ∂1v +H in R3

T ,

div(v) = 0 in R3
T ,

lim
t→T

‖v(·, t)‖q = 0,

with

(v, p) ∈ W(1,2)
q (R3

T )×D(0,1)
q (R3

T ) for all q ∈ (1,∞).(3.33)

Now, by Lemma 3.5, there is a sequence {vn}∞n=1 with vn ∈ C∞0
(
R3 × [0, T )

)
and div(vn) = 0 satisfying vn → v in W(1,2)

q (R3
T ) as n → ∞ for all q ∈ (1,∞).

Multiplying both sides of (3.29) by vn and integrating by parts (note that for
any compact subdomain K ⊂ R3 we have z ∈W 1,s

(
(ε, T −ε);Ls(K)

)
and thus,

by the Sobolev embedding theorem, z ∈ C
(
[ε, T − ε];Ls(K)

)
for all ε > 0), we

obtain, for fixed n and sufficiently small ε,

0 =
∫
R3

z(x, ε) · vn(x, ε) dx+

T−ε∫
ε

∫
R3

z ·
(
−∂tvn −∆vn +R ∂1vn

)
dxdt.

Letting ε→ 0 and exploiting (3.31), we infer that

T∫
0

∫
R3

z ·
(
−∂tvn −∆vn +R ∂1vn

)
dxdt = 0.

We next let n→∞ into this relation, and employ the assumption (3.30)1 along
with the property that vn → v in W(1,2)

q (R3
T ) for all q ∈ (1,∞). Thus, taking

also into account (3.32)1, we conclude

0 =

T∫
0

∫
R3

z · (H −∇p) dxdt.

Utilizing again (3.30)1 and the fact that div(z) = 0, and that ∇p(·, t) ∈ Lq(R3)
for a.a. t ∈ [0, T ] and all q ∈ (1,∞), we obtain

0 =

T∫
0

∫
R3

z · (H −∇p) dxdt =

T∫
0

∫
R3

z ·H dxdt.

Since H ∈ C∞0 (R3
T ) was arbitrary, z = 0 follows. From (3.29)1 we then also

obtain ∇Π = 0.
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Remark 3.7. The uniqueness result just shown possesses three important fea-
tures, each of which is crucial to our further purposes. The first, is that no
assumption is made on the behavior of the pressure at large distances. The
second, is that the velocity is assumed to vanish at spatial infinity only in the
Lq sense, and, the third, is that the initial (zero) value is attained only in a
“local” Lr fashion (see (3.31)). The authors were not able to find such a result
in the existing related literature where, typically, other extra assumptions are
required.

4 Global Summability Properties of Leray Solu-
tions

As already pointed out, a Leray solution, (v, p), possesses, at the outset, only
the summability properties:

∇v ∈ L2(Ω), v ∈ L6(Ω).

Objective of this section is to show that, under suitable assumptions on f , in
fact, (v, p) ∈ Xq(Ωρ) for some sufficiently large ρ > 0, and for all q ∈ (1, 2); see
Theorem 4.4.

The proof of this theorem has two main ingredients: a result due to Farwig
[6], on existence and associate Lq-estimates of solutions to the corresponding
linear problem and recalled in the first part of Lemma 4.2, and a very general
uniqueness result proved in the following Lemma 4.1.

Lemma 4.1. Let 1 < s, q1, q2 < ∞. For every f ∈ Ls
loc(R3)3 and any two

solutions (vi, pi) ∈
(
Lqi(R3)3 ∩W 2,s

loc (R3)3
)
×W 1,s

loc (R3) (i = 1, 2) to{
∆v −∇p+R∂1v + T

(
e1 ∧x · ∇v − e1 ∧v

)
= f in R3,

div(v) = 0 in R3,

there exists a constant c so that (v1, p1) = (v2, p2 + c).

Proof. Let

(4.1) Q(t) := exp(T E1t), with E1 :=

0 0 0
0 0 −1
0 1 0

 ,

and set

(4.2)
w(x, t) := Q(t)

(
v1

(
QT (t)x

)
− v2

(
QT (t)x

))
, and

π(x, t) := p1

(
QT (t)x

)
− p2

(
QT (t)x

)
.
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Then

(4.3)


∂tw = ∆w −∇π +R ∂1w in R3

∞,

div(w) = 0 in R3
∞,

lim
t→0

‖w(·, t)−
(
v1(·, t)− v2(·, t)

)
‖q,Bρ = 0 for all ρ > 0,

where q = min{q1, q2}. From (4.2) and the assumptions of the lemma, it follows
at once that (w, π) satisfies the properties

(4.4) w = w1 +w2, wi ∈ Lqi(R3
T ) (i = 1, 2), w ∈ W(1,2)

s,loc (R3
T ), π ∈ D(0,1)

s,loc(R3
T ),

for any T > 0. From Lemma 3.4 we find solutions Wi (i = 1, 2) to

(4.5)


∂tWi = ∆Wi +R ∂1Wi in R3

∞,

div(Wi) = 0 in R3
∞,

lim
t→0

‖Wi(·, t)− vi‖qi
= 0,

with

(4.6) Wi ∈ W(1,2)
qi,loc(R3

T ) ∩ Lqi(R3
T )

and, further, satisfying the inequality

(4.7) ‖W1(·, t)‖r + ‖W2(·, t)‖r ≤ c9 t
3(1/r−1/q̄)/2

(
‖v1‖q1 + ‖v2‖q2

)
for all t > 1 and r ≥ q̄, where q̄ = max{q1, q2}. With a view to equations (4.2)
through (4.6) we find that the pair (z, π) with z := w − (W1 −W2) satisfies all
assumptions of Lemma 3.6. Consequently, w = W1−W2. Thus, from (4.2) and
(4.7), we conclude that

‖v1 − v2‖r = ‖w(·, t)‖r ≤ c9t
3(1/r−1/q̄)/2

(
‖v1‖q1 + ‖v2‖q2

)
for all t > 1 and r ≥ q̄. Fixing r > q̄ and letting t→∞ in the above, we recover
v1 = v2, which implies, ∇p1 = ∇p2, that is, p1 = p2 + c for some constant c.

In the next lemma, we combine a result of Farwig [6] with that of the
previous Lemma 4.1.

Lemma 4.2. Let 1 < q < 2. For every f ∈ Lq(R3)3 there exists at least one
solution (v, p) ∈ Xq(R3) to

(4.8)

{
∆v −∇p+R∂1v + T

(
e1 ∧x · ∇v − e1 ∧v

)
= f in R3,

div(v) = 0 in R3,

which satisfies

(4.9) ‖(v, p)‖Xq
≤ C12 ‖f‖q,

with C12 = C12(R, T ). Moreover, if (v1, p1) is any other solution corresponding
to f with (v1, p1) ∈

(
Lq1(R3)3 ∩W 2,s

loc (R3)3
)
×W 1,s

loc (R3), for some s, q1 > 1,
then necessarily v = v1, p = p1 + c, for some constant c.
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Proof. Existence of a solution (v, p) ∈ D2,q(R3)×D1,q(R3) to (4.8) with

(4.10) ‖∇2v‖q + ‖∂1v‖q + ‖∇p‖q ≤ c1 ‖f‖q

follows directly from [6, Theorem 1.1], where c1 = c1(R, T ). Moreover, by [6,
Corollary 1.2] there exist α, β ∈ R so that 12

(4.11) ‖∇′(v − β e1 ∧x− α e1

)
‖ 4q

4−q
≤ c2 ‖f‖q

and

(4.12) ‖v − β e1 ∧x− α e1‖ 2q
2−q

≤ c3 ‖f‖q.

Put v∗ := v − β e1 ∧x − α e1 and p∗ = p + c, with the constant c chosen so
that p∗ ∈ L

3q
3−q (see for example [11, Theorem II.5.1]). One may easily verify

that (v∗, p∗) solves (4.8). We have thus established the existence of a solution
(v∗, p∗) ∈ Xq(R3) to (4.8). Furthermore, (4.9) follows from (4.10), (4.11), and
(4.12). Finally, uniqueness is an immediate consequence of Lemma 4.1.

We now extend the previous lemma to a more general case.

Lemma 4.3. Let f ∈ Lqi(R3), 1 < qi < 2 (i = 1, 2), and A ∈ L2(R3)3×3 be
given. There exists ε0 := ε0(R, T , q1, q2) > 0 so that if ‖A‖2 ≤ ε0 there is a
unique solution (v, q) ∈ Xq1(R3) ∩Xq2(R3) to the problem

(4.13)

{
∆v −∇p+R∂1v + T

(
e1 ∧x · ∇v − e1 ∧v

)
+Av = f in R3,

div(v) = 0 in R3.

Moreover,

(4.14) ‖(v, p)‖Xq1
+ ‖(v, p)‖Xq2

≤ C13

(
‖f‖q1 + ‖f‖q2

)
,

where C13 = C13(R, T , q1, q2).

Proof. Let (v, p) ∈ Xqi(R3) (i = 1, 2). Since v ∈ L
2qi

2−qi (R3), by the Hölder
inequality, we see that Av ∈ Lq1(R3) ∩ Lq2(R3) with

(4.15) ‖Av‖q1 + ‖Av‖q2 ≤ ‖A‖2
(
‖v‖ 2q1

2−q1
+ ‖v‖ 2q2

2−q2

)
.

By Lemma 4.2, under the stated assumptions for f , there exists a unique solution
(z, π) ∈ Xq1(R3) ∩Xq2(R3) to{

∆z −∇π +R∂1z + T
(
e1 ∧x · ∇z − e1 ∧z

)
= f −Av in R3,

div(z) = 0 in R3.

12In principle, the constant β in [6, Corollary 1.2 (1)] may differ from the β in [6, Corollary
1.2 (2)]. It is, however, easy to verify that these two β’s must coincide.
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Putting L(v, p) := (z, π), we define a mapping L : X → X, where X := Xq1(R3)∩
Xq2(R3). Clearly, X with the norm ‖·‖X := ‖·‖Xq1

+ ‖·‖Xq2
is a Banach space.

Moreover, utilizing (4.9) and (4.15), we find that

‖L(v1, p1)− L(v2, p2)‖X = ‖(z1, π1)− (z2, π2)‖X
≤ C12 (‖A(v1 − v2)‖q1 + ‖A(v1 − v2)‖q2)
≤ C12‖A‖2 ‖(v1, p1)− (v2, p2)‖X .

Consequently, if we choose ε0 < 1
C12(R,T ) , then L is a contraction. In this case

we obtain, by Banach’s fixed point theorem, a unique fixed point of L. Clearly,
this fixed point is a solution to (4.13). Moreover, by (4.9) and (4.15), we obtain
(4.14).

We are now able to prove the main result of this section.

Theorem 4.4. Let 1 < q < 2 and f ∈ Lq(Ω)3 ∩ L 3
2 (Ω)3 ∩ L2

loc(Ω)3. Any
solution v ∈ D1,2(Ω)3 ∩ L6(Ω)3 ∩W 2,2

loc (Ω)3 and p ∈W 1,2
loc (Ω) to

(4.16)

{
∆v −∇p+R

(
∂1v − v · ∇v

)
+ T

(
e1 ∧x · ∇v − e1 ∧v

)
= f in Ω,

div(v) = 0 in Ω

satisfies for sufficiently large ρ > 0 and some constant c:

(v, p+ c) ∈ Xq(Ωρ).

Proof. Let ψρ ∈ C∞(R3; R) be a “cut-off” function with ψρ = 0 on Bρ and
ψρ = 1 on R3 \ B2ρ. We put

vρ := ψρv − ψρσ −H, pρ := ψρp,

where

σ(x) :=
(
−

∫
∂ B2ρ

v · n dS
)
· ∇E(x), E(x) :=

1
4π |x|

,

and
H ∈W 3,2(R3), supp(H) ⊂ B2ρ, div(H) = ∇ψρ · (v − σ).

The existence of such a H follows from [11, Theorem III.3.2] since∫
B2ρ

∇ψρ · (v − σ) dx =
∫

∂ B2ρ

v · n dS −
∫

∂ B2ρ

σ · n dS = 0.

Clearly,{
∆vρ −∇pρ +R ∂1vρ + T

(
e1 ∧x · ∇vρ − e1 ∧vρ

)
= Fρ +Rψρv · ∇v in R3,

div(vρ) = 0 in R3,
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with

Fρ := ψρf + v∆ψρ + 2∇v∇ψρ −∇ψρp+R∂1ψρv + T v ⊗ (∇ψρ) · (e1 ∧x)
+ σ∆ψρ + 2∇σ∇ψρ +Rψρ∂1σ +R∂1ψρσ + T σ ⊗ (∇ψρ) · (e1 ∧x)

+ ∆H +R∂1H + T
(
e1 ∧x · ∇H − e1 ∧H

)
.

Here, we have used that (e1 ∧x · ∇σ − e1 ∧σ) = 0. The decay properties of σ
ensure that ∂1σ ∈ Lr(Ω), ∀r > 1. Consequently, we have Fρ ∈ Lq(R3)∩L 3

2 (R3).
Next, we observe that

ψρv · ∇v =
(
ψρ/2∇v

)
(vρ + ψρσ +H).

Putting
Aρ := −Rψρ/2∇v,

we thus have
(4.17){

∆vρ −∇pρ +R∂1vρ + T
(
e1 ∧x · ∇vρ − e1 ∧vρ

)
+Aρvρ = F̃ρ in R3,

div(vρ) = 0 in R3,

with F̃ρ ∈ Lq(R3)∩L 3
2 (R3). Since ∇v ∈ L2(Ω), we see that limρ→∞‖Aρ‖2 = 0.

Hence, for sufficiently large ρ, there exists, by Lemma 4.3, a solution (Vρ, Pρ) ∈
Xq(R3) ∩X 3

2
(R3) to (4.17). We will show that (vρ, pρ) = (Vρ, Pρ). To this end,

consider
(z, π) := (vρ − Vρ, pρ − Pρ)

and note that z ∈ L6(R3) and solves

(4.18)

{
∆z −∇π +R∂1z + T

(
e1 ∧x · ∇z − e1 ∧z

)
= Aρ(vρ − Vρ) in R3,

div(z) = 0 in R3.

Observe that Aρvρ ∈ L
3
2 (R3) and AρVρ ∈ L

3
2 (R3). Thus, from Lemma 4.2 we

obtain a solution (z̃, π̃) ∈ X 3
2
(R3) to (4.18), which satisfies (4.9). Since also z̃ ∈

L6(R3), Lemma 4.1 (invoked with q1 = q2 = 6, s = 3
2 ) yields (z̃, π̃) = (z, π + c)

for some constant c. Consequently, (z, π + c) ∈ X 3
2
(R3) and

‖(z, π + c)‖X 3
2
≤ C12‖Aρz‖ 3

2
≤ C12‖Aρ‖2‖(z, π + c)‖X 3

2
.

If we choose ρ sufficiently large so that ‖Aρ‖2 < 1
C12

, we deduce that (z, π+c) =
0. It then follows that (vρ, pρ + c) = (Vρ, Pρ) and thereby (vρ, pρ + c) ∈ Xq(R3).
Combining this latter with the fact that supp(H) is bounded and, clearly, ψρσ ∈
Xq(R3), we conclude the proof of the lemma.

Remark 4.5. Note that Lemma 4.4 holds regardless of the regularity of ∂Ω and
the boundary values of v on ∂Ω.
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Remark 4.6. An immediate corollary to Theorem 4.4 is that any Leray solution
satisfies ∇v ∈ Ls(Ωρ) for all s ∈ ( 4q

4−q ,
3q

3−q ). Actually, since ∇2v ∈ Lq(Ωρ) for

all 1 < q < 2, by [11, Theorem II.5.1] we infer ∇v ∈ L
3q

3−q (Ωρ), so that the
stated property follows by this latter and by the fact that ∇′v ∈ L

4q
4−q (Ωρ),

∂1v ∈ Lq(Ωρ) combined with elementary interpolation inequalities.

We end this section by proving an important decay estimate.

Lemma 4.7. Let v ∈ D1,2(Ω)3 ∩ L6(Ω)3 ∩ W 2,2
loc (Ω)3 and p ∈ W 1,2

loc (Ω) be a
solution to

(4.19)

{
∆v −∇p+R

(
∂1v − v · ∇v

)
+ T

(
e1 ∧x · ∇v − e1 ∧v

)
= 0 in Ω,

div(v) = 0 in Ω.

Then for all ε > 0:
‖∇v‖22,BR ≤ C14R

−1+ε,

with C14 := C14(ε,R, T , v, p).

Proof. We multiply (4.19)1 by v, integrate over BR,R∗ := BR∗ ∩Bc
R, (R∗ > R),

and obtain

0 =
∫

BR,R∗

(
∆v −∇p+R(∂1v − v · ∇v) + T (e1 ∧x · ∇v − e1 ∧v)

)
· v dx

=
∫

BR,R∗

−∇v : ∇v + T (e1 ∧x · ∇v) · v dx

+
∫

∂ BR ∪∂ BR∗

(∇v · n) · v +
1
2
R|v|2n1 −

1
2
R|v|2v · n− p(v · n) dS.

We observe that on ∂ BR ∪∂ BR∗ we have n := x
|x| and thus∫

BR,R∗

e1 ∧x · ∇v · v dx =
1
2

∫
∂ BR ∪∂ BR∗

|v|2(e1 ∧x) · n dS = 0.

We thus conclude∫
BR,R∗

∇v : ∇v dx =
∫

∂ BR ∪∂ BR∗

(∇v ·n) · v+
1
2
R|v|2n1−

1
2
R|v|2v ·n− p(v ·n) dS.

The rest of the proof follows precisely the proof of [12, Lemma IX.8.2], and will
be, therefore, omitted.
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5 Leray Solutions are Physically Reasonable

Objective of this section is to prove point-wise asymptotic estimates for v, ∇v
and p. These estimates will, in particular, furnish that every Leray solution is,
in fact, Physically Reasonable.

We begin to show the point-wise behavior of the velocity.

Theorem 5.1. Let Ω ⊂ R3 be an exterior domain. Moreover, let R, T > 0 and
f ∈ L2

loc(Ω)3 with supp(f) bounded. Then a solution v ∈ D1,2(Ω)3 ∩ L6(Ω)3

with p ∈ L2
loc(Ω) to the system of equations:

(5.1)

{
∆v −∇p+R

(
∂1v − v · ∇v

)
+ T

(
e1 ∧x · ∇v − e1 ∧v

)
= f in Ω,

div(v) = 0 in Ω,

satisfies for any δ > 0 and sufficiently large |x|:

v(x) = V1(x) + V2(x)

with V1 = O

(
|x|−1(1 +R s(x)

)−1
)

and V2 = O

(
|x|−3/2+δ

)
.

Proof. Choose ρ sufficiently large so that supp(f) ⊂ Bρ. By elliptic regularity
theory, we then have v ∈ C∞(Ωρ) and p ∈ C∞(Ωρ). Furthermore, by Lemma
4.4 (after possibly adding a constant to p), we obtain

(5.2) (v, p) ∈ Xq(Ωρ), ∀q ∈ (1, 2).

From (5.2), we deduce v ∈ L∞(Ωρ), by Sobolev embedding.
Let ψρ ∈ C∞(R3; R) be a “cut-off” function with ψρ = 0 in Bρ and ψρ = 1

in R3 \ B2ρ. We put

(5.3) u =: ψρv − ψρσ − Z, d := ψρp,

where

σ(x) :=
(
−

∫
∂ B2ρ

v · n dS
)
· ∇E(x), E(x) :=

1
4π |x|

,

and Z ∈ C∞0 (B2ρ) with div(Z) := ∇ψρ · (v − σ). The existence of such a Z
follows from [11, Theorem III.3.2] since∫

B2ρ

∇ψρ · (v − σ) dx =
∫

∂ B2ρ

v · n dS −
∫

∂ B2ρ

σ · n dS = 0.

Note at this point that

(5.4) |σ(x)| ≤ c1 |x|−2
, and |∇σ(x)| ≤ c2 |x|−3

.
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Using the fact that (e1 ∧x · ∇σ − e1 ∧σ) = 0, we see that

(5.5)


∆u−∇d+R∂1u+ T

(
e1 ∧x · ∇u− e1 ∧u

)
=

R div
(
(ψρv)⊗ (ψρv)

)
−R ∂1[ψρσ] + Fc in R3,

div(u) = 0 in R3,

with Fc ∈ C∞0 (R3). Now choose Q(t) as in (4.1) and put

(5.6)

w(y, t) := Q(t)u
(
QT (t)y

)
, π(y, t) := d

(
QT (t)y

)
,

V (y, t) := Q(t)[ψρv]
(
QT (t)y

)
, Σ(y, t) := Q(t)[ψρσ]

(
QT (t)y

)
,

Hc(y, t) := Q(t)Fc

(
QT (t)y

)
.

From (5.2) and (5.4) we obtain

u ∈ Lr(R3), ∀r > 2,(5.7)

and hence we have

(5.8)


∂tw = ∆w −∇π +R ∂1w

−R div(V ⊗ V ) +R ∂1Σ−Hc in R3
∞,

div(w) = 0 in R3
∞,

lim
t→0

‖w(·, t)− u‖r = 0,

for all r > 2. Utilizing again (5.2), we deduce

div(V ⊗ V ) ∈ L∞,r
(
R3
∞

)
, ∀r ∈ (1, 4).

Moreover, due to (5.4) we have

∂1Σ ∈ L∞,r
(
R3
∞

)
, ∀r > 1.

Also,
supp

(
Hc(·, t)

)
⊂ B2ρ and Hc ∈ L∞,r

(
R3
∞

)
, ∀r > 1.

We may now combine Lemma 3.3 and Lemma 3.4 to obtain a solution (w̌, π̌) to
(5.8) with {

w̌ ∈ W(1,2)
r

(
R3 × (ε, T )

)
, w̌ ∈ Lr

(
R3

T

)
, and

π̌ ∈ D(0,1)
r

(
R3

T

)
, ∀r ∈ (2, 4), ∀ε > 0, ∀T > 0,

given by
(5.9)

w̌(x, t) = (4πt)−
3
2

∫
R3

e−|x−y+R t e1|2/4t u(y) dy

+

t∫
0

∫
R3

Γ(x− y, τ) ·
(
−R div(V ⊗ V )(y, τ) +R ∂1Σ−Hc(y, τ)

)
dydτ.
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We clearly have (w, π) ∈ W(1,2)
2,loc

(
R3

T

)
× D(0,1)

2,loc

(
R3

T

)
and, recalling (5.7), also

w ∈ Lr
(
R3

T

)
, ∀r > 2. We thus conclude by Lemma 3.6 that w = w̌. From (5.9),

we can therefore derive the representation

(5.10) w = w1 + w2 + w3 + w4

with (i = 1, 2, 3)

w1i(x, t) = R
t∫

0

∫
R3

∂lΓij(x− y, t− τ)Vj(y, τ)Vl(y, τ) dydτ,(5.11)

w2(x, t) = −
t∫

0

∫
R3

Γ(x− y, t− τ) ·Hc(y, τ) dydτ,(5.12)

w3(x, t) = (4πt)−
3
2

∫
R3

e−|x−y+R t e1|2/4t u(y) dy,(5.13)

w4(x, t) = R
t∫

0

∫
R3

∂1Γ(x− y, t− τ) · Σ(y, τ) dydτ.(5.14)

We shall now give point-wise estimate of wi, i = 1, . . . , 4, beginning with
w1. Since the numerical value of R and T is irrelevant in the proof (provided
they are both positive, of course), in what follows we shall put, for simplicity,
R = T = 1. By Lemma 3.1, we have

(5.15)

|w1(x, t)| ≤
t∫

0

∫
R3

C6 (τ + |x− y + τ e1|2)−2 |V (y, t− τ)|−2 dydτ

≤
t∫

0

∫
BR

C6 (τ + |x− y + τ e1|2)−2|V (y, t− τ)|−2 dydτ

+

t∫
0

∫
BR

C6 (τ + |x− y + τ e1|2)−2|V (y, t− τ)|−2 dydτ

=: I1 + I2

for any R > 0. We fix R = |x|
3 and estimate, by Hölder’s inequality, for any

r > 2 and r0 := r
r−2 :

I1 ≤ c3

∞∫
0

( ∫
BR

(τ + |x− y + τ e1|2)−2r0dy
) 1

r0

‖V (·, t− τ)‖2r dτ.
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From definition of V , we deduce

I1 ≤ c3 ‖v‖2r,Ωρ

∞∫
0

( ∫
BR

(τ + |x− y + τ e1|2)−2r0dy
) 1

r0

dτ.

Putting z = y − τ e1, we have |z| ≤ 2R for 0 ≤ τ ≤ R and y ∈ BR. Thus

R∫
0

( ∫
BR

(τ + |x− y + τ e1|2)−2r0dy
) 1

r0

dτ ≤

R∫
0

( ∫
B2R

(τ + |x− z|2)−2r0dz
) 1

r0

dτ.

Moreover, for |z| ≤ 2R we have |x− z| ≥ 3R− 2R = R and hence

R∫
0

( ∫
BR

(τ + |x− y + τ e1|2)−2r0dz
) 1

r0

dτ ≤

R∫
0

( ∫
B2R

(τ +R2)−2r0dz
) 1

r0

dτ ≤ c4

R∫
0

R
3

r0

(τ +R2)2
dτ ≤ c5R

−3+ 3
r0 .

Since
∞∫

R

( ∫
BR

(τ + |x− y + τ e1|2)−2r0dy
) 1

r0

dτ ≤
∞∫

R

( ∫
BR

τ−2r0dy
) 1

r0

dτ

≤ c6R
−1+ 3

r0 ,

we conclude that for large |x|:

(5.16) I1 ≤ c7R
−1+ 3

r0 = c8|x|−1+
3(r−2)

r , ∀r > 2,

where c8 = c8(r). We will now estimate I2. First, we put δ(x) := |(x2, x3)| and
write

I2 =

t∫
0

∫
{y∈BR |δ(x−y)<1}

C6

(τ + |x− y + τ e1|2)2
|V (y, t− τ)|2 dydτ

+

t∫
0

∫
{y∈BR |δ(x−y)≥1}

C6

(τ + |x− y + τ e1|2)2
|V (y, t− τ)|2 dydτ

=: I21 + I22.

25



By Hölder’s inequality, we find for an arbitrary q0 > 6, q1 := q0
q0−2 ∈ (1, 3

2 ):

I21 ≤
t∫

0

( ∫
{δ(x−y)<1}

C6
q1

(τ + |x− y + τ e1|2)2q1
dy

) 1
q1

‖V (·, t− τ)‖2q0,BR dτ,

from which we derive, using Lemma 3.2, for R > 2ρ:

(5.17) I21 ≤ c9 ‖v‖2q0,BR ≤ c9 ‖v‖
2(q0−6)

q0
∞,Ωρ ‖v‖

2+
2(6−q0)

q0
6,BR ,

with c9 = c9(q0). We shall now use the inequality (see [11, Theorem 5.1])

(5.18) ‖v‖6,BR ≤ c10 ‖∇v‖2,BR ,

where one may verify, by a simple scaling argument, that c10 does not depend
on R. Furthermore, we shall use Lemma 4.7, which can applied to v since{

∆v −∇p+ ∂1v − v · ∇v + e1 ∧x · ∇v − e1 ∧v = 0 in BR,

div(v) = 0 in BR .

Combining (5.17), (5.18), and Lemma 4.7, we conclude that

(5.19) I21 ≤ c11R
−1+ε = c12 |x|−1+ε

, ∀ε > 0,

where c12 = c12(ε). We now move on to I22. This time, we consider an arbitrary
2 < q0 < 6 and q2 := q0

q0−2 >
3
2 , and obtain

I22 ≤
t∫

0

( ∫
{δ(x−y)≥1}

C6
q2

(τ + |x− y + τ e1|2)2q2
dy

) 1
q2

‖V (·, t− τ)‖2q0,BR dτ,

from which we derive, again applying Lemma 3.2, for R > 2ρ:

(5.20) I22 ≤ c13 ‖v‖2q0,BR ≤ c13
(
‖v‖1−θ

6,BR ‖v‖θ
3

)2
,

with 1
q0

= θ
3 + 1−θ

6 and c13 = c13(q0). Clearly, θ → 0 as q0 → 6. Combining
(5.20), (5.18), and Lemma 4.7, we thus conclude that

(5.21) I22 ≤ c14R
−1+ε = c15 |x|−1+ε

, ∀ε > 0,

where c15 = c15(ε, v). Collecting now (5.15), (5.16), (5.19), and (5.21), we
deduce

(5.22) |w1(x, t)| ≤ c16 |x|−1+ε
, ∀ε > 0,

for sufficiently large |x|, where c16 = c16(ε). This concludes, for the moment,
the estimate of w1.

26



Concerning an estimate of w2, we obtain from Lemma 3.3 for all r > 3:

(5.23) |w2(x, t)| ≤ C10
ess supt>0‖Hc(·, t)‖r(

1 + |x|
)(

1 + s(x)
) ≤ C10

‖Fc‖r(
1 + |x|

)(
1 + s(x)

) .
As a consequence of (5.23), we note that

|w2(x, t)| ≤ c17 |x|−1

for sufficiently large |x|.
Concerning w3, we deduce from Lemma 3.4 (more specifically (3.23)) that

(5.24) |w3(x, t)| ≤ c18 t
− 3

2 ·
1
6 ‖u‖6.

In order to estimate w4, we consider, for ε > 0, the integral

(5.25) J :=
∫
R3

∞∫
0

|∇Γ(x− y, τ)|dτ (1 + |y|)−2+ε dy.

Using Lemma 3.1, we conclude that

(5.26)

J ≤ c19

( ∫
{|x−y|< 1

4}

|x− y|−2(1 + |y|)−2+ε dy +

∫
{|x−y|≥ 1

4}

|x− y|−
3
2 (1 + s(x− y))−

3
2 (1 + |y|)−2+ε dy

)
.

The first integral on the right hand side in (5.26) can be estimated, for |x| > 1
2 ,

by

(5.27)

∫
{|x−y|< 1

4}

|x− y|−2(1 + |y|)−2+ε dy

≤
∫

{|z|< 1
4}

|z|−2(1 + |x− z|)−2+ε dz

≤
∫

{|z|< 1
4}

|z|−2(1 +
1
2
|x|

)−2+ε dz ≤ c20 |x|−2+ε
,

where c20 = c20(ε). We shall use [5, Lemma 3.1] to estimate the second integral
on the right hand side in (5.26). More specifically, the proof of [5, Lemma 3.1]
contains, as a particular case, the estimate

(5.28)
∫
R3

(1 + |x− y|)− 3
2 (1 + s(x− y))−

3
2 (1 + |y|)−2+ε dy ≤ c21 |x|−

3
2+κ(ε)

,
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where κ(ε) → 0 as ε→ 0 and c21 = c21(ε). To see this, choose (in the proof of
[5, Lemma 3.1]) a = 3

2 , b = 3
2 , c = 2− ε, d = 0 and utilize the estimates for all

Ii with appropriately chosen constants ei and fi. Having established (5.28), we
derive

(5.29)
∫

{|x−y|≥ 1
4}

|x− y|−
3
2 (1 + s(x− y))−

3
2 (1 + |y|)−2+ε dy ≤ c22 |x|−

3
2+κ(ε)

,

where c22 = c22(ε). Collecting (5.26), (5.27), and (5.29), we obtain, for suffi-
ciently large |x|, that

(5.30) J ≤ c23 |x|−
3
2+ε

, ∀ε > 0,

where c23 = c23(ε). Clearly, since |σ(x)| ≤ c24 |x|−2, we have

(5.31)
|w4(x, t)| ≤

∞∫
0

∫
R3

|∇Γ(x− y, τ)| (1 + |y|)−2 dydτ

≤ c25 J ≤ c26 |x|−
3
2+ε

, ∀ε > 0,

where c26 = c26(ε).
Finally, from (5.10), (5.22), (5.23), (5.24), (5.31), and (5.4) we conclude, for

|x| sufficiently large, that

|v(x)| ≤ |u(x)|+ |σ(x)| ≤ |w
(
Q(t)x, t

)
|+ c27|x|−2

≤ c28
(
|x|−1+ε + t−

1
4 ‖u‖6

)
, ∀ε > 0,

where c28 = c28(ε). Letting t→∞, we obtain

(5.32) |v(x)| ≤ c28 |x|−1+ε
, ∀ε > 0.

With the estimate (5.32) at hand, we return to the representation (5.11) of
w1. Clearly, as a consequence of (5.32), we have

|V (y, t)| ≤ c29 (1 + |y|)−1+ε.

Thus, from (5.11) we find that

|w1(x, t)| ≤ c30

∫
R3

∞∫
0

|∇Γ(x− y, τ)|dτ (1 + |y|)−2+ε dy ≤ c30 J.

From (5.30) we conclude, for sufficiently large |x|, that

(5.33) |w1(x, t)| ≤ c31 |x|−
3
2+ε

, ∀ε > 0,

where c31 = c31(ε).
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Finally, we can now combine (5.10), (5.23), (5.24), (5.31), (5.33), and (5.4),
let t→∞, and thereby obtain, for |x| sufficiently large,

|v(x)| ≤ c32
(
1 + |x|

)−1(1 + s(x)
)−1 + c33 |x|−

3
2+ε

,

where c32 = c32(ε) and c33 = c33(ε). The proof of the theorem is then accom-
plished.

The following result concerns the asymptotic behavior of ∇v.

Theorem 5.2. Let the assumptions of Theorem 5.1 be satisfied. Then, for any
η > 0 and sufficiently large |x|:

∇v(x) = G1(x) + G2(x),

where G1 = O

(
|x|−3/2(1 +R s(x)

)−3/2
)

and G2 = O

(
|x|−2+η

)
.

Proof. We begin to prove that ∇v(x) is bounded for all large |x|. As in the
proof of Theorem 5.1, we infer (5.2) and thus ∇2v ∈ Lq(Ωρ) for all q ∈ (1, 2),
which implies the same property for the function u defined in (5.3). Moreover,
by Remark 4.6 and by the fact that v ∈ L∞(Ωρ), it follows that v · ∇v ∈
Lr(Ωρ) for all r ∈ (1, 6). Thus, recalling that ∂1σ ∈ Ls(Ωρ) for all s > 1, from
(5.5) and [6, Theorem 1.1] we derive ∇2u ∈ Lr(R3) for all r ∈ (1, 6), that is,
∇2v ∈ Lr(Ω2ρ), for all r ∈ (1, 6). The claimed boundedness of ∇v then follows
from this property, Remark 4.6, and the Sobolev embedding theorem. Recalling
definition (5.6), the boundedness of ∇v also implies

(5.34) |∇V (y, t)| ≤ c1,

with c1 independent of y and t. Finally, from Theorem 5.1 we also obtain

|V (x, t)| ≤ c2|x|−1
,(5.35)

with c2 independent of t.
Our next step is to prove that ∇v(x) decays, at least, like |x|−1. The starting

point of our analysis will be, again, the representation (5.10)–(5.14), which yields

∂kw1i(x, t) = R
t∫

0

∫
R3

∂kΓij(x− y, t− τ) ∂l

[
Vj(y, τ)Vl(y, τ)

]
dydτ,(5.36)

∂kw2(x, t) = −
t∫

0

∫
R3

∂kΓ(x− y, t− τ) ·Hc(y, τ) dydτ,(5.37)

∂kw3(x, t) = ∂k

[
(4πt)−

3
2

∫
R3

e−|x−y+R t e1|2/4t u(y) dy
]
,(5.38)

∂kw4(x, t) = R
t∫

0

∫
R3

∂kΓ(x− y, t− τ) · ∂1Σ(y, τ) dydτ.(5.39)
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As in the proof of Theorem 5.1, we fix, for simplicity R = T = 1. We shall
give estimates for ∂kw1, ∂kw2, ∂kw3, and ∂kw4. Starting with ∂kw2, we choose
a > 0 so that supp(Fc) ⊂ Ba, and deduce from (5.37), (3.4), and the properties
of Fc that (k = 1, 2, 3)

(5.40) |∂kw2(x, t)| ≤ c3

∫
Ba

|x− y|−3/2 (
1 + s(x− y)

)−3/2dy.

For x ∈ R3 \B2a and y ∈ Ba we have, on one hand, |x− y| ≥ |x|/2, and, on the
other hand, 1 + s(x) ≤ 1 + s(x − y) + s(y) ≤ c4(1 + s(x − y)), from which we
infer

(5.41) |∂kw2(x, t)| ≤ c5 |x|−3/2 (
1 + s(x)

)−3/2
, ∀|x| > 2a.

To estimate ∂kw3, we use inequality (3.23) with r = ∞, q = 6, and |α| = 1 and
deduce

(5.42) ‖∂kw3(·, t)‖∞ ≤ c6 t
− 3

4 ‖u‖6.

Concerning ∂kw4, we recall that |∂1Σ(y, t)| ≤ c7(1 + |y|)−3, y ∈ R3, with c7
independent of t ≥ 0, and deduce, utilizing (3.4), [11, Lemma II.7.2], and [5,
Lemma 3.1] as in the estimate for w4 in the proof of Theorem 5.1, that, for
sufficiently large |x|,

|∂kw4(x, t)| ≤ c8

( ∫
{|x−y|< 1

4}

|x− y|−2|y|−3+εdy

+
∫

{|x−y|≥ 1
4}

|x− y|−3/2 (
1 + s(x− y)

)−3/2(1 + |y|)−3dy
)

≤ c9 |x|−2+ε
,

(5.43)

for all ε > 0 and c9 = c9(ε). It remains to estimate ∂kw1. To this end, we split
the integral in (5.36) into two parts:

∂kw1i(x, t) =

t∫
0

∫
R3\B 1

4
(x)

∂kΓij(x− y, t− τ) ∂l

[
Vj(y, τ)Vl(y, τ)

]
dydτ

+

t∫
0

∫
B 1

4
(x)

∂kΓij(x− y, t− τ) ∂l

[
Vj(y, τ)Vl(y, τ)

]
dydτ

=: I1 + I2.

(5.44)
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After a partial integration, we utilize (3.5) and (5.35) to obtain

|I1| ≤ c10

∫
R3\B 1

4
(x)

|x− y|−2 (
1 + s(x− y)

)−2 (1 + |y|)−2 dydτ

+ c11

∫
∂ B 1

4
(x)

|x− y|−3/2 (
1 + s(x− y)

)−3/2 (1 + |y|)−2 dy

=: I11 + I12.

(5.45)

Applying again [5, Lemma 3.1] as in the proof of Theorem 5.1, we find that

|I11| ≤ c12 |x|−2+ε(5.46)

for all ε > 0 and c12 = c12(ε). Clearly,

|I12| ≤ c13|x|−2
.(5.47)

Since div(V (y, t)) = 0 for sufficiently large |y|, we observe that

I2 =

t∫
0

∫
B 1

4
(x)

∂kΓij(x− y, t− τ) ∂lVj(y, τ)Vl(y, τ) dydτ(5.48)

for sufficiently large |x|. Using (3.4) along with (5.34) and (5.35), we conclude

|I2| ≤ c14 |x|−1
∫

B 1
4
(x)

|x− y|−2 dy ≤ c15 |x|−1

(5.49)

for sufficiently large |x|. Collecting (5.41), (5.42), (5.43), (5.44), (5.45), (5.46),
(5.47), (5.49), we infer (k = 1, 2, 3)

(5.50) |∂kw(x, t)| ≤ c16

(
|x|−1 + |x|−3/2(1 + s(x)

)−3/2 + |x|−2+ε + t−
3
4 ‖u‖6

)
for all ε > 0 and sufficiently large |x|. Therefore, we get

|∇v(x)| ≤ |∇u(x)|+ |∇σ(x)|

≤ |∇w
(
Q(t)x, t

)
|+ c17|x|−3

≤ c18

(
|x|−1 + |x|−3/2(1 + s(x)

)−3/2 + |x|−2+ε + t−
3
4 ‖u‖6

)
,

and thus, by letting t→∞,

(5.51) |∇v(x)| ≤ c18

(
|x|−1 + |x|−3/2(1 + s(x)

)−3/2 + |x|−2+ε

)
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for large |x| and arbitrary ε > 0. This latter estimate will furnish an improved
estimate for ∇V , which then leads to the improved estimate |I2| ≤ c19|x|−2.
Hence we can improve (5.51) by replacing the term |x|−1 with |x|−2, which
completes the proof.

Our next result concerns the point-wise asymptotic behavior of the pressure.

Theorem 5.3. Under the same assumption of Theorem 5.1, there is a constant
p0 so that the pressure p satisfies, for all sufficiently large |x|,

p(x)− p0 = O(|x|−2 ln |x|).

Proof. If we apply the div operator on both sides of (5.1), on one hand, and, on
the other hand, we evaluate the normal derivative of p at ∂ Bρ ≡ ∂Ωρ, we find

∆p = div(G) in Ωρ,

∂p

∂n
= g on ∂Ωρ,

(5.52)

with

G := Rv · ∇v, and

g :=
(

∆v +R
(
∂1v − v · ∇v

)
+ T

(
e1 ∧x · ∇v − e1 ∧v

))
· n

∣∣
∂Ωρ ,

(5.53)

where we used that div(v) = 0 along with the fact that div
(

e1 ∧x·∇v−e1 ∧v
)

=
0. Denoting by E = E(ξ) the fundamental solution to Laplace’s equation, from
(5.52) we find, after a simple integration by parts, for all x ∈ Br,ρ, r > ρ,

p(x) =−
∫

Br,ρ

G(y) · ∇E(x− y) dy +
∫

∂ Br,ρ

E(x− y)G(y) · n dS(y)

−
∫

∂ Bρ

E(x− y) g(y) dS(y)−
∫

∂ Br

E(x− y)
∂p

∂n
(y) dS(y)

+
∫

∂ Bρ

∂E
∂n

(x− y) p(y) dS(y) +
∫

∂ Br

∂E
∂n

(x− y) p(y) dS(y).

(5.54)

Using that

(5.55) |DαE(ξ)| ≤ c1 |ξ|−1−|α| for |α| ≥ 0 , ξ ∈ R3,

and recalling (5.2), we readily show, for fixed x ∈ Ωρ, the existence of an
unbounded sequence {rn}∞n=1 ⊂ R+ so that (after possibly adding a constant
to p)

lim
rn→∞

∫
∂ Brn

E(x− y)
(
G(y) · n− ∂p

∂n
(y)

)
+
∂E
∂n

(x− y) p(y) dS(y) = 0.
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Consequently, (5.54) furnishes, for x ∈ Ωρ, the representation

p(x) =−
∫
Ωρ

G(y) · ∇E(x− y) dy +
∫

∂ Bρ

E(x− y)G(y) · n dS(y)

−
∫

∂ Bρ

E(x− y) g(y) dS(y) +
∫

∂ Bρ

∂E
∂n

(x− y) p(y) dS(y).

We next use, in this latter relation, the property (5.55) along with the mean
value theorem to obtain

p(x) = −
∫
Ωρ

G(y) · ∇E(x− y) dy

+
∫

∂ Bρ

(
G(y) · n− g(y)

)
dS(y) · E(x) +O

(
|x|−2)

=: −P (x) +m E(x) +O
(
|x|−2)

.

(5.56)

We shall now show that

(5.57) P (x) = O
(
|x|−2 ln |x|

)
.

To this end, we set |x| = R (> 2ρ) and write

P (x) =
∫

BR/2,ρ

G(y) · ∇E(x− y) dy +
∫

B2R,R/2

G(y) · ∇E(x− y) dy

+
∫

Ω2R

G(y) · ∇E(x− y) dy

=: P1(x) + P2(x) + P3(x).

In view of the summability properties (5.2), and by means of the Hölder in-
equality, it is easy to show that G ∈ L1(Ωρ). This, combined with (5.55), allows
one to readily prove that

(5.58) P1(x) + P3(x) = O
(
|x|−2)

.

We next observe that

P2(x) = −
∫

B2R, R
2
\B1(x)

∂l∂kE(x− y) vl(y) vk(y) dy

+
∫

B1(x)

∂kE(x− y) vl(y) ∂lvk(y) dy

+
∫

∂
(
B2R, R

2
\B1(x)

) ∂kE(x− y) vl(y) vk(y)nl dS(y)

=: P21(x) + P22(x) + P23(x).

(5.59)
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From Theorem 5.1, Theorem 5.2, and (5.55), we readily obtain

P22(x) + P23(x) = O
(
|x|−2)

,

|P21| ≤ c2|x|−2
∫

B3R,1(x)

|x− y|−3 dy = O
(
|x|−2 ln |x|

)
.(5.60)

Thus, collecting (5.58), (5.59), and (5.60), we obtain (5.57), which, in turn, once
replaced in (5.56), delivers

(5.61) p(x) = m E(x) +O
(
|x|−2 ln |x|

)
.

However, by (5.2), p ∈ L3/2−ε(Ba), for sufficiently large a and all ε > 0. Thus, in
equation (5.61) we must have m = 0, and the proof of the theorem is completed.

We end this section by establishing further properties of Leray solutions
that are a simple and direct consequence of Lemma 4.4, Theorem 5.1 and of the
results of [15]. We begin with the following.

Theorem 5.4 (Uniqueness). Let Ω ⊂ R3 be an exterior domain of class C2.
Moreover, let B1, B2 > 0 be arbitrary constants and R ∈ (0, B1), T ∈ (0, B2).
There is a constant ε1 = ε1(Ω, B1, B2) > 0 so that if f = div(F ) ∈ L2(Ω)3 with
supp(f) bounded 13 and v∗ ∈W

3
2 ,2(∂Ω) satisfies

R
(

ess sup
[
(1 + |x|)−2|F (x)|]

)
+ ‖f‖2 + ‖v∗‖

W
3
2 ,2(∂Ω)

)
≤ ε1,(5.62)

then a solution (v, p) in the class

(5.63) v ∈ D1,2(Ω)3 ∩ L6(Ω)3, p ∈ L2
loc(Ω)

to

(5.64)


∆v −∇p+R

(
∂1v − v · ∇v

)
+ T

(
e1 ∧x · ∇v − e1 ∧v

)
= f in Ω,

div(v) = 0 in Ω,
v = v∗ on ∂Ω,

is unique in the class (5.63).

Proof. Under the given assumptions, the existence of a “strong” solution (v, p)
to (5.64) with, in particular, ess sup

[
(1+|x|)−1|v(x)|]

)
bounded by the data was

proved in [15, Theorem 1]. Using the decay properties established in Lemma
4.4 and Theorem 5.1 for a “weak” solution satisfying (5.63), it can be shown, by
the same method as in [15, Theorem 1], that the “strong” and “weak” solution
coincide. Thus, uniqueness of solutions in the class (5.63) follows.

13This assumption can be fairly weakened, by requiring only that f(x) decays to zero suffi-
ciently fast for large |x|, as in [14, Theorem 1].

34



We also have the following result.

Theorem 5.5 (Energy Equation). Let Ω ⊂ R3 be an exterior domain of class
C2. Moreover, let R, T > 0, 1 < q < 6

5 , f ∈ Lq(Ω)3 ∩L
2q

3−q (Ω)3 ∩L2
loc(Ω)3, and

v∗ ∈W
3
2 ,2(∂Ω). Then any solution (v, p) to (5.64) in the class (5.63) satisfies

(5.65)

2
∫
Ω

D(v) : D(v) dx+
∫
Ω

f · v dx =

∫
∂Ω

(
T(v, p) · n

)
· v∗ dS +

1
2

∫
∂Ω

|v∗|2
(
R e1−v∗ + T e1 ∧ x

)
· n dS,

where T(v, p) := D(v)− pI and D(v) := 1
2

(
∇v +∇vT

)
.

Proof. Let Φ ∈ C∞(R; R) be a “cut-off” function with Φ(r) = 1 for |r| < 1 and
Φ(r) = 0 for |r| > 2. Define ϕρ ∈ C∞(R3; R) by ϕρ(x) := Φ

(
|x|
ρ

)
. Note that,

by elliptic regularity theory, v ∈ W 2,2
loc (Ω) and p ∈ W 1,2

loc (Ω). Thus, multiplying
(5.64)1 with ϕρv and integrating over Ω, we obtain, for ρ sufficiently large,

(5.66)

∫
∂Ω

(∇v · n) · v − p v · n dS −
∫
Ω

(∇v : ∇v)ϕρ + (∇v · ∇ϕρ) · v dx

−
∫
Ω

p (∇ϕρ · v) dx+R
( ∫

Ω

∂1v · (ϕρv)− (v · ∇v) · (ϕρv) dx
)

+ T
( ∫

Ω

(e1 ∧x · ∇v) · (ϕρv) dx
)

=
∫
Ω

ϕρf · v dx.

We next observe that

(5.67) 2
∫
Ω

∂1v · (ϕρv) dx =
∫

∂Ω

|v|2 e1 ·n dS −
∫
Ω

|v|2 ∂1ϕρ dx.

Using Lemma 4.4 (note that f ∈ Lq(Ω) ∩ L
2q

3−q (Ω) implies f ∈ L
3
2 (Ω) when

1 < q < 6
5 ), we have (v, p) ∈ Xq(Ωρ). Consequently, by Hölder’s inequality,

∫
Ω

|v|2 |∂1ϕρ| dx ≤ c1 ‖v‖ 2q
2−q ,Ωρ

( ∫
B2ρ,ρ

|x|−r dx
) 1

r

,

where r > 3 (since q < 6
5 ) and c1 independent of ρ. Thus, letting ρ → ∞ in

(5.67) we see that

lim
ρ→∞

2
∫
Ω

∂1v · (ϕρv) dx =
∫

∂Ω

|v|2 e1 ·n dS.
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Similarly, we prove that

lim
ρ→∞

2
∫
Ω

(v · ∇v) · (ϕρv) dx =
∫

∂Ω

|v|2 v · n dx,

lim
ρ→∞

∫
Ω

(∇v · ∇ϕρ) · v dx = 0, and

lim
ρ→∞

∫
Ω

p (∇ϕρ · v) dx = 0.

Finally, we note that

2
∫
Ω

(e1 ∧x · ∇v) · (ϕρv) dx =
∫

∂Ω

|v|2(e1 ∧x) · n dS −
∫
Ω

|v|2 (e1 ∧x) · (∇ϕρ)dx

=
∫

∂Ω

|v|2 (e1 ∧x) · n dS,

since (e1 ∧x) · (∇ϕρ) = (e1 ∧x) ·
(

x
ρ |x| Φ′( |x|ρ )

)
= 0. We may now conclude (5.65)

by letting ρ→∞ in (5.66) and observing that∫
Ω

∇v : ∇vT dx =
∫

∂Ω

(∇vT · n) · v dS.
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