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Abstract

It is well-known that the loss of the coerciveness for governing mono-
tone nonlinearities in evolution equations/inclusions can cost the non-
solvability of the problem for a given data and the rule how to choose an
appropriate data has to be prescribed. Allowing constitutive functions in
the evolution relations for elasto/visco-plastic models of monotone type to
be non-coercive we fisrt give a new (relaxed) meaning to the solvability of
the systems of equations under consideration and then we define a criteria
for choosing “right” data, which guarantees the solvability in the defined
sense. Realizing this strategy a slight extension of the well-developed
monotone operator method to our needs is performed. The theory is ap-
plied to some particular well-known models in elasto/visco-plasticity. The
relations between the standard notion of the solvability and defined one
are investigated.
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1 Introduction

Phenomenologically the inelastic rate-dependent or rate-independent respond
of the solid materials on the deformation at small strains is usually modeled by
the balance law for the linear momentum (the equilibrium equations), by the
finite number of the evolution laws for the internal variables and by the consti-
tutive relations, which connect stresses with the displacement gradient and the
internal variables. More precisely, in the quasi-static case the following system
of linear elliptic partial differential equations coupled with ordinary differential
equations/inclusions governed by strong nonlinearities is studied.
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Setting of the problem. Let Ω ⊂ R3 denote an open bounded set, the set of
material points of the body, with C1−boundary. S3 denotes the space of sym-
metric 3 × 3-matrices. The space S3 can be isomorphically identified with the
space R6 (see [1, p. 31]). Therefore we can define a linear mapping B : RN → S3

as a composition of a projector from RN onto R6 and the isomorphism between
R6 and S3. The transpose BT : S3 → RN is given then by

BT τ = (ẑ, 0)T

for τ ∈ S3 and z = (ẑ, z̃)T ∈ RN , z̃ ∈ RN−6. Te denotes a positive number
(time of existence) and for 0 < t < Te

Ωt = Ω× (0, t).

If a nonlinear function g : RN → 2R
N

satisfying the inequality v∗ · v ≥ 0 for
all v∗ ∈ g(v) is given, then one looks for the unknown displacement u(x, t) ∈
R3, the Cauchy stress tensor T (x, t) ∈ S3 and the vector of internal variables
z(x, t) = (εp(x, t), z̃(x, t)) ∈ R6 × RN−6 of the following model equations

−divx T (x, t) = b(x, t), (1)
T (x, t) = D(ε(u(x, t))−Bz(x, t)), (2)

∂tz(x, t) ∈ g
(
−∇zψ(ε(u(x, t)), z(x, t))

)

= g
(
BTT (x, t)− Lz(x, t)

)
, (3)

with the initial condition

z(x, 0) = 0, (4)

and with the Dirichlet boundary condition

u(x, t) = γ(x, t), (x, t) ∈ ∂Ω× [0,∞). (5)

The term ε(u(x, t)) in the equations denotes the symmetrized gradient of u, the
strain tensor. The linear mapping B assigns to the vector z(x, t) the plastic
strain tensor εp(x, t) = Bz(x, t) ∈ S3. We denote by D : S3 → S3 a linear,
symmetric, positive definite mapping, the elasticity tensor. The function b :
Ω× [0,∞) → R3 is the volume force and γ : ∂Ω× [0,∞) → IR3 is the boundary
data. The positive semi-definite quadratic form in (3)

ψ(ε, z) =
1
2
D

(
ε−Bz

)
·
(
ε−Bz

)
+

1
2

(
Lz

)
· z

represents the free energy. The linear mapping L : RN → RN above is symmet-
ric and positive semi-definite.

Definition 1.1. The system of equations (1) - (5) with the mappings B and L
introduced above is called a problem/model of monotone type iff the symmetric
N ×N−matrix M := L+BTDB is positive definite and the nonlinear function
g : RN → 2R

N

satisfying the inequality v∗ · v ≥ 0 for all v∗ ∈ g(v) is monotone.
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To simplify computations in this work we also assume that the linear map-
pings B und L satisfy the following condition

dim(kerB) = N − 6, dim(kerL) = 6, kerB + kerL = RN . (6)

It was pointed out in [3] that condition (6) being the consequence of the physical
structure of the equations (1) - (5) is always fulfilled, and, therefore, condition
(6) can be added to the definition of the models of monotone type without loss
of generality.

The class of problems of monotone type was introduced by Alber in [1] and gen-
eralized naturally the class of generalized standard materials defined by Halphen
and Nguyen Quoc Son in [24]. The function g in (3) for generalized standard
materials is a subdifferential of a convex function and, since the subdifferential
of a convex function is monotone, the class of generalized standard materials is
a sub-class of problems of monotone type. Typical application of such models is
elasto/visco-plasticity with or without hardening effects at small strains. Such
classical models of Prandtl-Reuss and Norton-Hoff belong to this class and are
examples from rate-independent and rate-dependent sub-classes of monotone
problems, respectively. It is worth to mention here that the initial boundary
value problem (1) - (5) is written in the most general form and, describing ther-
modynamically admissible processes, includes all elasto/visco-plastic models at
small strains used in engineering (see [1]), yet the function g is not monotone
quite often. In the rate independent case, i.e. when g = ∂IK for a closed convex
set K, an alternative approach for such models was proposed by Mielke and
Theil in [34], a so-called energetic formulation. In the setting of Mielke and
Theil the effects like damage, fracture and hysteretic behavior in ferroelectic
materials at finite strains can be also analyzed.

Here we are not going to give a complete survey of the relevant literature (we
refer to [1, 9, 12, 16, 17, 20, 33, 32, 35, 39, 46, 49, 55]) and mention only those
publications which actually motivated this work. The mathematical analysis of
the classical models, which were later included into the monotone class, started
with works by Moreau, Duvaut and Lions and Johnson [19, 29, 36] and followed
by the further investigations in [30, 37]. In these publications the stress for
the Prandtl-Reuss model was properly characterized while the existence of the
appropriate displacement remained unclear. Suquet [50] and Temam [51, 52]
carried out a complete analysis of this problem and showed that the displace-
ments in general belong to the space of bounded deformations, only (see the
monographs [21, 25] for a historical survey). The extension of the ideas of Su-
quet and Temam to other models in elasto/visco-plasticity is performed in [12].
With the introduction of the problems of monotone type the positivity of the
free energy (like the case of linear kinematic hardening) started to play an im-
portant role in the existence issues. In [1, 2] the autors proved that the problem
(1) - (5) with positive definite free energy has a (unique) solution under very
mild assumptions on the function g, it must be maximal monotone. The case
of positive semi-definite free energy, which contains the mentioned ealier mod-
els of Prandtl-Reuss and Norton-Hoff as well as models with linear isotropic
hardening [13, 16, 25, 30], turned out to be quite challenging comparing to
the case of positive definite free energy even for a maximal monotone g. In
[3, 13, 14, 22, 42, 43] an approach for the derivation of the existence of solutions
to the problem (1) - (5) initiated in [1, 2] was continued and extended to par-
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ticular models of monotone type with a positive semi-definite energy. Using a
time-discretization technique and convex analysis the existence for the nonlinear
Maxwell model of viscoelasticity was proved in [56]. A common feature of all
just mentioned works investigating the rate-dependent case is that the function
g is coercive in an appropriate functional space (see Section 3 for the definition)
and the usage of either the monotone operator method1 or the convex analysis
or both. We note that the monotone operator method and the convex analysis
are called for the treetment of the rate-independent problems as well. In the
present paper we are trying to drop the coercivity property of the function g
to be able to handle more general rate-dependent problems of monotone type
and to develop such an existence theory which could be simultaneously applied
to rate-independent problems. However, it is well-known that the absence of
the coercivity infers the non-solvability of a problem for a fixed data and the
rule how to choose an “admissible” data has to be prescribed. Following this
strategy we have slightly extended some techniques of the monotone operator
method to our needs in order to be able to treet maximal monotone functions g,
which can blow up at some point, for example, (Theorem 4.1 in Section 4). The
other observation we made is that, if the domain of the Nemitsckyi operator
generated by a function g has an empty interior, like the case for Prandtl-Reuss
model, then one can not expect the solvability in Lq(W 1,q)−spaces in general
and the notion of solutions has to be relaxed to be a unified substance for all
models, for those which have solutions in Lq(W 1,q)−spaces for some q ∈ (1,∞)
and for those which not. The last led us to the introduction of the Lq−almost
solability in Section 5. In Section 6 we apply the theory constructed in Sec-
tion 5 to the models of Norton-Hoff and Prandtl-Reuss and to the model of
nonlinear kinematic hardening and show that the model of Prandtl-Reuss can
be only Lq−almost solvable and not sovable in Lq(W 1,q)−setting. This agrees
completely with the existence theory derived for this model ealier. In contrast
to the Prandtl-Reuss model, the models of Norton-Hoff and nonlinear kinematic
hardening possess solutions in Lq(W 1,q)−spaces.

Functional spaces and notation. We denote the Banach space of Lebesgue
integrable with the power p together with their weak derivatives up to the order
m functions by Wm,p(Ω,Rn). The norm in Wm,p(Ω,Rn) is denoted by ‖·‖m,p,Ω

(‖ · ‖p,Ω := ‖ · ‖0,p,Ω). By Wm,p
0 (Ω,Rn) we denote the closure of C∞0 (Ω,Rn) of

all infinitely differentiable functions with compact support in Ω with respect to
‖ · ‖m,p,Ω. The spaces W−m,q(Ω,Rn) are the dual spaces for Wm,p

0 (Ω,Rn). If m
is not integer, then the corresponding Sobolev-Slobodeckij space is denoted by
Wm,p(Ω,Rn). For p and q satisfying 1 < p, q < ∞ and 1/p + 1/q = 1 one can
define a bilinear form on the product space Lp(Ω,Rn)×Lq(Ω,Rn) by

(ξ, ζ)Ω =
∫

Ω

ξ(x) · ζ(x)dx.

1The monotone operator method was basically developed in 60ies (see the two-volume
monograph [27, 28] for a historical survey on the subject) and from that time constantly
improved and generalized. During its time of existence it has penetrated into many different
fields of mathematics and has been applied to the variety of problems in differential and
evolution inclusions, control and optimization theories, mathematical economics, game theory
and calculus of variations. Some recent applications of the monotone operator method in
continuum (thermo-) mechanics of solids and fluids, electrically (semi-) conductive media,
modelling of biological systems, or in mechanical engineering can be found in [47].
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We also define another bilinear form on Lp(Ω,Rn)×Lq(Ω,Rn) by

[ξ, ζ]Ω = (Dξ, ζ)Ω.

Spaces of functions of bounded deformation. We recall that a Radon measure,
denoted by µ, is a linear continuous functional on the space C0(Ω,R), the space
of continuous functions with compact support in Ω. The space of Radon mea-
sures, which are bounded with respect to the norm

‖µ‖M := sup
{ | 〈µ, φ〉 |
‖φ‖∞ | φ ∈ C0(Ω,R)

}
,

where ‖·‖∞ denotes the supremum norm, is donoted byM(Ω,R). It is a Banach
space when equipped with the above norm. The space of functions of bounded
deformation is defined by

BD(Ω,Rn) =
{
v ∈ L1(Ω,Rn) | εij(v) ∈M(Ω,R), i, j = 1, ..., n

}
.

The space BD(Ω,Rn) is a Banach space with norm ‖ · ‖BD defined by

‖v‖BD = ‖v‖1,Ω +
n∑

i,j=1

‖εij(v)‖M.

The embedding properties of spaces BD(Ω,Rn) can be found in [51, 53].

Spaces of Bochner-measurable functions. If (X,H,X∗) is an evolution triple
(known as “Gelfand triple”) and 1 < p, q <∞, 1/p+ 1/q = 1, then

Wp,q(0, Te;X) :=
{
u ∈ Lp(0, Te;X) | u̇ ∈ Lq(0, Te;X∗)

}

are separable reflexive Banach spaces when furnished with the norm

‖u‖2Wp,q
= ‖u‖2Lp(0,Te;X) + ‖u̇‖2Lq(0,Te;X∗),

where the time derivative of u(·) is understood in the sense of vector-valued
distributions. The space Lp(0, Te;X) in the definition of Wp,q(0, Te;X) de-
notes the Banach space of all Bochner-measurable functions u : [0, Te) → X
such that t 7→ ‖u(t)‖p

X is integrable on [0, Te). We recall that the embedding
Wp,q(0, Te;X) ⊂ C([0, Te], H) is continuous ([28, p. 4], for instance).

Finally, we frequently use the spaces W k,p(0, Te;X), which consist of Bochner
measurable functions having a p-integrable weak derivatives up to order k.

2 The Helmholtz projection on tensor fields

The construction of the solutions for the initial boundary value problem (1)–(5)
is based on the existence theory for the evolution inclusions in a reflexive Banach
space derived in Section 4. The construction procedure requires the introduction
of projection operators to spaces of tensor fields, which are symmetric gradients
and to spaces of tensor fields with vanishing divergence. All material for this
section is taken from [2, 3], where more details and proofs of stated hier results
can be found.
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We recall ([54, Theorem 4.2]) that a Dirichlet boundary value problem from the
linear elasticity theory formed by equations

−divxT (x) = b̂(x), x ∈ Ω, (7)
T (x) = D(ε(u(x))− ε̂p(x)), x ∈ Ω, (8)
u(x) = γ̂(x), x ∈ ∂Ω, (9)

to given b̂ ∈ W−1,p(Ω,R3), ε̂p ∈ Lp(Ω,S3) and γ̂ ∈ W 1−1/p,p(∂Ω,R3) has a
unique weak solution (u, T ) ∈ W 1,p(Ω,R3) × Lp(Ω,S3) with 1 < p < ∞ and
1/p+ 1/q = 1. For b̂ = γ̂ = 0 the solution of (7) - (9) satisfies the inequality

‖ε(u)‖p,Ω ≤ C‖ε̂p‖p,Ω

with some positive constant C depending on p and Ω.

Definition 2.1. For every ε̂p ∈ Lp(Ω,S3) we define a linear operator Pp :
Lp(Ω,S3) → Lp(Ω,S3) by

Ppε̂p = ε(u),

where u ∈ W 1,p
0 (Ω, IR3) is a unique weak solution of (7) - (9) to the given

function ε̂p and b̂ = γ̂ = 0.

A subset Gp of Lp(Ω,S3) is defined by

Gp = {ε(u) | u ∈W 1,p
0 (Ω, IR3)}.

The main properties of Pp are stated in the following lemma.

Lemma 2.1. For every 1 < p < ∞ the operator Pp is a bounded projector
onto the subset Gp of Lp(Ω,S3). The projector (Pp)∗ adjoint with respect to the
bilinear form [ξ, ζ]Ω on Lp(Ω,S3)× Lq(Ω,S3) satisfy

(Pp)∗ = Pq, where
1
p

+
1
q

= 1.

This implies ker(Pp) = Hp
sol with

Hp
sol = {ξ ∈ Lp(Ω,S3) | [ξ, ζ]Ω = 0 for all ζ ∈ Gq}.

From the last lemma it follows that the projection operator

Qp = (I − Pp) : Lp(Ω,S3) → Lp(Ω,S3)

with Qp(Lp(Ω,S3)) = Hp
sol is a generalization of the classical Helmholtz projec-

tion.

Corollary 2.0.1. Let (BTDQpB)∗ denote the adjoint operator to BTDQpB :
Lp(Ω, IRN) → Lp(Ω, IRN) with respect to the bilinear form (ξ, ζ)Ω on the product
space Lp(Ω, IRN) × Lq(Ω, IRN). Then

(BTDQpB)∗ = BTDQqB : Lq(Ω, IRN) → Lq(Ω, IRN).

Moreover, the operator BTDQ2B is non-negative and self-adjoint.
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Proof. This result is shown in [2, 3]. For the reader’s convenience we give here
another proof of the non-negativity of BTDQ2B, which is based only on the
definition of P2. To this end, we note first that, if û is a solution of (7) - (9) to
the given ε̂p = Bv and b̂ = γ̂ = 0 for an arbitrary chosen v ∈ L2(Ω, IRN), then
using it as a test function in (7) - (9) we obtain

∫

Ω

D(
Bv(x)− ε(û(x))

) · ε(û(x))dx = 0.

Therefore, for any v ∈ L2(Ω, IRN),
∫

Ω

BTDQ2Bv(x) · v(x)dx =
∫

Ω

BTDBv(x) · v(x)dx

−
∫

Ω

BTDε(û(x)) · v(x)dx =
∫

Ω

D(Bv(x)− ε(û(x))) ·Bv(x)dx

=
∫

Ω

D(
Bv(x)− ε(û(x))

) · (Bv(x)− ε(û(x))
)
dx ≥ 0.

This completes the proof of the corollary.

3 Sum of two operators

In this section we present some results on the sum of two operators, which will
be used for the construction of the solutions for models of monotone type with
positive semi-definite free energy.

Let V be a reflexive Banach space with the norm ‖ · ‖, V ∗ be its dual space
with the norm ‖ · ‖∗. The brackets 〈·, ·〉 denotes the dual pairing between V and
V ∗. Under V we shall always mean a reflexive Banach space throughout this
section. For a multivalued mapping A : V → 2V ∗ the sets

D(A) = {v ∈ V | Av 6= ∅}
and

GrA = {[v, v∗] ∈ V × V ∗ | v ∈ D(A), v∗ ∈ Av}
are called the effective domain and the graph of A, respectively.

Quite often it is important to know when the sets

R(A+B) = ∪v∈V (A+B)v and R(A) +R(B) = ∪v∈V,u∈V (Av +Bu)

are almost equel2.

Remark 3.1. The set R(A) +R(B) is larger than R(A+B). For example, we
can take on V = RN the rotations on π/2 and −π/2 as the operators A and B,
respectively. Then R(A) + R(B) = RN , but R(A + B) = {0}. Therefore, one
needs to look for conditions, which guarantee the almost equivalence of the sets
R(A) +R(B) and R(A+B).

2We say that two sets U1 and U2 of V are almost equel and write U1 ' U2 provided that

U1 = U2 and int U1 = int U2.

7



We introduce some notions.

Definition 3.1. A mapping A : V → 2V ∗ on a real Banach space V is n-
monotone iff the condition

〈u∗1, u1 − u2〉+ 〈u∗2, u2 − u3〉+ ...+ 〈u∗n, un − un+1〉 ≥ 0 (10)

holds for all [ui, u
∗
i ] ∈ GrA, i = 1, ..., n, for fixed n ≥ 2, where we set un+1 = u1.

A mapping A : V → 2V ∗ is called cyclic monotone iff the condition (10) holds
for any n = 2, 3, .... A mapping A : V → 2V ∗ is called monotone if (10) holds
for n = 2.

A mapping A : V → 2V ∗ is called 3 − σ−monotone iff A is monotone and
there is a number σ > 0 such that

〈v∗ − u∗, w − v〉 ≤ σ 〈u∗ − w∗, u− w〉
holds for all [w,w∗], [u, u∗], [v, v∗] ∈ GrA.

A mapping A : V → 2V ∗ is called 3∗−monotone iff A is monotone and

sup
[v,v∗]∈GrA

〈v∗ − u∗, w − v〉 <∞ (11)

holds for all w ∈ D(A), u∗ ∈ R(A).
A mapping A : V → 2V ∗ is called strongly coercive iff either D(A) is bounded

or D(A) is unbounded and the condition

〈v∗, v − w〉
‖v‖ → +∞ as ‖v‖ → ∞, [v, v∗] ∈ GrA,

is satisfied for each w ∈ D(A).

Remark 3.2. Some basic facts on maximal monotone and generalized pseudo-
monotone operators the reader can find in Appendix 7.

From the last definition it is seen that any 3-monotone mapping (in particu-
lar, cyclic monotone) is 3−σ−monotone with σ = 1 and that a 3−σ−monotone
mapping satisfies the condition (11). Less obvious consequence is that if A is
monotone and strongly coercive or monotone and has the bounded range R(A),
then A is 3∗−monotone (see [57, Proposition 32.41], [40, Chapter V.3.2]). In
particular, the Yosida approximation Aλ = (A−1 + λJ−1)−1 of an operator A,
where J is the duality mapping, gives an example of the 3∗−monotone map.
We note as well that the inverse of a 3∗−monotone operator is 3∗−monotone.

The condition (11) plays a decisive role in solving the problem when the range
R(A+B) of the sum operator A+B is almost equal to R(A) +R(B), i.e.

intR(A+B) = int
(
R(A) +R(B)

)
and R(A+B) = R(A) +R(B).

The particular answer, when R(A + B) ' R(A) + R(B) holds, is given by the
following theorem.

Theorem 3.1. (Brezis & Haraux, ’76)
Let V be a reflexive Banach space and let A and B be two monotone operators
in V such that A+B is maximal monotone. If either

i) both A and B satisfy (11),
or

ii) B satisfies (11) and D(A) ⊂ D(B),
then R(A+B) ' R(A) +R(B).
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Theorem 3.1 was firstly proved in a Hilbert space by Brezis and Haraux
[7], and then generalized to a reflexive Banach space by Reich [44]. For general
Banach spaces we refer the reader to [45]. The proof of Theorem 3.1 in a Hilbert
space can be found in [40, Theorem V.3.] and in [57, Corollary 32.46] as well.
One of the most important example of 3∗−monotone operator, which appears
very often in applications, is the subdiferential of a proper functional on a real
Banach space V . The subdiferential satisfies (11), since it is cyclic monotone,
what is an easy consequence of the definition of the subdiferential. Further
examples of cyclic monotone operators (hence 3∗−monotone), which also appear
frequently in applications, the reader can find in [5, Chapter II.2.3], for example.

For further discussion we also recall some basic facts from convex analysis. The
Legendre-Fenchel transformation of a convex lower semi-continuous function
φ : V → (−∞,+∞] is the function φ∗ defined for each v∗ ∈ V ∗ by

φ∗(v∗) = sup
v∈V

{〈v∗, v〉 − φ(v)}.

The indicator funktion of a convex set K is the convex function IK defined by

IK(v) =

{
0 if v ∈ K
+∞ otherwise

.

Then I∗K = σK holds, where σK is the support function of K given by

σK(v∗) = sup
v∈K

〈v∗, v〉 .

Remark 3.3. If two closed and convex sets K1 and K2 in V are given, then it
is well-known that K1 ⊂ K2 if and only if, for any v∗ ∈ V ∗, σK1(v

∗) ≤ σK1(v
∗)

(see [15, Proposition II.1.3]).

The following result of Brezis and Nirenberg [8, Proposition II.5, Proposition
II.6] is of great importance for our further investigations.

Proposition 3.1. (Brezis & Nirenberg, ’78)
Let N be a closed subspace of a reflexive Banach space V and B be a non-linear
map from V into V ∗. The following statements are equivalent

I∗R(B)(v) ≥ 〈f, v〉 , ∀v ∈ N,

f ∈ N⊥ + convR(B).

Remark 3.4. We note that Theorem 3.1 in [8] is actually proved in a Hilbert
space, but it can be easily generalized to a reflexive Banach space.

If the operator B in Proposition 3.1 is maximal monotone, then based on
results in Section 7 the following corollary holds true.

Corollary 3.1.1. If, additionally to the assumptions in Proposition 3.1, the
operator B is maximal monotone, then the statements are equivalent

I∗R(B)(v) ≥ 〈f, v〉 , ∀v ∈ N,

f ∈ N⊥ +R(B).
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The next lemma, which is due to Browder, will be important in Section 4.

Lemma 3.1. Let V be a Banach space, {un} a sequence in V, and {αn} a
sequence of positive numbers with αn → 0 as n → ∞. Fix r > 0 and assume
that for every h ∈ V ∗ with ‖h‖ ≤ r there exists a constant Ch such that 〈h, un〉 ≤
αn‖un‖+ Ch, for all n. Then the sequence {un} is bounded.

Proof. See [11, Lemma 1].

4 Some results on the sum of two operators

Case of a maximal monotone operator B. The first part of this section is
devoted to the proof of the following result on the sum of two maximal monotone
operators in a reflexive Banach space.

Theorem 4.1. Let V be a reflexive Banach space, A : D(A) ⊂ V → V ∗ be
a linear maximal monotone operator and B : D(B) ⊂ V → 2V ∗ be a maximal
monotone operator with [0, 0] ∈ GrB. Suppose that the following conditions are
satisfied:

i) the operator B is 3∗−monotone,

ii) the operator B is locally bounded at every v ∈ D(B).

Then
R(A+B) ' R(A) +R(B).

Remark 4.1. Theorem 7.2 guarantees that the operator A in Theorem 4.1 is a
densely defined closed operator.

Remark 4.2. Since B is locally bounded at every v ∈ D(B), by Lemma 7.1 the
domain D(B) of B is open.

Proof. Since 0 ∈ D(B) and D(B) is open, by Theorem 7.3, the sum A + B
is maximal monotone. Hence, by Theorem 7.1, the operator A + B + λJ is
surjective for all λ > 0, i.e. R(A+B + λJ) = V ∗, where J denotes the duality
mapping.
Next, we claim that R(Aλ + B) ' R(A) + R(B), where Aλ is the Yosida ap-
proximation of A. Indeed, Aλ is 3∗−monotone and maximal monotone, then,
by Theorem 3.1, we obtain that

R(Aλ +B) ' R(Aλ) +R(B) = R(A) +R(B).

In the last equality we used the property of the Yosida appriximation of single-
valued maps, namely that the relation Aλu = A(jA

λ u) holds for any u ∈ V ,
where jA

λ : V → D(A) is the resolvent of A.
Now we are going to establish two inclusions

R(Aλ +B) ⊂ R(A+B) and intR(Aλ +B) ⊂ R(A+B), (12)

which will complete the proof of the theorem. To this end, we adopt the proof
of Theorem 2.1 in [23] to our situation.
Since R(A+B + (1/n)J) = V ∗, the equation

Au+Bu+ (1/n)Ju 3 s
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has a sulution un for any s ∈ R(Aλ+B), i.e. for s = Aλv+v∗ with [v, v∗] ∈ GrB.
If ‖un‖ is bounded, then trivially one has s ∈ R(A+B). Assume that ‖un‖ is
unbounded and choose λ > 0 such that

us = jA
λ v ∈ D(B), for v ∈ D(B).

In the last line we are able to choose us ∈ D(B) provided λ > 0 is small enough,
since jA

λ v converges strongly in V to v for all v ∈ D(A) as λ tends to zero (see
Proposition 7.1). In our case D(A) = V . Then, for some u∗n ∈ B(un), we obtain

〈
1
n
Jun, un − us

〉
= −〈Aun + u∗n −Aλv − v∗, un − us〉

= − 〈
Aun −Aλv, un − jA

λ v
〉

+
〈
u∗n − v∗, jA

λ v − un

〉

≤ 〈
u∗n − v∗, jA

λ v − un

〉 ≤ k(v∗, λ),

which implies
1
n
‖Jun‖∗ ≤ 1

n
‖us‖+ k(v∗, λ)/‖un‖.

The last inequality says that (1/n)Jun converges to 0 as n→∞ provided ‖un‖
is sufficiently large. It implies that s ∈ R(A+B).

Next, we shall show that the second inclusion in (12) holds. Indeed, choose
any s ∈ intR(Aλ + B) and consider any h ∈ B(0, r) for some r > 0 such that
s+ h ∈ R(Aλ + B). We claim that the solution un of Au+ Bu+ (1/n)Ju 3 s
is bounded. Otherwise, we could assume that ‖un‖ → ∞ as n→∞. Then

〈h, un − us+h〉 = −〈Aun + u∗n − (s+ h), un − us+h〉 − 1
n
〈Jun, un − us+h〉 ,

where us+h is a fixed element in V depending on s + h and u∗n ∈ B(un). The
last equality implies that

〈h, un〉 ≤ 〈h, us+h〉+
k(s+ h, us+h)

‖un‖ ‖un‖ − 1
n
‖Jun‖ (‖un‖ − ‖us+h‖)

≤ 〈h, us+h〉+
k(s+ h, us+h)

‖un‖ ‖un‖

for large enough n. But then, by Lemma 3.1, the sequence {un} has to be
bounded, what is a contradiction to the assumption. Since ‖un‖ is bounded, we
obtain (up to extracting a subsequence) that

Aun + u∗n = − 1
n
Jun + s→ s and un ⇀ u0,

and hence, by maximal monotonicity of A + B, that s ∈ R(A + B). The
last inclusion gives intR(Aλ + B) ⊂ R(A+B), what completes the proof of
Theorem 4.1.

Remark 4.3. According to assumptions in Theorem 4.1, the sum A+B is max-
imal monotone, since A is linear and 0 ∈ intD(B). But none of the conditions
i) or ii) of Theorem 3.1 is satisfied3 and, therefore, this theorem can not be

3Example 2.21 in [41] shows that a linear maximal monotone map can not be 3∗−monotone.
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applied directly to an operator B with the domain not equal to the whole space
(see an example in the next section). Moreover, the condition ii) can not be
dropped in Theorem 3.1. Take, for example, on V = R2 the maps A = rotation
by π/2 and B = ∂IK , where IK is the idicator function of K = R× {0}. Then
R(A) + R(B) = R2 while R(A+ B) = {0} × R. This example also exlains why
we require in Theorem 4.1 the openness of the domain of B.

Combining Proposition 3.1 with Theorem 4.1 we get the following corollary.

Corollary 4.1.1. Suppose that all conditions of Theorem 4.1 are satisfied and
assume that

I∗R(B)(v) ≥ 〈f, v〉 , ∀v ∈ kerA∗

holds for f ∈ V ∗, then the problem

Av +Bv 3 f, v ∈ V (13)

is almost solvable, i.e. f ∈ R(A+B).

Case of the generalized pseudomonotone operator B. If the operator
B is generalized pseudomonotone, then we can get the almost solvability of (13)
applying a result on the range of non-linear operarors in [23]. To state the
mentioned result on the range of the sum of two operarors in [23] we need the
following definitions.

Definition 4.1. The mapping A : V → 2W , with topological spaces V and W ,
is called upper semicontinuous at v0 ∈ D(A) iff for any given open set W̃ ⊂W
such that Av0 ⊂ W̃ there exists a neighborhood Ṽ of v0 such that A(Ṽ ) ⊂ W̃ .
The mapping A : V → 2V ∗ is called finitely continuous iff A is upper semicon-
tinuous from each finite-dimensional subspace F of V to the weak topology of
V ∗.
The mapping A : V → 2V ∗ is called quasibounded iff for each M > 0 there exists
K(M) > 0 such that for v ∈ V and v∗ ∈ Av with ‖v‖ ≤M and 〈v∗, v〉 ≤M‖v‖
we have that ‖v∗‖ ≤ K(M).

Remark 4.4. A maximal monotone operator A : V → 2V ∗ is upper semicon-
tinuous from intD(A) into V ∗ furnished with the weak∗ topology ([10, Theorem
3.18], [27, Theorem III.1.28]).

We denote by Γ the set of all functions β : R+ → R+ such that β(r) → 0 as
r →∞. The main theorem in [23] reads as follows.

Theorem 4.2. (Guan & Kartsatos & Skrypnik, ’03)
Let V be a reflexive Banach space, A : V → 2V ∗ maximal monotone, and B :
V → 2V ∗ quasibounded, finitely continuous and generalized pseudomonotone.
Let V ′ ⊂ D(B), where V ′ is a dense subspace of V with V ′ ∩D(A) 6= ∅. Let S
be a subset of V ∗ such that for every s ∈ S, there exist vs ∈ V and β = βs ∈ Γ
such that

〈u∗ + v∗ − s, v − vs〉 ≥ −β(‖v‖)‖v‖ (14)

for all v ∈ D(A) ∩D(B) with ‖v‖ sufficiently large, and all u∗ ∈ Av, v∗ ∈ Bv.
Then

S ⊂ R(A+B) and intS ⊂ intR(A+B).

12



Combining now Proposition 3.1 with Theorem 4.2 for S = R(A) +R(B) we
get the following result.

Corollary 4.2.1. Suppose that all conditions of Theorem 4.2 are satisfied and
the operator A is linear and single-valued. Additionally, assume that

I∗R(B)(v) ≥ 〈f, v〉 , ∀v ∈ kerA∗

holds for f ∈ V ∗. Then the problem (13) is almost solvable, i.e. f ∈ R(A+B).

In the next section we apply the constructed theory to the problems of
monotone type with the positive semi-definite free energy.

5 Existence for models of monotone type

As we pointed out in Introduction, the loss of the coerciveness for the fubction g
can cost the non-solvability of the problem (1) - (5) for a fixed data and the rule
how to choose an appropriate data has to be prescribed. In this section we define
a new notion of the solvability of the systems of equations (1) - (5) for a non-
coercive g, Lq-almost solvability, and then we give a criteria for choosing “right”
data, which guarantees the Lq-almost solvability of the problem. In the end of
the section the relations between the standard notion of the solvability and Lq-
almost solvability are investigated and sufficient conditions for the solvability of
(1) - (5), if it is Lq-almost solvable, are presented.

We suppose from now on that the numbers p and q satisfy the relations

1 ≤ q ≤ 2 ≤ p ≤ ∞,
1
p

+
1
q

= 1.

Next we give the definition of the strong solutions of the system (1) - (5).

Definition 5.1. Let functions b and γ such that b ∈ Lp(0, Te;W−1,p(Ω,R3)),
γ ∈ Lp(0, Te;W 1−1/p,p(∂Ω,R3)) be given. A function (u, T, z) such that

(u, T ) ∈ Lq(0, Te;W 1,q(Ω,R3)× Lq(Ω,S3)),

z ∈W 1,q(0, Te;Lq(Ω,RN )), BTT − Lz ∈ Lp(ΩTe ,RN )

is called a strong solution of the intial boundary value problem (1) - (5), if
for almost every t ∈ [0, Te] the function (u(t), T (t)) is a weak solution of the
boundary value problem (7) - (9) with ε̂p = Bz(t), b̂ = b(t) und γ̂ = γ(t) and
the equations (3) and (4) is satisfied for almost every (x, t).
The set of functions having the above regularity we shall denote by F . For any
given ν ∈ Lp(0, Te;W 1−1/p,p(∂Ω,R3)), by Fν the following set of functions will
be denoted

Fν = {(u, T, z) ∈ F | Γ∂Ω(u(t)) = ν(t), z(x, 0) = 0, a.e.},
where Γ∂Ω : W 1,q(Ω,R3) →W 1−1/q,q(∂Ω,R3) is the usual trace operator.

Before we give the definition of the Lp-almost solvability and state the main
result of this section, let us define the follwing operator G : Lp(ΩTe ,RN ) 7→
2Lq(ΩTe ,RN ) by

G(ξ) := {ζ ∈ Lq(ΩTe ,RN ) | ∃ξ ∈ Lp(ΩTe ,RN ) : ζ(x, t) ∈ g(ξ(x, t)) a.e.} (15)
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with
D(G) = {ξ ∈ Lp(ΩTe

,RN ) | G(ξ) 6= ∅}.
The operator G is well defined, since 0 ∈ D(G) holds. Therefore, if we assume
that the function g is maximal monotone, by Proposition 2.13 in [18], the op-
erator G must be maximal monotone as well. If, instead of maximality, g is
3∗−monotone, then the fact that G is 3∗−monotone follows from the definition.

Definition 5.2. Let functions b and γ such that b ∈ Lp(0, Te;W−1,p(Ω,R3)),
γ ∈ Lp(0, Te;W 1−1/p,p(∂Ω,R3)) be given. The initial boundary value problem
(1) - (5) is called Lq-almost solvable, iff

inf
(u,T,z)∈Fγ

{‖divx T + b‖Lp(0,Te;W−1,q(Ω,R3)) + ‖T −D(ε(u)−Bz)‖q,ΩTe

+|G−1(∂tz)− (BTT − Lz)|p,ΩTe

}
= 0,

where
|G−1(ẑ)|p,ΩTe

:= inf{‖ẑ∗‖p,ΩTe
| ẑ∗ ∈ G−1(ẑ)}.

Remark 5.1. Obviously the solvability implies the Lq-almost solvability.

Remark 5.2. At this point we would like to mention that we can only treet
the case of a single-valued function g in Theorem 5.1. Nevertheless, since the
realization of the multi-valued situation seems to us just a technical issue, we
shall study the Prandtl-Reuss model in the next section assuming that Theo-
rem 5.1 holds for multi-valued function g as well. The rigerous verification of
the multi-valued case we leave for future work.

We can state the main result of this section.

Theorem 5.1. Assume that the functions b and γ are given with the regularity
as in Definition 5.2, the problem (1) - (5) is of monotone type (see Defini-
tion 1.1) and that the conditions (6) hold. Let for a.e. t ∈ [0, Te] the function

(v, σ) ∈ Lp(0, Te,W
1,p(Ω,R3))× Lp(ΩTe ,S3)

be a solution of the problem (7) - (9) with ε̂p = 0, b̂ = b(t) and γ̂ = γ(t).
Suppose that the mapping g : RN → RN satisfies the following conditions:

(a) the function g is 3∗−monotone and maximal monotone;

(b) the inverse of G is locally bounded on its domain.

If we assume additionally that for any w ∈ Lq(0, Te;Gq) there exists z ∈ D(G)
such that the inequality

∫ Te

0

∫

Ω

(
Bz(x, t), w(x, t)

)
dxdt ≥

∫ Te

0

∫

Ω

(
σ(x, t), w(x, t)

)
dxdt (16)

holds, then the problem (1) - (5) is Lq-almost solvable.

We note that condition (b) in Theorem 5.1 implies that g−1 has a polynom-
ical growth with the rate q/p, i.e. the following inequality for g−1

|g−1(z)| ≤ C(1 + ‖z‖q/p

RN )
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holds, where
|g−1(z)| := inf{‖z∗‖RN | z∗ ∈ g−1(z)}

and C is some positive constant, and, as a consequence of that, the domain
of G−1 is the whole space Lq(ΩTe

,RN ). This can be seen from the following
lemma, which we prove for the sake of simplicity only for single-valued functions
and for p = 2. The proof of the lemma is easily generalizable to the multi-valued
case and any p ∈ (1,∞).

Lemma 5.1. Let g : RN → RN be maximal monotone and such that g(0) = 0.
If the operator G defined by (15) for p = 2 is locally bounded at 0, then g has a
linear growth and, as a consequence of that, the domain of G is the whole space
L2(ΩTe

,RN ).

Proof. Indeed, let δ > 0 be a fixed number such that

‖G(z)‖Ω ≤ C, for any z ∈ Bδ(0),

where Bδ(0) denotes an open ball in L2(ΩTe ,RN ). The fact that the whole ball
of the radius δ belongs to the domain of G follows from the local boundness of
G at 0 (see Lemma 7.1). Next, we choose a vector z1 ∈ RN with ‖z1‖RN = 1
and define a sequence

zm(x, t) =

{
0, if x ∈ Ω \ Ωm

kmz1, if x ∈ Ωm

,

where {km}m∈N is a sequence of positive real numbers such that km → ∞ as
m→∞ and the set Ωm is a subset of Ω with the measure µ(Ωm) = δ2/(4k2

m).
Obviously, zm ∈ Bδ(0). Since G is locally bounded at 0, we get that

‖G(zm)‖ΩTe
= T 1/2

e µ(Ωm)1/2‖G(kmz1)‖RN ≤ C,

and, therefore,

‖g(kmz1)‖RN ≤ Ckm/T
1/2
e δ =

C

T
1/2
e δ

‖kmz1‖RN ,

what implies the linear growth for g (the last inequality holds for any z ∈ RN ).
Thus, due to the linear growth of the function g, the domain of G is the whole
space L2(ΩTe ,RN ).

Remark 5.3. We note that condition (16) allows a nice geometrical interpre-
tation: roughly speaking condition (16) means that the projection of σ on every
vector w from Lq(0, Te;Gq) must be less than the largest projection among all
projections of vectors from the set D(G) on the vector w.

Remark 5.4. If we strengthen the condition (16) by imposing that it should
hold for every w from Lq(ΩTe ,S3), then, by Remark 3.3, (16) is equivalent to
following inclusion

BTσ ∈ D(G).

The last condition is much more easier to verify in practice than (16) and,
therefore, can be used in applications instead of (16).
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Remark 5.5. Since the closure of the domain D(G) of the maximal monotone
operator G is convex (see Appendix 7) and 0 ∈ D(G), condition (16) give re-
strictions on the possible choice of functions b and γ, but not on the domain of
the maximal monotone operator G. This is due to the fact that σ ∈ Lp(ΩTe

,S3),
as the solution of linear elasticity problem (7) - (9) for ε̂p = 0, b̂ = b(t) und
γ̂ = γ(t), is controlled by the given functions b and γ (see [54], if it is needed).
Therefore, by choosing b and γ small enough we can always make σ verify con-
dition (16). This observation suggests that condition (16) always holds for any
maximal monotone operator G with 0 ∈ D(G) provided b and γ are chosen
appropriately.

Proof. Before we start the proof of Theorem 5.1, let us introduce the following
notations

X = Lp(Ω,RN ), X = Lp(0, Te, X), H = L2(Ω,RN ), H = L2(0, Te,H),

and

Mp = BTDQpB + L : X → X, M2 = BTDQ2B + L : H → H.

We note that the operatorM2 is non-negative by Corollary 2.0.1. Since (X ,H,X ∗)
forms an evolution triple, we are able to define a linear maximal monotone op-
erator L : X → X ∗ by

Lz = ∂tz with D(L) = {z ∈Wp,q(0, Te,X ) | z(0) = 0}.

The idea of the proof of Theorem 5.1 is to show the almost solvability of the
abstract equation (17) in a reflexive Banach space X ∗ applying Theorem 4.1
and then, based on this result, to construct solutions for the initial boundary
value problem (1) - (5). We note that the idea of the proof is strongly connected
to the general duality principle for the sum of two operators obtained in [4].

Let us consider now the following inclusion in X ∗

L−1Mqv +G−1v 3 BTσ, v ∈ X ∗. (17)

The next lemma proves that the operator L−1Mq in (17) is maximal monotone.

Lemma 5.2. The operator L−1Mq : D(L−1Mq) ⊂ X ∗ → X is linear maximal
monotone.

Proof. According to Theorem 7.2, the operator L−1Mq with D(L−1Mq) = {v ∈
X ∗ | Mqv ∈ D(L−1)} is maximal monotone, if it is a densely defined closed
monotone operator such that its adjoint (L−1Mq)∗ is monotone.

We note that the operator L−1Mq is the closure in X ∗ × X of the operator L0

given by

L0v := L−1Mqv, v ∈ D(L0) = {v ∈ X ∗ | L−1v ∈ X}.

The last operator is monotone, what can be shown using the generalized inte-
gration by parts formula and the following identity

L−1Mqv = MpL−1v, v ∈ D(L0). (18)
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The identity (18) is proved in the end of this work. Therefore, the opera-
tor L−1Mq is monotone as the closure in X ∗ × X of the monotone operator
L0. Since the operator (L−1Mq) is the closure of L0, thier adjoint operators
coincide. The adjoint of L0 is easy to compute and is equal to (L−1)∗Mq,
by a well-known result from the functional analysis. Therefore, by arguing
in the same way as above, we obtain that the adjoint (L−1Mq)∗ (we recall
that (L−1Mq)∗ = (L−1)∗Mq) is monotone. Thus, since L−1Mq verifies all as-
sumptions of Theorem 7.2, it is a maximal monotone operator. The proof of
Lemma 5.2 is complete.

In order to apply Theorem 4.1 we set

V = X ∗, A = L−1Mq, B = G−1, f = BTσ. (19)

So we have that V is reflexive Banach space and that the operators A and B
are maximal monotone. As the inverse of the 3∗−monotone operator G, the
operator B is 3∗−monotone. Therefore, in order to apply Theorem 4.1 it is left
to verify that the domain D(B) is open.

Since the inverse of G is locally bounded on its domain, i.e. on R(G), Lemma 7.1
implies that the domain of B is open.

Thus, Theorem 4.1 applied to the chosen space V and operators A, B in (19)
yields that

R(A+B) ' R(A) +R(B).

In particular, the equality

R(A+B) = R(A) +R(B). (20)

holds. Next, we show that the given function f in (19) belongs to R(A+B).
To this end, it is enough to prove that f belongs to R(A) +R(B). Since then,
by (20), this gives the desired result.

In virtue of Theorem 3.1, the inclusion f ∈ R(A) +R(B) holds iff the following
inequality

I∗R(B)(v) ≥ 〈f, v〉 , ∀v ∈ kerA∗ (21)

is valid. Therefore, it is left to check whether the inquality (21) is satisfied. We
show below that this inequality is a direct consequence of the condition (16).
To see this, let us compute kerA∗ = ker(L−1Mq)∗. First, we note that

kerA∗ = ker(L−1Mq)∗ = ker
(
(L−1)∗Mq

)
= Lq(0, Te, kerMq).

Therefore, it left to compute the kernal of BTDQqB + L only. Obviously,

ker
(
BTDQqB + L

)
= ker(BTDQqB) ∩ kerL,

where kerL and kerL denote the sets

kerL :=
{
v ∈ X∗ | Lv(x) = 0 a.e.

}
and kerB :=

{
v ∈ X∗ | Bv(x) = 0 a.e.

}
4.

4In the brackets L and B denote the linear mappings from the first section, i.e. L : RN →
RN and B : RN → S3
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Due to the assumption (6) we have that kerL ∩ kerB = ∅. Hence,

ker
(
BTDQqB + L

)
= ker(DQqB) ∩ kerL = ker(QqB) ∩ kerL

=
(
BT

(
kerQq ∩R(B)

) ∪ kerB
) ∩ kerL

⊂ (
BT (kerQq) ∪ kerB

) ∩ kerL

=
(
BT (kerQq) ∩ kerL

) ∪ (
kerB ∩ kerL

)

⊂ BT (kerQq) = BT (R(Pq)) = BT (Gq).

The last computations obviously yield that

kerMq ⊂ BT (Gq).

Now it is easily seen that the inequality (16) implies (21).

Thus, we have shown that f ∈ R(A+B). The last inclusion means that there
exists a sequence fn ∈ X ∗ such that fn converges strongly to f and fn ∈
R(A + B). Therefore, there exists a sequence vn ∈ D(A) ∩ D(B) such that
fn = Avn +Bvn. Returning back to the old notations we get

L−1Mqvn +G−1vn 3 fn, vn ∈ Lq(ΩTe ,RN ). (22)

Denoting by τn = L−1Mqvn we obtain from (22) that τn solves the problem

Lτn = MqG(−τn + fn), τn ∈ Lp(ΩTe ,RN ). (23)

Using the last result, the construction of the “solutions” of the problem (1) -
(5) can be now performed as in [3]:

Let τn ∈ Lp(ΩTe ,RN ) be a solution of (23). With the function τn let zn ∈
W 1,q(0, Te, L

q(Ω,S3)) be the solution of

∂tzn(t) = g
(− τn(t) + fn(t)

)
, a.e. (0, Te) (24)

zn(0) = 0. (25)

By the linear ellipticity theory, we can now obtain the existence of the solution
(ũn(t), T̃n(t)) for the problem (7) - (9) to the following data b̂ = γ̂ = 0, ε̂p =
Bzn(t). Next, we apply the operator Mq to (24) - (25) and obtain

∂t(Mqzn(t)) = MqG
(− τn(t) + fn(t)

)
= ∂tτn(t), Mqzn(0) = τn(0) = 0.

The last implies that Mqzn = τn. Thus, recalling definitions of L, G and Mq

we arrive at the problem

∂tzn(x, t) = g
(
BTTn(x, t)− Lzn(x, t) + fn(x, t)−BTσ(x, t)

)
, (26)

zn(x, 0) = 0, (27)

with (un, Tn) = (ũn + v, T̃n + σ) solving the following boundary value problem

−divxTn(x, t) = b(x, t), (28)
Tn(x, t) = D(ε(un(x, t))−Bzn(x, t)), (29)
un(x, t) = γ(x, t), (x, t) ∈ ∂Ω× [0,∞). (30)

Therefore, we can conclude that the triple (un, Tn, zn) belongs to Fγ and satisfy
the equations (26) - (30). The last conclusions imply that the problem (1) - (5)
is Lq−almost solvable. This completes the proof of Theorem 5.1.

18



Remark 5.6. In the proof of Theorem 5.1 we used Theorem 4.1 to study the
sum of two maximal monotone operators A = L−1Mq and B = G−1. Since
the domain of B is the whole space X ∗, Theorem 3.1 or Theorem 4.2 could be
applied instead of Theorem 4.1 as well. Here we give an example of an operator
arising in the existence theory for models of ferroelectric material behavior in
[31], which has an open domain strictly contained in the whole space5.
Let a function g : Rn → Rn with the domain D(g) = Bρ(0), an open ball in Rn

with a radius ρ > 0, and with the property g(0) = 0 be given. Let ψ : Rn → R+

be a standard mollifier. We define the operator Ĝ : L2(Ω,Rn) → L2(Ω,Rn) by

Ĝ(z) := ψ ∗ g(ψ ∗ z)

with
D(Ĝ) = {z ∈ L2(Ω,Rn) | R(ψ ∗ z̃(x)) ∈ D(g), a.e. x ∈ Rn},

where z̃ denotes the extension of z outside of Ω by 0. Suppose that z0 belongs
to the domain D(Ĝ). Next, choose δ > 0 such that maxx ‖ψ ∗ z̃0(x)‖Rn = ρ− δ
and C = µ(Ω)1/2 maxx ψ(x). We note that such δ > 0 exists, since ψ ∗ z̃0 has a
compact support in Rn, the image of which contains in the open set D(g) ⊂ Rn.
If we now choose ε > 0 such that ε < δ/C, the following inequality

‖ψ ∗ z̃(x)‖Rn ≤ ‖
∫

Rn

ψ(x− y)
(
z̃(y)− z̃0(y)

)
dy‖Rn + ‖ψ ∗ z̃0(x)‖Rn

≤ C‖z0 − z‖Ω + ρ− δ ≤ Cε+ ρ− δ < ρ

holds for any z ∈ Bε(z0) := {v ∈ L2(Ω,Rn) | ‖z0 − v‖Ω < ε}. This shows that
D(Ĝ) is open. The fact that D(Ĝ) does not coincide with the whole L2(Ω,Rn)
is easily seen from the definition.

The next corollaries give immediate sufficient conditions for the the solvabil-
ity of the initial boundary value problem (1) - (5).

Corollary 5.1.1. Let instead of (16) in Theorem 5.1 the following condition

BTσ ∈ intD(G), (31)

where (v(t), σ(t)) is a solution of the Dirichlet boundary value problem (7) - (9)
to the data b̂ = b(t), γ̂ = γ(t), ε̂p = 0, be satisfied. Then the initial boundary
value problem (1) - (5) has a strong (not necessary unique) solution.

Proof. Theorem 5.1 guarantees that

R(A+B) ' R(A) +R(B)

for operators A and B defined in (19). In particular, the equality

intR(A+B) = int (R(A) +R(B))

holds. But, since R(B) := R(G−1) = D(G), in virtue of the assumtion (31) of
the corollary, we obtain that

intR(A+B) = int (R(A) +D(G)) 3 f.
5The example is proposed by Nataliya Kraynyukova (TU-Darmstadt).
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The last means that the equition (17) is solvable. Thus, the problem (23) has a
solution as well. The construction of solutions of the problem (1) - (5) coincides
completely with the one performed in the end of the proof of Theorem 5.1. This
completes the proof of Corollary 5.1.1.

Remark 5.7. The condition (31) in Corollary 5.1.1 is fulfilled if the function
g : RN → RN has the polynomical growth, i.e. g satisfies the inequality

‖g(z)‖ ≤ C(1 + ‖z‖p/q).

If the operator G−1 is coercive, then the condition (c) and condition (16) in
Theorem 5.1 can be dropped.

Corollary 5.1.2. If instead of the conditions (c) and (16) in Theorem 5.1 we
assume that the operator G−1 is coercive, then the initial boundary value problem
(1) - (5) has a strong (not necessary unique) solution.

Proof. Following the proof of Theorem 5.1 we come to the question of the solv-
ability of equation (17), which can be solved now by using the standard existence
theory for monotone operator. Indeed, the operators A and B in (17) are max-
imal monotone. By Theorem 7.3, the sum A + B is maximal monotone, since
A is linear and 0 ∈ intD(B). Moreover, the sum A + B is a coercive operator
as the following line shows:

〈Av + v∗, v〉
‖v‖ ≥ 〈v∗, v〉

‖v‖ → +∞ as ‖v‖ → ∞,

for v∗ ∈ B(v). The last holds due to the coecivity of B. In virtue of Theorem 7.4,
the maximal monotone and coercive operator A + B is surjective. Therefore,
equation (17) has a solution. The rest of the proof is as in Corollary 5.1.1.

Remark 5.8. As it is easily seen, the operator G−1 is coercive if the function
g−1 satisfies the inequality

C‖z‖q
RN − a(x, t) ≤ (z∗, z)RN , z∗ ∈ g−1(z), a ∈ Lq(ΩTe , IR).

Corollary 5.1.2 is sucsessfully applied in [22].

6 Application

In this section we apply the constructed theory from the previous section to the
models of Norton-Hoff and Prandtl-Reuss and to the model of nonlinear kine-
matic hardening. All these models are Lq−almost solvable in the sense of Defi-
nition 5.2. In contrast to the model of Prandtl-Reuss, which is only Lq−almost
solvable and not strongly solvable in the sense of Definition 5.1, the model of
Norton-Hoff and nonlinear kinematic hardening possess strong solutions. As we
shall show below none of the sufficient conditions, which implies the solvability
(see Corollary 5.1.1 and Corollary 5.1.2), is satisfied and, therefore, one can
not expect that the model of Prandtl-Reuss does have strong solutions. This
explains the need of the so-called “safe-load condition”6, which actually guaran-
tees that this model has its solutions in BD, the space of bounded deformations

6For the definition of the “safe-load condition” we refer the reader to [12, 20, 30, 51, 52],
for example.
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(see [51, 52]). Therefore, the Prandtl-Reuss model is an example of a problem of
monotone type (1) - (5) (see below), which only Lq-almost solvability but does
not possess strong solutions. Due to technical reasons in all models presented
here we drop the requirement that εp ∈ P0S3 in equations describing the plastic
flow process7. The treetment of this requirement is left for the future work.

Model of Prandtl-Reuss. The model equations are ([1, 20])

−divx T (x, t) = b(x, t), (32)
T (x, t) = D(ε(u(x, t))− εp(x, t)), (33)

∂tεp(x, t) ∈ ∂IK(T (x, t)), (34)
εp(x, 0) = 0, (35)
u(x, t) = γ(x, t), x ∈ ∂Ω, (36)

where IK is the indicator function of some closed convex set K ⊂ S3, which is
specified by a yield criterion. For the von Mises yield criterion the set K has
the form

K = {σ ∈ S3 | σ · σ ≤ C},
where C > 0 is some given constant. In the case of the von Mises yield criterion
the equation (34) reads (see [20] if needed)

∂tεp ∈ g(T ) :=

{
0, if T · T < C,

λT/|T |, otherwise,
(37)

where λ ≥ 0 is the so-called plastic multiplier. From inclusion (37) it is easily
seen that for the von Mises yield criterion equations (32) - (36) can be written
in the form (1) - (5). We note as well that the free energy for the model of
perfect plasticity given by

ψ(ε, εp) =
1
2
D(ε− εp) · (ε− εp) (38)

is positive semi-definite. The vector of internal veriables z consists of εp only,
i.e. z = εp.
The Lq−almost solvability for equations (32) - (36) is easy to establish. Indeed,
the mapping ∂IK is maximal monotone and 3∗−monotone as a subdifferential
of a proper convex lower semi-continous function. The inverse of G generated
by g in (37) is bounded, what can be seen from the formular:

g−1(v) :=

{{ξ | ξ · ξ < C}, if v = 0,

Cv/|v|, v 6= 0.
(39)

Choosing σ ∈ Lp(ΩTe ,S3), the solution of elasticity problem (7) - (9) to ε̂p = 0,
b̂ = b(t) und γ̂ = γ(t), in a way that the condition (16) is satisfied8, we can

7The linear mapping P0 : S3 → S3 is the orthogonal projection onto the subspace

P0S3 := {τ ∈ S3 | trace(τ) = 0},
called the deviator space. The fact that εp ∈ P0S3 is due to plastic incompressibility, i.e. that
there is no change in volume accompanying plastic deformation.

8We recall that this can be always done, since σ as a solution of the linear elliptic problem
is controlled by the given functions b and γ.
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conclude that the problem (32) - (36) is Lq−almost solvable in the sense of
Definition 5.2. Since the operator G−1 generated by g−1 is not coercive and,
since the domain of G, i.e. the set D(G) = {v ∈ Lp(ΩTe ,S3) | v(x, t) ∈ K a.e.},
is not open, Corollary 5.1.1 and Corollary 5.1.2 are not applicable to this model.
Therefore, one can not expect the solvability of the problem (32) - (36) in the
sence of Definition 5.1. But it is already known ([52, 51]) that the solution u
of (32) - (36) together with its time derivative belong to the following space
L∞(0, Te;BD(Ω,R3)) provided that the “safe-load condition” holds, and not to
the space Lq(0, Te;W 1,q(Ω,R3)) as it is required in Definition 5.1. Therefore,
the Prandtl-Reuss model is an example of the Lq-almost solvable problem, which
does not have strong solutions.

Model of Norton-Hoff. The equations of the Norton-Hoff model are ([1])

−divx T (x, t) = b(x, t), (40)
T (x, t) = D(ε(u(x, t))− εp(x, t)), (41)

∂tεp(x, t) = C|T (x, t)|r T (x, t)
|T (x, t)| , (42)

εp(x, 0) = 0, (43)
u(x, t) = γ(x, t), x ∈ ∂Ω, (44)

where r > 1 and C is some material constant. The free energy for this model
has the form

ψ(ε, εp) =
1
2
D(ε− εp) · (ε− εp).

Obviously, it is positive semi-definite. If we define the function g : S3 → S3 as
follows

g(w) := C|w|r w|w| ,

then equations (40) - (44) fit into the framework of the problem (1) - (5).
The function g is maximal monotone and 3∗−monotone (see Remark 7.1) as a
gradient of the continuous convex function

φ(w) :=
C

r + 1
C|w|r+1.

The condition (b) of Theorem 5.1 is satisfied, since the inverse of g given by

g−1(ζ) = 1/C|ζ|1/r ζ

|ζ|
has the polynomical growth, what infers that the inverse of the operator G gen-
erated by g is locally bounded on its domain (the whole space). The condition
(16) is easily fulfilled, since the domain of G is the whole space. Therefore, the
conditions of Theorem 5.1 are satisfied, and, thus, the problem (40) - (44) is
Lq−almost solvable. Moreover, since the domain of G is the whole space, by
Corollary 5.1.1, the problem (40) - (44) has a stong solution.

Nonlinear kinematic hardening. This model we study in details. The model
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of nonlinear kinematic hardening consists of the equations

− divx T (x, t) = b(x, t), (45)
T (x, t) = D(

ε(u(x, t))− εp(x, t)
)
, (46)

∂tεp(x, t) = c1|T (x, t)− Y (x, t)|r T (x, t)− Y (x, t)
|T (x, t)− Y (x, t)| , (47)

∂tεn(x, t) = c2|Y (x, t)|m Y (x, t)
|Y (x, t)| , (48)

Y (x, t) = k(εp(x, t)− εn(x, t)), (49)
Y (x, 0) = εp(x, 0) = 0, (50)
u(x, t) = γ(x, t), x ∈ ∂Ω. (51)

The variable Y ∈ S3 in equations (47) - (50) is called backstress, a variable of
kinematic hardening. c1,c2 and k are material constants. The typical values for
m and r in practice are taken between 5 and 7.
Next, we show that the model (45) - (51) can be written in the general form
(1) - (5). To this end, we choose for the vector of the internal variable z =
(εp, εn) ∈ S3 × S3 ∼= IR12, and define the mapping B : S3 × S3 → S3 by
Bw = B(ŵ, w̃) = ŵ ∈ S3. The transpose BT is given by BT ŵ = (ŵ, 0), thus
BTDBw = (Dŵ, 0) and BTDε = (Dε, 0). Let us define a linear symmetric
mappings M : S3 × S3 → S3 × S3 by

Mw = M(ŵ, w̃) =
(Dŵ + k(ŵ − w̃),−k(ŵ − w̃)

)
.

Obviously, M is positive definite. But the linear mapping L := M − BTDB is
only positive semi-definite, because for w 6= 0

Lw · w = Mw · w − (Dŵ, 0) · (ŵ, w̃) = k|ŵ − w̃|2 ≥ 0.

Let us define the mappings ĝ : S3 → S3 and g̃ : S3 → S3 by

ĝ(ŵ) = c1|ŵ|r ŵ|ŵ| and g̃(w̃) = c2|w̃|m w̃

|w̃|

for w = (ŵ, w̃) ∈ S3 × S3. Finally, if we define g : S3 × S3 → S3 × S3 by

g(w) = g(ŵ, w̃) = (ĝ(ŵ), g̃(w̃)),

we obtain that the equations (45) - (51) can be written in the form (1) - (5).
The free energy for the model of the nonlinear kinematic hardening (45) - (51)
is given by

ψ(ε, z) =
1
2
D(ε−Bz) · (ε−Bz) +

1
2
Lz · z =

1
2
D(ε− εp) · (ε− εp) +

1
2
|z̃|2.

It is easily seen that the free energy is only positive semi-definite. Now we verify
the conditions of Theorem 5.1:
By definition of the function g we have that 0 ∈ g(0). The function g is also
monotone as the gradient of the convex function φ := φ̂+ φ̃, where

ĝ = ∇φ̂, and g̃ = ∇φ̃.
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Since g is the gradient of φ, it is also 3∗−monotone. Moreover, again by defini-
tion of g, one sees that the function φ is continuous, therefore g must be maximal
monotone due to Remark 7.1. Hence, it is left to check that the inverse of the
operator G generated by g is locally bounded on its domain. To this end, we
show that g−1 has a polynomical growth. This will imply the local boundness
of G−1. The inverse of g is easy to compute. Indeed, the function g−1 has the
form

g−1(ζ) = g−1(ζ̂, ζ̃) = (ĝ−1(ζ̂), g̃−1(ζ̃))

with ĝ−1 and g̃−1 given by

ĝ−1(ζ̂) = c3|ζ̂|1/r ζ̂

|ζ̂| and g̃−1(ζ̃) = c4|ζ̃|1/m ζ̃

|ζ̃| ,

where c3 = c
−1/r
1 , c4 = c

−1/m
2 .

Consider the case when r ≥ m. In this case we set p = 1 + m. Then the
conjugate to p number q = p/(p − 1) is equal to 1 + 1/m, i.e. q = 1 + 1/m.
Thus, by Young’s inequality with s = r/m, we obtain that

∣∣g̃−1(ζ̃)
∣∣q ≤ cq3

(1
s

∣∣ζ̃∣∣qs +
1
s′

1s
′)
≤ c5

(∣∣ζ̃∣∣p + 1
)

and ∣∣ĝ−1(ζ̂)
∣∣q = cq4

∣∣ζ̂∣∣p

for some constant c5. Combining the last two relations we get that the function
g−1 enjoys the inequality

∣∣g−1(ζ)
∣∣q ≤ c6

(∣∣ζ∣∣p + 1
)

with some constant c6. This means that g−1 has the polynomical growth with
the rate p/q and, therefore, the operator G−1 is locally bounded on its domain.
Similarly, in the case r ≤ m we obtain that the function g−1 satisfies the in-
equality ∣∣g−1(ζ)

∣∣q ≤ c7
(∣∣ζ∣∣p + 1

)

with p = 1 + r and q = 1 + 1/r and some constant c7. Thus G−1 is locally
bounded for r ≤ m also.
The condition (16) is easily fulfilled, since the domain of G is the whole space.
Hence, all assumptions of Theorem 5.1 are satisfied, and therefore the problem
(45) - (51) is Lq−almost solvable. Moreover, since the domain of G is the whole
space, by Corollary 5.1.1 the problem (40) - (44) has a stong solution.

Remark 6.1. In [3] the existence of strong solutions to the model of nonlin-
ear kinematic hardening is shown under the condition that m and r satisfy the
inequality m > r. Based on Corollary 5.1.2 this condition is removed in [22]
(here we use Corollary 5.1.1). Using the theory of Orlic spaces and the mono-
tone operator method similar results are obtained in [43] without imposing any
restrictions on m and r.
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7 Appendix I: Locally bounded operators

For the reader’s convenience we collect here some basic facts about maximal monotone
operators in reflexive Banach spaces used in this work.

Definition 7.1. The mapping A : V → 2V ∗ is called locally bounded at a point
v0 ∈ V if there exists a neighbourhood U of v0 such that the set

A(U) = {Av | v ∈ D(A) ∩ U }

is bounded in V ∗.

In particular, A is locally bounded at any v 6∈ D(A). Indeed, because for such a
point v there is a neighborhood U that does not have common points with D(A) and
therefore has A(U) = ∅. (The empty set is, of course, regarded as bounded.)

Definition 7.2. A mapping A : V → 2V ∗ is called maximal monotone iff the inequality

〈v∗ − u∗, v − u〉 ≥ 0 (∀) [u, u∗] ∈ GrA

implies [v, v∗] ∈ GrA.
A mapping A : V → 2V ∗ is called generalized pseudomonotone iff the set Av is closed,
convex and bounded for all v ∈ D(A) and for every pair of sequences {vn} and {v∗n}
such that v∗n ∈ Avn, vn ⇀ v0, v∗n ⇀ v∗0 ∈ V ∗ and

lim sup
n→∞

〈v∗n, vn − v0〉 ≤ 0,

we have that [v0, v
∗
0 ] ∈ GrA and 〈v∗n, vn〉 → 〈v∗0 , v0〉.

It is well known ([40, p. 105]) that if A is a maximal monotone operator, then
for any v ∈ D(A) the image Av is closed convex subset of V ∗ and the graph GrA is
demiclosed9. A maximal monotone operator is also generalized pseudomonotone (see
[5, 27, 40], for example).

Remark 7.1. We recall that the subdifferential of a lower semi-continuous and convex
function is maximal monotone (see [41, Theorem 2.25]).

Definition 7.3. The duality mapping J : V → 2V ∗ is defined by

J(v) = {v∗ ∈ V ∗ | 〈v∗, v〉 = ‖v‖2 = ‖v∗‖2∗ }

for all v ∈ V .

For maximal monotone operators we have the following characterization in reflexive
Banach spaces.

Theorem 7.1. Let A : V → 2V ∗ be a monotone mapping. Then A is maximal
monotone iff for any λ > 0 the following surjectivity result holds

R(A + λJ) = V ∗.

Proof. See [5, Theorem II.1.2].

9A set A ∈ V × V ∗ is demiclosed if vn converges strongly to v0 in V and v∗n converges
weakly to v∗0 in V ∗ (or vn converges weakly to v0 in V and v∗n converges strongly to v∗0 in
V ∗) and [vn, v∗n] ∈ GrA, then [v, v∗] ∈ GrA
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Without loss of generality (due to Asplund’s theorem) we can assume that both
V and V ∗ are strictly convex, i.e. if the unit ball in the corresponding space is strictly
convex. In virtue of Theorem 7.1, the equation

J(vλ − v) + λAvλ 3 0

has a solution vλ ∈ D(A) for every v ∈ V and λ > 0 if A is maximal monotone. The
solution is unique (see [5, p. 41]).

Definition 7.4. Setting

vλ = jA
λ v and Aλv = −λ−1J(vλ − v)

we define two single valued operators: the Yosida approximation Aλ : V → V ∗ and
the resolvent jA

λ : V → D(A) with D(Aλ) = D(jA
λ ) = V .

By the definition, one immediately sees that Aλv ∈ A
`
jA
λ v
´
. For the main prop-

erties of the Yosida approximation we refer to [5, 27, 40] and mention only that it is
a bounded maximal monotone operator.

Proposition 7.1. If v ∈ convD(A), then jA
λ v → v in V as λ → 0.

Proof. See [5, Proposition II.1.1] or [40, Proposition III.3.1].

If the operator A is linear and single valued, then the following result holds.

Theorem 7.2. The following assertions are equivalent:

(a) A : V → V ∗ is maximal monotone;

(b) A is a densely defined closed operator such that its adjoint A∗ is monotone;

(c) A is a densely defined closed operator such that A∗ is maximal monotone.

Proof. See Theorem 1 [6].

It turns out that every monotne operator is local bounded at the interior points of
its domain ( [40, Theorem 2.2]). It means that the image Av is a bounded subset of
V ∗ for any v ∈ int D(A). But it can happen that A is not local bounded at any point
of the boundary of D(A) (see an example in [40, p. 158]).

The next lemma is one of the main tools in the construction of the existence theory for
models of monotone type with positive semi-definite free energy. For the completeness
of work we give the proof of this result here (see also [26, Lemma III.24]).

Lemma 7.1. Let A : V → 2V ∗ be a maximal monotone mapping. Assume that A−1

is locally bounded at a point v∗0 ∈ R(A). Then the point v∗0 is the interior point of
R(A).

Proof. Since A−1 is locally bounded at a point v∗0 ∈ R(A) ([v0, v
∗
0 ] ∈ GrA), there

exists r > 0 such that A−1 is bounded on

B(v∗0 , r) := {w∗ ∈ R(A) | ‖w∗ − v∗0‖∗ ≤ r }.

Let v∗ ∈ V ∗ be any element satisfying the inequality ‖v∗ − v∗0‖∗ ≤ r/2 (i.e. v∗ ∈
B(v∗0 , r/2)), then, by Theorem 7.1, the equation

Avλ + λJ(vλ − v0) 3 v∗

has a solution vλ ∈ D(A) for every λ > 0. In virtue of the monotonocity of A we have

〈v∗λ − v∗0 , vλ − v0〉 ≥ 0, v∗λ = v∗ − λJ(vλ − v0).
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This inequality implies that

λ‖vλ − v0‖ ≤ ‖v∗ − v∗0‖∗ ≤ r/2.

Therefore
‖v∗λ − v∗0‖∗ ≤ r.

Since A−1 is bounded on B(v∗0 , r), the set of the solutions vλ remains bounded and

‖v∗λ − v∗‖∗ = λ‖vλ − v0‖ → 0, as λ → 0.

Hence, the demicontinuity of A yields that [v, v∗] ∈ GrA, where v is a weak limit
of vλ. Thus we have proved that B(v∗0 , r/2) ⊂ R(A), what completes the proof of
Lemma 7.1.

A particular answer on the maximality of the sum of two maximal monotone
operators is given by the following result.

Theorem 7.3. Let V be a reflexive Banach space, and let A and B be maximal.
Suppose that the condition

D(A) ∩ int D(B) 6= ∅
is fulfilled. Then the sum A + B is a maximal monotone operator.

Proof. See [40, Theorem III.3.6] or [5, Theorem II.1.7]).

For deeper results on the maximality of the sum of two maximal monotone op-
erators we refer the reader to the book [48]. The next surjectivity result plays an
important role in the existence theory for monotone operators.

Theorem 7.4. If V is a (strictly convex) reflexive Banach space and A : V → 2V ∗ is
maximal monotone and coercive, then A is surjective.

Proof. See [40, Theorem III.2.10].

Among other interesting properties of maximal monotone operators in reflexive

Banach spaces we also mention that both D(A) and R(A) are convex (see [5, Theorem

II.1.5]). Proposition 2.34 in [27, p. 328] gives a condition on a maximal monotone A

under which int D(A) 6= ∅; in particular, this is the case if the convex hull of D(A)

is assumed to have nonempty interior. Under this hypothesis, the interior of D(A)

is convex, and for any point v ∈ D(A) \ int D(A), the set Av is unbounded (see [41,

p. 30]). For further reading on maximal monotone operators we refer the reader to

[5, 10, 40, 41, 27] or [57].

8 Appendix II: Proof of Lemma 5.2

Here we prove the identity (18) used in Lemma 5.2.

Lemma 8.1. The following identity

MpL−1v = L−1Mqv (52)

holds for all v ∈ D(MpL−1) = D(L−1) := {z ∈ X ∗ | R t

0
z(s)ds ∈ X}.
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Proof. Note first that the identity (52) follows easily from

PpL−1v = L−1Pqv, (53)

which holds for v ∈ D(L−1). (53) can be proved as follows:
Let v ∈ D(L−1). Then, according to the definition of Pp, the boundary value problem

− divDε(u(x, t)) = − divDv(x, t), x ∈ Ω (54)

u(x, t) = 0, x ∈ ∂Ω, (55)

has a unique solution u(t) ∈ W 1,q
0 (Ω,R3), i.e. the function u satisfies the equation

(Dε(u(t)), ε(φ))Ω = (Dv(t), ε(φ))Ω

for all φ ∈ W 1,p
0 (Ω,R3). Similary, we obtain that the problem

− divDε(w(x, t)) = − divD
“Z t

0

v(x, s)ds
”
, x ∈ Ω (56)

w(x, t) = 0, x ∈ ∂Ω, (57)

has a unique solution w(t) ∈ W 1,p
0 (Ω,R3). Integrating (54) we get that the identity

“
Dε
“Z t

0

u(s)ds
”
, ε(φ)

”
Ω

=
“
D
“Z t

0

v(s)ds
”
, ε(φ)

”
Ω

holds for all φ ∈ W 1,p
0 (Ω,R3). Thus, by the definition of Pp, we have

w(t) =

Z t

0

u(s)ds.

Since

∇
“Z t

0

uds
”

=

Z t

0

(∇u)ds, u ∈ Lq(0, T ; W 1,q
0 (Ω,R3)),

it must be

∇w(t) =

Z t

0

(∇u(s))ds,

and hereby (53) is proved. The proof is complete.
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