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Abstract

In this report, an example for natural convection in a 2-dimensional system is considered, described by
the thermally coupled Navier-Stokes equations. The boundary conditions are assumed to be uncertain
and are modelled by correlated stochastic processes. In order to solve such a Partial Differential Equation
(PDE) with uncertain input, we apply a Stochastic Collocation method, which basically discretizes the
underlying sample space in a geometric way. The quantity of interest is the heat exchange at the surface
of the system, measured by Nusselt numbers. The main goal of this work is the stochastic analysis of
these Nusselt numbers by comparing the input fluctuation with the standard deviation of the response.

1 Introduction of the Problem

Thermally coupled flow can be modelled by the Navier-Stokes equations coupled with the heat equation
using the Boussinesq approximation. The setting focused in this work is taken from [8]. We consider a
system of two spatial dimensions, which is illustrated in Fig. 1. No-slip boundary conditions are applied,
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Figure 1: Illustration of the computational domain.

i.e. vanishing velocity at all four walls. The corresponding dimensionless equations are given by

∂ u

∂ t
+ (u · ∇)u− 2Pr · div(ε(u)) +∇p =−Pr Ra T g

div(u) = 0
∂ T

∂ t
+ (u · ∇)T −∆T = 0,

(1)

with velocity u, temperature T and pressure p (see e.g. [5]). The vector g describes the normalized
gravity in the system and ε = 0.5(∇u+∇uT ) denotes the strain tensor. The dimensionless values Pr
and Ra are the Prandtl and Rayleigh number and are set to 1 and 5000, respectively. At the left wall
a constant temperature of T (−0.5, y, t) = 0.5 is applied, whereas the temperature at the right wall is
assumed to be not explicitly known. This uncertainty is described by the time-independent stochastic
boundary condition T (0.5, y, t) = α(y,ω) with mean −0.5 and standard deviation σ. The variable ω
is random and is thus chosen from a sample space Ω. The lower and upper walls are assumed to be
thermally insulated, i.e. we set n · ∇T = 0 there.

2 Simplification of the Stochastic Boundary Condition

The uncertain temperature at the right boundary is modelled by the random process α(y,ω) as already
mentioned in section 1. This process is assumed to be Gaussian, meaning that it equals a normal dis-



tributed random variable for every fixed y ∈ [−0.5, 0.5]. An important part of modelling consists in the
assumption that the random variable corresponding to any point y1 is correlated with any other point
y2. Hence, the randomness is not modelled by white noise, but by an autocorrelated random process
with a covariance function Cα(y1, y2). Such a problem is called PDE with random coefficients. Here, the
correlation function is given by

Cα(y1, y2) = σ
2 exp

�

−
|y1− y2|

c

�

(2)

with correlation length c = 1. The correlation length is a measure for the distance between two points
in space which are still strongly correlated. The normalized function Cα(y1, y2) is shown in Fig. 2. It
can be seen that the covariance decreases the larger the distance between two points at the considered
wall becomes. In order to deal with the stochastic boundary condition, the random process α(y,ω) has

Figure 2: Correlation function for the right (uncertain) boundary condition.

to be separated in a deterministic and a stochastic part. This is done by the so-called Karhunen-Loève
expansion ([2],[3]), resulting in the following infinite sum

α(y,ω) =−0.5+
∞
∑

n=1

ξn(ω)
p

λn fn(y) (3)

with uncorrelated standard normal distributed random variables {ξn}n∈N and deterministic functions
{ fn(y)}n∈N. These functions together with the constants {λn}n∈N are solutions of the integral-eigenvalue
problem

∫ 0.5

−0.5

Cα(y1, y2) fn(y2)dy1 = λn fn(y2), (4)

which can be solved analytically by differentiating the whole integral equation twice with respect to y1
and then solving the resulting ordinary differential equation.

The eigenvalues tend to zero with growing n and hence, the next step of proceeding is to truncate the
infinite expression for α in (3) after N terms:

α(y,ω)≈ α(y,ξ1,ξ2, ...,ξN ) :=−0.5+
N
∑

n=1

ξn

p

λn fn(y). (5)

In our example, N can be chosen very small since the eigenvalues decrease rapidly and thus the trun-
cation error becomes already small. Approximation (5) is now taken as the temperature boundary
condition for small N .
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3 Stochastic Collocation

Since there is an uncertainty in the input parameters of PDE (1), the velocity, temperature and pressure
are of course also random processes depending on the same random variables {ξn}Nn=1 describing the
input uncertainty. Solutions are assumed to have finite variance for every point in space, such that an
appropriate stochastic solution space is the space of all square-integrable random variables equipped
with the N -dimensional Gaussian probability measure. This space is denoted by L2(Ω).

The randomness is handled as an extra dimension in addition to space and time. For numerical treatment
it has to be discretized. For that, not the sample space Ω itself is taken, but the corresponding image
space under the considered probability measure. Uncorrelated normal distributed random variables are
stochastically independent and so, the image space is equal to RN , which is now going to be discretized.

A set of M nodes {zk}Mk=1 is chosen within RN , where each node represents a certain image of the N -tuple
(ξ1, ...,ξN ). These numbers are put into expression (5), resulting in a deterministic boundary condition
for each node. So, PDE (1) has to be solved with M different deterministic boundary conditions, which
can be done separately. The resulting solutions are then interpolated by Lagrange polynomials in order
to get a continuous representation. The challenge is the placement of the nodes, which is explained in
section 7. As an example, the solution process for the temperature in the system can now be expressed
by

T (x , y, t, z)≈
M
∑

k=1

Tk(x , y, t)Lk(z) (6)

with Tk being the deterministic temperature solution for collocation point zk. The functions Lk represent
certain tensor products of Lagrange polynomials ([7]). Note, that as for classical Lagrange interpolation
it holds

Lk(zl) =

(

1 if k = l
0 if k 6= l.

(7)

The whole procedure is called Stochastic Collocation and the nodes {zk}Mk=1 are called collocation points.
A detailed description of the method is given in [13],[12] or [1], for example. A more mathematical
point of view is presented in [4] or [11]. It is clear that the method also allows solution expressions for
the velocity components and the pressure.

4 Solving the Deterministic PDE

Stochastic Collocation requires solving the deterministic Boussinesq equation in each collocation point,
namely M times for different boundary conditions. Here, this is done by the state-of-the-art PDE-solver
KARDOS. Stabilized linear finite elements ([9]) are used, which are known to work well for the given
problem.

Time runs from t0 = 0 until a steady state is reached, which is approximately the case at time t1 = 6.
Integration is performed adaptively using a Rosenbrock type method of order 3. The initial temperature
profile must be consistent with the boundary conditions to avoid discontinuities. One could just inter-
polate the temperature condition of the two vertical walls linearly, but physically it makes more sense
to take an exponential profile since this might reflect a sudden heating or cooling in a better way. Such
an initial profile for the mean temperature −0.5 for example can be seen on the left picture of Fig. 3.
Nevertheless, a sudden heating respectively cooling of the system is difficult to simulate, meaning that
the algorithms need some time to find a state that makes sense from a physical point of view. In order
to let KARDOS find such a state, the first 5 time steps are done with constant step size of 10−3 and after
that the adaptive step size control is switched on.
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In space a fixed grid of 4225 is chosen, which can be seen on the right picture of Fig. 3. The given
problem is constructed such that the fluid will perform some kind of circular movement. The velocity is
forced to zero at the boundary, and so the steepest changing of the velocity field is expected to take place
near the boundary. This knowledge gives rise to construct a grid which is finer in the boundary regions
than in the middle and point symmetric about the center of the system.

Figure 3: Left: initial temperature profile, right: spatial triangulation.

5 Quantitiy of Interest: Nusselt Numbers

An important quantity of interest for the considered problem is the Nusselt number ([10], [6]). It is a
measure for the heat exchange at surfaces and thus a common efficiency measure. Here, the Nusselt
numbers for the steady state at both the left and right wall is of interest. Mathematically, the stationary
Nusselt numbers Nuleft and Nuright for the left and right wall are defined by

Nuleft =
1

A

∫ 0.5

−0.5

−
∂ T

∂ x
|x=−0.5 dy and (8)

Nuright =
1

A

∫ 0.5

−0.5

−
∂ T

∂ x
|x=0.5 dy. (9)

The constant A is a scaling factor and can be chosen in different ways. For natural convection an appro-
priate choice is the temperature difference between both vertical walls, which is just equal to 1 in our
case. Note that Nusselt numbers have to be approximated by quadrature rules, which is simply realized
by the composed midpoint rule.

6 Statistics of the Solution

Since the collocation solution alone does not provide a real understanding of the considered system, one
has to look at certain statistical quantities like the first moments of the velocity, temperature and Nusselt
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numbers. Stochastic postprocessing requires solving integrals weighted by the density function ρ(z).
This density function is here given by

ρ(z) =
1

(2π)N/2
exp
�

−
1

2
‖z‖2

2

�

. (10)

Exemplarily, calculating statistics is illustrated for the Nusselt number of the left wall. It can be written
as (compare equation (6))

Nuleft(z)≈
N
∑

k=1

(Nuleft)
(k)Lk(z), (11)

where (Nuleft)(k) is the Nusselt number obtained by solving the deterministic problem for collocation
point zk. Its corresponding expected value can thus be calculated as follows:

E[Nuleft(z)] =

∫

[−∞,∞]N
Nuleft(z)ρ(z)dz =

M
∑

k=1

Nu(k)left

∫

[−∞,∞]N
Lk(z)ρ(z)dz. (12)

There arises one integral for each collocation point, which can hardly be solved analytically. Hence,
one needs to proceed via quadrature rules. For that, it is important to take the density function into
account and construct rules for weighted integrals. A natural decision for quadrature nodes would be
the collocation points themselves. Actually this linkage is used the other way around. One chooses the
collocation points {zk}Mk=1 with respect to adequate quadrature rules for the stochastic postprocessing.
Such a quadrature rule with weights {wk}Mk=1 and the use of equation (7) provide the simple formula

E[Nuleft(z)]≈
N
∑

k=1

wkNu(k)left. (13)

For the second moment the procedure is exactly the same. The formula differs only in the square of the
solution:

E[Nu2
left(z)]≈

M
∑

k=1

wk(Nu(k)left)
2. (14)

This way, any statistical quantity can easily be obtained.

7 Choice of Collocation Points

The close connection between collocation points and quadrature rules has already been explained in
section 6. Since the dimension of any statistical integral (see e.g. (12)) is determined by the number
of considered random variables, the main task is to find grids on high dimensional cubes. A brute force
quadrature technique for high dimensional cubes is to consider a 1-dimensional quadrature rule and
take its tensor product for a multidimensional version. The problem with that is the very large number
of resulting collocation points even for only a few dimensions. Hence, the goal is to construct efficient
sparse grids ([15]). The commonly used method for the construction of sparse grids is the Smolyak
algorithm.
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Smolyak Algorithm

Smolyak’s algorithm ([20]) also starts with quadrature rules in one dimension, namely a sequence of
such rules {U i}i=0,1,2,...

∫

f (z)dz ≈ U i( f ) =
mi
∑

j=1

f (z i
j) ·w

i
j (15)

with given natural numbers mi. Let now ∆0 := U0, ∆i := U i − U i−1, i > 0, denote the corresponding
difference formulas. Then Smolyak’s algorithm is given by

A(k, d) =
∑

‖i‖1≤d+k

(∆i1 ⊗ · · · ⊗∆id ). (16)

The number k in this expression is a natural number and is called Smolyak level, whereas i := (i1, ..., id)
denotes an index, whose components refer to the rules in equation (15). This rule combines quadrature
rules of different cardinality in all dimensions. So, one can use formulas with high degree of exactness
without getting a full grid.

The main idea in using Smolyak’s algorithm consists in chosing the 1-dimensional quadrature rules in
equation (15) such that they are nested. This means that each set of nodes is a subset of the next bigger
set. Usually one starts with a rule of only one point and then adding points successivley. Then the
nested character of the nodes is known to be transferred to the multidimensional Smolyak rule A(q, d)
([20],[19]). So, increasing the Smolyak level k does not change the whole grid, but only adds new
points to already existing nodes. In this case, the difference formulas ∆i can be seen as an update of a
coarser rule.

Nested rules also provide the possibility of efficient error estimation, namely a rule is assumed to be good
enough if refinement of the grid does not contribute much to the integral approximation anymore.

Clenshaw-Curtis Nodes

In the context of Stochastic Collocation, usually Clenshaw-Curtis nodes ([16]) are used. The rule is
based on a Fourier expansion of the integrand and the resulting nodes equal the extremums of Chebyshev
polynomials. The advantage of Clenshaw-Curtis rules is that they can easily be nested and in addition
reduce oscillation effects in the boundary regions. That is why they are often preferred to Newton-Cotes-
formulas.

Fig. 4 shows example grids in two dimensions referring to two random variables to describe the un-
certainty. The grids are constructed by Smolyak’s algorithm using nested Clenshaw-Curtis rules. Step
by step the Smolyak level is increased, where the newly added nodes are marked in red. The sparse
structure of the grid is obvious.

Smolyak’s algorithm given by equation (16) is characterized by the dimension of the integral to be solved
and the Smolyak level. The admissible terms in the sum are given by the criterion ‖i‖1 <= d + k. It
is possible to use other admissible sets of indices. One example is the so-called generalized Smolyak
algorithm ([17],[18]), often also denoted as anisotropic version since it adaptively adds more nodes in
dominant directions of the space.

Here, a balanced version of both isotropic and anisotropic Smolyak algorithm has been used in order to
take the decreasing importance of random variables into account. The first random variable arising in the
Karhunen-Loève-expansion (see equation (5)) is clearly the dominant direction and contributes most to
any statistical quantity of the solution. Since the Nusselt numbers at the vertical walls are seen to provide
the key information for the problem, their standard deviation is used for error estimation. Nodes are
successively added in the direction of most contribution to the standard deviation of the Nusselt number.
This is done until the relative contribution falls under a tolerance of 10−3.
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Figure 4: Smolyak grid in 2 dimensions up to level 7, constructed by Clenshaw-Curtis nodes.

8 Results

All results are presented for the steady state of the system. They are not compared to [8], because the
paper does not consider the Nusselt number and in addition is using slightly other solving procedures.

The whole problem was solved for 2, 4 and 6 random variables and an input standard deviation σ of
0.2, 0.4 and 0.6. Fig. 5 shows the vector field of the expected value (left) and standard deviation (right)
of the resulting velocity for N = 6 and σ = 0.2. One can see that the fluid starts moving in a circle as
expected due to gravity and the temperature difference. For the standard deviation the vectors of course
point in positive direction. The faster the mean velocity the bigger is also its standard deviation. This
makes sense since a bigger activity of the fluid gives rise to larger fluctuation.

Figure 5: Expectation and standard deviation of steady state velocity.
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Fig. 6 shows the result for the steady state expectation of the temperature as surface and contour plot.
One can not only recognize the deterministic boundary condition on the left wall, but also the expec-
tation of the stochastic boundary condition on the right wall, which is exactly resolved. Truncating the
Karhunen-Loève expansion does not influence the expectation of the random process α. In addition the
quadrature rules are constructed such that constant values with respect to the density ρ are integrated
exactly. So, both steps do not give rise to error sources for the expectation on the right wall.

Figure 6: Expectation of steady state temperature.

In Fig. 7 the standard deviation of the steady state temperature for different input standard deviations
is shown. The left picture corresponds to σ = 0.2, the middle one to σ = 0.4 and the right one
to σ = 0.6. All three pictures have been obtained using 6 random variables which results in a 6-
dimensional stochastic space. Here, quadrature rules do not distort the solution either, but truncation of
the Karhunen-Loève-expansion results in an error. One can observe that the input standard deviation is
resolved quite well, but of course not exactly.

Figure 7: Standard deviation of steady state temperature, σ = 0.2, σ = 0.4, σ = 0.6.

The solutions for N = 2 and N = 4 are not shown, because the corresponding pictures all look pretty
much like the ones shown here. Since the quantity of interest is the Nusselt number, this number
was actually taken to compare all the solutions. Tab. 1 shows the resulting expectation and standard
deviation of the Nusselt numbers for both walls. One can see that the steady state of the system results in
similar Nusselt numbers on both walls which is not surprising since the problem is completely symmetric
- at least for the mean of the input uncertainty. Another important observation is that the number of
random variables do not influence the Nusselt number significantly. In most of the cases the first two to
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three decimal places agree. So, one does not have to use highdimensional stochastic spaces and thus get
along with less collocation points.

An interesting phenomenon can also be derived from the Nusselt numbers in Tab. 1. The standard
deviation seems to be the result of a multiplication of the input standard deviation with a factor very
close to 2. For σ = 0.2 the output Nusselt numbers are close to 0.4, for σ = 0.4 the output Nusselt
numbers are close to 0.8 and for σ = 0.6 the output Nusselt numbers are close to 1.2. This observation
shows that the variance of the Nusselt number continuously depends on the input fluctuation in this
example. This dependence is important, because it means that no unpredictable behaviour in the system
happens due to distorted boundary conditions. It would be worth analysing this effect in a more general
and analytical manner.

Expectation left wall σ = 0.2 σ = 0.4 σ = 0.6
2 random variables 1.80908 1.85123 1.92289
4 random variables 1.80917 1.85160 1.92438
6 random variables 1.80918 1.85162 1.92382

Expectation right wall σ = 0.2 σ = 0.4 σ = 0.6
2 random variables 1.80871 1.84978 1.91990
4 random variables 1.80884 1.85029 1.92158
6 random variables 1.80884 1.85032 1.92109

Standard deviation
left wall

σ = 0.2 σ = 0.4 σ = 0.6

2 random variables 0.41917 0.82826 1.22672
4 random variables 0.41939 0.82858 1.22680
6 random variables 0.41939 0.82860 1.22636

Standard deviation
right wall

σ = 0.2 σ = 0.4 σ = 0.6

2 random variables 0.42364 0.83695 1.23900
4 random variables 0.42452 0.83871 1.24142
6 random variables 0.42456 0.83879 1.24086

Table 1: Expectation and standard deviation of steady state Nusselt numbers.

Tab. 2 shows the nodes for all considered combinations of σ and N , that were necessary to reach the
above mentioned tolerance of 10−3 for Smoylak’s algorithm. It can be seen that the number of required
nodes increases both with the number of random variables and the input standard deviation σ. The first
effect is clear since a higher dimension requires more nodes to capture the whole space. The second
effect is also not surprising. A larger fluctuation in the system naturally requires more information to
resolve the dynamics adequately and this is reflected by the need for more collocation points.

σ = 0.2 σ = 0.4 σ = 0.6
2 random variables 69 109 165
4 random variables 117 145 197
6 random variables 121 181 285

Table 2: Number of needed nodes.

Fig. 8 shows the resulting collocation points within the stochastic space for σ = 0.6 and N = 6. In all five
pictures the nodes corresponding to the first random variable are plotted in x-direction. In y-direction
the nodes correspond to the 2nd till 5th random variable (from left to right). As predicted in section 7,
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the first random variable appears to be the dominant dimension, wheras all the other directions decrease
in their importance.

Figure 8: Smolyak grids: 1st random variable plotted against 2nd-6th random variable.

9 Summary and Conclusion

Natural convection with stochastic boundary conditions in a 2-dimensional system has been simulated.
Such a problem can be solved using Stochastic Collocation resulting in as many deterministic problems
as collocation points. The position of collocation points is closely related to quadrature rules, which
are chosen with respect to the probability measure of the stochastic boundary condition. The problem
has been solved for different input standard deviations using stochastic spaces up to dimension 6. The
quantity of interest for all test cases was the Nusselt number at the vertical walls of the system in order
to measure the heat exchange. The main result is that the standard deviations of the resulting Nusselt
numbers depend on the input fluctuation by a factor very close to 2 in the given problem, which means
that the stochastic condition does not distort the system in an uncontrollable way.

Stochastic Collocation is similar to Monte Carlo simulation in terms of the calculation procedure. In
both techniques a number of nodes is chosen and put into the PDE seperately. The resulting determin-
istic problems can be solved independently and with respect to computational effort in parallel. The
difference lies in the choice of the stochastic nodes. Stochastic Collocation uses sort of geometric grids,
whereas Monte Carlo choses the nodes randomly according to the given probability measure. Calculation
of statistical quantities in both methods basically mean evaluation of sums. The big hope of Stochastic
Collocation is the immense reduction of nodes by using not only sparse grids, but also adaptive proce-
dures. Monte Carlo simulation often lacks in stable solutions unless the random numbers are increased
up to an exorbitant number. The efficient use of Adaptive Stochastic Collocation depends on the di-
mension of the problem, but it seems to be a promising alternative to Monte Carlo simulations in many
applications.

The idea of stochastic input data can be extended to many other applications and is not restricted to
boundary conditions. Material properties, forcing terms or even the topology of the system can be
treated as an uncertainty ([14]).
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