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Abstract

In the present paper, we apply two-step peer methods up to order five to thermally coupled incompress-
ible flow. These methods were first developed for ODEs and subsequently applied to parabolic PDEs.
Because of their linearly implicit character only linear systems have to be solved in each time step. Addi-
tionally, good stability properties are given by optimal zero-stability and L(α)-stability with an angle of at
least α = 85◦. The main advantage over one-step methods lies in the fact that even in the application to
PDEs no order reduction is observed. To investigate whether the higher order of convergence of the two-
step peer methods equipped with variable time steps pays off in practically relevant CFD computations,
we apply the peer methods to a typical benchmark problem, the thermo-convective instability of plane
Poiseuille flow, and study the accuracy and efficiency of these methods. Comparisons are made with
linearly implicit one-step methods of Rosenbrock-type with classical order two and three. The two-step
methods are highly accurate and more efficient than one-step Rosenbrock methods, in particular than
Ros2, which is similar to the well-known Crank-Nicolson method.

1 INTRODUCTION

A numerical study of a benchmark problem for thermally coupled incompressible flows [1, 4] is presented
in this paper. The problem consists of a two-dimensional laminar flow in a rectangular domain, which is
suddenly heated from below and results in a thermo-convective instability. Besides the practical interest
in this benchmark problem, the system of nonlinear equations forms a very good test case for numerical
methods as instabilities and even transition to turbulence can occur in these flows [1].

Following the Rothe method, the system of nonlinear equations is first discretized in time. Explicit
or simple implicit numerical methods as the backward Euler method, the Crank-Nicolson method or
the fractional-step θ -method are widely-used to approximate the temporal evolution of incompressible
flows. Besides their low order of convergence, it is difficult to realize an adaptive time step control which
increases the efficiency of these methods [7]. In this paper, linearly implicit two-step peer methods [5]
of higher order equipped with variable time steps are used to discretize the nonlinear equations in time.
Such methods take a linear combination of stage values to approximate the exact solution at intermediate
points. All of these stage values have the same order of accuracy and the same stability properties, which
is the reason for calling the methods ’peer’. The methods considered here are up to fifth order accurate
and exhibit good stability properties with optimal zero-stability and L(α)-stability with a large angle α.
They are robust with respect to step size changes due to the strong damping property at infinity. Because
of their linearly implicit structure, only linear systems have to be solved in each time step. Even in the
application to PDEs, the peer methods do not suffer from order reduction, which is the main advantage
over one-step methods. Additionally, they have shown a superior performance with respect to accuracy
and efficiency compared to one-step methods [5, 6].

The outline of the present paper reads as follows: We introduce the benchmark problem of the thermo-
convective instability of plane Poiseuille flow in Sect. 2. Then, in Sect. 3, the resulting system of nonlinear
equations is discretized in time with linearly implicit two-step peer methods. For the space discretization,
a stabilized finite element method based on piecewise linear elements for the velocity, pressure, and
temperature is used. The time-adaptive simulations are performed with the software package KARDOS

[3], whose results are presented in Sect. 4. Finally, a summary of our results and conclusion can be
found in Sect. 5.

2 PROBLEM DESCRIPTION

We consider a two-dimensional thermally coupled incompressible flow in a horizontal channel Ω =
[0,10]×[0,1], which has been proposed as a benchmark problem for open boundary flows by Evans and



Paolucci [4]. These flows are modelled by the well-known Navier-Stokes equations with the Boussinesq
approximation for the thermal coupling given in dimensionless form by

∂tu+ (u · ∇)u− Re−1∆u+∇p =−F r−1T ĝ , (2.1a)

∇ · u= 0 , (2.1b)

∂t T + (u · ∇)T − Pe−1∆T = 0 , x ∈ Ω , t ∈ (0, te] . (2.1c)

The vector u = (u1, u2)T ∈ R2 is the velocity field, the scalar p and T are the pressure and temperature.
The system of equations has to be equipped with appropriate initial and boundary conditions. The
dimensionless parameters characterizing the problem are the Reynolds number Re, the Froude number
F r and the Peclet number Pe. We set Re = 10, F r = 1/150, and Pe = 20/3. The vector ĝ represents the
normalized gravitational acceleration. We have ĝ = (0,−1)T for our benchmark problem.

The fluid of the laminar flow is suddenly heated from below with constant temperature Tb = 1.0 at
the bottom wall, whereas the top wall is maintained at temperature Tt = 0. For x1 = 0, we impose a
linear distribution of the temperature, i.e., T (t, 0, x2) = 1− x2, which is the same linear function as for
the initial condition. For the velocity, we prescribe a parabolic inflow profile at the inlet given by

u1(t, 0, x2) = 6x2(1− x2) , u2(t, 0, x2) = 0 ,

and no-slip boundary conditions at the top and bottom wall. The initial condition is equivalent to the
parabolic inflow profile. At the right outflow boundary non-flux conditions are imposed for velocity and
temperature.

The performance of the different solvers for the benchmark problem is measured by means of the time-
and space-averaged Nusselt numbers at the top and bottom boundary. We define the Nusselt numbers
by [4]

Nub =
1

L(t2− t1)

∫ t2

t1

∫ 10

0

−
∂ T

∂ x2
(t, x1, 0) d x1 d t ,

and

Nut =
1

L(t2− t1)

∫ t2

t1

∫ 10

0

−
∂ T

∂ x2
(t, x1, 1) d x1 d t ,

for the time interval [t1, t2] = [3,15]. L is defined by the ratio of length and height of the domain Ω, i.e.,
L = 10.

3 TIME AND SPACE DISCRETIZATION

We first discretize (2.1) in time with an s-stage linearly implicit two-step peer method [5]. Afterwards,
stabilized linear finite elements [8] are used for the space discretization.
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Let τm > 0 be a variable time step. Then, an approximation Vmi = (Pmi, Umi, Tmi)T to the exact solution
at time tmi := tm + ciτm with tm = tm−1,s for m ≥ 1 and ci ∈ [−1,1], cs = 1, can be computed from the
recursive form

∇(Pmi − P0
mi) +
�

I

τmγ
−

1

Re
∆+ Um−1,s · ∇
�

(Umi − U0
mi)

+ ((Umi − U0
mi) · ∇)Um−1,s +

1

F r
(Tmi − T 0

mi) ĝ

=−∇P0
mi −
�

U0
mi · ∇−

1

Re
∆
�

U0
mi −

1

F r
T 0

mi ĝ

+
1

τmγ
(wU ,i − U0

mi) , (3.2a)

∇ · (Umi − U0
mi) =−∇ · U

0
mi , (3.2b)

((Umi − U0
mi) · ∇)Tm−1,s +

�

I

τmγ
−

1

Pe
∆+ Um−1,s · ∇
�

(Tmi − T 0
mi)

=−(U0
mi · ∇)T

0
mi +

1

Pe
∆T 0

mi +
1

τmγ
(wT,i − T 0

mi) (3.2c)

for i = 1, ..., s, with the corresponding boundary conditions taken at tmi. The internal values wi =
(wP,i, wU ,i, wT,i)T are defined by

wi =
i−1
∑

j=1

1

γ
ai j(Vmj −w j) +

s
∑

j=1

ui j(σm)Vm−1, j

and the predictors by

V 0
mi =

i−1
∑

j=1

1

γ
a0

i j(Vmj −w j) +
s
∑

j=1

u0
i j(σm)Vm−1, j .

The above system is first solved for the differences P̂mi = Pmi − P0
mi, Ûmi = Umi −U0

mi, T̂mi = Tmi − T 0
mi, and

these values are than updated by using the predictors. The numerical solution at time tm+1 is given by
the last stage values Pms, Ums, and Tms.

We choose stretched Chebychev nodes

ci :=−
cos
��

i− 1
2

�

π

s

�

cos
�

π

2s

� , i = 1, . . . , s

for the abscissa c ∈ Rs. The coefficients ai j can be combined in a lower triangular matrix A ∈ Rs×s with
positive diagonal elements aii = γ, the coefficients ui j build a possibly full matrix U ∈ Rs×s. The matrix U
depends on the step size ratio σm = τm/τm−1 because of the order conditions of the method for variable
step sizes. For the real coefficients of the predictor, similar properties are valid:

A0 = (a0
i j) with a0

i j = 0 for i ≤ j and U0 = (u0
i j(σm)) .

Using an appropriate set of coefficients, we get order s−1 for variable time steps and order s for constant
time steps [5].

A variable step size approach based on an embedding strategy is used to increase the efficiency of the
methods. A linear combination of the Vmi, i = 1, . . . , s− 1, yields a second solution Ṽms of inferior order
p̃ = s− 2, which serves for an approximation of the local error

ERRt :=









1

n

n
∑

i=1

‖Vms − Ṽms‖2L2

�

ScalRi‖eT
i Vms‖L2 + ScalAi

p

|Ω|
�2









1
2

.
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ScalRi and ScalAi are parameters for the relative and absolute scaling factors, respectively. Let TOLt

denote the desired time tolerance. The new time step size is then given by

τnew =min{τmax,min{2,max{0.2, (TOLt/ERRt)
1/(p̃+1)}} × 0.9τm} .

A description in more detail can be found in Gerisch et al. [5].

We solve the time-independent spatial problems (3.2) by a linear finite element method [8] on a trian-
gular mesh T h with characteristic length size h. Let S1

h denote the space of piecewise linear continuous
functions over T h. For the differences P̂mi, Ûmi and T̂mi, the standard Galerkin finite element solutions
P̂h

mi ∈ S1
h , Ûh

mi ∈ S1
h × S1

h and T̂ h
mi ∈ S1

h are given by the equations

−
�

P̂h
mi,∇ ·ϕu

�

+
1

τmγ

�

Ûh
mi,ϕu

�

+
1

Re

�

∇Ûh
mi,∇ϕu

�

+
�

(Uh
m−1,s · ∇)Û

h
mi,ϕu

�

+
�

(Ûh
mi · ∇)U

h
m−1,s,ϕu

�

+
1

F r

�

T̂ h
mi ĝ,ϕu

�

=
�

P0,h
mi ,∇ ·ϕu

�

−
�

(U0,h
mi · ∇)U

0,h
mi ,ϕu

�

−
1

Re

�

∇U0,h
mi ,∇ϕu

�

−
1

F r

�

T 0
mi ĝ,ϕu

�

+
1

τmγ

�

wh
U ,i,ϕu

�

−
1

τmγ

�

U0,h
mi ,ϕu

�

, (3.3a)
�

∇ · Ûh
mi,ϕp

�

=−
�

∇ · U0,h
mi ,ϕp

�

, (3.3b)
�

(Ûh
mi · ∇)T

h
m−1,s,ϕT

�

+
1

τmγ

�

T̂ h
mi,ϕT

�

+
1

Pe

�

∇T̂ h
mi,∇ϕT

�

+
�

(Uh
m−1,s · ∇)T̂

h
mi,ϕT

�

=−
�

(U0,h
mi · ∇)T

0,h
mi ,ϕT

�

−
1

Pe

�

∇T 0,h
mi ,∇ϕT

�

+
1

τmγ

�

wh
T,i,ϕT

�

−
1

τmγ

�

T 0,h
mi ,ϕT

�

(3.3c)

for all ϕu ∈ S1
h × S1

h , ϕp ∈ S1
h , and ϕT ∈ S1

h . Here, (·, ·) is the usual inner product in L2(Ω).

Since we use the same finite element functions for pressure and velocity, a relaxation of the incom-
pressibility condition

∇ · u= δT∇ ·
�

∂tu+ (u · ∇)u−
1

Re
∆u+∇p+

1

F r
T ĝ
�

(3.4)

is necessary to avoid spurious pressure modes of the numerical solution. Note that the term on the right
hand side is identically zero. The parameter δT is locally defined on each triangle T ∈ T h through [8]

δT = c
hb

2uref

R̂e
p

1+ R̂e2
, R̂e = hburefRe , c = 0.4

for a global reference velocity uref and the diameter hb of the two-dimensional ball which is area-
equivalent to the element T . For our benchmark problem, we use uref = 1. Consequently, we have
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to replace (3.3b) by a discrete version of (3.4). Using partial integration for the divergence term on the
right hand side it reads

�

∇ · Ûh
mi,ϕp

�

+
∑

T∈T h

δT

�

�

∇P̂h
mi,∇ϕp

�

T
+

1

τmγ

�

Ûh
mi,∇ϕp

�

T

−
1

Re

�

∆Ûh
mi,∇ϕp

�

T
+
�

(Uh
m−1,s · ∇)Û

h
mi,∇ϕp

�

T

+
�

(Ûh
mi · ∇)U

h
m−1,s,∇ϕp

�

T
+

1

F r

�

T̂ h
mi ĝ,∇ϕp

�

T

�

=−
�

∇ · U0,h
mi ,ϕp

�

+
∑

T∈T h

δT

¦

−
�

∇P0,h
mi ,∇ϕp

�

T

−
�

(U0,h
mi · ∇)U

0,h
mi ,∇ϕp

�

T
+

1

Re

�

∆U0,h
mi ,∇ϕp

�

T

−
1

F r

�

T 0
mi ĝ,∇ϕp

�

T
+

1

τmγ

�

wh
U ,i,∇ϕp

�

T
−

1

τmγ

�

U0,h
mi ,∇ϕp

�

T

�

(3.5)

for all ϕp ∈ S1
h . We note that in our setting, the second order terms ∆Ûh

mi and ∆Û0,h
mi vanish since linear

elements are used.

4 NUMERICAL RESULTS

We apply the two-step peer methods PEER4 and PEER5 [5], which have order three and four for vari-
able step sizes, to solve the benchmark problem (2.1) and study the accuracy and efficiency of these
methods compared to the linearly implicit one-step Rosenbrock methods ROS3P [10] and ROS3PL [9] of
classical order three. The second-order method ROS2 [2] is also included in the simulations to obtain a
comparison to the widely-used Crank-Nicolson method, which is quite similar to ROS2. For the spatial
discretization, an unstructured mesh consisting of 76,087 triangles is used. We have used the facilities
of the fully space-time adaptive solver KARDOS to a priori design a spatial discretization that guarantees
a relative spatial accuracy of nearly 10−4 over the whole time interval.

For small values of the Rayleigh number, Ra = RePe/F r = 10,000 in our case, the Poiseuille flow results
in a thermo-convective instability, where travelling transverse waves occur with axes perpendicular to
the main flow direction [1], see Fig. 1. The irregular behaviour of the fluid at the right boundary can also

(a) Streamlines

(b) Temperature contours

Figure 1: Streamlines and temperature contours at time t = 8.90.

be observed in this figure, which raises the question if the boundary condition at the outlet represents
the infinitely long channel correctly. The appropriate setting of boundary conditions for the numerical
simulation of flows in infinite domains is still a great challenge. However, the artificial boundary condi-
tions do not have an impact on the numerical solution for 2≤ x1 ≤ 8, which was observed by Evans and
Paolucci [4].
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We computed the following reference values for the Nusselt number at the bottom and top boundary

Nub = 2.400353 , Nut = 2.575916 ,

which result from simulations with decreasing constant step sizes for all methods. The reference values
are converged up to the sixth decimal and equal for all methods considered. The reference value Nut

at the top boundary is comparable to the value obtained by Evans and Paolucci [4]. There Nub was not
considered.
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Figure 2: Nusselt number at bottom boundary. The relative error of the Nusselt number at the bot-
tom boundary of the plane Poiseuille flow is presented for peer and Rosenbrock solvers. The
requested time tolerances are 10−2, 5× 10−3, . . . , 5× 10−5.

Time-adaptive simulations are performed for the comparison of the one- and two-step solvers con-
sidered, where tolerances of 10−2, 5× 10−3, . . . , 5× 10−5 for the peer methods and Rosenbrock methods
are required. Fig. 2 and Fig. 3 relate the relative error of the computed Nusselt numbers at the bottom
and top boundary to the CPU time in seconds. The higher accuracy and better efficiency of PEER4 and
PEER5 compared to the Rosenbrock methods are obvious. PEER4 delivers the best results. The relatively
poor performance of ROS2, which is clearly outperformed by the peer methods and also by the other
third-order methods, shows the usefulness of higher order approximations for the thermo-convective
benchmark problem.

5 CONCLUSIONS

A numerical solution of thermally coupled benchmark flow is provided by two linearly implicit two-
step peer methods and three one-step Rosenbrock methods combined with finite element methods to
discretize in space. We could observe that the peer method PEER4, which has order three for variable
time steps and order four for constant time steps, performs very well compared to the other Rosenbrock
solvers tested. It clearly outperforms the second order method ROS2, which is similar to the well-known
Crank-Nicolson method, by several orders of magnitude. The second two-step peer method, PEER5,
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Figure 3: Nusselt number at top boundary. The relative error of the Nusselt number at the top boundary
of the plane Poiseuille flow is presented for peer and Rosenbrock solvers. The requested time
tolerances are 10−2, 5× 10−3, . . . , 5× 10−5.

still performs well but less efficient than PEER4. We conclude that two-step peer methods recommend
themselves as good candidates for CFD computations that demand for high resolution.
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