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Abstract

This paper is motivated by an optimal boundary control problem for the cooling process of molten and

already formed glass down to room temperature, which is an important step in glass manufacturing.

The high temperatures at which glass is processed demand to include radiative heat transfer in the

computational model. Since the computation of the complete radiative heat transfer equations is too

complex for optimization purposes, we use simplified approximations of spherical harmonics coupled

with a practically relevant frequency bands model. The optimal control problem is considered as a

PDAE-constrained optimization problem with box constraints on the control. In this paper we want to

augment the objective by a functional depending on the state gradient which forces a minimization of

thermal stress inside the glass. To guarantee consistent and grid-independent values of the reduced

objective gradient at the end of the cooling process we pursue two approaches. The first includes the

temperature gradient with a time-dependent linearly decreasing weight. In the second approach we

augment the objective functional by final state tracking and final state gradient optimization, which to

our knowledge has never been considered before. To determine an optimal boundary control we apply

a projected gradient method where proper step sizes are estimated by Armijo’s rule, considering the first

Wolfe condition. The reduced objective gradient is computed by the continuous adjoint approach. The

arising time-dependent partial differential algebraic equations are numerically solved by variable step-

size one-step methods of Rosenbrock type in time and adaptive multilevel finite elements in space. We

present two-dimensional numerical results for an infinitely long glass block. We vary certain weights in

the objective and compare the two different approaches derived to ensure consistency especially at the

end of the cooling process. Numerical results are presented and discussed.
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1 Introduction

One important step in glass manufacturing is the cooling of molten and already formed glass down to

room temperature. To control this process, the hot glass is put into a preheated furnace. While the

temperature inside the oven is carefully decreased towards room temperature, the glass cools down as

well. To choose an appropriate furnace temperature course, three contrary criteria have to be taken

into account. First, we would like to track the glass temperature distribution over space and time with

respect to a desired temperature profile for which good performance of the involved chemical processes

is known. Second, we have to minimize large temperature gradients within the glass because they cause

great internal stresses and finally can effect cracks inside the material [2]. This phenomenon occurs if the

furnace temperature is decreased very fast because at the boundary the glass reacts almost immediately

to the outer temperature whereas in the core it stays hot for a long time. Nevertheless, the cooling should

not last longer than necessary due to energy and other manufacturing costs.

Because of the high temperatures at which glass is processed, radiative heat transfer plays a dominant

role, leading to a model that is given by a high-dimensional and highly non-linear system of time-

dependent partial differential algebraic equations for the glass temperature and the radiative intensity in

dependence on the furnace temperature. Due to the high complexity of the established equations [15]

we use a dimensionless form of the SP1-approximation including a practically relevant frequency bands

model. This simplified model has proven to perform accurate enough for various radiative heat transfer

problems [9, 14] and is therefore an appropriate choice for optimization purposes where it has to be

solved several times. The optimal control problem is considered as a constrained optimization problem

[8] and a first-order optimality system is derived using a Lagrangian formalism. To describe the quality of

the boundary control we will present various objective components including a functional depending on

the state gradient, a final state tracking, and a final state gradient optimization, scaled with constant or

time-dependent weightings. We will present numerical results showing the indispensability of the above

mentioned final state and state gradient optimization in the case of non-vanishing terminal weights.

First investigations with temperature gradients but without terminal optimization have been made in

Ref. [17] for a simpler one-dimensional gray scale model neglecting the dependence on the frequency.

To determine an optimal boundary control we apply a projected gradient method with Armijo step

size control, considering the first Wolfe condition. To compute the gradient of the reduced objective

functional we follow the continuous adjoint approach. State and adjoint systems are solved by using the

software package KARDOS [6] which uses linearly implicit one-step methods of Rosenbrock type with an

error-controlled step size selection to integrate in time and mesh improving multilevel finite elements

for the discretization in space [5, 10]. Because of the adaptivity in time and space we achieve substantial

savings in computer time and memory which often means the difference between getting an answer or

not to the optimal control problem considered.

This paper is organized as follows. We first formulate the glass cooling model and set up our opti-

mal boundary control problem. We will discuss general problems occurring in the last time step which

become very important when including the temperature gradient within the objective functional. We

will present two different approaches to overcome this drawback and define the resulting objective func-

tionals. Then we derive the first-order optimality system using a Lagrangian formalism and describe the

projected gradient method which is used to solve it. Numerical results are presented for both approaches

and different weightings. The optimal controls obtained and the allocation of the costs to the different

objective components are compared and conclusions are made.

We want to point out that even though the algorithm is presented for the special case of glass cooling

it is not especially constructed for this very problem. Therefore it can easily be transferred to other

application, which are described by comparable systems of time-dependent partial differential algebraic

equations.

3



2 The Glass Cooling Model

One important observation in glass cooling modelling is that taking into account only heat conduction

inside and convective heat transfer at the boundary of the glass is not appropriate. Because of the high

temperatures at which glass is processed the direction- and frequency-dependent thermal radiation field

and the spectral radiative properties of semi-transparent glass play a dominant role for the temperature

distribution inside the material as well. We consider a dimensionless model which consists of a heat

equation for the scaled temperature T (x , t) and a transport equation for the scaled radiation intensity

I(x , t ,ν , s) [9], namely

ε2∂t T − ε
2∇ ·

�

kc∇T
�

=−

∫ ∞

ν0

∫

S2

κν (B (T,ν)− I(x , t ,ν , s))dsdν , (1)

εs · ∇I(x , t ,ν , s)+
�

σν + κν
�

I(x , t ,ν , s) =
σν

4π

∫

S2

I(x , t ,ν , s)ds+ κνB (T,ν) ,

∀ν > ν0, (2)

with the boundary and initial conditions

εkcn · ∇T = hc (u− T ) +απ

�

na

ng

�2 ∫ ν0

0

(B (u,ν)− B (T,ν))dν , (3)

I(x , t ,ν , s) = r (n · s) I(x , t ,ν , s′) + (1− r (n · s))B (u,ν) , (x , s) ∈ Γ−, (4)

T (x , 0) = T0 (x) . (5)

Equation (1) describes the evolution of the glass temperature. Temperature changes can be caused by

thermal flows described through a dimensionless heat conduction coefficient kc and through energy

exchange between the glass and the radiation field because of absorption and emission. This highly

non-linear exchange of energy is modelled by using the frequency-dependent dimensionless absorption

coefficient κν and Planck’s function

B (T,ν) =
n2

g

c2
0

2hpν
3

ehpν/(kb T) − 1
, (6)

for black body radiation in glass, with Planck constant hb, Boltzmann constant kb and the speed of

light in vacuum c0. The refractive index ng is the ratio of the speed of light in vacuum and in glass.

Radiation will be described by its intensity I(x , t ,ν , s)which depends on the spatial variable x ∈ Ω ⊂ Rd ,

time t ∈ [0, te), frequency ν ∈ [0,∞), and direction s ∈ S2 of the unit sphere. The parameter ε is

introduced in Ref. [9] to eliminate the dependence on units and satisfies 0 < ε ≤ 1 in the optically

thick, diffusive regime we are interested in. The boundary conditions (3) reflect free thermal convection

and diffusive surface radiation involving the dimensionless convective heat transfer coefficient hc, the

furnace temperature u, the index of refraction of air na, and the mean hemispheric surface emissivity α

in the opaque spectral region [0,ν0], where glass strongly absorbs radiation.

Equation (2) describes the intensity of a radiation beam through x at time t with direction s and

frequency ν , which is influenced by absorption, emission, and scattering. Here, σν is the dimensionless

scattering coefficient. On the boundary (see Eq. (4)) radiation can either enter into the glass or is

reflected. The amount of reflected energy is given by the reflectivity r ∈ [0,1] and can be found using

Fresnel’s equation [15]. The intensity of an interior beam with direction s gets increased by the intensity

of the exterior radiation coming from the direction of its specular reflection s′ = s − 2(n · s)n with the

outwards normal n(x). The set on which those transparent boundary conditions are defined is given
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by Γ− := {(x , s) ∈ ∂Ω× S2 : n(x) · s < 0}. Finally, the initial temperature of the glass is specified by

condition (5).

The high dimension of the phase space makes the numerical solution of the full radiative heat transfer

equation very expensive, especially for optimization purposes, where the system has to be solved several

times. Various approximate models that are less time consuming, yet sufficiently accurate, have been

developed [9, 14, 11]. In this paper, we use a first order approximation of spherical harmonics including

a practically relevant frequency bands model with N bands. This SP1-approximation has been tested

fairly extensively for various radiation transfer problems in glass and has proven to be an efficient way

to improve the classical diffusion approximations [9, 14]. It results in the following system of partial

differential algebraic equations of mixed parabolic-elliptic type in N + 1 components:

∂t T −∇ ·
�

kc∇T
�

=

N
∑

i=1

∇ ·

�

1

3
�

σi + κi

�∇φi

�

, (7)

−ε2∇ ·

�

1

3
�

σi + κi

�∇φi

�

+ κiφi = 4πκiB
(i) (T ) , i = 1, . . . , N , (8)

with boundary and initial conditions

kcn · ∇T +

N
∑

i=1

1

3
�

σi + κi

�n · ∇φi =
hc

ε
(u− T )+

+
απ

ε

�

na

ng

�2
�

B(0) (u) −B(0) (T )
�

+
c1

ε

N
∑

i=1

�

4πB(i) (u)−φi

�

, (9)

ε2

3
�

σi + κi

�n · ∇φi = c1ε
�

4πB(i) (u)−φi

�

, i = 1, . . . , N , (10)

T (x , 0) = T0 (x) . (11)

Here, the continuous frequency spectrum is split up into N bands [νi−1,νi], i = 0, . . . , N , with νN = ∞

and ν−1 := 0. On each of this bands we consider a mean intensity

φi(x , t) :=

∫ νi

νi−1

∫

S2

I(x , t ,ν , s)dsdν , i = 1, . . . , N , (12)

and a frequency-independent mean of the Planck function

B(i)(v ) :=

∫ νi

νi−1

B(v ,ν)dν , i = 1, . . . , N . (13)

Furthermore, all frequency-dependent coefficients are set constant on each of the bands,

κν = κi, σν = σi , for ν ∈ [νi−1,νi], i = 1, . . . , N . (14)

Division by proper reference quantities brings the system to the above presented dimensionless form.
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3 The Objective Functional

In the optimization of glass cooling processes, it is essential for the quality of the glass that its tem-

perature distribution follows a desired profile to control the chemical reactions in the glass. Typically,

there are time-dependent reference values provided by engineers for the furnace temperature as well.

Especially at the beginning of the cooling process a smooth control which is close to the initial glass

temperature is essential. Equally important is to minimize temperature gradients and therefore large

internal stresses which could induce cracks inside the glass. Particularly, in the case of high quality glass,

this phenomenon can not be neglected. An objective functional which seems to meet all requirements

can be defined by

J̃(T,u) :=
1

2

∫ te

0



T − Td





2

L2(Ω)
dt +

δg

2

∫ te

0

‖∇T‖2
L2(Ω)

dt +
1

2

∫ te

0

δu(t)(u− ud)
2dt , (15)

with the desired glass temperature distribution Td(x , t) and a guideline ud(t) for the control. The final

time of the cooling process is denoted by te. The positive weights δg and δu(t) are used to steer the

influence of the corresponding components. A smooth control close to the desired value, especially at the

beginning of the cooling process, can be realized by choosing a decreasing weight δu(t) with sufficiently

large value at t = 0. Since the furnace only operates in a certain temperature range we restrict the

control u(t) to the set of admissible controls Uad := {u ∈ L2(0, te) : u≤ u≤ u}.

If we now derive the adjoint system and evaluate the reduced gradient to apply a gradient method we

can see that we end up with the terminal condition ξ(te) = 0 for the vector of adjoint variables. The

gradient itself is evaluated by a summand depending on the control and one depending on the adjoint

variables. A more detailed description of the analytical derivation of the first order optimality system

will be given in Section 4. In the case ξ(te) = 0, the part of the reduced gradient depending on the

adjoint variables vanishes and hence the optimization in the last time step is influenced by the difference

between control u(te) and guiding value ud(te) only. This means in the last time step it is impossible to

find other values for the optimal control than the guiding value, which in general is equal to the initial

guess. Figure 1 clarifies this phenomenon. Here, we compute an optimal control with respect to (15)
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Figure 1: Temperature gradient minimization without decreasing weighting or final value optimiza-

tion: objective gradients and optimal controls on different time grids. The objective gradients

(exemplarily for J̃ ′(u0) (left)) show an unreasonable ascent in the final time step. As a conse-

quence the optimal control (right) has a steep final descent whose slope depends on the final

time step length. If it becomes too steep it even might induce numerical instabilities.

by applying a projected gradient method. The optimization is carried out on four different equidistant
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time grids with 5 · 2k, k = 0, . . . , 3 steps. The objective gradient evaluated for the initial control u0 := ud

is presented on the left and the computed optimal control on the right. Except for the last time step,

we observe quite similar objective gradients on all meshes. Even though a final value of around −8000

would seem reasonable it is not what happens. In the final step the gradient increases rapidly toward

zero because of the terminal condition ξ(te) = 0. Because this phenomenon occurs in all optimization

iterations the optimal control at the final time remains at 300 whereas in all other time grid points it is

optimized. This results in a steep descent causing huge temperature gradients at the process end. We

observe an antiproportional dependence of the last time step length and the final slope. On the finest

grid the extremely steep ascent even induces numerical instabilities. It is obvious that the four controls

determined on different grids are mesh dependent. We want to point out that this problem does not

only occur in the glass cooling problem when including the temperature gradient within the objective

functional. It can be observed in any optimization problem where a smooth extension of the reduced

gradient is not close to zero at final time. In the following we want to present two different approaches

to overcome this drawback.

The time-dependent-weight approach (t-d-w) is based on a time-dependent linear decreasing

weight δg(t) which is zero at the final time. This approach does not change the fact that the opti-

mal control and the initial control coincide in the last time step. But the time-dependent weighting of

the temperature gradient functional is a good way to avoid the jump in the last time step and force a

smooth decrease of the optimal control towards ud(te). The performance of this approach for the same

parameters and on the same grids as above can be seen in Figure 2.
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Figure 2: Time-dependent-weight approach: objective gradients and optimal controls on different

time grids. Here, the glass temperature gradient is included with a linearly decreasing time-

dependent weight which vanishes at the final time. The reduced gradients increase smoothly

towards zero (exemplarily for J̃ ′(u0) (left)) and hence the decrease of the optimal controls at

the end of the process is also not as steep as it was before with the time independent tempera-

ture gradient weighting (right). Especially the curves determined on the three finest time grids

show, that for sufficiently fine discretizations the slope of the final decrease does not depend

on the final step length anymore.

The objective gradients (exemplarily for J̃ ′(u0) (left)) start with almost the same values as before but

show a damped profile ending smoothly at zero. There is no noteworthy difference between the four

gradients determined on different meshes. Especially on the three finest meshes, the resulting optimal

controls (right) coincide as well. Nevertheless, for the great weight δg which was chosen for a better

visualization, the optimal controls still show a noticeable descent at the process end. But in contrast to

the setting above, for sufficiently fine discretizations, the slope of this descent is not correlated to the

final step length anymore.
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In the final-value-optimization approach (f-v-o) we augment the objective functional (15) with

functionals penalizing the final value of all functionals which depend on the state. In our case this is the

tracking of the glass temperature and the functional with the temperature gradient. The state derivatives

of the new weighted functionals
δe

2



(T − Td)(te)




2

L2(Ω)
and

δeδg (te)

2
‖∇T (te)‖

2

L2(Ω)
will enter the adjoint

system in the terminal condition which will be shown in detail later. With these new terminal conditions,

which influence the initial values for a backwards solve, the terminal adjoint variable is different from

zero and leads to a reduced gradient which optimizes the control also for the final time te (see Figure 3

(left)). An optimal control determined by this approach is mesh independent and the cooling is spread

uniformly throughout the entire process duration. The optimal controls resulting from this approach for

the above described setting are shown in Figure 3 (right). Their curves are quite similar and, except
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Figure 3: Final-value-optimization approach: objective gradients and optimal controls on different

time grids. The objective functional is augmented by a final temperature tracking and a fi-

nal temperature gradient optimization. The objective gradients shows reasonable values at

the final time (exemplarily for J̃ ′(u0) (left)). The performance of the optimization algorithm

is almost the same on all four grids. Especially the optimal controls determined on the three

finest grids lie exactly above each other except for a little initial increase which can only be

realized on the finest grid (right). In comparison to the two approaches without final value

optimization, here, the cooling is spread homogeneously over the entire cooling process.

for a little initial increase which can only be realized on the finest grid, the optimal controls determined

on the three finest grids lie exactly above each other. If we compare the results to the ones in Figure 1

we observe similar curves for the objective gradient and the furnace temperature profile but now with a

reasonable continuation towards the process end.

We want to mention that the marginal decrease of the optimal control is due the very large weight δg

which was chosen for a more noticeable visualization.

An objective functional providing for the above described approaches can be formulated as follows:

J(T,u) :=
1

2

∫ te

0



T − Td





2

L2(Ω)
dt +

1

2

∫ te

0

δg(t)‖∇T‖2
L2(Ω)

dt

+
δe

2



(T − Td)(te)




2

L2(Ω)
+
δeδg(te)

2
‖∇T (te)‖

2

L2(Ω)
+

1

2

∫ te

0

δu(t)(u− ud)
2dt . (16)

If we want to apply the time-dependent-weight approach we choose the gradient weight δg(t) as a

linearly decreasing function with δg(te) = 0 and set the terminal weight δe equal to zero. Contrary, to

follow the final-value-optimization approach we set δg(t) constant and δe 6= 0.
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4 The First-Order Optimality System

To determine an optimal boundary control for the glass cooling problem we have to minimize the ob-

jective functional (16) with respect to T and u. For this, we consider the constrained optimization

problem

min
(T,u)

J(T,u) subject to (7)-(11). (17)

The corresponding first-order optimality system can be derived from a Lagrangian formalism [20].

Therefore we consider the optimal control problem (17) in a Hilbert space setting. Given a Hilbert

space H(Ω) of functions defined on Ω, its dual space is denoted by H∗(Ω). We define

Q := (0, te)×Ω,

Σ := (0, te)× ∂Ω,

Z := {z ∈ L2(0, te; H1(Ω)) : ∂tz ∈ L2(0, te; (H
1)∗(Ω))},

V := Z × [L2(0, te; H1(Ω))]N ,

W := [L2(0, te; H1(Ω))]N+1× L2(Ω),

U := L2(0, te).

Here, Q describes the space-time cylinder and Σ its spatial boundary. V is the space of states

v := (T,φ1, . . . ,φN)
T , W is the space of adjoint states ξ := (ξT ,ξφ1

, . . . ,ξφN
,ξT0
)T , and U is the con-

trol space.

Multiplication of the state system (7)-(11) with a test function ξ ∈ W results in the following weak

formulation: Find v ∈ V with T (x , 0) = T0(x) in L2(0, te;Ω) such that

W ∗
〈e(v ,u),ξ〉W

:=

∫ te

0
(H1)
∗ 〈∂t T,ξT 〉H1dt +

∫

Q

kc∇ξT∇Tdxdt −

∫

Q

N
∑

i=1

4πκiB
(i)(T )ξφi

dxdt

+

∫

Q

N
∑

i=1

�

ε2

3
�

σi + κi

�∇ξφi
+

1

3
�

σi + κi

�∇ξT

�

∇φidxdt +

∫

Q

N
∑

i=1

κiφiξφi
dxdt

−

∫

Σ

απ

ε

�

na

ng

�2
�

B(0) (u)− B(0) (T )
�

ξT dsdt −

∫

Σ

hc

ε
(u− T )ξT dsdt

−

∫

Σ

N
∑

i=1

c1ε
�

4πB(i) (u)−φi

�

ξφi
dsdt −

∫

Σ

N
∑

i=1

c1

ε

�

4πB(i) (u)−φi

�

ξT dsdt

+

∫

Ω

�

T (x , 0)− T0(x)
�

ξT0
dx = 0, (18)

for all ξ ∈W . Using (18) we define the Lagrangian

L(v ,u,ξ) = J(v ,u) +
W ∗
〈e(v ,u),ξ〉W . (19)

The first-order optimality system is then given by the Karush-Kuhn-Tucker (KKT) conditions

∂ξL(v ,u,ξ) = 0, (20)

∂
v

L(v ,u,ξ) = 0, (21)

∂uL(v ,u,ξ) (w − u)≥ 0 ∀w ∈ Uad . (22)
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Because of the box-constraints on the control we have to deal with an inequality in (22). Variation of

L(v ,u,ξ) with respect to ξ yields the state system (7)-(11). From varying the state variable v we find

the following adjoint system

−∂tξT −∇ · (kc∇ξT )− 4π

N
∑

i=1

κi∂T B(i)(T )ξφi
= −(T − Td) +δg∆T, (23)

−ε2∇ ·

�

1

3(σi + κi)
∇ξφi

�

−∇ ·

�

1

3(σi + κi)
∇ξT

�

= −κiξφi
, i = 1, . . . , N , (24)

with boundary and terminal conditions

kcn · ∇ξT = −

 

hc

ε
+
απ

ε

�

na

ng

�2

∂T B(0)(T )

!

ξT −δg n · ∇T, (25)

ε2

3(σi + κi)
n · ∇ξφi

+
1

3(σi + κi)
n · ∇ξT =−c1εξφi

−
c1

ε
ξT , i = 1, . . . , N , (26)

ξT (te) = −δe(T − Td)(te) +δeδg∆T −δeδg n · ∇T, (27)

where we identify the component ξT0
by ξT (0) and formally set the outer normal n of an inner point

x ∈ Ω equal to zero. The optimality condition (22) results in
∫

Σ

�

−
hc

ε
ξT −

απ

ε

�na

ng

�2

∂T B(0)(u)ξT − 4πc1

N
∑

i=1

∂T B(i)(u)

�

1

ε
ξT + εξφi

�

+
δu

|∂Ω|
(u− ud)

�

(w − u)dsdt ≥ 0, ∀w ∈ Uad . (28)

Thus, to fulfill the KKT-conditions (20)-(22) we have to find a triple (u, v ,ξ) solving the state system

(7)-(11), the adjoint system (23)-(27), and the optimality condition (28).

Since (7)-(11) is uniquely solvable for an arbitrary u ∈ Uad with a Fréchet differentiable map

v : Uad → V, u 7→ v (u) we can define a reduced objective functional Ĵ(u) := J(v (u),u) and determine

its gradient Ĵ ′(u) [11]. Fréchet differentiability of v is shown by splitting the operator e(v ,u) into

a linear part D, a nonlinear part N acting on v , and a nonlinear part B acting on u. With this

decomposition the operator e(v ,u) can be replaced by a continuous Fréchet differentiable operator

R(v ,u) := v + D−1N (v ) + D−1B(u). Based on this approach the applicability of the implicit function

theorem can be shown. For more details we refer to Ref. [16] and deduce the directional state derivative

v
′(u)[δu] =−∂

v
e−1(v (u),u)∂ue(v (u),u)δu.

Applying this relation to the gradient of the reduced objective functional in the direction δu, we find

U∗
〈Ĵ ′(u),δu〉U = U∗

〈∂uJ(v ,u)− ∂ue∗(v ,u)∂
v
e−∗(v ,u)∂

v
J(v ,u),δu〉U . (29)

Using the adjoint system

∂
v

L(v ,u,ξ) = ∂
v
J(v ,u) + ∂

v
e∗(v ,u)ξ= 0

we have ξ = −∂
v
e−∗(v ,u)∂

v
J(v ,u). Substituting this expression in (29) and identifying U with its dual

space U∗, the Riesz representative of the mapping u 7→ Ĵ ′(u) is given by

Ĵ ′(u) =

∫

∂Ω

−
hc

ε
ξT −

απ

ε

�na

ng

�2

∂T B(0)(u)ξT −
4πc1

ε

N
∑

i=1

∂T B(i)(u)ξT

− 4πεc1

N
∑

i=1

∂T B(i)(u)ξφi
ds+δu(u− ud). (30)

The relation between the optimality condition (28) and the reduced gradient (30) can now be used to

find an optimal triple (u, v ,ξ) fulfilling the KKT-conditions. This is done by means of a projected gradient

method.
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5 The Projected Gradient Method

We apply a gradient method with Armijo step size control to determine a triple (u, v ,ξ) fulfilling the

KKT-conditions. To compute an optimal control we successively improve the initial control u(0) by means

of the reduced objective functional’s gradient which gives us the direction d(k) := −Ĵ ′(u(k)) in which u(k)

has to be modified. Its scaling β is determined by following Armijo’s rule considering the first Wolfe

condition

Ĵ(u(k)+ βd(k)) ≤ Ĵ(u(k)) + γ1βd(k)Ĵ ′(u(k)). (31)

The sufficient decrease condition (31) does not only ensure a monotone decrease but also avoids an

overpassing of a minimum. In our computations we use γ1 = 1.0e − 4. To find a proper step size β

we start with an initial guess β = β0 and reduce β until (31) is fullfilled. We finally stop the algorithm

if the relative difference between old and new target value is below a certain tolerance TOLg . In spite

of its simplicity, this strategy is fairly effective and our experience shows that the benefit of a more

sophisticated line search is not worse the expense. Similar observations have been made in Ref. [17].

Summarizing, the projected gradient method reads as follows:

(1) initialization

(i) choose TOLg , set k = 0, β = β0, and u(0) = ud;

(ii) solve the state equations for (T (0),∇T (0),φ(0)) with u= u(0);

(iii) evaluate J (0) := J(T (0),∇T (0),u(0)) from (16);

(2) main loop

(iv) set k := k+ 1;

(v) solve the adjoint equations for (ξ
(k)

T ,ξ
(k)

φ1
, . . . ,ξ

(k)

φN
) with (T (k−1),∇T (k−1),φ(k−1));

(vi) set u(k) = PUad
(u(k−1)− β Ĵ ′(u(k−1)));

(vii) solve the state equations for (T (k),∇T (k),φ(k)) with u= u(k);

(viii) evaluate J (k) := J(T (k),∇T (k),u(k)) from (15);

(ix) if (31) holds, continue; otherwise, set β = 0.5β and go to step (vi);

(x) if |J (k)− J (k−1)|/|J (k)|>TOLg , set β = 1.5β and go to (iv); otherwise, stop;

Here, the projector PUad
: L2(0, te)→ L2(0, te) in (vi) is just a cut-off function which brings the iterate

back to the feasible set Uad .
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6 Adaptive Space and Time Discretization

We are going to follow the so called “first-optimize-then-discretize” approach. This approach has the

advantage that the discrete adjoint system is naturally consistent with the adjoint PDAE whereas in the

“first-discretize-then-optimize” approach this must not be the case. Error estimates can be controlled not

only in the state but also in the adjoint system. Therefore the adjoint state and hence the reduced gra-

dient can be computed on appropriate adaptively refined grids to guarantee consistency between finite

and infinite dimensional problem. If sufficient, the state system itself might be solved on quite coarse

grids. Furthermore, we can choose independent integration schemes of high order and with good stabil-

ity properties in accordance to the structure of the different PDAEs. An often discussed disadvantage of

the “first-optimize-then-discretize” approach is the inconsistency between the reduced gradient and the

minimization problem itself. But in contrast to the inconsistency between discrete minimization problem

and the PDAE setting itself this inconsistency can be reliably controlled by adaptive grid adjustment.

To solve the state and the adjoint system we use the state-of-the-art software package KARDOS which

allows the space-time adaptive solution of systems of partial differential algebraic equations

n
∑

j=1

Hi j

∂ w j(x , t)

∂ t
= Fi(x , t , w,∇w) +

n
∑

j=1

∇ ·
�

Pi j∇w j

�

, i = 1, . . . , n, (32)

with Hi j = Hi j(x , t , w,∇w) and Pi j = Pi j(x , t , w,∇w). The state system can be easily formulated in

this form. To set up the adjoint equations, the Laplacian ∆T has to be considered in the function

F1(x , t , w,∇w). We avoid difficulties in computing second derivatives of the temperature by appending

an auxiliary temperature T̄ to the vector w. Augmenting the entire adjoint system with an additional

algebraic equation T− T̄ = 0 we can force the auxiliary temperature T̄ to coincide with the original tem-

perature T inside the glass. The term δg∆T̄ = δg∆T then appears in the summand
∑n

j=1
∇ ·
�

Pi j∇w j

�

of (32) and can be used to handle the Laplacian of T in a weak sense making use of (25) with T replaced

by T̄ . Applying these modifications the adjoint system almost fits into the form (32).

The last challenge, especially in the case of linear finite elements, is to approximate the Laplacian of

the glass temperature which occurs within the terminal condition (27) but can not be handled by the

auxiliary temperature T̄ . We consider a derivation based on weak formulation and partial integration to

determine a proper approximation of the Laplacian for every vertex of the spatial grid, see also Ref. [18].

The weak formulation of the Laplacian with test function ϕ is given by

∫

Ω

∆T (x , te)ϕ(x)dx = −

∫

Ω

∇T (x , te)∇ϕ(x)dx +

∫

∂Ω

n · ∇T (x , te)ϕ(x)dλ. (33)

Now, let the verticals of the spatial decomposition be denoted by pi , i ∈ N. To point out that three

verticals belong to the same triangle D we will also refer to them by q1,q2,q3. The patch of triangles

around a vertex pi, where the test function ϕ does not vanish is denoted by Di. Analogously, q1 and q2

describe the nodes of an edge E and Ei the set of edges, where ϕ does not vanish. In the following we

consider the weak formulation within a linear finite element setting and substitute the test function ϕ by

linear basis functionsϕi which are equal to one in the node pi and zero in all other nodes. Approximating

(33) by the midpoint rule which is exact for linear functions we have

∑

D∈Di

|D|∆T

�

q1+ q2+ q3

3
, te

�

ϕi

�

q1+ q2+ q3

3

�

=−
∑

D∈Di

|D|∇T

�

q1+ q2+ q3

3
, te

�

∇ϕi

�

q1+ q2+ q3

3

�

+
∑

E∈Ei

|E|n · ∇T

�

q1+ q2

2
, te

�

ϕi

�

q1+ q2

2

�

. (34)
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Making use of linearity and the definition of ϕi we get

∑

D∈Di

|D|
1

3

3
∑

j=1

∆T (q j, te)ϕi(q j)

=−
∑

D∈Di

|D|∇T (te)|D∇ϕi|D
+

1

2

∑

E∈Ei

|E|n · ∇T (te)|E (35)

and therefore

∆T (pi, te)

=−
3

∑

D∈Di
|D|





∑

D∈Di

|D|∇T (te)|D∇ϕi|D
+

1

2

∑

E∈Ei

|E|n · ∇T (te)|E



 . (36)

Here, ·|D and ·|E stand for the constant value of a quantity on a triangle D or an edge E, respectively. If

we now approximate ∆T using (36) and solve the adjoint system by means of linear finite elements it

turns out that the boundary integral in (33) and the one resulting from the term −δeδg n · ∇T in (27)

annihilate each other. Summarizing, the terminal condition (27) can be approximated by

ξT (x , te) =−δe(T − Td)(x , te)−
3δeδg
∑

D∈Di
|D|

∑

D∈Di

|D|∇T (te)|D∇ϕi |D. (37)

Hence, for the given setting the above described approximation is of great advantage, because it avoids

the estimation of outer normals and the computation of the annihilated boundary integrals.

Using the transformation t̄ := te− t in the adjoint equations and neglecting the bar for the transformed

time variable afterwards, both systems can be written in the abstract form

H∂t w = R(w) for (x , t) ∈Q, (38)

w(t = 0) = w(0) for x ∈ Ω, (39)

with

w =

(

�

T,φ1, . . . ,φN

�T
for the state system,

�

ξT ,ξφ1
, . . . ,ξφN

, T̄
�T

for the adjoint system.

The matrix H has only one nonzero value H11 = 1 and the source vector R(w) includes all differential

operators supplemented with their boundary conditions. For the discretization in time, we use one-step

methods of Rosenbrock type. Rosenbrock methods are designed by working the exact Jacobian directly

into the formula, so no secondary inner iteration scheme is necessary. In addition, for moderate accuracy

the perform even better than a fully implicit method. Rosenbrock methods are described by the recursive

linear implicit one-step scheme

wn+1 = wn+

s
∑

i=1

biW
n
i

, (40)

�

H

γτn

− ∂wR(wn)

�

W n
i
=

i−1
∑

j=1

ci j

τn

HW n
j
+ R
�

wn+

i−1
∑

j=1

ai jW
n
j

�

, i = 1, . . . , s, (41)

where τn denotes the step size, wn the approximation to w(tn) at tn =
∑

i=0,...,n−1τi , and s is the number

of stages. The basic idea of linearly implicit methods is that for the calculation of the intermediate
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values W n
i

, i = 1, . . . , s, only a sequence of linear systems with one and the same operator has to be

solved. One-step methods give us the opportunity to quickly change the step size in every step. This

step size is adapted automatically according to the local temporal discretization error which can easily

be estimated by using an embedded formula of inferior order. They are also defined by (40)-(41) but

with different coefficients b̂i , ĉi j , âi j , and γ̂. The coefficients bi , b̂i , ci j , ĉi j , ai j , âi j , γ, and γ̂ can be chosen

to gain the desired order, high consistency and good stability properties like A- or L-stability [7, 10].

For the solution of the stiff and highly nonlinear state system, we use the 4-stage Rosenbrock method

ROS3PL which is an L-stable order three method for nonlinear stiff differential algebraic equations of

index one and is especially designed to avoid order reduction for parabolic problems [13, 12]. To solve

the adjoint system backwards in time, we aim to exploit the PDAE on same discrete time points as used

in the forward calculation of the state system. Considering a Rosenbrock scheme of higher order we can

expect sufficiently small time errors even if the used time grid is not adapted to the adjoint system itself.

Nevertheless, we control local error estimates and allow for refinement if necessary. Here, we apply

the 6-stage Rosenbrock solver RODASP [19] which has order four for differential algebraic equations of

index one and avoids order reduction for linear parabolic problems. For the complete sets of coefficients

of ROS3PL and RODASP we refer to Ref. [12] and Ref. [11], respectively.

The equations (41) are linear elliptic problems which can be solved consecutively. This is done by

means of a linear adaptive multilevel finite element method. The main idea of the multilevel technique

consists of replacing the solution space by a sequence of discrete spaces with successively increasing

dimensions to improve the approximation property. After computing linear approximations of the inter-

mediate values W n
i

, i = 1, . . . , s, a posteriori error estimates can be utilized to give specific assessment of

the error distribution [5]. The spatial errors are estimated by solving local Dirichlet problems on smaller

subdomains as described in Ref. [10]. Added to the projection error resulting from the transfer between

different meshes the cumulative error is an indicator where and how often the spatial grid has to be re-

fined and where it could be even coarser. The linear algebraic systems resulting from the above described

discretization are solved by the stabilized bi-conjugated gradient method BICGSTAB preconditioned with

an incomplete LU-factorization.

This fully adaptive environment gives us the possibility to allow for appropriate independently refined

spatial grids in each point of time. The grids, estimated within the state solve, are used as an initial

grid for the adjoint computations. Nevertheless, it is important to control spatial error estimates in the

backwards solve as well and refine the spatial grids if necessary.

Generally, the application of non-adjoint time integration schemes leads to inconsistency between

the reduced gradient and the minimization problem itself. Therefore it is essential to control the dis-

cretization errors in both systems to ensure a sufficient consistency between discrete and continuous

problem.
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7 Computational Experiments

The projected gradient method described above is now applied to minimize (16) subject to the SP1-

approximation of the presented radiative heat transfer model. We investigate a three-dimensional

infinitely long glass block, hence it is sufficient to consider a two-dimensional slice as computational

domain. We set Ω = [−3,3]× [−1,1] ∈ R2 adaptively discretized with 865 spatial nodes as shown in

Figure 4. In the computational experiment presented here the process time interval [0,0.1] is discretized

x

y 0

0

1

1

-1

-1 2-2 3-3

Figure 4: Initial triangulation of the computational domain. Because the glass cools down faster at its

periphery the grid is locally refined at the boundary.

by 24 time steps. They are evaluated adaptively within the first optimization iteration. We start with

an initial time step of 5.0e − 5 which is increased adaptively such that all relative error estimates stay

below 5.0e− 3. This significantly finer discretization within the beginning of the process is necessary to

resolve a small increase of the optimal control at the beginning of the cooling. It can barely be seen in

the following figures showing the optimal control but becomes clear when looking at the temperature

gradient. Note that in a uniform approach we would be forced to an average of 2000 equidistant time

steps due to the very small step at the beginning.

The non-opaque frequency interval (ν0,∞) is discretized by an eight-band model [1, 11] as shown in

Figure 5. The first six bands divide the region of thermal infrared. The visible light is located within the
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Figure 5: The continuous frequency spectrum is approximated by a discrete eight-band model with

constant coefficients on each interval.

seventh and the strong ultraviolet radiation within the eighth band. The corresponding absorption rates

are given in Table 1 [1]. It is interesting to mention that for high temperatures the simulations show the

largest radiative intensity within the seventh band which involves the visible light. As the temperature

decreases this peak shifts towards the third band located within the infrared region. This observations

coincides with those one can make in reality. At the beginning of the cooling process the hot glass glows.

Once it gets colder radiation can not be seen anymore but still be felt in form of heat. In the eighth band

we observe almost no radiation, which is related to the opaqueness of glass for strong ultraviolet light.
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Table 1: Bounds and absorption rates of the eight-band model.

Band i νi−1(1013s−1) νi(1013s−1) κi(m
−1)

- 0 2.9334638 opaque

1 2.9334638 3.4223744 7136.00

2 3.4223744 3.7334994 576.32

3 3.7334994 4.5631659 276.98

4 4.5631659 5.1335616 27.98

5 5.1335616 5.8669276 15.45

6 5.8669276 6.8447489 7.70

7 6.8447488 102.6712329 0.50

8 102.6712329 ∞ 0.40

We assume clean glass, so scattering can be omitted. All further parameters and constants are set as

follows:

hb = 6.62608 · 10−34 hc = 0.001

kb = 1.38066 · 10−23 kc = 1.0

c0 = 2.990 · 108 α= 0.914

ng = 1.46 c1 = 0.14936

aa = 1.0 ε= 1.0.

To enforce a furnace temperature close to the initial glass temperature at the beginning of the process

we chose a large value δu(0) and decrease the weight δu(t) quadratically to a constant value within the

first quarter of the process duration. If the time-dependent-weight approach is applied the weight for

the final value optimization δe,0 is set to zero. In case of the final-value-optimization approach we set

δe,1 = 0.001. The effect of the temperature gradient to the optimal control is examined by varying the

gradient weight δg which is chosen as a linearly decreasing function to follow the t-d-w approach and

set constant in case of the f-v-o approach. An overview of the detailed choice of weights can be found in

Table 2.

Table 2: Overview of optimization weights.

time-dependent-weight approach (t-d-w) final-value-optimization (f-v-o)

δe,0 = 0.0 δe,1 = 0.001

δg ,k(t) = δg0,k −
δg0,k

te
t δg ,k(t) = δg0,k

δg0,k =























0.0 if k = 0

0.1 if k = 1

0.5 if k = 2

1.0 if k = 3

5.0 if k = 4

δu(t) =

(

1600(1−max{1,20 ·δg0,k})t
2+max{1,20 ·δg0,k} if t < 0.25te

1 else
k = 0, . . . , 4
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We start the cooling process with a uniform glass temperature distribution T0(x) = 900, where the

reference quantity is 1K . The spatially uniform desired state Td(x , t) is set to

Td(t) := T0 exp

�

−
t

te

log

�

T0

300

��

.

When the cooling process is stopped at te = 0.1 the value Td(te) = 300 enforces a final temperature dis-

tribution as close as possible to room temperature. The dimensionless furnace temperature is restricted

to the set of admissible controls Uad := {u ∈ L2(0, te) : 300≤ u≤ 900} and its reference value ud is set to

the desired temperature profile Td . In each iteration step we derive consistent initial values for the mean

intensities φi, i = 1, . . . , 8, with respect to the initial glass temperature and the current control iterate.

Before solving the adjoint system we compute consistent adjoint values ξφi
, i = 1, . . . , 8, with respect

to the terminal condition ξT (x , te) =−δe(T − Td)(x , te) + δeδg∆T (x , te)− δeδg n · ∇T (x , te). Figure 6

gives an overview about all cases considered and the resulting optimal controls plotted over time. In the

t-d-w approach f-v-o approach
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Figure 6: Overview of optimal controls resulting from the time-dependent-weight approach (left) and

the final-value-optimization approach (right) for different temperature gradient weights.

case of δg0,0 = 0.0, where the temperature gradient is excluded from the objective, there is almost no
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offset between the optimal controls resulting from the two approaches. This is due to the fact that the

only difference lies in the summand 0.001

2
‖(T − Td)(te)‖

2

L2(Ω)
of the objective functional which allows to

optimize the final control value. In this setting the summand does not really change the control because

in the second half of the time interval the reduced gradient is greater than zero and the lower box con-

straint is active. Nevertheless this term can not be neglected in general. Just think about a case with the

same setting but shorter process duration such that the lower box constraint is not reached yet. Also for

δg0,1 = 0.1 and δe = 0.0 the lower box constraint is active in the second half of the time interval with a

positive reduced gradient. Including final values the reduced gradient in the second half becomes nega-

tive and therefore the optimal control is increased. To study the difference between the two approaches

in detail we want to have a closer look at the case where δg0,2 = 0.5. Both approaches come up with an

optimal control which does not start at 900 as the initial guess but a little cooler at around 800. Then,

the optimal control resulting from the t-d-w approach shows a smooth decrease towards the predefined

final value of 300. Contrarily, the optimal control resulting from the f-v-o approach does not decrease

below 450 throughout the entire time interval. It even increases a little within the last third (see Figure

7). On the boundary the t-d-w optimal control suits the glass temperature better to the desired profile
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Figure 7: Comparison of the optimal control resulting from the t-d-w and the f-v-o approach with

δg0,2 = 0.5. The resulting optimal controls coincide during the first third of the time inter-

val, they split up in the second third, and vary significantly in the last third.

than the f-v-o control whereas in the interior there is almost no difference (see Figure 8). Contrariwise,
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t−d−w: glass temperature at interior point
f−v−o: glass temperature at interior point
desired temperature

(a) Temperature in interior
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t−d−w: glass temperature at boundary point
f−v−o: glass temperature at boundary point
desired temperature

(b) Temperature on boundary

Figure 8: Resulting glass temperature close to the center (0,0) (left) and on the boundary (3,1) (right)

for both approaches with δg0,2 = 0.5. Especially on the boundary the t-d-w approach fits the

glass temperature much closer to the desired profile than the f-v-o approach.
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the temperature gradients are significantly reduced by the f-v-o approach, especially in the second half of

the time interval on the boundary as well as in the interior (see Figure 9). Nevertheless the reduction of

the reduced gradient achieved by the t-d-w approach with δg0,2 = 0.5 is still sufficient. On the boundary

the temperature gradient norms are spread constantly over the time interval and in the interior they are

smaller anyway. The impact of the optimal controls on the glass temperature and its gradient for all
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t−d−w: glass temperature gradient at interior point
f−v−o: glass temperature gradient at interior point

(a) Temperature gradient in interior
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t−d−w: glass temperature gradient at boundary point
f−v−o: glass temperature gradient at boundary point

(b) Temperature gradient on boundary

Figure 9: Resulting Euclidean glass temperature gradient norm close to the center (0,0) (left) and on

the boundary (3,1) (right) for both approaches with δg0,2 = 0.5. Especially in the second

half of the time interval the f-v-o approach reduces the temperature gradient significantly in

comparison to the t-d-w approach.

considered cases is summarized in terms of L2-norms in Table 3. The results of the t-d-w approach are

highlighted with white, those of the f-v-o approach with gray. We can see that for all cases δg0 > 0.0

Table 3: Objective details for t-d-w approach (white) and f-v-o approach (gray).

Ĵ(uopt) ‖T − Td‖
2
Q
‖(T − Td )(te)‖

2
Ω

‖∇T‖2
Q

‖∇T(te)‖
2
Ω
‖u− ud‖

2
[0,te]

δe,0, δg0,0 5.50e+3 9.36e+3 3.52e+5 5.82e+4 4.59e+5 1.76e+3

δe,1, δg0,0 5.68e+3 9.34e+3 3.51e+5 5.85e+4 4.58e+5 1.79e+3

δe,0, δg0,1 6.86e+3 1.02e+4 3.73e+5 5.08e+4 4.84e+5 1.16e+3

δe,1, δg0,1 8.25e+3 1.09e+4 4.11e+5 4.11e+4 2.42e+5 1.03e+3

δe,0, δg0,2 1.07e+4 1.34e+4 4.40e+5 3.53e+4 5.51e+5 3.40e+2

δe,1, δg0,2 1.40e+4 1.62e+4 5.97e+5 2.00e+4 2.77e+4 8.09e+2

δe,0, δg0,3 1.40e+4 1.66e+4 4.98e+5 2.72e+4 6.13e+5 1.78e+2

δe,1, δg0,3 1.83e+4 2.09e+4 7.30e+5 1.33e+4 1.09e+4 1.02e+3

δe,0, δg0,4 2.65e+4 3.10e+4 7.31e+5 1.35e+4 8.57e+5 8.71e+2

δe,1, δg0,4 3.33e+4 3.93e+4 1.19e+6 4.61e+3 1.09e+3 2.45e+3

Table 4: Temperature gradient details for t-d-w approach (white) and f-v-o approach (gray).

‖∇T‖2
Q

‖∇T(te)‖
2
Ω

max
t j

‖∇T‖2
Ω

j max
tk

(max
x
‖∇T‖2

2
) k

δe,0, δg0,0 5.82e+4 4.59e+5 7.11e+5 16 7.36e+2 14

δe,1, δg0,0 5.85e+4 4.58e+5 7.15e+6 16 7.39e+2 14

δe,0, δg0,1 5.08e+4 4.84e+5 6.05e+5 19 6.61e+2 14

δe,1, δg0,1 4.11e+4 2.41e+5 5.13e+5 14 6.39e+2 12

δe,0, δg0,2 3.53e+4 5.51e+5 5.51e+5 24 5.84e+2 24

δe,1, δg0,2 2.00e+4 2.77e+4 3.04e+5 12 5.11e+2 11

δe,0, δg0,3 2.72e+4 6.13e+5 6.13e+5 24 6.39e+2 24

δe,1, δg0,3 1.33e+4 1.08e+4 2.22e+5 11 4.41e+2 11

δe,0, δg0,4 1.35e+4 8.56e+5 8.56e+5 24 8.18e+2 24

δe,1, δg0,4 4.61e+3 6.59e+2 8.73e+4 11 2.83e+2 10
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the t-d-w approach matches the glass temperature closer to Td (column 2) whereas the f-v-o approach

achieves a greater reduction of the temperature gradient (column 4). In Table 4 we have a closer look

at the temperature gradient, its value at the process end, its maxima over the process duration and the

space-time cylinder. Again, the results of the t-d-w approach are highlighted with white, those of the

f-v-o approach with gray. We can state the following observations.

• Both approaches show a satisfactory decrease of the L2(Q)-norm of the temperature gradient in

accordance to the weight δg (column 1). However, if we have a look at the temperature gradient

value at the final time it is decreased by the f-v-o approach whereas by the t-d-w approach it is

increased (column 2). For sure, this is due to the fact that in the t-d-w approach the temperature

gradient is weighted with zero at final time and hence not even minimized at the end whereas in

the f-v-o approach we include an extra term to minimize the final gradient value.

• Following the t-d-w approach the maximal temperature gradient L2(Ω)-norm (column 3) and the

maximal Euclidean norm (column 5) is reduced for 0≤ δg0 ≤ 0.5. While the maximal gradient

norms descent the point of time when they occur shifts towards the process end (column 4 and

6). Once the final time is reached, the maximal gradient norm can not be reduced anymore.

For increasing δg0 ≥ 0.5 the maximal gradient even increases again. This means using the t-d-w

approach within this setting the temperature gradient can not be reduced further than in case of

the scaling δg0 ≥ 0.5.

• The maximal L2(Ω)- and Euclidean norms of the f-v-o approach occur somewhere in the middle of

the time interval and gives rise to a uniformly spread cooling throughout the entire time interval

for every gradient weight δg0. Following this approach the temperature gradient norm can be

reduced arbitrary far.

8 Summary

Summarizing, we can say that with the time-dependent-weight approach and the final-value-

optimization approach we found two suitable ways to overcome inconsistencies of the terminal adjoint

condition. We want to recall that this problem does not only occur in the glass cooling problem when

including the temperature gradient within the objective functional. It can be observed in any optimiza-

tion problem where a smooth extension of the reduced gradient is not close to zero at final time. In the

following we want to discuss under which circumstances which approach should be chosen.

• If we apply the t-d-w approach the optimal control will always decrease down to the final value

of he initial control. If it is set to room temperature the resulting optimal control induces a final

glass temperature which is at least close to room temperature. This has to be payed for by the fact

that temperature gradients can not be forced arbitrary small. The greater the weight δg0 is chosen

the more cooling is shifted towards the process end where the function δg(t) tends to zero. Then,

a more homogeneous cooling could only be enforced by choosing a steeper decreasing function

δg(t) which somehow annihilates the great gradient weight again. Hence the choice of weights

and weighting functions requires flair and experience. An advantage of this approach is the fact

that it can be implemented with many standard PDE-solver software packages.

• By contrast, finding weights for the f-v-o approach is intuitive. Independently from the choice

of weights, the cooling is spread uniformly throughout the process duration. Even if the gradient

weight δg0 is chosen quite high and the process duration te quite short this approach will induce an

optimal control which minimizes temperature gradients arbitrary far. As a consequence the glass

temperature itself might not necessarily be cooled down close to room temperature. A drawback

of this approach is the fact that the implementation of initial adjoint values including the Laplacian

requires full access to the source code of the PDE solver.
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Currently, we work on including more sophisticated second-order multilevel optimization methods based

on a globally oriented error control [3]. Future research will be on the development of discrete adjoint

linearly implicit integration schemes to ensure consistence between the adjoint based reduced gradient

and the optimization problem itself. Pointwise restrictions on the state gradient as recently proposed and

analyzed for a mixed finite element method in Ref. [4] are also very promising.
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