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Abstract

We show the existence of time periodic solutions of the Navier-Stokes
equations in bounded domains of R? with inhomogeneous boundary conditions
in the strong and weak sense. In particular, for weak solutions, we deal with
more generalized conditions on the boundary data for Leray’s problem.
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1 Introduction.

Let Q be a bounded domain in R? with smooth boundary ). In this paper, we con-
sider the Navier-Stokes equations with inhomogeneous boundary data of Dirichlet

type:

)
%—Au+u~Vu+Vp:f, in Q x (to, t1),
(N—S) div u = O7 in ) x (tO; tl)?

uloo = [, on 0Q x (tg,t1),

u(ty) =a, in ), (if necessary)

\

where —oco <ty < t; < 00, u = u(z,t) = (u'(z,t),v*(z,t),u?(z,t)) and p = p(z,t)
denote the unknown velocity vector and pressure of the fluid at (x,t) € Q X (to,t1),
respectively, while f = f(x,t) = (f'(z,t), f2(x,t), f3(z,t)) is the given external
force at (z,t) € Q X (to, t1), 8= B(z) = (B (x), 3*(x), 33(x)) is the given boundary
data and a(x) = (a'(z),a*(z),a(x)) is the given initial data at x € 9.

The purpose of this paper is to prove that if the external force f is periodic in
time, then there exists a solution of (N-S) which has the same period as f.

Kaniel-Shinbrot [5] considered the reproductive property, and showed the exis-
tence of periodic solutions with small periodic forces f. For the two-dimensional
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case, Takeshita [11] got the same result as Kaniel-Shinbrot [5] without assuming the
smallness of f. Miyakawa-Teramoto [10] showed the periodic weak solution on a
bounded domain whose boundary moves periodically in time. On the other hand,
Kozono-Nakao [6] and Yamazaki [12] obtained the existence of strong periodic so-
lutions with homogeneous boundary condition in unbounded domains when f is
small.

As for the stationary problem, Leray proposed to solve the Navier-Stokes equa-
tions with inhomogeneous boundary data in H'/2(9€). Up to now, we are not
yet successful to give a complete answer to this problem. However, based on the
Helmholtz-Weyl decomposition, Kozono-Yanagisawa [8] recently solved this problem
under a more generalized condition on the boundary data in H'/2((2).

In the present paper, we shall show the existence of strong and weak periodic
solutions of (N-S) with the inhomogeneous boundary condition. To prove the exis-
tence of strong periodic solutions, we first consider the boundary value problem of
the steady Navier-Stokes equations:

—Av4+v-Vo+Vr =0, in{),
(S) diveo=0, in©Q,
v=_0, on Jf.

With a solution v of (S) we can reduce the problem (N-S) to the following equations:

aa—ltu—Aw+v-Vw+w-Vv+w-Vw+Vp/Zf, in 2 xR,

divw =0, in Q xR,
wlpgn =0, on IN x R.

(N-S)

To prove the existence of time periodic solutions to (N-S’), we need to introduce an
operator L defined by

Lw = Aw+ P(v-Vw +w - Vv),

where A denotes the usual Stokes operator and P is the Helmholtz projection. It is
important to show that — L generates a bounded analytic semigroup {e % };>¢ in L7
as well as the L¢-L" estimates. In particular, the asymptotic behavior ||e~**al|, =
O(e™P!) as t — oo for some 3 > 0 plays an essential role in constructing time
periodic strong solutions.

Concerning the weak solutions, we establish a reproductive property of (N-S).
To this end, similarly to (N-S), we introduce the perturbed equations such as:

)
%_Aw+b-Vw+w-Vb+w-Vw+Vp'=F7 in Qx (0,7,
(N-S%) divw =0, inQ x (0,7),
wlogo =0, on 9N x (0,7T),
\w(O):a, n Q,




where the coefficient b may satisfy div b = 0 and b|gg = f and F = f+ Ab—b- Vb.
Under some restriction on b, for an arbitrary large F', we prove the reproductive
property which may be regarded as generalization of periodicity. In particular, in
the two-dimensional case, our weak solution is actually the periodic solution of (N-
S*) with the same period as f.

2 Results.

Before stating our results, we impose the following assumption on the domain €2 and
the boundary value 3. Let  C R? be a bounded domain with boundary 9Q € C*,
and assume that

L
Q=1
§=0
where
(i) Tg,..., Iy are C*-surfaces,
(iii) I'y,..., I'y are inside of 'y, and outside of one another.

Throughout this paper, we impose the general flux condition (G.F.) on the boundary
data (3, i.e.,

L
(G.F.) ;/Fjﬁ-ydb’:o,

where v denotes the unit outer normal to 0S2.

We shall next introduce some notations and function spaces. The space Cg§<,(€2)
denotes the set of all C"*°-real vector fields ¢ with compact support in €2 such that
div ¢ = 0. The space Ly () is the closure of g%, (§2) with respect to the L™-norm
| |lr; (-, ) is the L™-L" pairing with 1/r+ 1/ = 1. Here, L"(2) stands for the usual
(vector-valued) L™-space in Q, 1 <r < oo and Hy', (§2) is the closure of Cg%, (£2) with
respect to the usual W™ -norm || - ||jm-. When X is a Banach space, we denote
by || - [[x the norm on X and B(X) denotes the set of all bounded operators on
X. Furthermore, C™([t1, ta]; X), BC([t1, ta]; X) and L' (1, t2; X) are the usual
Banach spaces of X-valued functions on [t1, t5], where m = 0,1,..., and ¢; and ¢,
are real numbers such that t; < t,.

Let us define the Stokes operator A, in L. (£2). We have the following Helmholtz
decomposition:

L'(Q)=LI(2) &G (), 1<r<oo,

where G"(Q) = {Vp € L"(Q); p € Wh"(Q)}. P denotes the projection operator
from L"(§2) onto L. (§2). The Stokes operator A, is defined by A, = —PA with the
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domain D(A,) = W*"(Q) N H&;(Q) It is known that the adjoint operator A} of
A, is A with 1/r + 1/7" = 1. We abbreviate A, to A, if we have no confusion.
Moreover, we have the embedding estimate:

lully < Cl|lAull,, forue D(A,), -=-—=

where C' = C(q,7,2) > 0.

Definition 2.1. Let 1 <7 < co and v € W13/2(Q) with div v = 0. Then we define
the operator L, on L7 with D(L,) = W*7(Q) N Hé;(Q) associated with v by:

(2.1) Low:=Aw+ Byw for w € D(L,),
where B, is defined by
B,w := P(v-Vw+w - V).

Similarly to A, we abbreviate L, and B, to L and B, respectively, when the vector
field v is known from the context.

Proposition 2.1. For every 3/2 < r < oo, there exists n = n(r) > 0 such that if
v € Wh3/2(Q) with div v = 0 satisfies ||v||s < 1, then —L, generates a bounded
analytic semigroup {e~*v}q on L" ().

For the proof, see Lemma 3.2.

Making use of the operator £, and its semigroup {e=**};5¢, we introduce an
abstract evolution equation (N-S”) and the integral equation (I.E.) related to (N-
SE

dw

(N-5) E—l—ﬁw%—P[w-Vw] = Pf,
(LE.) w(t) = /t e UIEPf(s)ds — /t e~ L Plw - V) (s) ds,

for all t € R.
We first show the existence of strong solutions to the stationary problem (S).
Indeed, we have:

Theorem 2.1. Let 1 < p < 3/2, 1/p* = 1/p —1/3, and let 3 € W2~1/PP(9Q)
satistying (G.F.). For every ¢ > 0 there exists v = ~(e,p) > 0 such that if
18]lw1-1/0*.5* (9q) < 7, then there is a solution v € W>P(Q) of (S) with |jv[|s < e.

We next consider the existence of time periodic solutions to (LE.).

Theorem 2.2. For every 3/2 < r < 3,2 < q < 3 with 1/r +1/3 < 2/q and
3/2 <l < o0, there is a constant 6 = §(r,q, 1) with the following properties. Suppose



that f € BC(R; L'(2)) is periodic in time with the period T, i.e., f(t) = f(t + T.)
for all t € R and that v € WY3/2(Q) with div v = 0. If f and v satisfy

(2.2) HUHg—l-SlelIIR?Hf(S)H[ <9,

then there exists a solution w of (I.LE.) with the property w(t) = w(t + T.) for all
t € R in the class w € BC(R; L’ (Q2)) with Vw € BC(R; L1(2)). Moreover, such a
solution w is unique within this class provided supcp ||w(s)]|, + supseg [|[Vw(s)||, is
sufficiently small.

The solution w given by Theorem 2.2 is actually a solution of (N-S”) provided f
is regular in time.

Theorem 2.3. In addition to the hypotheses of Theorem 2.2, let us assume that f
is a Holder continuous function on R in L3(§)). Then the periodic solution w given
by Theorem 2.2 has the following additional properties:

(1) we BO(R; L3(Q)) N CH(R; L (),
(ii) w(t) € D(L) for t € R and Lw € C(R; L3()),
(ii)

dw
(N-S") ot Lw+ Plw-Vw]=Pf inL2(Q) forallteR.

Now we conclude that we obtain time periodic solutions of (N-S) from Theorem
2.1, Theorem 2.2 and Theorem 2.3, i.e., the corollary stated below immediately
follows.

Corollary 2.1. For 3/2 < [ < oo, 1 < p < 3/2, there exists a constant 6 =
§(I,p) > 0 with the following property. Suppose that 3 € W?~1/P2(9Q). Assume
that f € BC(R; LY(R)) is periodic with the period T, i.e., f(t) = f(t + T.) for all
t € R, and is Holder continuous on R with values in L3(Q). If 8 and f satisfy

3
3—p

[Bllwr-1/0m @0y + sup [ f(s)]l < 6, with p" = :
s€

then there is a solution u € BC(R; L*(Q)) of (N-S) with u(t) = u(t + T) for all

teR.

Remark 2.1. (1) By Theorem 2.2, we obtain a time periodic strong solution w of
(N-8') if the solenoidal function v and the external force f is small. However, our
aim is to obtain a time periodic solution of (N-S). To this end, we take v in Theorem
2.2 as the steady solution of (S). On the other hand, Theorem 2.1 ensures that if the
boundary data (3 is small, the steady solution v is small. Consequently, we obtain a
time periodic solution of (N-S).



(2) To construct time periodic strong solutions, we need the smallness of the
boundary data 3 and the external force f. It seems to be hard to obtain time
periodic solutions without these smallness assumption on 3 and f. For this reason,
we introduce the reproductive property which may be regarded as generalization of
time periodicity.

Next we define weak solutions of (N-S*).

Definition 2.2. Let b € H'(Q) with div b =0, a € L2(Q) and f € L*(0, T; L*(2)).
A measurable function w on Q x (0, T) is called a weak solution of the initial-
boundary value problem (N-S*) on (0,T) if

(i) we L>(0, T; L3(2)),
(ii) w € L*(0, T"; Hy ,(2)) for any T" € (0, T'),
(iii)
/T{—(w7 0,®) + (Vw, V@) + (b- Vw+w - Vb, ®) + (w - Vw, ®) }dr

T
— [ Ry + @ 2(0)),
0
for all ® € H*(0, T; Hy ,(S2)) such that, for some Ty, ®(t) =0 ont € (T, T),
where (F, ®) := (f,®) — (Vb,V®) — (b- Vb, ).

To show the existence of a weak solution w of (N-S*), we need to introduce the
harmonic vector fields Vi, () on €2 defined by

Viar() == {h € C®(Q); div h =0, 10t h=01in Q, h x v =0 on 9N}
It is shown by Kozono-Yanagisawa [8] that dim V},,. = L and that
Viar () = span {hy,...,hr} with h; = Vg,

where {g;}}; are harmonic functions on  such that

Aq]' =0 1in Q, q]"FO = 0, q]'

pi:(SZ-j, Z,jzl,L

Instead of {h; }JL:D it is useful to take an orthonormal basis {¢1, ..., 1} in L?-sense.
More precisely, there exists a regular L x L matrix (Oéjk);;,kzl depending only on 2
such that

L
(2.3) Yi(r) = aphi(x), j=1,...,L,
k=1

and such that
(2.4) (¥i,1h5) = dij-

Now our existence result on weak solutions of (N-S*) reads:

6



Theorem 2.4. Let a € L? and f € L} ([0,00); L?). Suppose that 3 € HY/?(99)
satisfies (G.F.) with the restriction

i ajk(/r R udS)%-

jk=1

1

< —_—
4Cy5°

3

(2.5)

where C, = 371/222/3172/3 j5 the best constant of the Sobolev embedding Hi(Q) —
L5(Q). Then there exist b € H'(Q) with div b = 0 and blpqn = (3, and a function
w € L%, ([0,00); L2) N Li,, ([0, 00); Hy ) such that w gives a weak solution of (N-S*)

on (0,7T) for all 0 < T < oc.

As an application of Theorem 2.4, we show a reproductive property of the weak
solution to (N-S*). This implies that for an arbitrary prescribed time interval [0, 7],
we can construct an initial data a and a weak solution w(t) which behaves at t = T
in the same way as the initial state a.

Theorem 2.5. Let f and (3 satisfy the hypothesis of Theorem 2.4. Then for every
0 < T, < oo, there exists an initial value a € L2(Q2) and a weak solution w of (N-S*)
on (0,00) having the property w(T,) = w(0) = a in L2(9).

Remark 2.2. In the two dimensional case, by uniqueness of weak solutions for the
initial value problem, we remark that the reproductive property necessarily yields
the time periodicity of weak solutions provided f is time periodic. Hence, Theorem
2.5 shows that the existence of time reproductive solutions in two dimensional multi-
connected domains without any smallness assumption on .

3 L%L" estimates for the semigroup e'~.

In this section, we show that —L, generates a bounded analytic semigroup {e=**};5¢
in L7 () and satisfies an L9-L" estimate.

In what follows, we denote by C' various constants.

Let us introduce the following operator.

Definition 3.1. Let 1 < r < 3 and v € W"3/2(Q) with div v = 0. We define the
operator B' = B, and L' = L! on L. (Q2) with D(L') = WQ’T(Q)QH&’;(Q) associated
with v by:

3
Blw := —P[U -Vw + Zvijj},
(3.1) j=1

L w:= Aw + Blw,

for all w € D(L)).



Remark 3.1. Since div v = 0, it is easy to see that the adjoint operator (£,)* of
L, on L7(Q) is the operator £/ on L% ().

To begin with, we investigate the adjoint operator £! instead of L,.

Lemma 3.1. For every 1 < r < 3, there exists 7 = 7(r) > 0 such that if v €
WL3/2(Q) with div v = 0 satisfies ||v||3 < 7}, then —L!, generates a bounded analytic
semigroup on L’ ().

Proof. Since —A generates a bounded analytic semigroup on L7 (£2), there exists a
sector

(3.2) s =N e € Jargr — ) < 5+ g} C p(—A),
for some p < 0 where p(—A) is the resolvent set of —A. Moreover, there exists
M, > 1 such that for each \ € ¥* ’i the resolvent estimate

M,

3.3 A A Y < —"—
(33) 10+ A s < T

holds, see e.g. [3].
We show the existence of the resolvent (A + £/)~! for any A € 9.
For every \ € X* ’i, we have

A+ L)=\N+A+B)

(34) = 1+ B'(A+A4))(A+ A).

Hence, using a Neumann series, it is suffices to show that
(3.5) IB" A+ A) ey < 1.
By the definition (3.1), we have

IB'O+ ) wll, < [|-Plo- 9O+ 4) o+ i V(A + 4) )

j=1

r

)

(3.6)

< (o A+ A) M, + Hi W[+ A) )

= Il + _[2.
By (3.3) and the Sobolev inequality, we have
L= lv- V(A + A) " wl),
< |V X+ A) " w3 -n)
< Clollsl| V(X + A)~ ],
< Cljvls]w],

(3.7)
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and by the same way as (3.7),
3
(3.8) =D VI + Ao < Clolswl.
j=1 '

Hence (3.7) and (3.8) yield that
(3.9) IB'(A+ A) By < Cillvlls,

where the constant C; is independent of A. To obtain (3.5), it suffices to take 7
in Lemma 3.1 so that Ci||v]|s < 1. Then we obtain the estimate of the resolvent
A+ L)t

M, 1

3.10 ALY B < — .
( ) I( ) HB(Lo) S 1+ A 1=Cyv|s

Hence (3.10) guarantees the generation of the bounded analytic semigroup {e™**"};5¢
on L7(2). This completes the proof of Lemma 3.1. O

With aid of £ and its resolvent estimate (3.10), we show that —L, generates a
bounded analytic semigroup on L7 ().

Lemma 3.2. For every 3/2 < r < oo, there exists a constant = n(r) > 0 such that
if v € WY3/2(Q) with div v = 0 satisfies ||v||s < 1, then —L, generates a bounded
analytic semigroup on L ().

Proof. For each A\ € X", we show the existence of (A + £)~!. By the definition
1),

A+L)=(A+A+B)
=(A+ A)l/2 (1 + (A + A)_I/ZB(/\ + A)_I/Q) A+ A)I/Q.
Hence it suffices to show that

(3.12) IO+ A) 2B+ A) gy < 1.

(3.11)

By duality, we have
(3 13) |<()\ + A>_1/2B()\ + A)_l/2w,¢>| _ ’<wv ()\ —l—A)_l/QB’()\ +A)_1/2¢>’
| < ol A+ 4) V2B (A + 4) 20,

and by the Sobolev inequality,
I3+ A) 2B/ (A + A) 2|,
< C|B'(A+ A) 2|30 341

3
(3.14) < C(HU V(A + A)71/2¢“3T,/(3+r,) + HZ v V(X + A)fl/z(b]j 3r//(3+T/))
j=1

< ClollsIVx+ A2
< Cllvls[|l,



for all ¢ € C§°,(€2). Hence (3.13) and (3.14) imply that
(3.15) [+ A 2B+ A7 gy < Callols,

where the constant (9 is independent of A. It suffices to take 7 in Lemma 3.2 so
that Cy||v]|s < 1. Then it remains to estimate (A + £)~'. By the adjoint operator
(A+ L)' and its estimate (3.10), we obtain that

(A + L) w, @) < [(w, (A + L)' 9)
< llwlle I+ £ gy 161

(3.16)
< 02l ol
— 1 + |)\| T T
for all w € L (2) and ¢ € Cg5,(§2), where the constant €' in (3.16) is independent
of A. This completes the proof of Lemma 3.2. O
Next we show the LI-L" estimate for e " and e *~.

Lemma 3.3. Let 1 <r < 3,0 < a < 1andv € W432(Q) with div v = 0. Suppose
that ||v||s < 7, where 1 = 7(r) is the same as in Lemma 3.1. Then there exists a
constant M = M (r,«) > 0 independent of A such that

(3.17) 1A%+ £) Ml < M(L+ A o]l
for all w € L7() and for all \ € ",

Proof. By the proof of Lemma 3.1, we see that

(3.18) A+LY P =0+ A1 +B N+ A H

for all A € %9, and we see that ||(1 + B'(\ + A) Y)Y B(Ly) is estimated indepen-
dently of A. By the moment inequality for A, i.e., the interpolation inequality of the
operator with respect to the fractional powers, we have

JA“O+ £) s
(3.19) <O+ L) M AN+ AT A+ B+ ™) %)
< M1+ [A)*

Hence (3.19) yields the estimate (3.17). O

Lemma 3.4. Let 3/2 < r < oo and v € WH%2(Q) with div v = 0. Suppose that
|lvlls < n, where n = n(r) is the same as in Lemma 3.2. Then there exist constants
p' <0 and M = M(r) such that

(3.20) 1AY2 + £) 7 wll, < M1+ M),

for all w € L7(Q) and for all X € 7.
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Proof. Firstly we mention an important fact about the constant which appears in
moment inequalities. Let A be a general operator on a Banach space X so that the
resolvent estimate:

M/

(3.21) Iz = A) Bx) < T

z <0,

holds. Then the constant of the moment inequality depends only on the exponents
and M’ as in (3.21). We see that there exists ¢/ < 0 such that the resolvent estimate:

M
1+ |z|

||(z—()\+A))_1||B(LQ) < , for z <0,

holds for all A € ¥* /f where the constant M is independent of \.

Since (14 (A + A)"2B(XA + A)_l/Q)_lHB(L;) is estimated independently of A

in the proof of Lemma 3.2, by the moment inequality for (A + A) we have

IAY2(N + £)~

<AV + A2 (1 4+ A+ AT2BO+ ATV T A+ A) V),

<O(1+ A+ A)2BO+ A) Y2 T+ A) V2w,

<CI(1+ A+ A BO+ A7) sug [N+ A2+ A)

< CIIO+A) w2l

< M(1+ M)~ ],

for all w € L7 (92) and all A € X :’f, where the constant M is independent of \. [

—tL’ tL

By Lemma 3.3 and Lemma 3.4, the Dunford integrals of e and e~ immedi-

ately yield the following estimates (3.22) and (3.23).

Lemma 3.5. Let 1 < r < 3,0 < a < 1 andv € WY¥2(Q) with div v = 0.
Suppose that ||v||s < f with 7 = 7(r) as in Lemma 3.1. Then there are constants
C =C(r,a) >0 and 3 = (r) > 0 such that for all t > 0

(3.22) | A% || p(rry < Ce P,

Lemma 3.6. Let 3/2 < r < oo and v € WH3/2(Q) with div v = 0. Suppose that
|lvlls < n with n = n(r) as in Lemma 3.2. Then there are constants C' = C(r) > 0
and 3 = 3(r) > 0 such that for all t > 0

(3.23) HA1/267“:HB(L2) < Ce Pt=1/2,

tL’

By Lemma 3.5 and by Lemma 3.6, we obtain the L?-L" estimates for e™** and

e L,
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Lemma 3.7. Let 1 < ¢ <r < 3 and v € W3/2(Q) with div v = 0. Suppose that
|lvlls < min{7(r),7(q)}, where f(r) and 7(q) are the same as in Lemma 3.1. Then
there exist constants C' = C(r,q) > 0 and 3 = (3(r,q) > 0 such that there hold
le™* wl|, < Ce P3|,
(3.24) ,
Ve, < Ce =201/ 12y
for all w € L2(Q) and t > 0.
Proof. Since 3(1/¢ —1/r)/2 < 1, by Lemma 3.5 we have
He—tﬁ’w”r < ||A3(1/q—1/r)/26—t£’w||
(3.25) B !
< Ce‘ﬂtt_?’(l/q‘l/’“)ﬂ||w||q,

and
Ve 0], < Cl|AV2eE ),
(3.26) < Ce P12l e 25w,
< Cefﬁtt73(l/q71/r)/27l/2Hqu,
for all w € LZ(92). O

Lemma 3.8. Let 3/2 < ¢ < r < oo and v € WY¥2(Q) with div v = 0. Suppose

that |[v][s < min{n(r),n(q),7(r"),7(¢')}, where n(r), 1(q), n(r') and 7(¢') are the
same as in Lemma 3.1 and Lemma 3.2. Then there exist constants C' = C(r,q) > 0

and 3 = (B(r,q) > 0 such that

o el < Ce a1,
’ Hveft[,er < Cefﬁtt73(1/qfl/r)/271/2Hqu)

for all w € L2(Q2) and t > 0.

Proof. Since 3/2 < ¢ < r < oo, we have 1 < 1’ < ¢ < 3. Then by Lemma 3.7
duality yields

||6_t£||B(L3,Lg) = “e_tL ||B(LQ’,LgI)
< Clo-0ty=30/r—1/d)/2
< Ce—ﬁtt—?)(l/q—l/r)ﬂ,

for all t > 0, where B(L4, L") is the set of all bounded linear operators from L%(€2)
to L7 (Q2). By Lemma 3.6, we have

Ve ull, < ClAY2e ],

< Ce P12 e 2 ||,
S Cefﬁtt73(1/qfl/r)/271/2 Hqu7

for all w € L1(Q2). O
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4 Existence of steady solutions of (S); Proof of
Theorem 2.1.

4.1 Preliminary.
We consider the following Dirichlet problem of the steady Navier-Stokes equations:
—Av+0v-Vo+Vr=0, in{Q,

(S) diveo =0, inQ,
v=/0£, on 0.

Let b € W13/2(Q) satisfy div b = 0 and b|sq = 3. In order to show the existence of a
solution for (S), we set u = v — b and reduce the problem to the following equations:

—Au+b-Vu+u-Vo+u-Vu+Vr=F, in(,
(S) divu=0, inQ,
u=20, on 0,

where F' := Ab—b-Vb.

Lemma 4.1. Let b € W43/2(Q) N Wh4(Q) with div b = 0 for some 3/2 < q < c0.
Further assume that F € W=149(Q). Then for each ¢ > 0 there exists 7 = 7(g,q) > 0
such that if ||b||y1.52 < 7, we have a weak solution u € Wo*'?(Q) N W2 9(Q) of (S)
which satisfies

(4.1) ulls < &

Proof. Firstly, we construct a solution v on {u € L3(Q); Vu € L*?(Q)} by the
iteration method:

= A'PF
(4.2) { o ’

uj-i-l = —A_lp[b . VU]' —|— Uj . Vb —|— U,j . VU]] + Uug-.
To begin with, we estimate ||ugl|s. By duality and the Sobolev inequality,

|(uo, )]

[(F, A7)

[(Ab—b- Vb, A7)
IVblls/2l VAT lls + [[BllVA™ I3
C(IVblls2 + 1161131132,

for all ¢ € C§°,(§2), from which it follows that

(4.3)

IAIA

(4.4) luolls < C(IIVBlla/2 + [[b]l3)-

13



Next we have
lujalls < Nluolls + |AT P - Vug]lls + [A7 Plu; - VO] ls + [|A™ Plu; - Vaug]||s.
By duality, the Sobolev inequality and since [[VA™'¢||s < C||¢||5/2, we have

(AT P[b- V), ¢)| < [(b- Vuy, A7 9)|
(4.5) <[(b- VAT, uy)]
< C[pllsllusllsl¢lls /2,

for all ¢ € C5°,(§2). Hence we obtain that
(4.6) AT PLb - V] lls < Cllbllsflu;ls,
similarly,

(47) |A™ Plu; - Vb]||5 < C|b][3]uj3,
A Plu; - Vugllls < Cllug3.

Hence (4.6) and (4.7) yield

(4.8) ujsills < lluolls + Callbllsllwslls + Csllusll3,

for all 7 =0,1,2,.... We assume that

1
4. b —
(4.9) [Blls + Juolls < 37

where the constant Cj is the same constant as in (4.8). Then there holds

(1 —Cs1blls) — /(1 — Cs1b]l5)? — 4Cs]|uolls
2C5

[ujlls <

(4.10) X
= K < —
b — 2037

forall j =0,1,2,.... forall j =0,1,2,.... We note that K}, in (4.10) tends to 0 as
16]|5 and [|Vb||3/2 goes to 0.
Now we assume (4.9), setting w;+1 = ujy1 — u; (u—; = 0), we have

(411) Wiy1 = —A_IP [b : ij + wy - Vb + wyj - Vu]‘ + Uj—1 - ij] s
and, by (4.10) and by the same way as (4.8) we have

lwgsills < Cs (bllsllwslls + (lus-alls + Il ) ol

(4.12) < Cs ([|blls + 2K3) [lwy]|s
<

[Cs (1blls + 255) " [luolls,
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forall j = 0,1,2,... where the constant C3 is the same as (4.8). Then an elementary
calculation shows C3(]|b]|s + 2K3) < 1. Since u; = Y 7_, wy we see that there exists
a function u € L3 () such that

(4.13) wj —u in L3(Q) as j — oo.

We shall next show that Vu € L*?(Q). Since
(4.14) [A Pl Fugllyss < APl - Ty
by duality and the Sobolev inequality,

(AT2Pb - Vuy], ¢)] < [(b- Vuy, A720)]
(4.15) < [(b- VAT, u;)|
< Cul|blls]fu; ],

for all ¢ € C§°,(§2). Hence we have
(4.16) IVATIP[Db - V)l /2 < Callblls]luy]ls,
and similarly,

VAT Plu; - Vbl ||3/2 < Cal[b]|3]]u;lls,

(4.17) i
VAT Plu; - Vug]|ls2 < Cl|uy[3.

Hence we obtain a uniform bound of ||Vu,||3/2 by

IVu;lls/e < [[Vuolls/2 + 2Cu||bl|s]|u;lls + Callusll3

4.18
( ) S ||VU0”3/2+2C4”b||3Kb+O4K§ < 00,

for all j = 0,1,.... From (4.18), it is easy to see that Vu € L¥2(2). We note that
the estimate of ||Vug||3/2 is stated below for the case ¢ = 3/2.
By the same argument as in (4.12), we have

AT'P[b - Vuj] — A7'Plb - Vul,
(4.19) A7'Pluj - Vb] — A7 Plu - Vb,
A7'Pluj - Vuj] — A7 Plu-Vu], in L2(Q) as j — oo.

Hence letting j — oo in (4.2), we see by (4.13) and (4.19) that u satisfy (4.2) in
L3(Q), from which follows that Vu; — Vu in L3%(Q) as j — oo. Then u is a
desired solution in T, '8/ ().

It remains to show that u € Wy (). Since F € W~=14(Q), we have ||Vugl|, <
C||F|lw-1.4. By the Sobolev inequality with 1/¢ = 1/r — 1/3 and by the Holder
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inequality, we have
IVAT'P[b - Vu; 4 u; - Vb + u; - V]|,
< CI|AT?Pb - Vu; +u; - Vb +u; - V]|,
(4.20) < Ollo-Vuy +u;- Vb +u; - Vg,
< C (116l usllg + Nl VOllg + lluslls[[Veslq)
< (Kbl + (lblls + K[ Vus )

Hence by (4.20) we obtain

(4.21) [Vujially < [[Vuollg + Cs K| [ VO] + Cs([[b]ls + K3) [Vl g,
which shows a linear recurrence. Hence if

1
(4.22) 6]]5 + Kp, < o

5

then we have a uniform bound of ||Vu,l|, as

[Vuollg + Cs K[|Vl

4.23 Vu:ll, <
(423) IVuslle < ool + &)

forall j =0,1,2,....

Hence (4.23) implies u; — u strongly in W, 9(€). By (4.4), we can take the constant
4 in Lemma 4.1 so that the conditions (4.9) and (4.22) are satisfied. This completes
the proof of Lemma 4.1. O

4.2 Proof of Theorem 2.1.

Let 1/p* = 1/p—1/3. Since 3 € W2~Y/P2(9Q) c W'1/P"P"(9Q) with (G.F.), by the
trace theorem and Bogovskii [1] and Borchers-Sohr [2], there exists b € W2P(Q) C
WP (Q) such that div b = 0, b|sq = 3 and

(4.24) 10llw. ) < M||Bllwr-1/0707 (902)-
Take v = (e, p) so that if ||3][y1-1/0* s+ (90) < 7 there holds
(4.25) [bllwr.372 < min{y(e/2,p7), €/2},

where 7 is the same constant as in Lemma 4.1. Then we have by Lemma 4.1 that
there exists a solution u € W01,3/2(Q) N WP (Q) of (S) with |lulls < £/2. Let
v =u+b. Then v is a desired solution of (S) with

(4.26) [olls < [lulls + [I6]ls <e.

On the other hand, since 8 € W2~1/P:P(90)), it is easy to see that v- Vv € LP. Hence
the regularity criterion for the steady Stokes equations ensures that v € W?(Q).
This completes the proof of Theorem 2.1. O
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5 Existence of periodic solutions of (I.E.); Proof
of Theorem 2.2.

5.1 Preliminary.

Now we consider the existence of solutions of (L.E.).

Lemma 5.1. Let 3/2 < r < 3 and 2 < ¢ < 3 with 1/r +1/3 < 2/q. Define a

function space X and a bilinear operator G[-,-| on X by

(5.1) X :={ue BCR; L (Q)); Vue BC(R; L (Q))},
t

(5.2) Glu,v](t) := —/ e L Py - Vu(s) ds,

for u,v € X respectively. Then we have G[u,v] € X. Moreover, if u(s) € D(A,) for
s € R, we obtain G[u,v] € X with

(5.3) sup [|Glu, v](s)[lr < Crgsup [Vu(s)gsup [[Vo(s)|l4;
seR seR seR

(5.4) sup [[VGu, v](s)[lg < Crgsup [[Vu(s)|[gsup [[Vo(s)|[q,
seR seR seR

for all for u,v € X and u(s) € D(A,) for s € R.

Proof. Firstly, we assume u(s) € D(A,) for s € R. In this case, we note that
u(s) € Wy () N Whe(Q) € Wy Q) for s € R. By Lemma 3.8 and since 3/q —
3/2r —1/2 < 1, we have

1G]], < / e~ 92 Plu - Vo] (s), ds

—00

t
< C/ e PE5) (¢ — )73V 3UD2| |y, () a6 d5
(5.5) —o0
t
< C/ e P9 (¢ — )= B/a=32r12) 1y (5) |30 /3 -y | VU () || ds

< Csup [[Vu(s)]|gsup [[Vo(s) 4,
seR seR

for all t € R. Similarly, we have

t
IVGluolly < [ Ve 2Pl Vel(s) s
t
S C/ e_ﬂ(t_s)(t — S)_3(2/q_1/3_1/q)/2_1/2||u . VU(S)Hﬁ dS
(5.6) o
<C [ e ) ()| V()] ds

< Csup [[Vu(s)][gsup [[Vu(s) |4
seR seR
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for all t € R.
In the case that v € X, [|[Vu(s)||, as in (5.5) and (5.6) may be replaced by
||u(s)||w.a. This completes the proof of Lemma 5.1. O

Lemma 5.2. Let 3/2 < r < 3 and 2 < ¢ < 3 with 1/r +1/3 < 2/q, and let
f € BO(R; LX) with 3/2 < | < co. Define

(5.7) F(t) := /t e"9EPf(s)ds, teR.

Then F' € X and the following estimates hold:
sup || F(s)llr < Crqrsup |2 F(5)]ls
sE

(58) seR
sup [VE(s)|lq < Crgusup [|Pf(s)]]:-
seR seR

Proof. Firstly we take 3/2 < I’ < [ so that 3/2 < I' < min{r, ¢}. Since Q2 C R?is a
bounded domain, we note that ||Pf||y < C||Pf|;. Then we obtain

|wwms[_w@@%7@mw

t
(5.9) <C [ eI e s S P () o ds

< Csup |[Pf(s)]]:-
seR

and

t

IVFOll, < [ Ve 2Py (s)lyds
t
(5.10) < C/ efﬁ(tfs)(t . S>73(1/l/,1/q)/271/2pr(S)Hl/ ds
< Csup ||Pf(s)[l:,

seR

for all t € R. The proof of Lemma 5.2 completes. ([l

5.2 Proof of Theorem 2.2.

According to Kozono and Nakao [6], we shall prove the existence and uniqueness of
solutions to the integral equation (I.E.) by successive approximation with the aid of
Lemma 5.1 and Lemma 5.2. Recall the function space X and the bilinear operator
G on X introduced in Lemma 5.1. Equipped with the norm || - || x defined by

(5.11) [ullx := sup [Ju(s)[|» + sup [[Vu(s)]l,
seR seR
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X is a Banach space. We construct a periodic solution of (I.E.) with the iteration
method:

t
wo(t) = e~ EILPF(s)ds,
519 0= [ #(s)

W1 (t) == wo(t) + Glwm, wy](t), m=0,1,....
By Lemma 5.2, we have wy € X with

(5.13) [Jwol| x < C'sup 1P f(s)]le-
KIS

Since f is a periodic function with period T, we can easily verify that wq is also
periodic with the same period T,. By induction and Lemma 5.1, so is w,, for
m =20,1,.... Moreover, it follows by Lemma 5.1 that

(5.14) wmsillx < llwollx + 1G(wm, wm)llx < llwollx + Collwnllx, m=0,1,...,

where the constant (g is in Lemma 5.1. Hence if

(5.15) Jwollx < .
. w
R To

then there holds

1—4/1—4
V= 4Golwollx g o L im0,

5.16 mllx <
(516)  unlly < —Y— e

By (5.13), we should take the constant § in Theorem 2.2 so that the condition (5.15)
is satisfied.
Now we assume (5.13). Setting uy,, := wy,, — Wy_1, u_1 = 0, we have

U1 = GW, Wi (t) — Glwm—1, Wyn1](2)

(5'17) = G[um7 wm] (t) — G[wmfla um] (t>

By Lemma 5.1 and (5.16), we have

[tmr1llx < (G ltm, walllx + [|Glwm—1, um] | x
< Co([Jum || x[lwml[ x + llwm-1 ]l x[Jum| x)
(5.18) < 206K |[um||x

<
< (2C6K)™ [l |

for all m = 0,1,.... Since wy,(t) = > 7" u;(t), by (5.16) and (5.18), we see that
there exists a function w € X such that

(5.19) Wy, —w in X asm — oo.
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This limit function w € X is periodic in ¢ with the same period as f. By the same
argument as (5.18), we see that

|G, win] = Glw,w]|x < [|Glwn — w, wa]||x + [|Glw, wmn —w]|[x
(5.20) < Cs([Jwm — wl|x|lwmllx + [Jw]x |[wm —wlx)
S QCGKme — UJHX,

hence
(5.21) Glwp, wy] — Glw,w] in X asm — oco.

Now letting m — oo in (5.12), we conclude by (5.19) and (5.21) that w is a desired
periodic solution of (I.E.). Next we show the uniqueness. Suppose that w’ € X

is another solution of (I.LE.) with ||| x < K, where K is the same constant as in
(5.16). Then we have

lw —w'llx < Cs(flw = w'llxllwlx +[[wllx]w —w]x)

5.22
(5.22) < 206K ||lw — w'|| x.

Since 2Cs K < 1 there holds w = w’. This proves Theorem 2.2. [l

6 Regularity of mild solutions; Proof of Theorem
2.3.

We shall show that the periodic solution w obtained in Theorem 2.2 is actually a
solution of the differential equation (N-S”) if the external force f is regular. To this
end, we need the local existence of strong solutions to the initial-boundary value
problem for (N-S”). We follow the argument of Kozono and Nakao [6].

Let us define strong solutions of the initial value problem for (N-S”).

Definition 6.1. Let a € L3(Q) and let Pf € C((to,t1); L3(2)), where ty < t;.
Then a measurable function w on Q X (to, 1) is called a strong solution of (I N-S")
on (tg,t1) with the initial data a at t =ty if

(i) @ € BO([to, 11); L5 (€2)) N C((to, t1); Lg (L)),
(i) w(t) € D(L) for ty < t < t; and L € C((to,t1); L3()),
(iii)
dw

o 7 5T — 3
(I N-8") o + L+ Plw-Vw|=Pf in L2(Q) forty <t <ty

ﬁ)(to) = Q.
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Lemma 6.1. Let 2 < ¢ < 3 and let 3/2 < | < oco. Assume that a € L}(Q) and
LT (Q) with 1/q* = 1/q —1/3, f € BC(R; L') and that Pf is a Hélder continuous
function on R with values in L3(Q). Then there exists T > 0 such that for every
to € R, we have a unique strong solution w of (I N-S”) on (to,to + T') with initial
data a at to. Moreover, 1 has the additional property w € BC([to,to + T); LY (Q2))
with

(6.1) sup [|w(t)

to<t<to+T

q* S O7a

where 07 = C7(||CL

¢ SUDser ||Pf(s)|1) is independent of ty. Here T is estimated as

> —2q*/(q*—3)

Y

(6.2) T = Cy(Jlally- +sup [ P (3)]
seR

with Cy = Cs(q, 1) independent of a, f and t,.

Due to Lemma 3.8, we can prove Lemma 6.1 in the same way as [6], see Lemma
4.1 in [6).

6.1 Completion of the proof of Theorem 2.3.

Let w be the periodic solution of the integral equation (I.E.) given by Theorem 2.2.
Since w € X, we have by the Sobolev inequality that w € BO(R; L3(2) N LI (Q)),
where ¢* = 3¢/(3 — q). By Lemma 6.1, for every t, € R there exists a unique strong
solution w of (I N-S”) with the initial data w(ty) on (to,to + 71") with

29" /(4" =3)
T = G ([lw(to)ll: +sup | PF(5):)
EIS

Y

where Cy is the same constant as in (6.2). By (5.16) and (6.1), we have

(6.3) sup lw(s)llg- + sup [[Vuw(s)lly < C7 + K =: Cy

to<s<to+T to<s<to+T

where Cy is independent of ¢y. Now consider the integral equation of (I N-S”) with
a replaced by w(ty);

w(t) = e Fw(ty) + /t e IEPF(s)ds + /t e~ L Pl - V) (s) ds,

to to

for to <t <ty+T. It is easy to show that

w(t) —w(t)
(6.4) = —/t e EP[(w — @) - Vw|(s) ds — /t e UEPD - V(w — )] (s) ds

= J1<t>+J2(t), to<t<to+T.
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By Lemma 3.8, we have

t
[A ()]s < C/ (t = 5) 2B (s) — o (s) |3 Vao(s) [l ods
(6.5) to
< Csup |[Vuw(s)lly sup [Jw(s) —@(s)|ls(t —to)' =/,
SER to<s<t
forall tg < t < to+T, where the constant C' = C'(q) is independent ty. By integration
by parts we have

(a(t), 8)] < / (i(5) - Ve 9 b w(s) — i(s)) ds

to

t

<c [ Jats)
to

<C

sup |[w(s)

Ve g llw(s) — @ (s)|ls ds

q*

g0 sup Jlw(s) —w(s)|s

to<s<to+T to<s<t
t _5(2_L)_l
< [ (¢ =7 s ol
to
<C sup [[@(s)llg sup [Jw(s) —@(s)|s(t —to) |32,
to<s<to+T to<s<t

for all ¢ € C§,(Q2) and all ty < t < to + T, where the constant C' = C(q) is
independent of ty. Hence by duality, we obtain

(6.6) | Lolls <C sup | (s)|lg sup |Jw(s) —w(s)||s(t — to)' /%,

to<s<to+T to<s<t

for all tg <t < to+ T. Now it follows from (6.3) to (6.6) that

lw(t) — @(t)|ls < Cro sup |lw(s) — @(s)||s(t — to) =20, to <t <ty +T,

to<s<t

where Cjq is independent of ty. Defining 7 := min{(1/2C}0)?¥/(¢=3) T}, we obtain
from the above estimate that

[w(t) — (b3 S% sup |Jw(s) — w(s)]ls,

to<s<t

for all ty <t <ty + 7, which yields
w=w on [ty,ty+ 7]

Since 7 can be taken independently of ¢y, we conclude that

w=w on [ty,to+T).

Then since t is arbitrary, if follows from Lemma 6.1 that w has the desired properties
(i), (ii) and (iii) in Theorem 2.3. O
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7 Existence of weak solutions; Proof of Theorem
2.4.

To construct weak solutions of (N-S*), we introduce the following lemma as an
immediate corollary of Kozono-Yanagisawa [8].

Lemma 7.1. Let 3 € HY?(0Q) satisfy (G.F.). If

L

3 ajk< 5 uds)¢j

Jk=1

1

3

then there exists 0 < g9 < 1/4 and b., € H*(Q) with div b., = 0 and b.,|sq = 3
such that

(72) |(u ’ Vba)v u)| < 50||Vu||3’

for all w € Hg,. Here Cy = 371/22%/3772/3 js the best constant of the Sobolev
embedding H}(Q) — L°(Q).

Hence we may take the solenoidal extension b of the boundary data ( so that
(7.2) is fulfilled.

According to Masuda [9], we first construct approximate solutions of (N-S') by
the Galerkin method, in the Hilbert space Hj ,(€2). At first, we introduce the
following lemma which plays an important role for the convergence of the nonlinear
term.

Lemma 7.2 (Masuda [9]). For any ¢ > 0 and ® € C([0,T]; H; ,(2)), there exist
a constant M > 0 and an integer N, and functions ¢; € L2(Q), ( = 1,..., N) such
that

t t
(7.3) / (- Vo, ®)|dr < / (IVul2 + IVl + [l Volls) dr

N t
s MY [ o,
i=1"YS$

holds for all u € L*(0,T; H; (), v € L*(0,T; H'(Q)) and 0 < s <t < T.
For the proof, see Masuda [9], Lemma 2.5, p.632.

Remark 7.1. Although Masuda [9] proved (7.3) for v € L*(0,T; H; ,(€2)), it is easy
to see that the same inequality holds for all v € L?(0,T; H'(Q)).
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7.1 Proof of Theorem 2.4.

Let {pr}p2, C C5%,(Q) be a complete orthonormal system in L2(Q2) and dense in
H; ,(€). Using {¢y}32,, we construct approximate solutions w, = wm(z,t), m € N,
of (N-S*) which have the form;

(7.4) Wn(,8) = D gma(t)r(z).

Here the coefficient g,,, j(¢), (j =1,...,m) is determined by the following system of
ordinary differential equations;

(Oswm, 05) + (Vwy, Vi) + (b - Vi, @;) + (W - Vb, @)

(7.5) + (Wi - Vo, @5) = (F,5),

D (wm(0), 0000 =Y (@, 0001 = am, j=1,...,m
I=1 =1
Let \;(t) € H*((0,T)), (j = 1,...,m). We multiply the first equation of (7.5) by
A;(t) and integrate over (s, t), to get
¢
T6) [ {0 018)) + (V. T,)
+ (b . Vwm, (I)J) + ('lUm . Vb, (I)]) + (wm . Vwm, (I)]>} dr

- / (F,®;) dr — (0 (t), D;(2)) + (win(s), ®;(s)),

where ®; = \;(t)p;(x). Putting \;(t) = gm (t) in (7.6), and taking summation with
respect to j, we obtain with s = 0,

t t t
(7.7) ||wm(t)||§+2/ ||Vwm||§dr+2/ (wm-Vb,wm)dT:2/ (F, wy,) dT+||am||g.
0 0 0
On the other hand, by (7.2), we estimate
t t
(7.8) / |(wm~Vb,wm)|dT§50/ Va2 dr,

and by the Poincaré inequality and the Young inequality, we estimate

(' wm) | < [(f wm) [+ [(Vh, V)| + [(b- Vb, wp)|
(7.9) < Cllf Vw2 + V0|l Viwmll2 + DI Vw2
< 3eol|Vwmllz + CUIFIIZ + 1VOIZ + [1BI12)-
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Hence (7.8) and (7.9) yield

t
(7.10) me(t)H3+2(1—4€o)/ Vw3 dr
0
T
SC/O (113 + V05 + [1]13) dr + [lall3 =: K(T),

for 0 < ¢t < T. The a priori estimate (7.10) guarantees the global existence of
solutions of (7.5). Moreover we obtain the following lemma.

Lemma 7.3. For each fixed j, the family {(w,(t),¢;)}r_, forms a uniformly
bounded and equicontinuous set of continuous functions on [0, T1.

Proof. The uniform boundedness is an immediate consequence of (7.10). By (7.5),
we have

(1), 05) — (W (5), 05) = / (Betwom(7), ;) dr

t t
__/ (Vwm,ij)dT—/ (b-Vwm,(pj)dT

t t
(7.11) _/ (W, - VD, gpj)dT—/ (W, - V', ;) dT

t
+/ <F,()0j>d7'
= —11—12—13—]4+I5.

So we estimate I, (kK = 1,2, 3,4,5). By the Schwarz inequality, the Sobolev
inequality and (7.10), we have

11| < Ol VjlloK (T)2 |t - 52,
| Io| < ClIVjlloK (T)2[blls [t — 5],
t
| /5] S/ [wmlls[[VOlla[l@; s dT
< CK(T)"?|[ V2l Vol [t — s]'2,

where constant C' does not depend on t, s nor m. By Lemma 7.2, for each € > 0,
there exist M >0, N € Nand ¢; € L2, (i=1,...,N) such that

5 15
14| < e K(T) + SK(T) [t = 5| + MNK(T) max |62t — 51,

and
OO 2 1/2 1/2 2
15| < ( i 1 £112 dT) it = s|"=+ [[VO|2[Vesll2 [t — s| 4+ [[bllE [Vl [t — 5.
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Thus for any € > 0 there exists 6 > 0 such that

(7.12) (Wi (t), 95) = (wm(s),p) <& if [t —s[ <0

This completes the proof of Lemma 7.3. 0

7.2 Completion of the proof of Theorem 2.4.

By the Ascoli-Arzela theorem, and the diagonal argument, it follows from (7.10) and
Lemma 7.3 that there exists a subsequence {w,, (t)}32, C {wn(t)} converging to
some w(t), uniformly in ¢ € [0, 7], in the weak topology of L2(f2) and the uniform
limit w(t) is weakly continuous in L2(€2). On the other hand, since {w,,} is bounded
in L*(0,T; Hy ,(Q)) by (7.10), we obtain that {wn, (t)} C {wm,(t)} converging to
w(t) weakly in L*(0,T; Hy ,(€2)). We may assume that the original sequence {wy, (t)}
converges to {w(t)}, for simplification of notation. Next we show that the limit
function w(t) is a desired solution. In order to prove this, we show that

t t

(7.13) / (W, - Vi, ®) dr — / (w- Vw,d) dr,
t t

(7.14) / (b Vwy,, ®)dr — / (b-Vw,®)dr,
t t

(7.15) / (W, - Vb, @) dT — / (w - Vb, @) dr,

as m — oo for all ® of the form :

(7.16) = Nr)gu(x), M eC(st]).

finite

We first show (7.13). In fact,

¢ ¢
/(wm-Vwm,CD)dT—/(w-Vw,CID)dT

:/((wm—w)~Vwm,<I>)dT+/(w‘v(wm—w)aq))dT
= Jl +J2

(7.17)

Now we estimate J;. By Lemma 7.2 and the a priori estimate (7.10), we obtain that
for each € > 0 there exist a constant M, > 0, N, € N and functions ¢4, ..., ¢y, in
L2(Q) such that

(7.18) |J1| < eCK(T) + M. Z/ (W, — w, ¢;)|dr,
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where the constant C' is independent of €, m. Since w,,(t) — w(t) uniformly in ¢
weakly in L2(Q), letting m — oo, we have

(7.19) limsup |J;| < eCK(T).

Since for arbitrariness of ¢ > 0, it follows that J; — 0 as m — oo. We next
show J, — 0. We set u'(x,7) = w'(z,7)®(x,7), 1 < i < 3, where w' stands
for the i-th component of w, then u' € L?(Q x (s,t)). Hence there is a sequence
{ui}se, C C°(Q x (s,t)) with ui — u' in L?(2 x (s,t)) as k — oo. For the ui, we
have by integration by part,

3 t
|.Jo] gZ/ (W, — w, Dyul)| dr
i=1"vS

3 t 1/2 t P 1/2
#3(f v = wapar) (=)

where 0; = 0/0x;. Letting m — oo and then &k — oo in (7.20), we have by the a
priori estimate (7.10), J, — 0. Hence we obtain (7.13). The same argument as .J;
and .J, yields (7.14) and (7.15).

In (7.6) taking finite sum with respect to ! and letting m — oo, we obtain

(7.20)

(7.21) / ' (w0,08) + (Vi VD)
(b Vu,®) + (w-Vb,®) + (w- Vw, )} dr

— / (F,®) dr — (w(t), ®(t)) + (w(s), ®(s)),

for all ® with the form (7.16). Since the set of all & with the form (7.16) is dense
in H'(s,t; Hj ,(2)) (see Masuda [9], Lemma 2.2), w is our desired weak solution of
(N-S*). Once we obtain a weak solution of (N-S*) on (0,7") by Galerkin method,
then we can construct a global weak solution of (N-S*) by the diagonal argument.
This proves Theorem 2.4. O

8 Existence of reproductive solutions; Proof of
Theorem 2.5.

We show the existence of reproductive solutions. So we consider the approximate
solutions constructed in the previous section. By (7.2), (7.5) and (7.9) we have

d
(8.1) Zlwmlls +2(1 = d=o)[[Vwnll; < CAIFIE + 1VOI5 + 1b12) = K ().
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Then, by the Poincaré inequality, we obtain with a positive constant « independent
of meN

d
(8.2) El\wm!\g +alwn; < K(t),

so that by integration on (0, 7})

(8.3) et

T*
Wn(TIE < om0 + / e (f) dt.

If we choose R > 0, so that

T,

(8.4) R*(1 —eoT) > / e UK () dt,
0

then it follows from (8.3) that

(8.5) [wm(To)ll2 < R, if [Jwn(0)[]2 < R

On the other hand, we note that the map w,,(0) — w,,(7%) is continuous. Then
the Brouwer fixed point theorem ensures the existence of an approximate solution
Wy, such that w,(0) = w, (7)) and ||wy,(0)]2 = [Jwn(Td)|lz2 < R in the finite
dimensional linear span of {¢1,...,9,}. Since R is independent of m, for each
m there exists a(™ € L2(Q) such that ™ = w,,(0) = w,,(T,). This sequence
{wnm}or_; is bounded in L*(0, T; L2(Q)) N L*(0, Ty; Hy ,(€2)). Then there is a func-
tion w € L>(0,T%; L2(Q)) N L*(0,Ty; Hy () and a € L(2) such that

(i) wy, — w weakly* in L>(0,T,; L2(Q)),
(ii) wp, — w weakly in L*(0,T,; Hy ,(€2)),
(iii) a™ — a weakly in L2(€2).

It is easy to see that w is a weak solution of (N-S*) with w(0) = a and weakly
continuous on [0, 7}] in L2(€Q). Then w(0) = w(T.) = a. This completes the proof
of Theorem 2.5.
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