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Abstract

We are interested in the simulation and optimization of gas transport in networks. Those networks consist of
pipes and various other components like compressor stations and valves. The gas flow through the pipes can
be modelled by different equations based on the Euler equations. For the other components, purely algebraic
equations are used. Depending on the data, different models for the gas flow can be used in different regions of
the network. We use adjoint techniques to specify model and discretization error estimators and present a strategy
that adaptively applies the different models while maintaining the accuracy of the solution.

1 Introduction

Intense research has been done in the field of simulation and optimization of gas transport in networks in the last
years [2, 6, 11, 12, 3, 5, 4]. The aim of operating a gas transmission network is to minimize the running costs of
the compressor stations whereas the contractual demand of the customers has to be met. The large extent of gas
networks and their high complexity make the optimization a difficult computational task. For the optimization, it
is necessary to efficiently solve the underlying equations on networks within a certain tolerance. In this paper, we
present an adaptive model switching and discretization algorithm that is suitable for these requirements.

The equations describing the flow of gas through a pipe are based on the Euler equations, a hyperbolic system of
partial differential equations. The transient flow of gas may be described appropriately by equations in one space
dimension. Other components of the network, like compressor stations and valves, follow algebraic equations. For
the whole network, adequate initial, boundary (at sources and sinks) and coupling conditions have to be given.

Solving hyperbolic PDEs in one space dimension does not pose a challenge, but the complexity of the whole
problem increases with the size of the network. Thus, we use a hierarchy of three models that describe the flow of
gas with different accuracy, but also with different computational effort. We then want to use the simplified models
in regions with low activity, while sophisticated models have to be used in regions, where the dynamical behaviour
has to be resolved in detail.

Since the behaviour of the network changes both in space and time, an automatic steering of the model hierarchy
as well as the discretization is necessary. We introduce error estimators for the discretization and the model errors
using adjoint techniques and present a strategy to automatically balance those errors with respect to a given
tolerance.

Existent software packages like SIMONE [1] may also use different models for the simulation task. However,
one model has to be chosen in advance, which is often too restrictive.

The paper is organized as follows. The modelling of the network as well as the different models are introduced
in Sect. 2. In Sect. 3, error estimators for both, the model and the discretization error, are derived using adjoint
techniques. We present a strategy to adaptively balance model and discretization error in Sect. 4. Numerical Results
are given in Sect. 5.

2 Model Hierarchy and Network

In this section, we describe the modelling of the network. We introduce a hierarchy consisting of three different
models describing the flow of gas through a pipe. Each model results from the previous one by making further
simplifying assumptions [2]. The most complex model is the nonlinear model followed by the linear model. The
most simple model used is the algebraic model (see Fig. 1). Also, further network components are given.

nonlinear model semilinear model algebraic model
v � c pt = qt = 0

Figure 1:Model hierarchy

2.1 Network

The gas network is modelled as a directed graph G = (J ,V ) with edges J and vertices V (nodes, branching
points). The set of edges J consists of pipes j ∈ Jp, compressor stations c ∈ Jc and valves v ∈ Jv . Each pipe
j ∈ Jp is defined as an interval [xa

j , x b
j ] with a direction from xa

j to x b
j . In each pipe, one of the models holds and

adequate initial and coupling as well as boundary conditions have to be specified. Valves and compressor stations
are described by algebraic equations.
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2.2 Nonlinear Model

The isothermal Euler equations, which describe the flow of gas, consist of the continuity and the momentum
equation together with the equation of state for real gases. With some simplifying assumptions, as the pipe being
horizontal and a constant speed of sound [4], the equations are

pt +
ρ0c2

A
qx = 0, qt +

A

ρ0
px +

ρ0c2

A

�

q2

p

�

x

=−
λρ0c2|q|q

2dAp
. (1)

Here, q denotes flow rate under standard conditions (1 atm air pressure, temperature of 0 ◦C), p the pressure, c
the speed of sound, λ the friction coefficient, d the diameter and A the cross-sectional area of the pipe, and ρ0 the
density under standard conditions.

2.3 Semilinear Model

If the velocity of the gas is much smaller than the speed of sound, i.e., |v | � c with v = ρ0q
ρA

, we can neglect the
nonlinear term in the spatial derivative of the momentum equation in (1). This yields a semilinear model

pt +
ρ0c2

A
qx = 0, qt +

A

ρ0
px =−

λρ0c2|q|q
2dAp

. (2)

2.4 Algebraic Model

A further simplification leads to the stationary model: Setting the time derivatives in (2) to zero results in an
ordinary differential equation, which can be solved analytically:

q = const., p(x) =

r

p(x0)2+
λρ2

0c2|q|q
dA2 (x0− x) . (3)

Here, p(x0) denotes the pressure at an arbitrary point x0 ∈ [0, L]. Setting x0 = 0, that is, p(x0) = p(0) = pin at the
inbound of the pipe, and x = L, that is, p(x) = p(L) = pout at the end of the pipe, yields the algebraic model [13].

2.5 Further Network Components

Besides pipes, there are some other components a network can consist of. Those are, for example, compressor
stations and valves. These components are, like the pipes, modelled as edges. This way, the coupling conditions at
the intersections are still valid. Flow rate and pressure are determined by algebraic equations that can be nonlinear.

Compressor Station
A compressor station is a facility that increases the pressure of the gas. Running a compressor is relatively costly

since the compressor station consumes some of the gas. The equation for the fuel consumption of a compressor is
given by [9]

F(pin, pout , qin) = cF qin







�

pout

pin

�

γ−1
γ

− 1






, (4)

the compressor power P is determined by

P(pin, pout , qin) = cPqin







�

pout

pin

�

γ−1
γ

− 1






. (5)

Here, γ is the isentropic coefficient of the gas, and cF and cP are compressor specific constants. The control of the
compressor is given by the pressure difference.
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Valves
Valves are used to regulate the flow of the gas by opening or closing. In case of an open valve, the equations

qin = qout , pin = pout hold. If the valve is closed, it is qin = qout = 0.

3 Error Estimators

With the different models for the pipes and the other network components we can solve the whole network as a
system using adequate initial, boundary and coupling conditions. A way to achieve a compromise between the
accuracy of the solution and the computational costs is to use the more complex model only when necessary and
to refine the discretization only where needed. Using the solution of adjoint equations as done in [7, 8, 4], we
deduce a model and a discretization error estimator to measure the influence of the model and the discretization
on a user-defined output functional M .

The functional M can be of any form, for example measuring the pressure value troughout the network over the
whole time interval,

M(p) =

∫ T

0

∫

Ω

p(x , t)dx.

Another possibility is to measure the costs of the compressor stations in form of the power consumption,

M(p, q) =
∑

c∈Jc

∫ T

0

Fc(t)dt. (6)

Let ξ =
�

ξ1,ξ2
�T be the adjoint pressure and flow rate of one of the models with respect to the functional

M . We now use the adjoint equations to assess the simplified models with respect to the quantity of interest. Let
u = (p, q)T be the solution of the nonlinear model (1) and uh = (ph, qh)T the discretized solution of the semilinear
model (2). For the discretization of the PDE, we apply an implicit box scheme [10]. Then the difference between
the output functional M(u) and M(uh) can be approximated using Taylor expansion. Inserting the solution ξ of the
adjoint system, we get a first order error estimator for the model and the discretization error respectively as in [4]
(see also [8]):

M(u)−M(uh)≈ ηm+ηh (7)

with the estimators ηm and ηh as follows:

ηLIN-NL
m =

∫ T

0

∫

Ω

−ξT

 

0
ρ0c2(qh)2

Aph

!

x

dx dt (8)

ηLIN
h =

∫ T

0

∫

Ω

−ξT







ph
t +

ρ0c2

A
qh

x

qh
t +

A
ρ0

ph
x +

λρ0c2|qh|qh

2dAph






dx dt. (9)

If, the other way round, u denotes the solution of the semilinear model (2) and uh the discretized solution of the
nonlinear model, one gets the same estimator for the model error (except for the sign), and the discretization error
reads as follows,

ηNL
h =

∫ T

0

∫

Ω

−ξT







ph
t +

ρ0c2

A
qh

x

qh
t +

A
ρ0

ph
x +

ρ0c2

A

�

(qh)2

ph

�

x
+ λρ0c2|qh|qh

2dAph






dx dt. (10)

Since the algebraic model can be solved exactly, the discretization error disappears and one only gets an estimator
for the model error

ηALG-LIN
m =

∫ T

0

∫

Ω

−ξT
�

p
q

�

t
dx dt (11)

with ξ being the solution of the adjoint equations either of the semilinear model or of the algebraic model. Here,
u= (p, q)T denotes the solution of the stationary model (3).
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The discretization error estimators ηNL
h and ηLIN

h may be split up into a temporal and a spatial discretization error
estimator as follows. Let u be the exact and uh be the discretized solution of the nonlinear model (1). We use a
short notation of (1), i.e., ut + f (u)x = g(u), which yields

ηNL
h =

∫ T

0

∫

Ω

−ξT
�

uh
t + f (uh)x − g(uh)

�

dx dt

=

∫ T

0

∫

Ω

−ξT
�

(uh
t − ut) + ( f (u

h)x − f (u)x)− (g(uh)− g(u))
�

dx dt

since u is the exact solution of (1). We may split the integral into two parts

ηNL
h =

∫ T

0

∫

Ω

−ξT (uh
t − ut)dx dt

︸ ︷︷ ︸

=:ηNL
t

+

∫ T

0

∫

Ω

−ξT
�

( f (uh)x − f (u)x)− (g(uh)− g(u))
�

dx dt
︸ ︷︷ ︸

=:ηNL
x

(12)

The temporal and spatial discretization error estimator for the semilinear model are derived analogously. For the
computation, the exact solution is approximated by a higher order reconstruction using neighboring points. For the
time derivative, we use a polynomial reconstruction of order 2 and denote it by ut ≈ Rt(uh). The spatial derivative
of f and the value of g are reconstructed with order 4, giving f (u)x ≈ Rx( f (uh)) and g(u)≈ R(g(uh)), respectively.

The estimators computed are then

ηNL
t ≈

∫ T

0

∫

Ω

−ξT
�

uh
t − Rt(u

h)
�

dx dt ,

ηNL
x ≈

∫ T

0

∫

Ω

−ξT

�

�

f (uh)x − Rx( f (u
h))
�

−
�

g(uh)− R(g(uh))
�

�

dx dt .

4 Balancing Model and Discretization Error

With the above defined estimators, we can introduce a strategy to balance the model and discretization error inside
the network. In practice, often smaller time horizons are optimized. Thus, we do not control the overall error any
more, but the relative error piecewise. For this, we divide the time interval [0, T] into subintervals of equal size
[Tk−1, Tk]. Regarding one subinterval [Tk−1, Tk], we can compute the forward as well as the backward/adjoint
solution and evaluate the error estimators, which yields

Mk(u)−Mk(u
h)≈ ηm,k +ηt,k +ηx ,k.

Given a tolerance TOL for the relative error, we can approximate the exact error by the estimators giving
�

�Mk(u)−Mk(uh)
�

�

�

�Mk(u)
�

�

≈

�

�ηm,k +ηt,k +ηx ,k

�

�

�

�Mk(uh)
�

�

≤ TOL. (13)

We first check the discretization error to ensure the discretization to be adequate. Then, the model error is taken
into account. A scheme of the algorithm is given in Fig. 2.

Check discretization error
First, the discretization is checked. Given the tolerance TOL as above, we ensure the discretization error to be

small compared to the model error by decreasing TOL by a user-defined factor 0< κ < 1 giving κ · TOL=: TOLh. We
demand the discretization error estimator to satisfy

�

�ηt,k +ηx ,k

�

�< TOLh ·
�

�Mk(u
h)
�

� .

If the error estimator exceeds the given upper bound, the temporal and spatial discretization errors are treated
individually, that is,

�

�ηt,k

�

�<
1

2
TOLh ·

�

�Mk(u
h)
�

� and
�

�ηx ,k

�

�<
1

2
TOLh ·

�

�Mk(u
h)
�

� .
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start: k = 1

solve for interval [Tk−1, Tk]

compute adjoint
for [Tk−1, Tk]

refine temporal and/or
spatial discretization

check discretization error
check spatial dis-
cretization error

discretization
ok?

check temporal dis-
cretization error

check total error

total
error ok?

check model error
and adjust models

accept [Tk−1, Tk],
k = k + 1

coarsen temporal and/or
spatial discretiza-

tion and switch down
model where possible

NO

YES

NO

YES

Figure 2: Scheme of the balancing algorithm
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Check Temporal Discretization Error
If the temporal error estimator exceeds the given tolerance, the time step size is marked for refinement. After

checking the spatial discretization error, the time interval [Tk−1, Tk] has to be computed again. If, in contrast, the
error estimator

�

�ηt,k

�

� is much smaller than the upper bound, the time step size is marked for coarsening. If the
current time interval has to be recomputed due to spatial or model errors, the temporal coarsening is nevertheless
directly applied.

Check Spatial Discretization Error
Now, the spatial discretization error is estimated locally for each pipe. We can split up the discretization error

estimator from (12) for each pipe, giving for the nonlinear model

ηNL
x ,k =

∫ Tk

Tk−1

∑

j∈Jp

∫ x b
j

xa
j

−ξT
�

( f (uh)x − f (u)x)− (g(uh)− g(u))
�

dx dt=
∑

j∈Jp

ηNL
x ,k, j ,

analogously for the other models. Thus, we can estimate the spatial discretization error for each pipe in the time
interval [Tk−1, Tk] with the corresponding model, which yields

�

�

�

�

�

�

∑

j∈Jp

ηx ,k, j

�

�

�

�

�

�

<
1

2
TOLh ·

�

�Mk(u
h)
�

� .

For the inequality to hold, it suffices to claim
∑

j∈Jp

�

�ηx ,k, j

�

�<
1

2
TOLh ·

�

�Mk(u
h)
�

� .

In order to get an upper bound for each pipe itself, we uniformly distribute the target functional, i.e., we divide
it by the number of pipes, giving

�

�ηx ,k, j

�

�<
1

2
TOLh ·

�

�Mk(uh)
�

�

�

�Jp

�

�

∀ j ∈ Jp.

If
�

�ηx ,k, j

�

� exceeds the given tolerance, the pipe is marked for refinement. If instead, the error estimator is much
smaller than the right hand side, the pipe is marked for coarsening.

The time interval [Tk−1, Tk] is computed again with a finer discretization where needed.

Check Total Error
If the discretization error is accepted, the total error estimator

�

�ηm,k +ηt,k +ηx ,k

�

� is evaluated. If
�

�ηm,k +ηt,k +ηx ,k

�

�≤ TOL ·
�

�Mk(u
h)
�

� ,

the time interval [Tk−1, Tk] is accepted, k is increased and the next interval is computed.

Check Model Error and Adjust Models
If the discretization error is small enough, but the total error is not, the model errors of all pipes are checked,

i.e., the model error estimators (8) and/or (11) are evaluated for each pipe.
For the pipes using the semilinear or algebraic model, first the estimators with respect to the higher models are

evaluated. If the error estimator exceeds the given tolerance, that is,

ηm,k, j ≥ TOLm ·
Mk(uh)
�

�Jp

�

�

,

with TOLm := (1−κ) · TOL, the pipe is supposed to use the model above subject to the hierarchy.
Then, the estimators with respect to the lower models are computed for the pipes using the nonlinear or the

semilinear model. If the error estimator is much less than the given tolerance, that is,

ηm,k, j < s · TOLm ·
Mk(uh)
�

�Jp

�

�

,

with a “shift down factor” s � 1 (e.g. 10−1 or 10−2), the pipe can use the lower model for the next calculations.
The time interval [Tk−1, Tk] is computed again with the adjusted models.
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5 Numerical Results

In this section, we give numerical results for a medium sized real life network. The network consists of 12 pipes
(P01 – P10, with lengths between 30km and 100km), 2 sources (S01 – S02), 4 consumers (C01 – C04), 3 compres-
sor stations (Comp01 - Comp03) and one control valve (CV01). The graph of the network is shown in Fig. 3.

S01

S02

C01

C02

C03

C04

P01 P02 P03

P0
4

P05

P0
6a

P07a

P06b P0
7b

P08

P0
9

P10

C
V

01

Comp01 Comp02 Comp03

Figure 3: Network with compressor stations and control valve

The simulation starts with stationary initial data. The boundary conditions and the control for the compressor
stations are time-dependent. The target functional is given by the total fuel gas consumption of the compressors,
i.e.

M(u) =
∑

c∈Jc

∫ T

0

Fc(t)dt.

The simulation time is 14400 seconds with an initial time step size ∆t = 1800s. The subintervals are 3600s each.
The initial spatial step size is ∆x = 10000m. The factor κ is set to 10−1.

Table 1 shows the maximal relative error in the target functional

rel.err.=max
k

�

�Mk(u)−Mk(uh)
�

�

�

�Mk(u)
�

�

,

the total target functional, the maximal and the minimal time and spatial step size used and the total time for
the computation subject to the tolerance TOL. As an approximation of the exact solution we computed a solution
with the nonlinear model and a finer discretization than used in the adaptive algorithm, which is shown in the last
row. For a comparison of the computation time, we computed a solution without adaptivity using the nonlinear
model. The discretization was chosen to be similar to the one used at tolerance 10−4, but no error estimators were
calculated. The time needed for computation was 4.20e+01 seconds, i.e., the overhead for the adaptive model
switching and discretization is only 3.2%. Clearly, the adaptive algorithm also delivers reliable information about
the accuracy of the discrete solution.

The computation was done on a 3100MHz AMD Athlon™ 64 X2 Dual Core 6000+.

Table 1: Result of the algorithm using different values of TOL
TOL rel.err. M(uh) max/min ∆t max/min ∆x time [s]

1e-01 5.5264e-02 13.240217 1800/1800 20,000/10,000 7.20e-02
1e-02 4.2304e-03 12.756843 900/900 20,000/10,000 1.84e-01
1e-03 2.5513e-04 12.730996 112.5/112.5 20,000/2,500 1.18e+00
1e-04 3.3264e-05 12.728721 7.03125/7.03125 10,000/625 4.34e+01
reference solution 12.728459 3.515625 312.5 1.46e+02
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Table 2:Models used during calculation depending on the tolerance TOL
TOL ALG LIN NL

1e-01 100% 0% 0%
1e-02 50.0% 50.0% 0%
1e-03 8.3% 91.7% 0%
1e-04 0.0% 75.0% 25.0%

Besides the discretization, it is also interesting how the model switching part works depending on TOL. Table 2
shows how often which model is used during calculation. It can be seen that the smaller the tolerance the better
models are used.

Figure 4 shows a snapshot of the simulation at time t = 3600s with TOL = 10−4. At the sources and sinks, the
upper numbers denote the pressure in bar, the lower ones denote the flow rate. At the compressor stations, the
upper numbers are the increase in pressure and also the flow rate is shown below. At all inner nodes, only the
pressure is printed. At each pipe, also the used model is indicated. The small white dots in the thick black lines
represent the discretization. Note that the picture is not to scale.

LIN NL NL

LIN

NL

LIN
LIN

LIN
LIN

LIN

LIN

LIN

+8.87

350.43

+7.37

253.54

+0.75

198.94
60.0

149.04

59.5
201.25

60.2
100.00

60.6
52.00

62.8
107.50

62.8
100.00

59.5 56.5 65.3 60.6 58.0 65.4

63.3

62.7

62.7

62.3 63.0

time = 3600.0 seconds

Figure 4: Snapshot of the network at time t = 3600 s

6 Summary

We presented an adaptive model switching and discretization algorithm. For that we used a hierarchy of models
that describe the flow of gas through a pipe qualitatively different. Using adjoint techniques, we introduced error
estimators for the model errors as well as for the discretization errors. With these estimators we developed an
algorithm that balances the model and discretization errors subject to a given tolerance and automatically switches
between the models in the hierarchy. It could be seen that for different tolerances, the discretization was adaptively
adjusted and also the different models were used. Also, if the algorithm is used in an optimization framework,
many nonlinearities can be avoided, since the nonlinear model is only used where needed. That means a dramatic
reduction of complexity and degrees of freedom for the optimization part.
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