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In this paper some analytical and numerical aspects of time-dependent models with internal variables are discussed. The
focus lies on elasto/visco-plastic models of monotone typearising in the theory of inelastic behavior of materials. This
class of problems includes the classical models of elasto-plasticity with hardening and viscous models of the Norton-
Hoff type. We discuss the existence theory for different models of monotone type, give an overview on spatial regularity
results for solutions to such models and illustrate a numerical solution algorithm at an example. Finally, the relationto
the energetic formulation for rate-independent processesis explained and temporal regularity results based on different
convexity assumptions are presented.
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1 Introduction

In metallic materials various phenomena on the microscale induce macroscopically inelastic behavior: The hindering of
the dislocation motion by other dislocations or grain boundaries cause hardening effects, which are observed on the macro-
scopic scale. The nucleation and growth of grain boundary cavities initiate the development of microcracks which may
cause the failure the whole structure.

From the phenomenological point of view the macroscopic state of inelastic bodies is completely determined by the
displacement or deformation field, the stress tensor and a finite number of internal variables representing internal processes
on the microscale. The corresponding macroscopic models consist of the balance of forces, an evolution law for the internal
variables and constitutive equations which relate the stresses with the displacement gradient and the internal variables. A
thermodynamically consistent framework for such models isthe class of generalized standard materials defined by Halphen
and Nguyen Son and the more general class of models of monotone type introduced by Alber. From the mathematical
point of view these models lead to coupled systems of linear hyperbolic/elliptic partial differential equations and nonlinear
ordinary differential equations/inclusions. A typical application of such models is elasto(visco)-plasticity withhardening at
small strains. In the rate-independent case an alternativeenergetic formulation for such models was proposed by Mielke et
al. in the last years. This formulation provides a general tool to rigorously analyze effects like damage, fracture or hysteretic
behavior in magnetic and ferroelectric bodies at both, small and finite strains. The aim of this paper is to review some recent
analytical and numerical aspects of models of this type.

The starting point for the models discussed in this paper is the following: Given a time interval[0, T ] and a state space
Q = U × Z let u : [0, T ] → U denote the generalized displacements andz : [0, T ] → Z the internal variables. It is
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2 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On time-dependent models with internal variables

assumed thatU andZ are real, separable and reflexive Banach spaces. In the applications of plasticity, typical choices are
Z = Lp(Ω) andU is identified with a suitable subspace of the Sobolev spaceW 1,p(Ω). The setΩ ⊂ R

d describes the
physical body. In the first chapters of this presentation theassociated elastic energyΨ : Q → R is assumed to be quadratic
and positive semidefinite, i.e. we have

Ψ(u, z) =
1

2
〈A ( u

z ) , ( u
z )〉

whereA =
(

A11 A12

A21 A22

)
: Q = U × Z → Q∗ is a linear, bounded symmetric and positive semidefinite operator. In addition

to the elastic energyΨ we also consider the energy

E(t, u, z) = Ψ(u, z) − 〈b(t), u〉

for given external loadingsb ∈ C1([0, T ];U∗). The evolution law for the internal variablez is characterized by a monotone,
multivalued mappingG : Z → P(Z∗) with the property0 ∈ G(0). TherebyU∗, Z∗ andQ∗ are the duals of the
Banach spacesU , Z andQ respectively andP(Z∗) denotes the power set ofZ∗. The assumptions onE andG are
motivated by thermodynamical considerations which are carried out in Section 2.1. There also the link to elasto-plasticity
is explained more detailed. The evolution model associatedwith E andG consists of the force balance equation (1.1) which
is coupled with the evolution law (1.2) for the internal variable: Find absolutely continuous functionsu ∈ AC([0, T ];U)
andz ∈ AC([0, T ];Z) with z(0) = z0 ∈ Z such that for almost everyt ∈ [0, T ] it holds

0 = ∂uE(t, u(t), z(t)) = A11u(t) +A12z(t) − b(t), (1.1)

∂tz(t) ∈ G(−∂zE(t, u(t), z(t)) = G(−(A21u(t) +A22z(t))). (1.2)

Systems of this structure constitute theclass of models of monotone typeintroduced by Alber [1]. The subclass of general-
ized standard materials is obtained if in addition to the above it is assumed thatG is the convex subdifferential of a convex
and proper function. The particular choiceG = ∂χK, where0 ∈ K ⊂ Z is convex and closed, and whereχK denotes the
characteristic function related toK, finally leads to the subclass of rate-independent evolution models. Typical examples for
these classes of models are elasto-plasticity in the small strain setting comprising for example linear kinematic hardening.
An example for a rate-dependent model is the visco-plastic Norton-Hoff model.

The mathematical analysis of rate-independent elasto-plastic models has its roots in the fundamental contributions by
Moreau, Duvaut/Lions and Johnson, [32, 53, 78]. More recentinvestigations, which also cover rate-dependent models, are
due to Alber/Chelminski [2], see also [47]. IfA and henceΨ are positive definite, i.e. ifΨ(u, z) ≥ α

2 (‖u‖2
U + ‖z‖2

Z)
for all (u, z) ∈ Q, and if in additionG is maximal monotone, then classical results state the existence of a unique solution
(u, z) ∈ AC([0, T ];Q) for sufficiently regular given datab andz0, which satisfy a certain compatibility condition.

In contrast to the positive definite case it is quite challenging to prove existence results for (1.1)–(1.2) ifA is positive
semidefinite, only. Typical examples for such models are theelastic-perfectly plastic Prandtl-Reuss model and models
with linear isotropic hardening and we refer to [23, 28, 47, 53] for the discussion of existence questions. In Section 2.5we
present an existence proof for a model with a positive semi-definite energyΨ under the assumption that a certain coupling
condition is satisfied between the operatorsA12 andA22. Here, we study the solvability foru ∈ Lq(S;W 1,q(Ω)) and
z ∈ AC(S;Lq(Ω)) for suitableq ∈ (1,∞).

Apart from existence results it is of great interest to gain more insight into the qualitative properties of solutions, such as
spatial or temporal regularity and stability. This knowledge is the basis for the construction of efficient and robust numerical
algorithms. Section 3 is devoted to the discussion of spatial regularity results for solutions of models of monotone type.
Depending on the positivity properties of the free energyΨ different regularity results may be achieved.

In the positive semi-definite case one typically obtains thespatial regularityσ ∈ L∞((0, T );H1
loc(Ω)) for the stress

tensorσ. The basic observation enabling this result is the fact thatthe complementary energy, which is the convex conjugate
of the free energy, is positive definite with respect to the generalized stresses, although the energyΨ might not be positive
definite. In addition to the semidefinite case, for positive definite energies the following global spatial regularity results are
available for domains with smooth boundary: For everyδ > 0 it holds

u ∈ L∞((0, T );H
3
2−δ(Ω)) ∩ L∞((0, T );H2

loc(Ω)), (1.3)

σ, z ∈ L∞((0, T );H
1
2−δ(Ω)) ∩ L∞((0, T );H1

loc(Ω)). (1.4)

The proof of the global results relies on stability estimates for the solutions of (1.1)–(1.2) and a reflection argument.A
discussion concerning the optimality of (1.3)–(1.4) as well as an overview of the related literature is provided in Sections
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3.2 and 3.3. Moreover, we discuss an example which shows thatin spite of smooth data and a smooth geometry one should
not expect a comparable spatial regularity result for the time derivatives∂tu and∂tz.

In Section 4 we discuss and analyze a numerical algorithm forsolving rate-independent elasto-plastic models. After
a time discretization with an implicit Euler scheme the timeincremental problem can be reformulated as a quasilinear
elliptic system of partial differential equations to determine the displacements at time steptk from the displacements and
internal variables of the previous time step. The internal variable of the current time step then can be calculated via
a straightforward update formula. Since the nonlinear elliptic operator is not Gâteaux-differentiable, classical Newton
methods are not applicable for solving the PDE. Instead we discuss an approach where we use a so-calledslanting function
instead of the derivative resulting in a Slant Newton Method. The behavior of this algorithm is illustrated at some examples.

In the last section, Section 5, we focus on rate-independentmodels of the type (1.1)-(1.2) withG = ∂χK. As already
mentioned, in this case the model (1.1)–(1.2) can be reformulated in the global energetic framework for rate-independent
evolution processes introduced by Mielke and Theil [70]. Indeed we will show in Section 5 that the model is equivalent to
the following problem: Find a pair(u, z) : [0, T ] → Q with (u(0), z(0)) = (u0, z0) which for everyt ∈ [0, T ] satisfies

Stability: for every(v, ζ) ∈ Q we have E(t, u(t), z(t)) ≤ E(t, v, ζ) + R(ζ − z(t)),

Energy balance: E(t, u(t), z(t)) +

∫ t

0

R(∂tz(τ))dτ = E(0, u(0), z(0)) +

∫ t

0

∂tE(τ, u(τ), z(τ))dτ,

whereR : Z → [0,∞] is the convex conjugate of the characteristic functionχK and hence is convex and positively
homogeneous of degree one.

The energetic framework allows for more general energiesE , which not necessarily have a quadratic structure or strict
convexity properties, or which might not be Gâteaux differentiable with respect tou or z. The energetic formulation of
rate-independent processes provides a general tool, whichalso applies to further physical phenomena like damage, fracture,
shape memory effects or ferroelectric behavior. Since the energyE is not necessarily strictly convex, solutions may occur
which are discontinuous in time. A general existence theorem is cited. Subsequent it is investigated to what extend different
convexity assumptions on the energy yield solutions which are continuous, Hölder-continuous or even Lipschitz-continuous
in time. These convexity assumptions are discussed for different examples modeling elasto-plasticity, shape memory effects
and damage.

2 Elasto(visco)-plastic models of monotone type

2.1 Thermodynamic framework

In this subsection we show that the problem (1.1) - (1.2) is thermodynamically admissible. We start with a macroscopic
model describing inelastic response of solids at small strains in the most general form, and then we extract a subclass of
models, for which the Clausius-Duhem inequality is naturally satisfied. This subclass of models consists of problems of
the type (1.1) - (1.2).

Setting of the problem

For the subsequent analysis we restrict ourselves only to the 3-dimensional case, although all of our results hold in any
space-dimension. LetΩ ⊂ R

3 be a bounded domain with Lipschitz boundary∂Ω and letS3 be the linear space of
symmetric3 × 3-matrices. LetTe denote a positive number (time of existence). For0 ≤ t ≤ Te we introduce the
space-time cylinderΩt = Ω × (0, t).

The initial boundary value problem for the unknown displacementu(x, t) ∈ R
3, the Cauchy stress tensorT (x, t) ∈ S3

and the vector of internal variablesz(x, t) ∈ R
N in a quasi-static setting is formed by the equations

− divx T (x, t) = b(x, t), (2.1)

T (x, t) = A(ε(∇xu(x, t)) −Bz(x, t)), (2.2)
∂

∂t
z(x, t) ∈ f(ε(∇xu(x, t)), z(x, t)), (2.3)

which must hold for allx ∈ Ω and allt ∈ [0,∞). The initial value forz(x, t) and the Dirichlet boundary condition for
u(x, t) are given by

z(x, 0) = z(0)(x), for x ∈ Ω, (2.4)

u(x, t) = γ(x, t), for (x, t) ∈ ∂Ω × [0,∞). (2.5)
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Here∇xu(x, t) denotes the3× 3-matrix of first order derivatives ofu, the deformation gradient,(∇xu(x, t))
T denotes the

transposed matrix, and

ε(∇xu(x, t)) =
1

2
(∇xu(x, t) + (∇xu(x, t))

T ) ∈ S3,

is the strain tensor. The linear mappingB : R
N 7→ S3 is a projector withεp(x, t) = Bz(x, t), whereεp ∈ S3 is a plastic

strain tensor. We denote byA : S3 → S3 a linear, symmetric, positive definite mapping, the elasticity tensor. The given
data of the problem are the volume forceb : Ω× [0,∞) 7→ R

3, the boundary displacementγ : ∂Ω× [0,∞) 7→ R
3, and the

initial data for the vector of the internal variablesz(0) : Ω 7→ R
N . The given functionf : D(f) ⊆ S3 × R

N 7→ 2R
N

is a
constitutive function with the domainD(f).

The differential inclusion (2.3) with a prescribed functionf together with the equation (2.2) define the material behavior.
They are the constitutive relations which model the elasto(visco)-plastic behavior of solid materials at small strains, whereas
(2.1) is the force balance arising from the conservation lawof linear momentum.

The initial boundary value problem (2.1) - (2.5) is written here in the most general form and, to the best of our knowledge,
includes all elasto(visco)-plastic models at small strains used in the engineering. To guarantee that by equations (2.1) - (2.5)
a thermodynamically admissible process is described, we claim the existence of a free energy densityψ : D(f) → [0,∞)
such that the Clausius-Duhem inequality

ρ
∂

∂t
ψ(ε(∇xu), z) − divx(Tut) − b · ut ≤ 0 (2.6)

holds inΩ× (0,∞) for all solutions(u, T, z) of (2.1) - (2.5). The functionρ denotes the mass density and it is assumed to
be constant. The requirement (2.6) restricts the possible choices off . Indeed, let(u, z) be a sufficiently smooth solution of
(2.1) - (2.6). Firstly, we note that the symmetry of the stress tensor implies

T · ε(∇xut) = T · ∇xut = divx(T Tut) − (divx T ) · ut.

Then, as a direct consequence of the Clausius-Duhem inequality (2.6), one gets with the help of the previous relation and
the symmetry ofT the following inequality

ρ∇εψ · ε(∇xut) + ρ∇zψ · zt − divx(Tut) − b · ut

= ρ∇εψ · ε(∇xut) + ρ∇zψ · zt − T · ε(∇xut) = (ρ∇εψ − T ) · ε(∇xut) + ρ∇zψ · zt

≤ 0.

Due to the arbitrariness of the strain rateε̇ = ε(∇xut), we conclude that

ρ∇εψ(ε, z) = T, (2.7)

ρ∇zψ(ε, z) · ζ ≤ 0 (2.8)

for everyζ ∈ f(ε, z) and for all(ε, z) ∈ D(f). Inequality (2.8) is called the dissipation inequality. Therefore, we call the
constitutive equations (2.2) and (2.3) thermodynamicallyadmissible if a free energy densityψ exists such that (2.7) and
(2.8) are satisfied.

Now it is easy to extract a subclass of constitutive functions f , for which the dissipation inequality (2.8) is naturally
fulfilled. This subclass consists of those functionsf , which can be written in the form

f(ε, z) = g(−ρ∇zψ(ε, z)), (2.9)

with a suitable free energy densityψ : D(f) → [0,∞) satisfying (2.7), and with a suitable monotone functiong : D(g) ⊆
R

N → 2R
N

with the property0 ∈ g(0).
Relations (2.2) and (2.7) allow us to find the precise form of the free energy density: Integrating (2.7) with respect toε

we can easily obtain that

ρψ(ε, z) =
1

2
A(ε−Bz) · (ε−Bz) + ψ1(z)

with a suitable functionψ1 : D(ψ1) ⊆ R
N → [0,∞) as a constant of integration. For mathematical reasons we assume in

this chapter that the free energy densityψ has a special form, namely it is a positive semi-definite quadratic form given by

ρψ(ε, z) =
1

2
A(ε−Bz) · (ε−Bz) +

1

2
(Lz) · z (2.10)
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with a symmetric, non-negativeN ×N -matrixL. Differentiating (2.10) with respect toz yields

−ρ∇zψ(ε, z) = BTA(ε−Bz) − Lz = BTT − Lz.

In view of these considerations the initial boundary value problem (2.1) - (2.5) can be written as

− divx T (x, t) = b(x, t), (2.11)

T (x, t) = A(ε(∇xu(x, t)) −Bz(x, t)), (2.12)
∂

∂t
z(x, t) ∈ g(BTT (x, t) − Lz(x, t)) (2.13)

z(x, 0) = z(0)(x), (2.14)

for all x ∈ Ω and allt ∈ [0,∞), together with the Dirichlet boundary condition

u(x, t) = γ(x, t) for x ∈ ∂Ω, t ∈ [0,∞). (2.15)

The initial boundary value problem (2.11) - (2.15) is calledthe problem/model of monotone type. As we have already
mentioned in the introduction, this class of models was introduced by Alber in [1] and it naturally generalizes the class
of problems of generalized standard materials proposed by Halphen and Nguyen Quoc Son. We recall that the models of
generalized standard materials are formed by equations (2.11) - (2.15) with the monotone functiong given explicitly by the
subdifferential of a proper convex function. Typical examples for models of monotone type are elasto-plastic models with
linear or nonlinear hardening (for more details, consult the book [1, Chapter 3.3]).

First existence results for the classical model of perfect plasticity (Prandtl-Reuss-model) were derived in [32, 53, 76].
Since the elastic energy in this case is positive semidefinite, only, the displacements in general belong to the space of
bounded deformations, only, [102,104,105]. The existencetheory for elasto-plastic models with a positive definite energy
(like elasto-plasticity with linear kinematic hardening)was initiated by Johnson [54], we refer to the monographs [39, 47]
for a historical survey on the subject. In the late 90ies these results were extended to models of monotone type with general
maximal monotone functionsg, still assuming that the energy is positive-definite, [1,2]. In [3,22–24,82,84,85] an approach
for the derivation of the existence of solutions to the problem (2.11) - (2.15) initiated in [1] was continued and extended
to particular models of monotone type with a positive semi-definite energy. In the present paper, we briefly discuss the
existence result in [2] for models with a positive definite energy in order to point out the main differences and difficulties
which arise in the treatment of monotone problems with a positive semi-definite energy. An existence proof for a special
class with a positive semi-definite energy is discussed afterwards.

2.2 Function spaces and notation

Form ∈ N, q ∈ [1,∞], we denote byWm,q(Ω,Rk) the Banach space of Lebesgue integrable functions havingq-integrable
weak derivatives up to orderm. This space is equipped with the norm‖ · ‖m,q,Ω. If m = 0 we also write‖ · ‖q,Ω. If m
is not integer, then the corresponding Sobolev-Slobodeckij space is denoted byWm,q(Ω,Rk). We setHm(Ω,Rk) =
Wm,2(Ω,Rk), cf. [42].

We choose the numbersp, q satisfying1 < p, q < ∞ and1/p+ 1/q = 1. For suchp andq one can define the bilinear
form on the product spaceLp(Ω,Rk) × Lq(Ω,Rk) by

(ξ, ζ)Ω =

∫

Ω

ξ(x) · ζ(x)dx.

If (X,H,X∗) is an evolution triple (known also as a “Gelfand triple” or “spaces in normal position”), then

Wp,q(0, Te;X) =
{
u ∈ Lp(0, Te;X) | u̇ ∈ Lq(0, Te;X

∗)
}

is a separable reflexive Banach space furnished with the norm‖u‖2
Wp,q

= ‖u‖2
Lp(0,Te;X) + ‖u̇‖2

Lq(0,Te;X∗), where the time
derivativeu̇ of u is understood in the sense of vector-valued distributions.We recall that the embeddingWp,q(0, Te;X) ⊂
C([0, Te], H) is continuous ( [50, p. 4], for instance). Finally we frequently use the spacesW k,p(0, Te;X), which consist
of Bochner measurable functions with ap-integrable weak derivatives up to orderk. Observe thatW2,2(0, Te;X) =
W 1,2(0, Te;X).
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2.3 Basic properties of the operator of linear elasticity

Here, we state the assumptions on the coefficient matrices in(2.11) - (2.13):

A ∈ L∞(Ω,Lin(S3,S3)) is symmetric and uniformly positive definite,
i.e. there existsα > 0 such thatA(x)ε · ε ≥ α ‖ε‖2 for all ε ∈ S3 and a.e.x ∈ Ω,
L ∈ L∞(Ω; Lin(RN ,RN )) is symmetric and positive semi-definite.

(2.16)

Since the linear mappingA(x) : S3 → S3 is uniformly positive definite, a new bilinear form onLp(Ω,S3) × Lq(Ω,S3)
can be defined by

[ξ, ζ]Ω = (Aξ, ζ)Ω.

From [108, Theorem 4.2] we recall an existence theorem for the following boundary value problem describing linear
elasticity:

−divxT (x) = b̂(x), for x ∈ Ω, (2.17)

T (x) = A(x)(ε(∇xu(x)) − ε̂p(x)), for x ∈ Ω, (2.18)

u(x) =γ̂(x), for x ∈ ∂Ω. (2.19)

To givenb̂ ∈W−1,q(Ω,R3), ε̂p ∈ Lp(Ω,S3) andγ̂ ∈W 1,p(Ω,R3) the problem (2.17) - (2.19) has a unique weak solution
(u, T ) ∈ W 1,p(Ω,R3) × Lp(Ω,S3) with 1 < p < ∞ and1/p+ 1/q = 1 providedA ∈ C(Ω,Lin(S3,S3)) andΩ is of
classC1. Forp = 2 this result for the problem (2.17) - (2.19) holds provided thatA satisfies condition (2.16) and thatΩ is
a Lipschitz domain. For̂b=γ̂=0 there is a constantC > 0 such that the solution of (2.17) - (2.19) satisfies the inequality

‖ε(∇xu)‖p,Ω ≤ C‖ε̂p‖p,Ω.

Definition 2.1 For everyε̂p ∈ Lp(Ω,S3) we define a linear operatorPp : Lp(Ω,S3) → Lp(Ω,S3) byPpε̂p = ε(∇xu),
whereu ∈W 1,p

0 (Ω,R3) is the unique weak solution of (2.17) - (2.19) for the given functionε̂p andb̂ = γ̂ = 0.

Let the subsetGp ⊂ Lp(Ω,S3) be defined by

Gp = {ε(∇xu) | u ∈W 1,p
0 (Ω,R3)}.

The following lemma states the main properties ofPp.

Lemma 2.2 For every1 < p < ∞ the operatorPp is a bounded projector onto the subsetGp of Lp(Ω,S3). The
projector(Pp)

∗, which is the adjoint with respect to the bilinear form[ξ, ζ]Ω onLp(Ω,S3) × Lq(Ω,S3), satisfies

(Pp)
∗ = Pq, where

1
p + 1

q = 1.

This impliesker(Pp) = Hp
sol withHp

sol = {ξ ∈ Lp(Ω,S3) | [ξ, ζ]Ω = 0 for all ζ ∈ Gq}.
The projection operator

Qp = (I − Pp) : Lp(Ω,S3) → Lp(Ω,S3)

with Qp(L
p(Ω,S3)) = Hp

sol is a generalization of the classical Helmholtz projection.

Corollary 2.3 Let (BTAQpB + L)T be the adjoint operator of

BTAQpB + L : Lp(Ω,RN ) → L
p(Ω,RN )

with respect to the bilinear form(ξ, ζ)Ω on the product spaceLp(Ω,RN )×Lq(Ω,RN ). Then

(BTAQpB + L)T = BTAQqB + L : Lq(Ω,RN ) → L
q(Ω,RN ).

Moreover, the operatorBTAQ2B + L is non-negative and self-adjoint.

The last result in this corollary is proved in [2].

Remark 2.4 If the matrixL is uniformly positive definite, then the operatorBTAQ2B + L is positive definite.

Remark 2.5 Hp
sol is a reflexive Banach space with dual spaceHq

sol.
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Finally we cite an existence result for the following Cauchyproblem in a Hilbert spaceH with a maximal monotone
operatorA : D(A) ⊂ H → 2H :

d

dt
u(t) +A(u(t)) ∋ f(t), (2.20)

u(0) = u0. (2.21)

Theorem 2.6 [11,97] Assume thatu0 ∈ D(A). If f ∈ W 1,1(0, Te;H), then the Cauchy problem (2.20) - (2.21) has a
unique solutionu ∈W 1,∞(0, Te;H). If A = ∂φ, where∂φ is the subdifferential of a proper convex lower-semi-continuous
function, then for everyf ∈ L2(0, Te;H) the problem (2.20) - (2.21) has a unique solutionu ∈ W 1,2(0, Te;H).

2.4 Existence of solutions in the case of positive definite energy

It is already known (see [2, Theorem 1.3]) that the initial boundary value problem (2.11) - (2.15) has a unique solution
provided the mappingz 7→ g(z) is maximal monotone and the matrixL is uniformly positive definite. We now state the
existence result due to Alber and Chelminski [2].

Theorem 2.7 Assume that the coefficient matrices satisfy(2.16), that in additionL in (2.13) is uniformly positive definite
and that the mappingg : R

N → 2R
N

is maximal monotone with0 ∈ g(0). Suppose thatb ∈ W 2,1(0, Te;L
2(Ω,R3)) and

γ ∈ W 2,1(0, Te;H
1(Ω,R3)). Finally, assume thatz(0) ∈ L2(Ω,RN ) and that there existsζ ∈ L2(Ω,RN ) such that

ζ(x) ∈ g(BTT (0)(x) − L(x)z(0)(x)), a.e. in Ω, (2.22)

where(u(0), T (0)) is a weak solution of the elasticity problem (2.17)-(2.19) to the datâb = b(0), ε̂p = Bz(0), γ̂ = γ(0).

Then for everyTe > 0 there is a unique solution of the initial boundary value problem (2.11) - (2.15)

(u, T, z) ∈W 1,2(0, Te;H
1(Ω,R3) × L2(Ω,S3) × L2(Ω,RN )).

If, in addition,g = ∂χK , where∂χK is the subdifferential of the characteristic function associated with the convex, closed
set0 ∈ K ⊂ R

N , then it is sufficient to requireb ∈ W 1,2(0, Te;L
2(Ω,R3)) andγ ∈W 1,2(0, Te;H

1(Ω,R3)).

Remark 2.8 We note thatL is uniformly positive definite if and only if the free energy densityψ is a positive definite
quadratic form onS3 × R

N . The constitutive equations for linear kinematic hardening satisfy this requirement, while
models for linear isotropic hardening are not covered.

The main idea of the proof of Theorem 2.7 consists in the reduction of the equations (2.11) - (2.15) to an autonomous
evolution inclusion in a Hilbert space governed by a maximalmonotone operator. To this evolution inclusion Theorem 2.6
is applied, which allows to conclude that the initial boundary value problem (2.11) - (2.15) has a (unique!) solution. For the
reduction it is crucial that the coefficient functionL is uniformly positive definite. To indicate the main differences between
the case of a positive definite free energy density compared to a positive semi-definite density we briefly sketch the proof
of Theorem 2.7. Details can be found in [2].

P r o o f. We note that equations (2.11) - (2.12), (2.15) form a boundary value problem for the components(u(t), T (t))
of the solution. Obviously one has an additive decomposition

(u(t), T (t)) = (ũ(t), T̃ (t)) + (v(t), σ(t)),

with the solution(v(t), σ(t)) of the Dirichlet boundary value problem (2.17) - (2.19) to the datâb = b(t), γ̂ = γ(t), ε̂p = 0,
and with the solution(ũ(t), T̃ (t)) of the problem (2.17) - (2.19) to the datab̂ = γ̂ = 0, ε̂p = Bz(t). We thus obtain

ε(∇xu) −Bz = (P2 − I)Bz + ε(∇xv).

Inserting this into (2.12) we receive that (2.13) can be rewritten in the form

zt(t) ∈ G
(
− (BTAQ2B + L)z(t) +BTσ(t)

)
, (2.23)

whereG : D(G) ⊂ L2(Ω,RN ) → 2L2(Ω,RN ) defined byG(ξ) = {ξ̂ ∈ L2(Ω,RN ) | ξ̂(x) ∈ g(ξ(x)) a.e.}. The functionσ,
as a solution of the problem (2.17) - (2.19) to the given datab, γ, is considered as known.
According to Remark 2.4 the operatorBTAQ2B + L is positive definite, therefore the equation (2.23) can be reduced to
an autonomous evolution equation inL2(Ω,RN ) using the transformationh(t) = −(BTAQ2B + L)z(t) + BTσ(t). It
then reads as

ht(t) + C(h(t)) ∋ BTσt(t) with C(ξ) = (BTAQ2B + L)G(ξ) for ξ ∈ L2(Ω,RN ). (2.24)

Copyright line will be provided by the publisher



8 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On time-dependent models with internal variables

Thecrucial stepin the proof is that the operatorC is maximal monotone with respect to the new scalar product[[ξ̂, ξ]] :=

((BTAQ2B+L)−1ξ̂, ξ) (see [2]). This scalar product is well defined, since the operatorBTAQ2B+L is positive definite
due to the uniform positivity ofL. Therefore, Theorem 2.6 can be applied to (2.24) inL2(Ω,RN ) equipped with the scalar
product[[ξ̂, ξ]] to derive the existence and uniqueness of solutions. The assumption (2.22) guarantees that the initial value
h(0) belongs to the domain of the operatorC. Substituting the solution of (2.23), which exists due to the equivalence of
(2.23) and (2.24), into the boundary value problem formed byequations (2.11) - (2.12) and (2.15) yields the existence of
(u, T ) by the existence theory for linear elliptic problems.

2.5 Existence of solutions in the case of a positive semi-definite energy

As we saw in the proof of Theorem 2.7 the positivity ofL plays the essential role: It allowed to define a new scalar product
in L2(Ω,RN ), with respect to which the operatorC from (2.24) is maximal monotone so that Theorem 2.6 is applicable.
Obviously, this strategy cannot be applied ifL is only positive semi-definite and one has to overcome this difficulty. In
the following we restrict ourselves to a subclass of problems of monotone type with a positive semi-definite free energy
density, for which the existence of solutions can be verified. Existence theorems for the entire class of models of monotone
type are still an open problem. For simplicity, we assume that the coefficient matrices in (2.11) - (2.13) are independentof
x.

Under the assumption thatg is single-valued and thatKerB + KerL = R
N , the authors of [3] showed that the initial

boundary value problem (2.11) - (2.15) is equivalent to the following problem: for allt ∈ [0,∞) andx ∈ Ω

− divx T (x, t) = b(x, t), (2.25)

T (x, t) = A
(
ε(∇xu(x, t)) − εp(x, t)

)
, (2.26)

∂tεp(x, t) = g1

(
T (x, t),−z̃(x, t)

)
, (2.27)

∂tz̃(x, t) = g2

(
T (x, t),−z̃(x, t)

)
, (2.28)

u(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞), (2.29)

εp(x, 0) = ε(0)p (x), z̃(x, 0) = z̃(0)(x). (2.30)

Here the vector of internal variablesz(x, t) is split into two parts, i.e.z(x, t) = (εp(x, t), z̃(x, t)) ∈ S3 × R
N−6. We

assume for simplicity thatε(0)p (x) = 0. The functionsg1 : S3 × R
N−6 → S3 andg2 : S3 × R

N−6 → R
N−6 are given

such that(T, y) → (g1(T, y), g2(T, y)) : R
N → R

N is a monotone mapping.
Following [3] we rewrite the problem (2.25) - (2.29) in termsof an operatorH : F (ΩTe

,S3) → F (ΩTe
,S3), where

F (ΩTe
,S3) denotes the set of all functions mappingΩTe

to S3. The operatorH is defined by the following rule: For given
T andz̃(0) let (h, z̃) be a solution of the problem

h(x, t) = g1
(
T (x, t),−z̃(x, t)

)
for (x, t) ∈ ΩTe

, (2.31)

∂tz̃(x, t) = g2
(
T (x, t),−z̃(x, t)

)
for (x, t) ∈ ΩTe

, (2.32)

z̃(x, 0) = z̃(0)(x) for x ∈ Ω, (2.33)

Then the operatorH onF (ΩTe
,S3) is given byH(T ) = h. In terms of the operatorH the problem (2.25) - (2.29) reads as

follows: for all (x, t) ∈ ΩTe

−divxT (x, t) = b(x, t), (2.34)

T (x, t) = A
(
ε(∇xu(x, t)) − εp(x, t)

)
, (2.35)

∂tεp(x, t) = H(T ), (2.36)

εp(x, 0) = 0, (2.37)

u(x, t) = γ(x, t), (x, t) ∈ ∂Ω × [0,∞). (2.38)

Now we can state the existence result of [82] for the problem (2.34) - (2.38).

Theorem 2.9 Let 2 ≤ p < ∞ and1 < q ≤ 2 be numbers with1/p + 1/q = 1. Assume thatH : Lp(ΩTe
,S3) →

Lq(ΩTe
,S3) is maximal monotone and that the inverseH−1 is locally bounded at 01 and strongly coercive, i.e. either

1 An operatorA : V → 2V ∗

is called locally bounded at a pointv0 ∈ V if there exists a neighborhoodU of v0 such that the set
A(U) = {Av | v ∈ D(A) ∩ U } is bounded inV ∗.
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D(H−1) is bounded orD(H−1) is unbounded and

〈v∗, v〉
‖v‖q,ΩTe

→ +∞ as ‖v‖q,ΩTe
→ ∞, v∗ ∈ H−1(v).

Suppose thatb ∈ Lp(ΩTe
,R3) andγ ∈ Lp(0, Te,W

1,p(Ω,R3)). Then there exists a solution of the problem (2.34) - (2.38)

u ∈ Lq(0, Te;W
1,q(Ω,R3)), T ∈ Lp(ΩTe

S3), εp ∈W 1,q(0, Te, L
q(Ω,S3)).

Remark 2.10 The monotonicity ofH is implied by the monotonicity of the mapping(T, y) → (g1(T, y), g2(T, y))
(see [3, Lemma 4.1]).

Remark 2.11 To gain the existence of solutions to (2.25) - (2.29) one has to check first whether the operatorH :
Lp(ΩTe

,S3) → Lq(ΩTe
,S3) is well defined, i.e. whether the problem (2.31) -(2.33) has asolution (not necessary unique).

Then apply Theorem 2.9.

Remark 2.12 The proof of Theorem 2.9 in [82] contains a gap, although the result remains true. The operator defined
in Lemma 4.1 of [82] is not maximal monotone as it is stated there. The proof of this is given in the end of this section.

In [3] Theorem 2.9 is proved forH with polynomial growth and under the additional assumptionthatH is coercive.
The last assumption causes there difficulties in the derivation of the existence of the solutions to the model of nonlinear
kinematic hardening (see the next section for more details). In order to show the coercivity of the operatorH defined by the
constitutive relations (specific choice of the functionsg1 andg2) of nonlinear kinematic hardening, the authors of [3] had to
impose a restriction on the exponents in the constitutive relations for the different internal variables. The approachinitiated
in [82] is actually based on the constructions in [3] and repeats the main steps of that work with the major difference that
the general duality principle for the sum of two operators from [9] is used to obtain the existence of the solutions to the
problem (2.34) - (2.38). The application of this duality principle allows to avoid the coercivity assumption onH. Here we
present the improved version of the proof of Theorem 2.9 presented in [82].

P r o o f. Let us denote

W = Lp(Ω,S3), W = Lp(0, Te;W ), X = Hp
sol(Ω,S3), X = Lp(0, Te;X).

Repeating word by word the proof of Theorem 2.7 one can reducethe initial-boundary value problem (2.34) - (2.38) to the
following abstract equation

Lεp = H
(
−AQpεp + σ

)
, (2.39)

where the linear operatorL : W → W∗ is defined by

Lη = ∂tη with D(L) = {η ∈Wp,q(0, Te;W ) | η(0) = 0}.

The functionσ in (2.39) is given as in the proof of Theorem 2.7. Applying theoperatorQq to (2.39) from the left formally
and denotingτ = Qqεp we arrive at the equation

Lτ = QqH
(
−Aτ + σ

)
, (2.40)

where nowL : X → X ∗ denotes the operator

Lη = ∂tη with D(L) = {η ∈Wp,q(0, Te;X) | η(0) = 0}.

The strategy of Theorem 2.7 is not applicable here, since thecomposition of two operators, one of them being monotone,
ξ → QqH

(
− Aξ + σ

)
is not monotone in general. It turns out that applying the general duality principle (see [9]) it

is possible to “release” the monotone operator from anotheroperator preserving its monotonicity property and use the
classical theory of monotone operators. This is the main idea of the proof of Theorem 2.9.
By the general duality principle [9], the inclusion (2.40) inX is equivalent to the following inclusion inX ∗

L−1AQqw + H−1w ∋ σ, w ∈ X ∗. (2.41)

Indeed, (2.40) holds iff there existsv ∈ Lτ ∩Qqw with w = H(−Aτ + σ). Taking the inverse of the operatorsL andH
gives (2.41). Thus, if we can solve (2.41), by the equivalence we obtain that the problem (2.40) has a solution as well.

Due to Lemma 2.13, which we state after the proof, the operator L−1AQq : D(L−1AQq) ⊂ X ∗ → X is linear and
maximal monotone.
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Now we can show that (2.41) has a solution. Note first that the operatorH−1 is maximal monotone as the inverse of
a maximal monotone operator. SinceH−1 is locally bounded at 0, by Lemma III.242 in [48] the point 0 belongs to the
interior ofD(H−1) = R(H). Therefore, the operatorsL−1AQq andH−1 satisfy the condition

D(L−1AQq) ∩ intD(H−1) 6= ∅,

yielding that the sumL−1AQq + H−1 is maximal monotone (by Theorem II.1.7 in [11]). The coercivity of H−1 implies
the coercivity of the sum, i.e.

〈
L−1AQqv + v∗, v

〉

‖v‖ ≥ 〈v∗, v〉
‖v‖ → +∞ as ‖v‖ → ∞, v∗ ∈ H−1(v).

Theorem III.2.10 in [83] guarantees that the maximal monotone and coercive operatorL−1AQq +H−1 is surjective. Thus,
equation (2.41) is solvable and, as consequence, problem (2.40) has a solution.

The construction of the solution of the problem (2.34) - (2.38) can be now performed as in [3]: Let(v(t), σ(t)) be the
solution of the Dirichlet boundary value problem (2.17) - (2.19) to the datâb = b(t), γ̂ = γ(t), ε̂p = 0 and letτ ∈ X be
the unique solution of (2.40). With the functionτ let εp ∈W 1,q(0, Te, L

q(Ω,S3)) be the solution of

∂tεp(t) = H
(
−Aτ(t) + σ(t)

)
, for a.e.t ∈ (0, Te) (2.42)

εp(0) = 0. (2.43)

Moreover, by the linear elliptic theory, there is a unique solution (ũ(t), T̃ (t)) of problem (2.17) - (2.19) to the datab̂ = γ̂ =
0, ε̂p = εp(t). The solution of (2.34) - (2.38) is now given as follows

(u, T, εp) = (ũ + v, T̃ + σ, εp) ∈ Lq(0, Te;W
1,q(Ω,R3)) × Lp(ΩTe

S3) ×W 1,q(0, Te, L
q(Ω,S3)).

To see that(u, T, εp) satisfies (2.36), we apply the operatorQq to (2.42) - (2.43) from the left and obtain

∂t(Qqεp) = QqH
(
−Aτ(t) + σ(t)

)
= ∂tτ, Qqεp(0) = τ(0) = 0.

The last line implies thatQqεp = τ . Thus

T = T̃ + σ = −AQqεp + σ = −Aτ + σ ∈ Lp(ΩTe
S3).

The last observation completes the proof.

Lemma 2.13 The operatorL−1AQq : D(L−1AQq) ⊂ X ∗ → X is linear and maximal monotone.

P r o o f. According to Theorem 2.7 in [83], the operatorL−1AQq is maximal monotone, if it is a densely defined closed
monotone operator such that its adjoint(L−1AQq)

∗ is monotone. Since all these properties ofL−1AQq can be easily
established, we leave their verification to the reader. Moredetails can be also found in [81].

Now we prove the result announced in Remark 2.12.

Lemma 2.14 The operatorQpL−1 : W∗ → W is not maximal monotone (we use the notations introduced above).

P r o o f. Note first of all that the following identity

QpL−1v = L−1Qqv (2.44)

holds for allv ∈ D(QpL−1) = D(L−1) 3. The previous identity (2.44) follows easily from

PpL−1v = L−1Pqv, (2.45)

which holds forv ∈ D(L−1). Relation (2.45) can be proved as follows: Choosev ∈ D(L−1). Then, according to the
definition ofPp, the boundary value problem

− divAε(∇u(x, t)) = − divAv(x, t) for x ∈ Ω, (2.46)

u(x, t) = 0 for x ∈ ∂Ω, (2.47)

2 This result is proved in a Hilbert space, but it can be easily generalized to reflexive Banach spaces.
3 Recall thatD(L−1) = {z ∈ W∗ |

R t
0

z(s)ds ∈ W}
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has a unique solutionu(t) ∈W 1,q
0 (Ω,R3), i.e. the functionu satisfies the equation

(Aε(∇u(t)), ε(∇φ))Ω = (Av(t), ε(∇φ))Ω, for all φ ∈W 1,p
0 (Ω,R3).

Similarly, we obtain that the problem

− divAε(∇w(x, t)) = − divA
( ∫ t

0

v(x, s)ds
)

for x ∈ Ω,

w(x, t) = 0 for x ∈ ∂Ω

has a unique solutionw(t) ∈ W 1,p
0 (Ω,R3). Integrating (2.46) we get that the identity

(
Aε

(
∇

∫ t

0

u(s)ds
)
, ε(∇φ)

)
Ω

=
(
A

( ∫ t

0

v(s)ds
)
, ε(∇φ)

)
Ω

holds for allφ ∈ W 1,p
0 (Ω,R3). Thus, by the definition ofPp, we have thatw(t) =

∫ t

0
u(s)ds. This proves (2.45).

Next we show that the operatorQpL−1 is not maximal monotone. To this end, consider a functionψ ∈ W ∗ such that
ψ = ε(∇u) with u ∈ W 1,q

0 (Ω,R3) andε(∇u) 6∈ W for anyp > q (sinceε(∇u) 6∈ D(L−1) ). Obviously, such a function
u is the solution of the problem

− divAε(∇û) = − divAψ, û ∈W 1,q
0 (Ω,R3).

The last relation implies thatψ ∈ R(Pq) and consequently thatψ ∈ kerQq.
To show thatQpL−1 is not maximal monotone, we need to find a pair(y∗, y) ∈ W ×W∗ such that the inequality

(QpL−1v − y∗, v − y)Ω ≥ 0 (2.48)

holds for allv ∈ D(L−1), but(y∗, y) 6∈ Graph (QpL−1). Take anyv ∈ D(L−1). Sety = v + ψ with ψ from above and
y∗ = L−1Qqy, i.e.y∗ = L−1Qqv = QpL−1v. Then

(QpL−1v − y∗, v − y)Ω = 0.

Therefore (2.48) is fulfilled for allv ∈ D(L−1), butv + ψ 6∈ D(QpL−1). Thus, the proof is complete.

2.6 Model of nonlinear kinematic hardening

We apply Theorem 2.9 to the model of nonlinear kinematic hardening. It consists of the equations (cf. [1,3])

−divxT = b, (2.49)

T = A
(
ε(∇xu) − εp

)
, (2.50)

∂tεp = c1|T − k(εp − εn)|r T − k(εp − εn)

|T − k(εp − εn)| , (2.51)

∂tεn = c2|k(εp − εn)|m k(εp − εn)

|k(εp − εn)| , (2.52)

εn(0) = ε0n, εp(0) = 0, (2.53)

u = γ, x ∈ ∂Ω, (2.54)

wherec1, c2, κ > 0 are given constants andεp, εn ∈ S3. The equations (2.49) - (2.53) can be written in the general form
(2.25) - (2.29) withg = (g1, g2) : S3 × S3 → S3 × S3 defined by

(g1, g2)(T, z̃) =
(
c1|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| , c1k
1/2|T + k1/2z̃|r T + k1/2z̃

|T + k1/2z̃| + c2k
1/2|k1/2z̃|m z̃

|z̃|
)
,

wherez̃ = k1/2(εp − εn). Maximal monotonicity of the mapping(T, z̃) → (g1(T, z̃), g2(T, z̃)) follows from the fact that
g = (g1, g2) is the gradient of the continuous convex function

φ(T, z̃) =
c1
r + 1

|T + k1/2z̃|r+1 +
c2

m+ 1
|k1/2z̃|m+1.

We have the following existence result for the problem (2.49) - (2.54) (see also [3]).
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Theorem 2.15 Letc1, c2, k be positive constants and let r and m satisfyr,m > 1. Let us definep = 1+ r, q = 1+1/r,
p̂ = max {p, 1 +m} and q̂ = min {q, 1 + 1/m}. Suppose thatb ∈ Lp(ΩTe

,R3), γ ∈ Lp(0, Te,W
1,p(Ω,R3)) and

ε
(0)
n ∈ L2(Ω,S3). Then there exists a solution

u ∈ Lq(0, Te;W
1,q(Ω,R3)), T ∈ Lp(ΩTe

,S3), εp ∈W 1,q(0, Te, L
q(Ω,S3)), εn ∈ W 1,q̂(0, Te, L

q̂(Ω,S3))

of the problem (2.49) - (2.54). Moreover,εp − εn ∈ Wp̂,q̂(0, Te, L
p̂(Ω,S3)).

Remark 2.16 In [3] Theorem 2.15 is proved providedm andr satisfy the inequalitym > r. This condition the authors
of [3] use to show that the operatorH defined by the equations (2.51) - (2.53) according to the rulegiven above is coercive.

Remark 2.17 Using the theory of Orlic spaces and the monotone operator method similar results are obtained in [85]
with the same restrictions onm andr as in Theorem 2.15.

P r o o f. To apply Theorem 2.9 one has to show that the operatorH defined by (2.51) - (2.53) is well-defined, the
(multivalued) inverseH−1 is locally bounded at 0 and coercive . The coercivity ofH−1 as well as the fact that the well-
posedness ofH are shown in [82]. Therefore, it remains to verify thatH−1 is locally bounded at 0. Here we show that
H−1 is not only locally bounded at 0, but has even a polynomical growth.

For the functiony = εp − εn we have

∂t
k

2
|y(x, t)|2 = ky ·c1|T −ky|r T − ky

|T − ky| −ky ·c2|ky|
m ky

|ky| ≤ c1

( 1

pαp
|ky|p +

αq

q
|T −ky|qr

)
−c2|ky|m+1.

Here we used Young’s inequality withα > 0. Therefore,

k

2
‖y(Te)‖2

2,Ω + c2‖ky‖m+1
m+1,ΩTe

≤ c1

( 1

pαp
‖ky‖p

p,ΩTe
+
αq

q
‖T − ky‖p

p,ΩTe

)
+
k

2
‖y(0)‖2

2,Ω

and consequently

c2‖ky‖m+1
m+1,ΩTe

≤ c1

( 1

pαp
‖ky‖p

p,ΩTe
+
αq

q
‖T − ky‖p

p,ΩTe

)
+
k

2
‖y(0)‖2

2,Ω. (2.55)

On the other hand we have

‖T ‖p
p,ΩTe

≤ ‖ky‖p
p,ΩTe

+ ‖T − ky‖p
p,ΩTe

. (2.56)

Multiplying (2.56) by 1
pαp and then subtracting (2.55) we get the estimate

1

pαp
‖T ‖p

p,ΩTe
− c2
c1
‖ky‖m+1

m+1,ΩTe
≤

( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω

≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (2.57)

For sufficiently smallα the constant
(

1
pαp − αq

q

)
is positive. More precisely,α ∈ (0, α0) with α0 := (q/p)1/(p+q). Later

we give more precisely the upper bound forα.
Now we derive the estimate for‖ky‖m+1,ΩTe

in terms of‖T ‖p,ΩTe
:

∂t
k

2
|y(x, t)|2 = −(T − ky) · c1|T − ky|r T − ky

|T − ky| − ky · c2|ky|m
ky

|ky| + T · c1|T − ky|r T − ky

|T − ky|

≤ −c1|T −ky|p−c2|ky|m+1+c1|T ||T−ky|r ≤ −c1|T −ky|p−c2|ky|m+1+c1

( 1

pδp
|T |p +

δq

q
|T −ky|qr

)
.

Here we used Young’s inequality withδ. Choosingδ = (q/2)1/q we arrive at the estimate

k

2
‖y(Te)‖2

2,Ω +
c1
2
‖T − ky‖p

p,ΩTe
+ c2‖ky‖m+1

m+1,ΩTe
≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T ‖p

p,ΩTe

and consequently

c2‖ky‖m+1
m+1,ΩTe

≤ k

2
‖y(0)‖2

2,Ω + c1
1

pδp
‖T ‖p

p,ΩTe
. (2.58)
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Thus from (2.57) and (2.58) we obtain

( 1

pαp
− 1

pδp

)
‖T ‖p

p,ΩTe
− k

2c1
‖y(0)‖2

2,Ω ≤
( 1

pαp
− αq

q

)
‖T − ky‖p

p,ΩTe
. (2.59)

Choosingα = min {δ/2, α0/2} in (2.59) we obtain

C1‖T ‖p
p,ΩTe

− C2 ≤ C3‖T − ky‖p
p,ΩTe

(2.60)

with some positive constantsC1, C2 andC3. Recalling that‖H(T )‖q
q,ΩTe

= cq1‖T−ky‖p
p,ΩTe

, the inequality (2.60) implies

C1‖T ‖p
p,ΩTe

− C2 ≤ C3c
q
1‖H(T )‖q

q,ΩTe
,

which yields the polynomial growth for the inverse ofH(T ), i.e.

‖H−1(v)‖p,ΩTe
≤ C4(1 + ‖v‖q/p

q,ΩTe
) (2.61)

with some positive constantC4. ThusH−1 is coercive and bounded. Hence, Theorem 2.9 yields the existence ofu, T and
εp. The existence ofεn is shown in [82] (see also [3]). Therefore, the proof of Theorem 2.15 is complete.

3 Spatial regularity for elasto-(visco)plastic models of monotone type

In order to predict convergence rates of numerical schemes,more information about higher spatial regularity of solutions
is needed. Depending on the properties of the constitutive functiong in (2.9) different results can be obtained.

While local regularity properties were derived in the recent years for a quite large class of models of monotone type, only
very few results are known concerning the global regularity. In Section 3.1 we present in detail global regularity results and
discuss their optimality in Section 3.2 . An overview on the literature on spatial regularity results for models of monotone
type, for viscous regularizations of these models and for models which appear as a time discretized version of the evolution
models is given in Section 3.3. ByS = [0, T ] we denote the time interval.

3.1 Regularity for maximal monotoneg and positive definite elastic energy

Historically, local spatial regularity results were first deduced by Seregin [93] for elasto-plasticity with linear kinematic
or isotropic hardening and with a von Mises flow rule. The proof is done by carrying over local regularity properties of
a time-discretized version to the time-continuous problem. Here we follow a different approach working directly with the
time-continuous model.

The model of monotone type formulated in (2.11)–(2.15), consists of an elliptic system of partial differential equations,
which is strongly coupled with an evolutionary variationalinequality describing the evolution of the displacementsu and
the internal variablez subjected to external loadings. There exist various powerful analytic tools to characterize the spatial
regularity of systems of elliptic PDEs both on smooth and nonsmooth domains. The problem in the elasto-plastic case is to
maintain the regularity properties of the elliptic system in spite of the strong coupling between the elliptic system and the
evolutionary variational inequality.

Let Q ⊂ H1(Ω) × L2(Ω) ∋ (u(t), z(t)) denote the state space and assume for the moment that the initial datum
z0 = 0. The intrinsic difficulty of proving spatial regularity results for plasticity problems stems from the fact that the
flow rule (2.12) is non smooth and has no regularizing terms. As a consequence the data-to-solution-map is not Lipschitz
fromW 1,1(S;Q∗) → W 1,1(S;Q), but only as a map fromW 1,1(S;Q∗) → L∞(S;Q). The latter Lipschitz property is
the basis for proving the local and tangential regularity results in Sobolev spaces. Roughly spoken, the local regularity of
(u, z) follows from the Lipschitz estimate

‖(uh − u, zh − z)‖L∞(S;Q) ≤ cLip ‖fh − f‖W 1,1(S;Q∗) , (3.1)

where the indexh indicates a local shift of the functionsu andz by a (small) vectorh ∈ R
d. The functionfh contains the

shifted datumf and further corrections due to the shift, so that(uh, zh) is a solution to (2.11)–(2.13) with respect to the
datumfh. If f is smooth enough such that the estimate

sup|h|<h0
|h|−1 ‖fh − f‖W 1,1(S;Q∗) ≤ cf (3.2)
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is valid, then it follows that(u, z) ∈ L∞(S;H2
loc(Ω) × H1

loc(Ω)). Since a similar Lipschitz estimate is not known for the
time derivatives(∂tu, ∂tz), we cannot show that e.g.∂tz ∈ L1(S;H1

loc(Ω)). Indeed, the example in Section 3.2 reveals
that the latter regularity is not valid in spite of smooth data. Similar arguments can be applied in order to derive tangential
regularity properties at the boundary of smooth domains.

In order to obtain information on the regularity in the normal direction, the problem is reflected at∂Ω. The reflected
functions(ũ, z̃) solve an evolution system of similar type with new datumf̃ , which consists of the reflected datumf and
the tangential derivatives of∇u andz: f̃ = (frefl, ∂tang∇u, ∂tangz). Due to the terms∂tang∇u and∂tangz the new datum
does not have the temporal regularity allowing for an estimate like (3.2). In view of the tangential regularity results,we can
guarantee at least that

sup|h|<h0
|h|−1 ∥∥f̃h − f̃

∥∥
L∞(S;Q∗)

≤ c.

Hence, the Lipschitz estimate (3.1) has to be replaced with the following weaker version for the extended functions(ũ, z̃):

‖(ũh − ũ, z̃h − z̃)‖L∞(S;Q) ≤ c
∥∥f̃h − f̃

∥∥ 1
2

L∞(S;Q∗)
≤ c |h| 12 , (3.3)

see Theorem 3.2. From the latter estimate we finally deduce that (u, z) ∈ L∞(S;H
3
2−δ(Ω) ×H

1
2−δ(Ω)) for everyδ > 0.

These steps are explained in detail in Sections 3.1.1-3.1.3.

3.1.1 Basic assumptions and stability estimates

The arguments explained above are not restricted to the operator of linear elasticity occuring in (2.11)–(2.12). We consider
here the case with general displacementsu : S × Ω → R

m, whereΩ ⊂ R
d is a bounded domain, and replace the operator

of linear elasticity by a more general linear elliptic operator. Forθ ∈ R
m×d andz ∈ R

N the energy densityψ is assumed
to be of the form

ψ(x, θ, z) =
1

2
〈A(x) ( θ

z ) , ( θ
z )〉 ≡ 1

2
(〈A11(x)θ, θ〉 + 〈A12(x)z, θ〉 + 〈A21(x)θ, z〉 + 〈A22(x)z, z〉) (3.4)

whereA ∈ L∞(Ω; Lin(Rm×d ×R
N ,Rm×d ×R

N )) is a given coefficient matrix and〈·, ·〉 denotes the inner product inRs.
Foru ∈ H1(Ω,Rm) andz ∈ L2(Ω,RN ) the corresponding elastic energy is defined as

Ψ(u, z) =

∫

Ω

ψ(x,∇u(x), z(x)) dx. (3.5)

The basic assumptions in this section are the following

R1 Ω ⊂ R
d is a bounded domain withC1,1-smooth boundary, see e.g. [42].

R2 The coefficient matrixA belongs toC0,1(Ω,Lin(Rm×d×R
N ,Rm×d×R

N)), is symmetric and there exists a constant
α > 0 such thatΨ(v, z) ≥ α

2

(
‖v‖2

H1(Ω) + ‖z‖2
L2(Ω)

)
for all v ∈ H1

0 (Ω) andz ∈ L2(Ω).

R3 The functiong : R
N → 2R

N

is maximal monotone with0 ∈ g(0) andG : D(G) ⊂ L2(Ω,RN ) → P(L2(Ω,RN )) is
defined asG(η) = { z ∈ L2(Ω,RN ) ; z(x) ∈ g(η(x)) a.e. inΩ }.

Observe thatG is a maximal monotone operator. The energy densityψ introduced in (2.10) is contained as a special case
and further examples are given in Section 3.1.3.

In order to shorten the presentation, the discussion is restricted to the case with vanishing Dirichlet conditions on∂Ω.
Hence, withV = H1

0 (Ω,Rm) andZ = L2(Ω,RN ) the state spaceQ takes the formQ = V ×Z. We investigate the spatial
regularity properties of functions(u, z) : [0, T ] → Q which for allv ∈ V and almost everyt ∈ S satisfy

DuΨ(u(t), z(t))[v] =

∫

Ω

〈A
(

∇u(t)
z(t)

)
, (∇v

0 )〉dx = 〈b(t), v〉, (3.6)

∂tz(t) ∈ G(−DzΨ(u(t), z(t)) + F (t)), (3.7)

z(0) = z0, u(t)
∣∣
∂Ω

= 0. (3.8)

Here,DuΨ andDzΨ denote the variational derivatives ofΨ with respect tou andz, andF is a further forcing term not
present in (2.11)-(2.13). The datab, F are comprised in the function(b, F ) = f : S → V ∗ × Z ≡ Q∗. We call the initial
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valuez0 and the forcesf compatible if there existsu0 ∈ V with DuΨ(u0, z0) = b(0) and−DzΨ(u0, z0) +F (0) ∈ D(G),
whereD(G) denotes the domain ofG. The compatibility assumption is equivalent to the assumption in Theorem 5.8, where
the initial data shall belong to the set of stable states.

Since the elastic energyΨ is assumed to be positive definite onQ, seeR2, similar arguments as pointed out in Section
2.4 lead to the following existence theorem:

Theorem 3.1 Assume thatR2 andR3 are satisfied and that the dataz0 ∈ L2(Ω,RN ) andf = (b, F ) ∈ W 2,1(S;Q∗)
are compatible. Then there exists a unique pair(u, z) ∈ W 1,1(S;Q) satisfying(3.6)–(3.8). If G = ∂χK, whereK ⊂
L2(Ω,RN ) is convex, closed and with0 ∈ K andχK is the characteristic function of the convex setK, then it is sufficient
to assume thatf = (b, F ) ∈W 1,1(S;Q∗).

The next stability estimates rely on the positivity of the energyΨ and are the basis for our regularity results.

Theorem 3.2 Assume thatR2 andR3 are satisfied.

(a) There exists a constantκ > 0 such that for allui ∈ W 1,1(S;H1(Ω)), zi ∈W 1,1(S;L2(Ω)), i ∈ {1, 2}, which satisfy
(3.6)–(3.8)with fi ∈ W 1,1(S;Q∗) andz0

i ∈ L2(Ω,RN ), it holds

‖u1 − u2‖L∞(S;H1(Ω)) + ‖z1 − z2‖L∞(S;L2(Ω)) ≤ κ
(∥∥z0

1 − z0
2

∥∥
L2(Ω)

+
∥∥f1 − f2

∥∥
W 1,1(S;Q∗)

)
. (3.9)

(b) There exists a constantκ > 0 such that for allui ∈ L∞(S;H1(Ω)), zi ∈ W 1,1(S;L2(Ω)), i ∈ {1, 2}, which satisfy
(3.6)–(3.8)with fi ∈ L∞(S;Q∗) andz0

i ∈ L2(Ω,RN ), it holds

‖u1 − u2‖L∞(S;H1(Ω)) + ‖z1 − z2‖L∞(S;L2(Ω))

≤ κ
(∥∥z0

1 − z0
2

∥∥
L2(Ω)

+
∥∥f1 − f2

∥∥
L∞(S;Q∗)

+ ‖z1 − z2‖
1
2

W 1,1(S;L2(Ω)) ‖f1 − f2‖
1
2

L∞(S;Q∗)

)
. (3.10)

Part (a) of the theorem gives the Lipschitz continuity of thedata-to-solution mappingT : Z × W 1,1(S;Q∗) →
L∞(S;Q); (z0, f) 7→ (u, z), while part (b) describes Hölder-like continuity of the data-to-solution mapping in the case
where the data have less temporal regularity. We refer to [58,62] and the references therein for a proof of the estimates.

3.1.2 Local spatial regularity and tangential regularity

Local and tangential regularity results are derived with a difference quotient argument in combination with the stability
estimates of Theorem 3.2. Concerning the data it is assumed that

R4a z0 ∈ H1(Ω), f = (b, F ) ∈ W 1,1(S;Y1) with Y1 = L2(Ω,Rm) ×H1(Ω,RN ).

R4b z0 ∈ H1(Ω), f = (b, F ) ∈ L∞(S;Yi) with Yi = L2(Ω,Rm) × { θ ∈ L2(Ω,RN ) ; ∂iθ ∈ L2(Ω,RN ) } for a fixed
i ∈ {1, . . . , d}.

Let x0 ∈ Ω and chooseϕ ∈ C∞
0 (Ω,R) with ϕ ≡ 1 in a ballBρ(x0). Forh ∈ R

d, the inner variationτh : Ω → R
d is

defined asτh(x) = x + ϕ(x)h. There exists a constanth0 > 0 such that the mappingsτh : Ω → Ω are diffeomorphisms
for everyh ∈ R

d with |h| ≤ h0. Let the pairu ∈ L∞(S;V ) andz ∈ W 1,1(S;Z) be a solution of (3.6)–(3.8). We define
uh(t, x) = u(t, τh(x)), zh(t, x) = z(t, τh(x)). Straightforward calculations show that the shifted pair(uh, zh) solves
(3.6)–(3.8) with respect to the shifted initial conditionz0

h and modified datãfh having the property

∥∥f̃h − f
∥∥

W 1,1(S;Q∗)
≤ c |h| ‖(f, u, z)‖W 1,1(S;Y1×V ×L2(Ω)) (3.11)

if f satisfiesR4a, and

∥∥f̃h − f
∥∥

L∞(S;Q∗)
≤ c |h| ‖(f, u, z)‖L∞(S;Yi×V ×L2(Ω)) (3.12)

if f is given according toR4b. The local regularity Theorem 3.3 here below is now an immediate consequence of the
stability estimates in Theorem 3.2.

Theorem 3.3 Let conditionsR2 andR3 be satisfied.

(a) Let (u, z) ∈ W 1,1(S;V × Z) be a solution of(3.6)–(3.8)with data satisfyingR4a. Thenu ∈ L∞(S;H2
loc(Ω)) and

z ∈ L∞(S;H1
loc(Ω)).
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(b) Let u ∈ L∞(S;V ) andz ∈ W 1,1(S;Z) be a solution of(3.6)–(3.8)with data according toR4b. Then there exists
h0 > 0 such that

sup
0<h<h0

h−
1
2 ‖∇uhei

−∇u‖L∞(S;L2(Bρ(x0)))
<∞, sup

0<h<h0

h−
1
2 ‖zhei

− z‖L∞(S;L2(Bρ(x0)))
<∞.

P r o o f. Estimate (3.11) in combination with Theorem 3.2, part (a), yields

sup
|h|≤h0

|h|−1
(
‖u− uh‖L∞(S;H1(Bρ(x0)))

+ ‖z − zh‖L∞(S;L2(Bρ(x0)))

)
≤ ‖(f, u, z)‖W 1,1(S;Y1,V,Z)

from which we conclude with Lemma 7.24 in [41] thatu ∈ L∞(S;H2
loc(Ω)) andz ∈ L∞(S;H1

loc(Ω)). The results in part
(b) of the theorem are obtained in a similar way.

If R4b is satisfied for all basis vectorsei, 1 ≤ i ≤ d, and allx0 ∈ Ω, thenu(t) andz(t) belong to the Besov spaces

B
3
2
2,∞(Ω′) andB

1
2
2,∞(Ω′) for everyΩ′

⋐ Ω. Via the embedding theorems for Besov spaces into Sobolev-Slobodeckij spaces

we conclude thatu ∈ L∞(S;H
3
2−δ

loc (Ω)) andz ∈ L∞(S;H
1
2−δ

loc (Ω)) for everyδ > 0.
In a similar way, tangential regularity properties can be deduced after a suitable local transformation of the boundaryto

a subset of a hyperplane. Here, the assumptionR1 on the smoothness of∂Ω is essential.
Part (a) of Theorem 3.2 with a general maximal monotone function g and withψ as in (2.10) was proved by Alber and

Nesenenko in [4, 5] and extended in [25] to an elasto-plasticmodel including Cosserat effects. In the paper [58] the result
was extended to the slightly more general situation, where the operator of linear elasticity and the Cosserat operatorsare
replaced by a more general linear elliptic system, part (b) was added and more general boundary conditions allowing for
different kinds of boundary conditions in the different components ofu were investigated. We refer to Section 3.3 for a
more detailed discussion of the related literature.

3.1.3 Global spatial regularity

The first global spatial regularity result for problems of the type (3.6)–(3.8) was proved by Alber and Nesenenko [4,5]. The
authors showed that the local and tangential regularity properties in Theorem 3.3, part (a), already imply that the solution
belongs to the spacesu ∈ L∞(S;H1+ 1

4 (Ω)), z ∈ L∞(S;H
1
4 (Ω)). By an iteration procedure the final regularityu ∈

L∞(S;H1+ 1
3 (Ω)) andz ∈ L∞(S;H

1
3 (Ω)) was obtained. With a completely different argument, a reflection argument,

the result can be improved. This will be explained in detail in this section.
To shorten the presentation we assume that there is a pointx0 ∈ ∂Ω such that∂Ω locally coincides with a hyperplane

and thatΩ lies above the hyperplane. The general case can be reduced tothis situation by a suitable local transformation of
coordinates. Moreover it is assumed that the data are given according toR4a.

LetC+ = (−1, 1)d−1 × (0, 1) be the upper half cube,C− = (−1, 1)d−1 × (−1, 0) the lower half cube and assume that
Γ = (−1, 1)d−1 × {0} ⊂ ∂Ω and thatC+ ∩ Ω = C+ andC− ∩ Ω = ∅, see Figure 1. ByC = (−1, 1)d we denote the unit
cube inR

d. LetR = I − 2ed ⊗ ed be the orthogonal reflection atΓ. The elasto-plastic model is extended fromC+ toC by
means of an odd extension for the displacements and an even extension for the internal variable and the initial datum:

ue(t, x) =

{
u(t, x) x ∈ C+

−u(t, Rx) x ∈ C−

, ze(t, x) =

{
z(t, x) x ∈ C+

z(t, Rx) x ∈ C−

, z0
e =

{
z0 in C+

z0◦R in C−

. (3.13)

Moreover, the extended coefficient matrixAe and the extended elastic energy are defined as

Ae =

{
A in C+

A◦R in C−

, Ψe(v, z) =
1

2

∫

Ω∪C

〈Ae (∇v
z ) , (∇v

z )〉dx (3.14)

for v ∈ H1(Ω∪C) andz ∈ L2(Ω∪C). Technical calculations show that the extended functions satisfy for allv ∈ H1
0 (C)

∫

C

〈Ae

(
∇ue(t)
ze(t)

)
, (∇v

0 )〉dx =

∫

C

be(t) · v dx,

∂tze(t) ∈ G(−DzΨe(∇ue(t), ze(t)) + Fe(t)),
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where

be(t, x) =

{
b(t, x) x ∈ C+

−b(t, Rx) − div
((
A11∇u(t) +A12z(t)

)∣∣
Rx

(R + I)
)

x ∈ C−
, (3.15)

Fe(t, x) =

{
F (t, x) x ∈ C+

F (t, Rx) −A21,e(∇u(t)
∣∣
Rx

(R+ I)) x ∈ C−

. (3.16)

The tangential regularity results from the previous section guarantee thatbe
∣∣
C−

∈ L∞(S;L2(C−)). Indeed, due to the

factor(R + I) terms like∂2
du and∂dz do not appear in the definition ofbe and hence, tangential derivatives of∇u andz

enter in the definition ofbe, only, which, by Theorem 3.3, belong toL∞(S;L2(C−)). Again from the regularity results
in the previous section we obtain that∂dFe

∣∣
C±

∈ L∞(S;L2(C±)). Taking into account thatu
∣∣
Γ

= 0, it follows that

∇u(R+ I)
∣∣
Γ

= 0 and hence the traces ofFe

∣∣
C+

andFe

∣∣
C−

coincide onΓ. This implies that∂dFe ∈ L∞(S;L2(C)). The
local regularity result described in Theorem 3.3, part (b),is therefore applicable and leads to the following theorem:

Theorem 3.4 Assume thatR1–R3andR4a are satisfied. Then the unique solution(u, z) of problem(3.6)–(3.8)satisfies:
For everyδ > 0

u ∈ L∞(S;H
3
2−δ(Ω)) ∩ L∞(S;H2

loc(Ω)), z ∈ L∞(S;H
1
2−δ(Ω)) ∩ L∞(S;H1

loc(Ω)). (3.17)

Moreover, for everyδ > 0 there exists a constantcδ > 0 such that

‖u‖
L∞(S;H

3
2
−δ(Ω))

+ ‖z‖
L∞(S;H

1
2
−δ(Ω))

≤ cδ(
∥∥z0

∥∥
H1(Ω)

+ ‖f‖W 1,1(S;Y1)). (3.18)

We refer to [58] for a detailed proof of the global results anda slightly more general variant of Theorem 3.4, where also
further types of boundary conditions are discussed.

Estimates (3.9) and (3.18) allow to apply Tartar’s nonlinear interpolation theorem showing that for data with less spatial
regularity than required in Theorem 3.4, one obtains the corresponding spatial regularity of the solution in a natural way. We
assume here thatg = ∂χK , whereK ⊂ R

N is convex, closed and0 ∈ K. ∂χK denotes the convex subdifferential of the
characteristic functionχK associated withK. LetY0 := Q∗, Y1 := L2(Ω,Rm) ×H1(Ω,RN ) andQδ

1 := (H1
0 (Ω,Rm) ∩

H
3
2−δ(Ω,Rm)) × H

1
2−δ(Ω,RN ) for δ > 0. Due to Theorem 3.1 and the stability estimate (3.9) for allr, q ∈ [1,∞] the

solution operatorT defined by

T : L2(Ω,RN ) ×W 1,r(S;Y0) → Lq(S;Q), (z0, f) 7→ T (z0, f) = (u, z),

where(u, z) ∈ W 1,1(S;Q) is the unique solution of (3.6)–(3.8) with dataf = (b, F ) and initial conditionz0, is well
defined and Lipschitz-continuous. Moreover, for allδ > 0 the solution operator

T : H1(Ω,RN ) ×W 1,r(S;Y1) → Lq(S;Qδ
1)

is a bounded operator according to Theorem 3.4. Hence, Tartar’s interpolation Theorem [103, Thm. 1] guarantees that for
all θ ∈ (0, 1) and allp ∈ [1,∞] the following implication holds true:

z0 ∈ (H1(Ω);L2(Ω))θ,p, f ∈ (W 1,r(S;Y1);W
1,r(S;Y0))θ,p

=⇒ T (z0, f) = (u, z) ∈ (Lq(S;Qδ
1);L

q(S;Q))θ,p.

Here,(· ; ·)θ,p stands for real interpolation, see e.g. [107]. If for example r = q = p = 2 andθ ∈ (0, 1), then given
z0 ∈ Hθ(Ω), b ∈ W 1,2(S; (H̃1−θ(Ω))∗), whereH̃s(Ω) = { η∈Hs(Ω) ; ∃η̃∈Hs(Rm) with supp η̃ ⊂ Ω, η̃

∣∣
Ω

= η }, and

F ∈W 1,2(S;Hθ(Ω)) we obtain thatu ∈ L2(S;H1+θ( 1
2−δ)(Ω)) andz ∈ L2(S;Hθ( 1

2−δ)(Ω)).

Example 3.5 Theorem 3.4 and the interpolation result are applicable to rate-independent elasto-plasticity with linear
kinematic hardening and with a von Mises or a Tresca flow rule.Here, the vector of internal variables is identified with the
plastic strainsεp ∈ R

d×d
sym,dev(i.e. tr εp = 0) and the elastic energy takes the form

Ψ(u, εp) =

∫

Ω

ψ(ε(∇u), εp) dx with ψ(ε, εp) = 1
2A(ε− εp) · (ε− εp) + 1

2Lεp · εp, (3.19)
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for (ε, εp) ∈ R
d×d
sym ×R

d×d
sym,dev, whereA ∈ C0,1(Ω,Lin(Rd×d

sym ,R
d×d
sym )) andL ∈ C0,1(Ω,Lin(Rd×d

sym,dev,R
d×d
sym,dev)) are assumed

to be symmetric and uniformly positive definite. Hence, due to Korn’s inequality, assumptionR2 is satisfied. LetK ⊂
R

d×d
sym,devbe convex, closed and with0 ∈ K. The setK describes the set of admissible stress states. Choosingg = ∂χK

as the convex subdifferential of the characteristic function χK associated withK, we obtain classical rate-independent
models for elasto-plastic material behavior. In particular, the von Mises flow rule is associated with the setKvM = { τ ∈
R

d×d
sym,dev; (τ · τ) 1

2 ≤ c0 }, whereas the Tresca flow rule is based on the setKT = { τ ∈ R
d×d
sym,dev; maxi6=j |τi − τj | ≤ c0 }.

Here,{ τi ; 1 ≤ i ≤ d } are the eigenvalues (principle stresses) ofτ ∈ R
d×d
sym,dev. The regularity Theorem 3.4 and the

interpolation result are applicable to these models.

Example 3.6 In [80] an elastic-plastic model was introduced which incorporates Cosserat micropolar effects. This
model is analyzed in [25, 80] with respect to existence and local regularity and in [59] with respect to global regularity
of a time discretized version. In this model, not only the displacementsu but also linearized micro-rotationsQ are taken
into account. The generalized displacements are given by the pair (u,Q) ∈ R

d × R
d×d
skew

∼= R
m, whereas the internal

variablez is identified with the plastic strain tensorz = εp ∈ R
d×d
sym, dev. For u ∈ H1(Ω,Rd), Q ∈ H1(Ω,Rd×d

skew) and

εp ∈ L2(Ω,Rd×d
sym,dev) the elastic energy reads

ΨC((u,Q), εp) =

∫

Ω

µ |ε(∇u) − εp|2 + µc |skew(∇u−Q)|2 +
λ

2
|tr∇u|2 + γ |∇Q|2 dx.

Here,λ, µ > 0 are the Lamé constants,µc > 0 is the Cosserat couple modulus andγ > 0 depends on the Lamé constants
and a further internal length parameter. It is shown in [80] that ΨC satisfies conditionR2. If G is chosen according to
R3, then solutions to (3.6)–(3.8) withΨC have the global regularity properties described in Theorem3.4. In addition,
Q ∈ L∞(S;H2(Ω)), sinceQ is coupled withε(∇u) andεp through lower order terms, only, see [25].

3.2 Discussion of the regularity results

It is an unsolved problem whether the result in Theorem 3.4 isoptimal or whether one should expect the regularityu ∈
L∞(S;H2(Ω)), z ∈ L∞(S;H1(Ω)) for domains with smooth boundaries. This would extend the local regularity results
described in Theorem 3.3 in a natural way. Ifu is a scalar function, then under certain coupling conditions on the coefficients
the spatial regularityu ∈ L∞(S;H2(Ω)) can be achieved for the evolution model (see Section 3.2.1).In Section 3.2.2 we
give an example which shows that in spite of smooth data a similar regularity result is not valid for the time derivatives∂tu
and∂tz.

3.2.1 Improved regularity for scalar u

The regularity results in Theorem 3.4 can be improved ifu is scalar and if certain compatibility conditions between the
submatricesAij of A and the constitutive functiong are satisfied. Here the idea is to construct a reflection operator R,
which is adapted to the structure of the the coefficient matrix A11. In contrast to Section 3.1.3 the problem is not reflected
perpendicular to the boundary but with respect to the vectorA11ν, whereν : ∂Ω → ∂B1(0) ⊂ R

d is the interior normal
vector to∂Ω. Due to the compatibility conditions between the coefficients and the constitutive functiong the reflected
data do not contain second spatial derivatives ofu or first derivatives ofz. Hence the reflected data have the regularity
(be, Fe) ∈ W 1,1(S;Y1) instead of(be, Fe) ∈ L∞(S;Y1) with Y1 = L2(Ωe) ×H1(Ωe). Thus, we may apply part (a) of
Theorem 3.3 and obtain the improved global regularity described in Theorem 3.7 here below.

To be more precise, the problem under consideration reads: Find u : S × Ω → R, z : S × Ω → R
N such that for given

A11 ∈ C0,1(Ω,Rd×d
sym ), A12 = A⊤

21 ∈ C0,1(Ω,Lin(RN ,Rd)) andA22 ∈ C0,1(Ω,RN×N
sym ) we have

DuΨ(u(t))[v] =

∫

Ω

(A11∇u(t) +A12z(t)) · ∇v dx =

∫

Ω

b(t) · v dx ∀v ∈ V,

∂tz(t) ∈ G(−(A21∇u(t) +A22z(t)) + F (t)),

z(0) = z0.

It is assumed thatA =
(

A11 A12

A21 A22

)
∈ C0,1(Ω; R(d+N)×(d+N)) is uniformly positive definite. Letν : ∂Ω → ∂B1(0) be the

interior normal vector on∂Ω. In order to formulate the compatibility conditions, we define forx ∈ ∂Ω

Rν(x) = I − 2

A11(x)ν(x) · ν(x)
A11(x)ν(x) ⊗ ν(x). (3.20)

The matrixRν locally determines the reflection at∂Ω. Observe thatR2
ν(x) = I andRν(x)A11(x)R

⊤
ν(x) = A11(x). The

basic assumptions and compatibility conditions read as follows:
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R5 Ω ⊂ R
d is a bounded domain with aC2,1-smooth boundary (it is used thatν ∈ C1,1(∂Ω)).

R6 (b, F ) ∈W 1,1(S;Y1) with Y1 from R4a, z0 = 0.

R7 There exists a mappingP ∈ C0,1(∂Ω,RN×N) such that for everyx ∈ ∂Ω the inverse matrix(P (x))−1 exists and the
following conditions hold for allη ∈ R

N

Rν(x)A12(x)P (x) = A12(x), P (x)⊤A22(x)P (x) = A22(x), −P (x)−1g(−P (x)−⊤η) = g(η).

Theorem 3.7 [58] Let R5-R7 be satisfied and assume that the pair(u, z) ∈ W 1,1(S;H1
0 (Ω) × L2(Ω)) solves(3.6)–

(3.8). Thenu ∈ L∞(S;H2(Ω)) andz ∈ L∞(S;H1(Ω)).

We refer to [58] for a detailed proof.

Example 3.8 Assume that the coefficient matrixA is constant, thatN = d, A12 = −A11 andA22 = A11 + L with
L ∈ R

d×d
sym positive definite. Hence,Ψ(u, z)=1

2

∫
ΩA11(∇u − z)·(∇u − z)+Lz · zdx. Moreover we assume thatA11=I,

which can always be achieved after a suitable change of coordinates and a suitable transformation in the state space ofz.
The mappingRν now takes the formRν = I − 2ν ⊗ ν for ν ∈ ∂B1(0) and the compatibility conditions reduce to

R7’ Pν = Rν ,R⊤
ν LRν = L and−R⊤

ν g(−Rνη) = g(η) for all η ∈ R
d.

It is shown in [58] thatR7’ is satisfied if and only if there existsα > 0 such thatL = αI. Moreover, ifg = ∂χK with
K ⊂ R

d convex, closed and0 ∈ K, thenR7’ holds if and only ifK = −RνK for all ν ∈ R
d. In this situation, Theorem

3.7 yields the improved regularity result.
This example shows that if the “anisotropy” in Hooke’s law given by the matrixA11 is correlated with the anisotropy in

the hardening coefficientsA22 andL and the constitutive functiong, then the displacementsu(t) have fullH2-regularity up
to the boundary∂Ω. It is an open question whether this regularity is still valid if the compatibility conditionR7 is violated.
Moreover it is not known, whether a similar result is true forreal elasto-plastic models, whereu is not a scalar function.

3.2.2 Example:∂tz(t) /∈ H1(Ω)

The following example shows that in spite of smooth data there might exist a time interval(t1, t2) such that∂tz(t) /∈ H1(Ω)
for all t ∈ (t1, t2). Hence, one should not expectz ∈W 1,1(S;H1(Ω)). The example is inspired by Seregin’s paper [95].

Let 0 < R1 < R2. We setΩ = BR2(0)\BR1(0) and choose the following energy foru, z : Ω → R:

Ψ(u, z) = 1
2

∫

Ω

∣∣∇u− x
|x|z

∣∣2 + z2 dx.

Moreover,g(η) := ∂χ[−1,1](η) for η ∈ R. It is assumed thatu(t)
∣∣
∂BR1

= 0, u(t)
∣∣
∂BR2

= t, z0 = 0 and that the remaining

data (F , b) vanish. It is easily checked that the assumptions of Theorem 3.7 are satisfied and hence the problem has a
unique solution with the regularity∇u, z ∈ W 1,1(S;L2(Ω)) ∩ L∞(S;H1(Ω)). Due to the rotational symmetry of the
problem the solution does not depend on the angle and can be calculated explicitly. Introducing polar-coordinates, the
solutionu, z : S × (R1, R2) → R has to satisfy forr ∈ (R1, R2) andt ∈ S

∂2
ru+ r−1∂ru− ∂rz − r−1z = 0 in S × (R1, R2),

∂tz ∈ ∂χ[−1,1](∂ru− 2z) in S × (R1, R2),

z(0, ·) = 0, u(t, R1) = 0, u(t, R2) = t.

For t ≤ t1 := R1 ln(R2/R1) it follows thatu(t, r) = t ln(r/R1)
ln(R2/R1) , z(t, r) = 0. In this regime, no plastic strains are present.

For t > t1 the plastic variablez starts to grow and there existsr∗(t) such thatz(t, r) > 0 for r < r∗ andz(r, t) = 0 for
r > r∗, i.e. r∗(t) separates the plastic region from the elastic region. The dependence ofr∗ on t is given implicitly by the
relation

t(r∗) = R1 − r∗ + r∗(lnR2r∗ − lnR2
1).

Simple calculations show thatt(r∗) is strictly increasing, and hencer∗(t) ≥ R1 is strictly growing, as well. Moreover, for
t ≥ t1 we have

u(t, r) =

{
b(t) − r + 2r∗(t) ln r if r ≤ r∗(t)

c(t) + r∗(t) ln r else
, z(t, r) =

{
−1 + r∗(t)r

−1 if r ≤ r∗(t),

0 else
,

with functionsb(t) = R1 − 2r∗(t) lnR1 and c(t) = t − r∗(t) lnR2. Since∂tr∗(t) > 0 for t ≥ t1 it follows that
∂tz(t, ·) /∈ H1(R1, R2) for t > t1, see also Figure 1.
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Ω

C+

C−

xd
x′

z ∂tz

Fig. 1 Example for the notation in Section 3.1.3 (left); Graph of the solutionz : (0, T ) × (R1, R2) → R (middle) and of the time
derivative∂tz (right).

3.3 Regularity for variants of the elasto-plastic model andoverview on the corresponding literature

The starting point for the review of the literature on spatial regularity properties of elasto-plastic models is the system
introduced in (3.6)–(3.8) with the particular energy density

ψ(ε, z) = 1
2

(
A(ε−Bz) · (ε−Bz) + Lz · z

)
(3.21)

for ε ∈ R
d×d
sym andz ∈ R

N . It is assumed thatA ∈ Lin(Rd×d
sym ,R

d×d
sym ) is symmetric and positive definite,L ∈ Lin(RN ,RN )

is symmetric and positive semi-definite andB ∈ Lin(RN ,Rd×d
sym ). The corresponding evolution model reads

div σ(t) + b(t) = 0, σ(t) = A(ε(∇u(t)) −Bz(t)), (3.22)

∂tz(t) ∈ G(−∂zψ(ε(∇u(t)), z(t)) + F (t)). (3.23)

together with initial and boundary conditions. Depending on the properties ofL andG different spatial regularity results
were derived in the literature.

3.3.1 Regularity for models with positive semi-definite elastic energy and monotone, multivaluedg

Only very few regularity results are available for models where the elastic energy densityψ in (3.21) is positive semi-
definite but not positive definite. The corresponding elastic energy is convex but not strictly convex on the full state space
Q. As a consequence, a-priori estimates like those provided in Theorem 3.2 cannot be obtained in general. In contrast,
the complementary energy, which is expressed via the generalized stresses, is still coercive. The regularity investigations
therefore typically take a stress based version of (3.22)–(3.23) as a starting point. In this framework to the authors’ knowl-
edge only the Prandtl-Reuss model and models with linear isotropic hardening are discussed in the literature with regard to
regularity questions.

The Prandtl-Reuss model describes elastic, perfectly plastic material behavior without hardening. The internal variablez
is identified with the plastic strain tensorεp ∈ R

d×d
sym,dev,B = I andL = 0. Moreover, the constitutive functiong is typically

identified with∂χK , whereK is a convex set given according to the von Mises or the Tresca flow rule, see Example 3.5.
The existence theorems provide stresses withσ(t) ∈ L2(Ω) andu(t) ∈ BD(Ω), whereBD(Ω) denotes the space of

bounded deformations, see e.g. [8,28,53,67,102,105]. Higher spatial regularity is derived by Bensoussan and Frehse [13]
and Demyanov [31] for the case thatK is defined by the von Mises yield condition. They obtainσ ∈ L∞([0, T ];H1

loc(Ω)),
which coincides with the local results in Theorem 3.4. The stress regularity is proved by approximating the Prandtl-Reuss
model with the viscous power-law like Norton-Hoff model [13] and by time discretization [31]. Tangential properties are
discussed in [18]. To the author’s knowledge these are the only known spatial regularity results for the Prandtl-Reuss
model. In particular there is no information about higher global regularity. In the dynamical case, Shi proved a local spatial
result forσ andu [96].

If z(0) = 0, then the first step in the time discretization of the Prandtl-Reuss model leads to the stationary, elastic,
perfectly plastic Hencky model. Here, it is proved for the von Mises case thatσ ∈ H1

loc(Ω) ∩H 1
2−δ(Ω) for everyδ > 0,

whereΩ is a bounded Lipschitz domain which satisfies an additional geometrical condition near those points, where the
Dirichlet and Neumann boundary intersect. We refer to [12] and [39, 92] together with the references therein for the local
result and to [15,56] for the global and a tangential result.The key of the proofs is to approximate the Hencky model with
nonlinear elastic models and to derive uniform regularity estimates for the approximating models. In addition, the authors
in [39] obtain a result concerning partial regularity of thesolutions. It is an open problem whether the global result can be
improved in the case of a smooth boundary with pure Dirichletor pure Neumann conditions, see the discussion in [95].

A further typical elasto-plastic model with a positive semidefinite energy densityψ describes linear isotropic hardening.
Here, the internal variablez consists of the plastic strainsεp and a scalar hardening variableγ characterizing the radius of
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the set of admissible stress states. The elastic energy is given byψ(ε, εp, γ) = 1
2

(
A(ε−εp) · (ε−εp)+αγ2

)
for ε ∈ R

d×d
sym ,

εp ∈ R
d×d
sym,devand fixedα > 0. The constitutive function is defined asg = ∂χK with K = { (τ, µ) ∈ R

d×d
sym,dev× R ; µ ≥

0, |τ | ≤ σ0 + σ1µ } and constantsσi > 0. The first investigations concerning spatial regularity inthe isotropic case were
carried out by Seregin [93]. Here, the resultsσ ∈ L∞(S;H1

loc(Ω)), γ ∈ L∞(S;H1
loc(Ω)), ∇u ∈ L∞(S;BDloc(Ω)) were

obtained by studying the regularity properties of a time-discretized version and proving uniform bounds. Hölder properties
of the solutions were investigated in [37].

3.3.2 Spatial regularity for regularized models

Replacing the maximal monotone constitutive functionG : L2(Ω,RN ) → P(L2(Ω,RN )) from (3.23) with its Yosida
approximation leads to regularized elasto-visco-plasticmodels with a Lipschitz-continuous nonlinearity in the evolution
law. The therewith obtained models are a subclass of the elasto-visco-plastic models studied e.g. by Sofonea et al., see
[35, 52]. Given an energyΨ : Q → R as defined in (3.4)–(3.5) with a coefficient matrixA ∈ L∞(Ω,Lin(Rm×d ×
R

N ,Rm×d × R
N )) and given a Lipschitz-continuous operatorF : Q → L2(Ω,RN ) these models read as follows:

DuΨ(u(t), z(t)) = b(t), ∂tz(t) = F(u(t), z(t)), z(0) = z0 (3.24)

together with boundary conditions on∂Ω. If the submatrixA11 ∈ L∞(Ω,Lin(Rm×d,Rm×d)) ofA is symmetric and if the
induced bilinear forma(u, v) =

∫
Ω
A11∇u · ∇v dx is coercive onV , then a standard application of Banach’s fixed point

theorem implies the existence of a unique solution(u, z) ∈ W 1,∞(S;Q) provided thatb ∈ W 1,∞(S;V ∗).
For these models the local spatial regularity was investigated in [75] with a difference quotient argument and in [61],

while the global regularity was studied in [19]. The global regularity theorem in [19] states that if the linear ellipticoperator
induced byA11 is an isomorphism between the spacesH1

ΓDir
(Ω) ∩ H1+s(Ω) andYs for somes ∈ (0, 1], whereYs is a

suitable subspace ofHs−1(Ω), then for everyb ∈ W 1,∞(S;Ys) the solution of (3.24) satisfiesu ∈ W 1,∞(S;H1+s(Ω))
andz ∈ W 1,∞(S;Hs(Ω)). In this way, global regularity properties of elliptic operators on possibly nonsmooth domains
and with mixed boundary conditions directly influence the regularity properties of the viscous evolution model (3.24).
The proof is carried out by deriving uniform regularity bounds for the sequence of approximating solutions generated
via the Banach fixed point theorem. Here it is not needed that the elastic energyΨ is coercive onQ, the coercivity of
a(u, v) :=

∫
ΩA11∇u · ∇v dx onV is sufficient.

While for elasto-plasticity models (with a multivalued monotone constitutive functiong) local regularity results can
be deduced by proving uniform regularity bounds for the sequence of the approximating Yosida-regularized models, see
e.g. [5], it is an unsolved problem, how to obtain uniform bounds in order to carry overglobal spatial regularity results
from the viscous model to the elasto-plastic limit problem.

A further possibility to regularize elasto-plastic modelsis to replace the constitutive functionG = ∂χK with a power-law
like ansatz. This approach is used in [105] in order to regularize the Prandtl-Reuss model. Assume again thatz = εp ∈
R

d×d
sym,dev,B = I, L = 0 and replace∂χKvM (cf. Example 3.5) with

gN (σ) = c1−N
0

∣∣σD
∣∣N−2

σD,

for σ ∈ R
d×d
sym . Here,σD = σ − 1

d tr σ I denotes the deviatoric part of the tensorσ. The parameterN > 1 is a strain
hardening exponent, whereasc0 can be interpreted as a yield stress. The resulting viscous model is the so called Norton/Hoff
model and consists of the relation (3.22) which is completedby the evolution law∂tεp(t) = gN (σ(t)). ForN → ∞, the
Norton/Hoff model approximates the Prandtl/Reuss model [105]. After eliminating the plastic strainsεp one obtains the
usual form of the Norton/Hoff model:

div σ(t) + b(t) = 0, A−1∂tσ(t) + c1−N
0

∣∣σD(t)
∣∣N−2

σD(t) = ∂tε(∇u(t)).

Bensoussan/Frehse [12] proved the local spatial regularity resultσ ∈ L∞((0, T );H1
loc(Ω)) for the stress tensor via a

difference quotient argument. A global result seems not to be available in the literature.
A time discretization of the Norton/Hoff model leads to the stationary Norton/Hoff or Ramberg/Osgood model, which

is given by equation (3.22) in combination with the relationε(∇u) = A−1σ+ c1−N
0

∣∣σD
∣∣N−2

σD. Several authors studied
local and global regularity and the Hölder properties of the stresses and displacements of this model for domains with
smooth boundaries as well as for domains with nonsmooth boundaries [12,14,33,55,56,101].

3.3.3 Spatial regularity for time incremental versions

A further way to prove regularity properties of elasto-viscoplastic models is to study the smoothness of solutions to time-
discretized versions and to derive regularity bounds whichare uniform with respect to the time step size. This method was
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applied e.g. in [93] to obtain local results, while for global results uniform bounds are not known. We discuss here global
regularity properties for the time discretized version under the assumption that the elastic energyΨ is coercive and that
g = ∂χK with a convex and closed setK. The different equivalent formulations of the discretizedequations, which we
present here below, are commonly used in a computational context of elasto-plasticity, [98,99].

Let R1 andR2 be satisfied and assume thatg = ∂χK , whereK ⊂ R
N is convex, closed and with0 ∈ K. Let further

K = { η ∈ L2(Ω) ; η(x) ∈ K a.e. inΩ }. A time discretization via an implicit Euler scheme leads tothe following problem
with ∆t = T/n, 0 = tn0 < tn1 < . . . < tnn = T : Find (un

k , z
n
k ) ∈ V × L2(Ω), 1 ≤ k ≤ n, which satisfy

DuΨ(un
k , z

n
k ) − b(tnk ) = 0, 1

∆t(z
n
k − zn

k−1) ∈ ∂χK(−DzΨ(un
k , z

n
k )). (3.25)

Observe thatzn
k solves (3.25) if and only if

zn
k = argmin{F (un

k , η, z
n
k−1,∆t) ; η ∈ L2(Ω) }, (3.26)

F (un
k , η, z

n
k−1,∆t) =

1

2

∫

Ω

A22(η − zk−1) · (η − zk−1) dx+ ∆t χK(−(A21∇un
k +A22z

n
k )). (3.27)

In terms of the new variablesΣtrial
k = −(A21∇un

k +A22z
n
k−1) andΣk = −(A21∇un

k +A22z
n
k ), it follows thatzk satisfies

(3.26) if and only if

zn
k = zn

k−1 +A−1
22 (Σtrial

k − Σk), (3.28)

Σk = argmin{ F̃ (θ,Σtrial
k ,∆t) ; θ ∈ L2(Ω) }, (3.29)

F̃ (θ,Σtrial
k ,∆t) =

1

2

∫

Ω

A−1
22 (θ − Σtrial

k ) · (θ − Σtrial
k ) dx+ ∆t χK(θ). (3.30)

Since the coefficient matrixA−1
22 induces a scalar product onL2(Ω), Σk can be interpreted as the projection ofΣtrial

k onto
the convex and closed setK with respect to this scalar product. LetPA−1

22 ,K : L2(Ω) → L2(Ω) be the projection operator

onK. Hence,Σk = PA−1
22 ,K(Σtrial

k ) and in addition,Σk(x) = PA−1
22 (x),K(Σtrial

k (x)) in Ω, wherePA−1
22 (x),K : R

N → R
N is

the corresponding pointwise projection operator onK. With these notations, problem (3.25) is equivalent to the following
problem: Findun

k ∈ V andzn
k ∈ L2(Ω) such that for givenzn

k−1 ∈ L2(Ω) we have

∫

Ω

M(x,∇un
k (x), zn

k−1(x)) · ∇v(x) dx = 〈b(tnk ), v〉 ∀v ∈ V, (3.31)

zn
k = −A−1

22

(
A21∇un

k + PA−1
22 ,K( −A21∇un

k −A22z
n
k−1)

)
, (3.32)

where the mappingM : Ω × R
m×d × R

N → R
m×d is defined as

M(x, F, z) = L1(x)F −A12(x)A22(x)
−1PA−1

22 (x),K

(
−A21(x)F −A22(x)z

)

with the Schur complement matrixL1 = A11 − A12A
−1
22 A21 ∈ C0,1(Ω,Lin(Rm×d,Rm×d)). Observe that in generalM

is not differentiable with respect toF andz. The Lipschitz-continuity of the projection operator, assumptionR2 and the
assumption0 ∈ K imply that the mappingM has the following properties: there exist constantsc1, c2 > 0 such that for
everyx, xi ∈ Ω, F, Fi ∈ R

m×d andz, zi ∈ R
N we have

|M(x1, F, z) −M(x2, F, z)| ≤ c1(|F | + |z|) |x1 − x2| , (3.33)

|M(x, F1, z1) −M(x, F2, z2)| ≤ c2(|F1 − F2| + |z1 − z2|), (3.34)

M(x, 0, 0) = 0. (3.35)

Moreover,M induces a strongly monotone operator onV , i.e. there exists a constantβ > 0 such that for allu1, u2 ∈ V
andz ∈ L2(Ω) we have:

∫

Ω

(
M(x,∇u1, z) −M(x,∇u2, z)

)
: ∇(u1 − u2) dx ≥ β ‖u1 − u2‖2

H1(Ω) .

This follows from the monotonicity of the projection operator and from the fact that due to assumptionR2, the induced
bilinear formb(u, v) :=

∫
Ω
L1∇u · ∇v dx, u, v ∈ V , is symmetric andV -coercive. Finally, the mappingM is strongly

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 23

rank-one monotone. That means that there exists a constantcLH > 0 such that for everyx ∈ Ω, F ∈ R
m×d, z ∈ R

N ,
ξ ∈ R

m andη ∈ R
d we have

(
M(x, F + ξ ⊗ η, z) −M(x, F, z)) : ξ ⊗ η ≥ cLH |ξ|2 |η|2 . (3.36)

This is a consequence of the monotonicity of the pointwise projection operator and the positivity properties ofL1, see e.g.
[108, Th. 6.1]. Altogether it follows thatM generates a quasilinear elliptic system of PDEs of second order for determining
un

k . Standard existence results for equations involving Lipschitz-continuous, strongly monotone operators guarantee the
existence of a unique elementun

k ∈ V solving (3.31) for arbitrary datazn
k−1 ∈ L2(Ω) andb ∈ V ∗, [110]. Moreover,

un
k depends Lipschitz-continuously on the data. The regularity result in [59] guarantees that for givenb(tk) ∈ L2(Ω)

andzn
k−1 ∈ H1(Ω) we have the global regularity(un

k , z
n
k ) ∈ H2(Ω) × H1(Ω) provided thatR1 andR2 are satisfied.

Unfortunately it is not known how to derive estimates for‖un
k‖H2(Ω) which are uniform with respect to the time step∆t.

Quasilinear elliptic systems of a similar structure resulting from various regularizing ansatzes for elasto-plasticmodels
were also studied with respect to regularity questions in the references [20,38,57,79,86,89,91,94].

4 Numerical realization via a Slant Newton Method

As it is pointed out in Section 3.3.3 one possibility to numerically solve the system of elasto-plasticity is to solve the
system of nonlinear elliptic equations which emerges afteran (implicit) time discretization and an elimination of theinternal
variables. This system in general involves a nonlinearity which is not differentiable as an operator between function spaces.
Hence, a standard Newton’s method, which relies on the derivative of the nonlinear operator, is not appropriate to solvethe
nonlinear system. Instead we discuss a Newton-like method,where the derivative is replaced by a slanting function leading
to a Slant Newton Method. This approach is explained for a rate-independent elasto-plastic model with linear isotropic
hardening.

4.1 Problem Specification

Consider thePrandtl-Reuß elastoplasticity problem with isotropic hardening, which is a specialization of (2.1)–(2.5) in the
following way: Define the internal variablez(x, t) = (z1(x, t), . . . , z6(x, t), γ(x, t)) with sizeN = 7, and the projection

B : R
N → S3 , z 7→ εp =



z1 z4 z5
z4 z2 z6
z5 z6 z3


 . (4.1)

For easier notation let us, from now on, denote the plastic strain byp instead ofεp. The associated free energy density is
assumed to be of the form

ψ(ε, p, γ) =
1

2
〈A(ε− p), ε− p〉F +

1

2
γ2 ,

whereε ∈ S3, p ∈ S3, γ ∈ R, the Frobenius scalar product for matrices is defined〈B,C〉F =
∑

ij Bij Cij , and it is
assumed that the elasticity tensorA characterizes isotropic material behavior and has the explicit form

A : S3 → S3, ε 7→ 2µε+ λ tr ε I .

Here,λ, µ > 0 are the Lamé constants and describe the elastic behavior ofthe material. This choice of the elastic energy
density induces the following relation between the generalized plastic strainsΠ = (p, γ) ∈ S3 × R and the generalized
stressesΣ = (T, α) ∈ S3 × R:

T = ∂εψ(ε, p, γ) = −∂pψ(ε, p, γ) = A(ε− p) ,

α = −∂γψ(ε, p, γ) = −γ .

The constitutive flow law (2.3) in the Prandtl-Reuss case with isotropic hardening reads

∂tΠ(x, t) ∈ ∂χK(Σ(x, t)) , (4.2)

where∂χK denotes the subgradient of the indicator function regarding the convex setK of admissible generalized stresses,
which is given by

K = {Σ ∈ S3 × R ; φ(Σ) ≤ 0 } (4.3)

Copyright line will be provided by the publisher



24 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On time-dependent models with internal variables

with the yield function

φ(Σ) = ‖dev T ‖F − Ty(1 +Hα) + χ[0,∞)(α). (4.4)

The parametersyield stressTy > 0 andmodulus of hardeningH > 0 describe the plastic behavior of the material, the
deviator, a projection onto the trace-free subspace ofS3, is calculated bydev T = T − (trT/ tr I) I, and the Frobenius
norm reads‖T ‖2

F = 〈T, T 〉F . Notice, that (4.2) is a specialization of (2.3). Geometrically spoken, the subgradient∂χK

describes the normal cone of the convex set of admissible stressesK at the pointΣ. In other words, the prescription
∂Π
∂t ∈ ∂χK(Σ) means that either there is no solution with respect to the generalized strainΠ (if Σ is not inK), or Π

remains constant (ifΣ is in the interior ofK), or ∂Π
∂t has to be chosen such that it is orthogonal to the boundary of the set

of admissible stressesK at the pointΣ (if Σ is on the boundary ofK).
Summarizing, the problem of Prandtl-Reuß elastoplasticity with isotropic hardening reads: Find the displacement

u(x, t) ∈ R
3, the plastic strainp(x, t) ∈ S3, and the hardening parameterα(x, t) ∈ R, which solve

− divx T (x, t) = b(x, t) , (4.5)

T (x, t) = A(ε(u(x, t)) − p(x, t)) , (4.6)
∂Π

∂t
(x, t) ∈ ∂χK(Σ(x, t)) , whereΠ = (p,−α) andΣ = (T, α) , (4.7)

Π(x, 0) = Π(0)(x) , (4.8)

u(x, t) = γD(x, t) , if x ∈ ΓD ⊂ ∂Ω , (4.9)

T (x, t)n(x, t) = γN (x, t) , if x ∈ ΓN ⊂ ∂Ω . (4.10)

We turn to the numerical solution of the problem (4.5)–(4.10). The algorithm described in this section is of Newton’s
type, enjoying the property of local super-linear convergence. It is an interesting question for future investigation, whether
there is a more general class of problems covered by the laws (2.1)–(2.5), to which this algorithm is applicable.

We defineV :=
[
H1(Ω)

]3
, V0 := { v ∈ V ; v = 0 onΓD }, VD := { v ∈ V ; v = uD onΓD } for uD ∈

[
H1/2(ΓD)

]3
,

Q :=
[
L2(Ω,S3)

]
, andR := R ∪ {+∞}.

Analogously to the discussion in Section 5 the problem (4.5)–(4.10) may equivalently be formulated in the global
energetic framework based on the energy

E(t, u,Π) =

∫

Ω

ψ(ε(∇u), p, γ) dx− 〈b(t), u〉

and the dissipation potential

R(u, p, γ) =

∫

Ω

ρ(p(x), γ(x)) dx

for u ∈ VD, p ∈ Q andγ ∈ L2(Ω). The densityρ is given as the convex conjugate ofχK and has the structure

ρ(p, γ) = χ∗
K(p, γ) =

{
Ty ‖p‖F if tr p = 0 and ‖p‖F ≤ − γ

TyH ,

∞ otherwise.

Using an implicit Euler-discretization for a partition0 = t0 < t1 < . . . < tn = T and the sets

L2
+(Ω) = { f ∈ L2(Ω) ; f ≥ 0 almost everywhere} , L2

−(Ω) = { f ∈ L2(Ω) ; f ≤ 0 almost everywhere} ,

the time discretized problem reads:

Problem 4.1 Given(uk−1, pk−1, γk−1) ∈ VD ×Q× L2
−(Ω) find (uk, pk, γk) ∈ VD ×Q× L2

−(Ω) such that

(uk, pk, γk) ∈ argmin{ E(tk, v, q, ξ) + R(v − uk−1, q − pk−1, ξ − γk−1) ; (v, q, ξ) ∈ VD ×Q× L2
−(Ω) } .

It is shown in [6,21] that the hardening variableαk = −γk can be eliminated from the minimization problem in such a
way that for determining(uk, pk,−αk) one can equivalently solve the following problem:

Problem 4.2 Given(uk−1, pk−1, αk−1) ∈ VD ×Q× L2
+(Ω) find (uk, pk, αk) ∈ VD ×Q× L2

+(Ω) such that

(uk, pk) ∈ argmin{ J̄k(v, θ) ; (v, θ) ∈ VD ×Q } , (4.11)

αk = αk−1 + TyH ‖pk − pk−1‖F . (4.12)
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Here, the global energy functionalJ̄k : VD ×Q→ R is defined by

J̄k(v, q) :=
1

2
‖ε(v) − q‖2

A + ψk(q) − lk(v) , (4.13)

with

〈q1, q2〉A :=

∫

Ω

〈Aq1(x) , q2(x)〉F dx , ‖q‖A := 〈q, q〉1/2
A , (4.14)

α̃k(q) := αk−1 + TyH‖q − pk−1‖F , (4.15)

ψk(q) :=

{ ∫
Ω

(
1
2 α̃k(q)2 + Ty‖q − pk−1‖F

)
dx if tr q = tr pk−1 ,

+∞ else,
(4.16)

lk(v) :=

∫

Ω

bk · v dx+

∫

ΓN

γN,k · v ds . (4.17)

The body forceb(tk) = bk ∈
[
L2(Ω)

]3
and the tractionγN (tk) = γN,k ∈

[
H−1/2(ΓN )

]3
are given. The functional̄Jk

expresses the mechanical energy of the deformed system at thekth time step. Notice, that̄Jk is smooth with respect to the
displacementsv, but not with respect to the plastic strainsq.

4.2 Solver Analysis

In [21] a method of an alternate minimization regarding the displacementv and the plastic strainq was investigated to
solve Problem 4.2. The global linear convergence of the resulting method was shown and a local super-linear convergence
was conjectured. Another interesting technique is to reduce Problem 4.2 to a minimization problem with respect to the
displacementsv only. This can be achieved by substituting the known explicit minimizer ofJk with respect to the plastic
strain field for some given displacementv, namely byq = p̃k(ε(v)). We will observe that such a reduced minimization
problem is smooth with respect to the displacementsv and its derivative is explicitly computable.

The following theorem is formulated for functionals mapping from a Hilbert spaceH provided with the scalar product
〈◦, ⋄〉H and the norm‖·‖2

H
:= 〈·, ·〉H. If a functionF is Fréchet differentiable, we shall denote its derivativein a pointx by

DF (x) and its Gâteaux differential in the directiony by DF (x ; y). We refer to [34] concerning the definitions of convex,
proper, lower semi-continuous, and coercive.

Theorem 4.3 Let the functionf : H × H → R be defined

f(x, y) =
1

2
‖x− y‖2

H + ψ(x) (4.18)

whereψ is a convex, proper, lower semi-continuous, and coercive function ofH into R. ThenF (y) := infx∈H f(x, y) maps
into R, and there exists a unique functionx̃ : H → H such thatF (y) = f(x̃(y), y) for all y ∈ H. Moreover, it holds:

1. F is strictly convex and continuous inH.

2. F is Fréchet differentiable with the Fréchet derivative

DF (y) = 〈y − x̃(y) , ·〉H for all y ∈ H . (4.19)

P r o o f. See [77, 7.d. Proposition].

We apply Theorem 4.3 to Problem 4.2 and obtain the following proposition.

Proposition 4.4 Letk ∈ {1, . . . , n} denote the time step, and letJ̄k be defined as in (4.13). Then there exists a unique
mappingp̃k : Q→ Q satisfying

J̄k (v, p̃k (ε (v))) = inf
q∈Q

J̄k (v, q) ∀v ∈ VD . (4.20)

LetJk be a mapping ofVD into R defined as

Jk(v) := J̄k(v, p̃k(ε(v))) ∀v ∈ VD . (4.21)

Then,Jk is strictly convex and Fŕechet differentiable. The associated Gâteaux differential reads

DJk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉A − lk(w) ∀w ∈ V0 (4.22)

with the scalar product〈◦, ⋄〉A defined in (4.14) andlk defined in (4.17).
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P r o o f. The functionalJ̄k : V × Q → R defined in (4.13) using (4.14), (4.16) and (4.17) can be decomposed in
J̄k(v, q) = fk(ε(v), q)− lk(v), where the functionalfk : Q×Q→ R readsfk(s, q) := 1

2‖q− s‖2
A +ψk(q). Theorem 4.3

states the existence of a unique minimizerp̃k : Q → Q which satisfies the conditionfk(s, p̃k(s)) = infq∈Q fk(s, q),
where the functionalFk(s) := fk(s, p̃k(s)) is strictly convex and differentiable with respect tos ∈ Q. Since the strain
ε(v) is a Fréchet differentiable, linear and injective mappingfromVD intoQ, the composed functionalFk(ε(v)) is Fréchet
differentiable and strictly convex with respect tov ∈ VD. Considering the Fréchet differentiability and linearity of lk with
respect tov ∈ VD, we conclude the strict convexity and Fréchet differentiability of the functionalJk defined in (4.21). The
explicit form of the Gâteaux differentialDJk(v ; w) in (4.22) results from the linearity of the two mappingslk andε, and
the Fréchet derivativeDFk(ε(v) ; ·) = 〈ε(v) − p̃k(ε(v)) , ·〉A as in (4.19), combined with the chain rule.

The minimizerp̃k can be calculated by hand (see [6,43]) and it exactly recovers the classical return mapping algorithm
[98]. Let the trial stress̃Tk : Q → Q at thekth time step and the yield functionφk−1 : Q → R at thek − 1st time step be
defined by

T̃k(q) := A(q − pk−1) and φk−1(T ) := ‖devT ‖F − Ty(1 +H αk−1) . (4.23)

Then, the minimizer̃pk reads

p̃k(ε(v)) =
1

2µ+ T 2
yH

2
max{0, φk−1(T̃k(ε(v)))} dev T̃k(ε(v))

‖dev T̃k(ε(v))‖F

+ pk−1 . (4.24)

We obtain a smooth minimization problem by usingJk as in (4.21) with̃pk as in (4.24):

Problem 4.5 Finduk ∈ VD such thatJk(uk) = infv∈VD
Jk(v).

Remark 4.6 Problem 4.5 is uniquely solvable. This is due to the fact thatfunctionalJk is strictly convex, coercive,
proper and lower semi-continuous (see, e. g., [34, Chapter II, Proposition 1.2]). Solving Problem 4.5 numerically might be
realized by applying Newton’s Methodvj+1 = vj −

(
D 2Jk(vj)

)−1
DJk(vj) . Unfortunately, the second derivative ofJk

does not exist since themax-function in (4.24) is not differentiable. Therefore, we apply a Newton-like method which uses
slanting functions (see [26]) instead of the second derivative. We shall call such a method a Slant Newton Method.

Henceforth, letX andY be Banach spaces, andL(X,Y ) denote the set of all linear mappings ofX into Y .

Definition 4.7 Let U ⊆ X be an open subset andx ∈ U . A functionF : U → Y is said to beslantly differentiable at
x if there exists a mappingF o : U → L(X,Y ) which is uniformly bounded in an open neighborhood ofx, and a mapping
r : X → Y with limh→0‖r(h)‖Y ‖h‖−1

X = 0 such thatF (x + h) = F (x) + F o(x + h)h + r(h) holds for allh ∈ X
satisfying(x + h) ∈ U . We say,F o(x) is aslanting function forF at x. F is calledslantly differentiable inU if there
existsF o : U → L(X,Y ) such thatF o is a slanting function forF for all x ∈ U . F o is then called aslanting function for
F in U .

Theorem 4.8 Let U ⊆ X be an open subset, andF : U → Y be a slantly differentiable function with a slanting
functionF o : U → L(X,Y ). We suppose, thatx∗ ∈ U is a solution to the nonlinear problemF (x) = 0. If F o(x) is
non-singular for allx ∈ U and{‖F o(x)−1‖L(Y,X) : x ∈ U} is bounded, then the Newton-like iteration

xj+1 = xj − F o(xj)−1F (xj) (4.25)

converges super-linearly tox∗, provided that‖x0 − x∗‖X is sufficiently small.

The proof can be found in [26, Theorem 3.4] or [49, Theorem 1.1].
We apply the Slant Newton Method (4.25) to elastoplasticityby choosingF = DJk as in (4.22). Themax-function is

slantly differentiable [49, Proposition 4.1] as a mapping of Lp(Ω) into Lq(Ω) if p > q but not if p ≤ q. Therefore, if it
holdsφk−1(T̃k(ε(v))) ∈ L2+δ(Ω) for someδ > 0, thenDJk (cf. (4.22),(4.24)) has a slanting function which reads

(DJk)
o
(v;w, w̄) := 〈ε(w) − p̃o

k(ε(v); ε(w)) , ε(w̄)〉A (4.26)

with a slanting function for̃pk, e. g.,

p̃o
k(ε(v) ; q) :=

{
0 if βk ≤ 0 ,

ξ
(
βk dev q + (1 − βk) 〈dev T̃k , dev q〉F

‖dev T̃k‖2
F

dev T̃k

)
else,

(4.27)

where the abbreviationsξ := 2µ
2µ+T 2

y H2 , T̃k := T̃k(ε(v)) andβk := φk−1(T̃k)

‖dev T̃k‖F
with φk−1 andT̃k defined in (4.23) are used.

(DJk)
o in Equation (4.26) is commonly known as theconsistent tangent, see [98]. For fixedv ∈ VD, the bilinear form

(DJk)o (v; ·, ·) in (4.26) is elliptic and bounded inV0 (see [43, Lemma 2]).
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Fig. 2 Problem setup.

Corollary 4.9 Letk∈{1, . . . , n}, δ>0 be fixed andtk denote thekth time step. Let the mappingDJk : VD → V0
∗ be

definedDJk(v) := DJk(v ; ◦) as in (4.22), and(DJk)
o

: VD → L(V0, V0
∗) be defined(DJk)

o
(v) := (DJk)

o
(v ; ⋄, ◦)

as in(4.26). Then, the Slant Newton iteration

vj+1 = vj −
[
(DJk)o (vj)

]−1
DJk(vj)

converges super-linearly to the solutionuk of Problem 4.5, provided that‖v0 − uk‖V is sufficiently small, and that
φk−1(T̃k(ε(v))) as in(4.23)is inL2+δ(Ω) for all v ∈ VD.

P r o o f. We check the assumptions of Theorem 4.8 for the choiceF = DJk. Let v ∈ VD be arbitrarily fixed. The
mapping(DJk)

o
(v) : V0 → V0

∗ serves as a slanting function forDJk at v, sinceφk−1(T̃k(ε(v))) is in L2+δ(Ω).
Moreover,(DJk)

o
(v) : V0 → V0

∗ is bijective if and only if there exists a unique elementw in V0 such, that for arbitrary
but fixedf ∈ V0

∗ there holds

(DJk)
o
(v ; w, w̄) = f(w̄) ∀w̄ ∈ V0 . (4.28)

Since the bilinear form(DJk)o (v) is elliptic and bounded (see [43, Lemma 4.9]), we apply the Lax-Milgram Theorem to
ensure the existence of a unique solutionw to (4.28). Finally, withκ1 denoting thev-independent ellipticity constant for
(DJk)

o
(v; ⋄, ◦), the uniform boundedness of[(DJk)

o
(·)]−1

: VD → L(V0
∗, V0) follows from the estimate

‖[(DJk)
o
(v)]

−1‖ = sup
w∗∈V0

∗

‖[(DJk)
o
(v)]

−1
w∗‖

‖w∗‖V0
∗

= sup
w∈V0

‖w‖V

‖(DJk)o (v ; w, ·)‖V0
∗

= sup
w∈V0

inf
w̄∈V0

‖w‖V ‖w̄‖V

|(DJk)
o
(v ; w, w̄)| ≤ sup

w∈V0

‖w‖2
V

|(DJk)
o
(v ; w,w)| ≤

1

κ1
.

Remark 4.10 Notice the required assumption on the integrability ofφk−1(T̃k(ε(v))). It is still an open question, under
which extra conditions this property can be satisfied for allv ∈ VD, or, at least for all Newton iteratesvj . The local super-
linear convergence in the spatially discrete case (after FE-discretization) can be shown without any additional assumption,
see [43, Theorem 4.14].

4.3 Numerical Examples

Finite Element Method with nodal linear shape functions wasused in the test examples below. The interested reader is
referred to [44–46] for more convergence tables and numerical examples. The super-linear convergence was observed in
both 2D and 3D computations.

4.3.1 2D-Example

We simulate the deformation of a screw-wrench under pressure, the problem geometry is shown in Figure 2. A screw-
wrench sticks on a screw (homogeneous Dirichlet boundary condition) and a surface loadg is applied to a part of the
wrench’s handhold in interior normal direction. The material parameters are set

λ = 1.15e8 N
m , µ = 7.7e7 N

m , Ty = 2e6 N
m , H = 0.001 ,
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Fig. 3 Elastoplastic zones (left) and yield function (right) of the deformed wrench geometry. The displacement is magnified bya factor
10 for visualization reasons.

and the traction intensity amounts|g| = 6e4 N
m . Figure 3 shows the yield function (right) and the elastoplastic zones (left),

where purely elastic zones are light, and plastic zones are dark. Table 1 reports on the super-linear convergence of the
Newton-like method for graded uniform meshes. The implementation was done in Matlab.

DOF: 202 . . . 10590 41662 165246 658174 2627070
j=1: 1.000e+00 . . . 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00
j=2: 6.510e-04 . . . 3.394e-01 4.344e-01 4.682e-01 5.038e-01 5.417e-01
j=3: 4.238e-09 . . . 4.018e-02 5.786e-02 8.919e-02 1.892e-01 2.552e-01
j=4: 1.266e-12 . . . 1.009e-03 3.076e-03 1.642e-02 2.253e-02 3.049e-02
j=5: . . . 2.679e-07 4.550e-05 1.473e-03 7.595e-04 1.294e-03
j=6: 3.817e-13 2.244e-09 1.014e-04 6.519e-05 1.264e-04
j=7: 6.000e-13 2.628e-08 7.342e-09 8.528e-06
j=8: 1.047e-12 1.892e-12 4.153e-08
j=9: 3.638e-12

Table 1 The relative error in displacements|vj − vj−1|ε/
`

|vj |ε + |vj−1|ε
´

is displayed for increasing degrees of freedom (DOF),

where|v|ε :=
`R

Ω
〈ε(v) , ε(v)〉F dx

´1/2
.

4.3.2 3D-Example

This three dimensional test example is similar to a two dimensional example in [100]. Figure 4 shows the quarter of a thin

Fig. 4 Here, the geometry of the example domain is outlined. Due to reasons of symmetry, only one of the quarters is solved.
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DOF: 717 5736 45888 367104
j=1: 1.000e+00 1.000e+00 1.000e+00 1.000e+00
j=2: 1.013e-01 1.254e-01 1.367e-01 1.419e-01
j=3: 7.024e-03 6.919e-03 7.159e-03 6.993e-03
j=4: 1.076e-04 9.359e-05 1.263e-04 1.176e-04
j=5: 2.451e-08 6.768e-07 1.744e-06 1.849e-06
j=6: 7.149e-15 6.887e-12 4.874e-09 1.001e-08
j=7: 4.298e-13 2.368e-14

Table 2 This table outlines the convergence of the Slant Newton Method in 3D. We observe super-linear convergence and (almost) a
constant number of iterations at each refinement.

plate(−10, 10)× (−10, 10)× (0, 2) with a circular hole of the radiusr = 1 in the middle. One elastoplastic time step is
performed, where a surface loadg with the intensity|g| = 450 N

m2 is applied to the plate’s upper and lower edge in outer
normal direction. Due to the symmetry of the domain, the solution is calculated on one quarter of the domain only. Thus,
homogeneous Dirichlet boundary conditions in the normal direction (gliding conditions) are considered for both symmetry
axes. The material parameters are set

λ = 110744
N

m2
, µ = 80193.8

N

m2
, σY = 450

√
2/3

N

m2
, H =

1

2
.

Differently to the original problem in [100], the modulus ofhardeningH is nonzero, i.e., hardening effects are considered.
Figure 5 shows the norm of the plastic strain fieldp (right) and the coarsest refinement of the geometry (left). Table 2 reports
on the convergence of the Slant Newton Method. The implementation was done in C++ using the NETGEN/NGSolve
software package developed by J. Schöberl [90].

Fig. 5 The Frobenius norms of the total strainε (left) and of the plastic strainp (right).

5 Rate-independent evolutionary processes – Temporal regularity of solutions

This section is devoted to the subclass of quasistatic, rate-independent evolutionary processes. The time-evolutionof a
system can be considered as rate-independent if the time scales imposed to the system from the exterior are much larger
than the intrinsic ones, i.e. if the external loadings evolve much slower than the internal variables. Throughout this section
we will apply the energetic formulation of a rate-independent process. This approach does not use the classical formulation
(2.1)–(2.5) but considers the energy functionalE : [0, T ] × Q → R∞ =: R ∪ {∞} and the dissipation distanceD :
Q×Q → [0,∞] related to the evolution equation (2.3) in an appropriate state spaceQ, which is assumed to be a Banach
space with dualQ∗. An energetic solution of the rate-independent system(Q, E ,D) is defined as follows

Definition 5.1 The processq=(u, z) : [0, T ] → Q is an energetic solution of the rate-independent system(Q, E ,D), if
t 7→∂tE(t, q(t)) ∈ L1((0, T )), if for all t ∈ [0, T ] we haveE(t, q(t)) <∞ and if the global stability inequality (S) and the
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global energy balance (E) are satisfied:

Stability : for all q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) + D(q(t), q̃), (S)

Energy balance : E(t, q(t)) + DissD(q, [0, t]) = E(0, q(0)) +

∫ t

0

∂ξE(ξ, q(ξ)) dξ (E)

with DissD(q, [0, t]) := sup
∑N

j=1 D(q(ξj−1), q(ξj)), where the supremum is taken over all partitions of[0, t].

In Section 5.1.1 we will clarify the relations between the classical and the energetic formulation. Since the conditions
(S) & (E) do not require thaṫq exists, an energetic solution may in general have jumps withrespect to time. In particular,
(S) provides the uniform boundedness ofE(t, q(t)) and hence (E) yields thatq : [0, T ] → Q is only of bounded variation in
time with respect to the dissipation distance providing anL1-norm in space. This means that in general the time derivative
q̇ is only given as a Radon-measure. Therefore, Section 5.2 pays special attention to the temporal regularity of energetic
solutions. It is investigated how their temporal regularity can be improved due to additional convexity assumptions onthe
energyE . In Section 5.2.1 it is explained that strict convexity ofE on Q yields continuity of the solutions with respect
to time. Section 5.2.2 deals with the Hölder- and Lipschitz-continuity of energetic solutions, which can be obtained by
claiming a kind of uniform convexity onE . In Section 5.3 the theory introduced in Section 5.2 is applied to evolutionary
processes modeling plasticity, damage or phase transformations in shape memory alloys and we give examples on stored
elastic energy densities that lead to such improved temporal regularity.

5.1 The energetic formulation of rate-independent processes

The outline of this section is to clarify the energetic formulation of rate-indepedent processes. Thereto Section 5.1.1
indicates the relation of energetic solutions to the concept of solution used in the Sections 2, 3. Moreover Section 5.1.2
gives a short introduction to the existence theory of energetic solutions. At this point we want to start our discussion with
the mathematical characterization of rate-independence.

The energetic formulation of a rate-independent process issolely based on an energy functionalE : [s, T ] ×Q → R∞,
which depends on timet and the stateq, and a dissipation potentialR : Q → [0,∞] depending on the velocitẏq. It is
assumed that the potentialR is convex and positively1-homogeneous, i.e.R(0)=0 andR(λv)=λR(v) for all λ>0 and
all v∈Q. Due to these two propertiesR satisfies a triangle inequality, i.e. for allq1, q2, q3∈Q it holds

R(q1−q2) = 2R
(

1
2 (q1−q3) + 1

2 (q3−q2)
)
≤ 2

(
1
2R(q1−q3) + 1

2R(q3−q2)
)

= R(q1−q3) + R(q3−q2) .

Hence the dissipation potential generates a dissipation distance

D(q, q̃) = R(q̃ − q) , (5.1)

which is an extended pseudo-distance on the state spaceQ. This means thatD satisfies the axioms of a metric (positivity,
triangle inequality), except symmetry and it may attain thevalue∞, as we will see in the examples of Section 5.3.

Rate-independence of a process(Q, E ,R) with the initial conditionq(s) = q0 ∈ Q, the given external loadingsb ∈
C1([s, T ],Q∗) and a solutionq : [s, T ] → Q can be defined using an input-output operator

H[s,T ] : Q× C1([s, T ],Q∗) → L∞([s, T ],Q) ∩BVD([s, T ],Q), (q0, b) 7→ q , (5.2)

whereBVD([s, T ],Q) := {q : [s, T ] → Q|DissD(q, [s, T ]) <∞}. Thus, the input-output operator maps the given data
(q0, b) onto a solution of the problem. Therewith the rate-independence of the system(Q, E ,R) can be characterized as
follows

Definition 5.2 An evolutionary process(Q, E ,R), which can be expressed by (5.2), is called rate-independentif for all
s⋆ < T⋆ and allα ∈ C1([s⋆, T⋆]) with α̇ > 0 andα(s⋆) = s, α(T⋆) = T the following holds:

H[s⋆,T⋆](q0, b ◦ α) = H[s,T ](q0, b) ◦ α . (5.3)

We verify now that the positive1-homogeneity ofR implies (5.3). We prove this implication for input-output operators
H[s,t] :Q×C1([s, t],Q∗)→W 1,1([s, t],Q). Thereby,Q is in general a Lebesgue or Sobolev space defined with respectto a
domainΩ ⊂ R

d. By mollification, see also [7], one can therefore show that for anyq∈BVD([0, T ],Q) there is a sequence
(qn)n∈N⊂C∞([0, T ],Q) satisfyingqn→q in L1([0, T ]×Ω),DissD(qn, [0, t])<C andDissD(qn, [0, t])→DissD(q, [0, t])
for all t∈ [0, T ]. Thus, the above mentioned implication also holds true for the input-output operators from (5.2).
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Proposition 5.3 LetH[s,T ] : Q× C1([s, T ],Q∗) → W 1,1([s, t],Q), (q0, b) 7→ q, be the input-output-operator for the
rate-independent system(Q, Eb,R), whereEb depends continuously on the external loadingb and whereR is convex and
positively1-homogeneous. Then(5.3)holds true.

P r o o f. Lets⋆ < T⋆ andα ∈ C1([s⋆, T⋆]) with α̇ > 0 andα(s⋆) = s, α(T⋆) = T. In particular it holdss⋆ = α−1(s),
T⋆ = α−1(T ) and(α−1)′ > 0. Assume thatq : [s, T ] → Q is an energetic solution of(Q, Eb,R, ) satisfyingq(s) = q0.
Hence (S)&(E) are satisfied for allt ∈ [s, T ]. Now the time interval is rescaled, i.e.t = α(t⋆) for all t ∈ [s, T ]. Then (S)
implies thatEb◦α(t⋆, q ◦ α(t⋆)) ≤ Eb◦α(t⋆, q̃)+D(q ◦ α(t⋆), q̃) for all q̃ ∈ Q, i.e. (S) holds true for allt⋆ ∈ [s⋆, T⋆] for
q ◦ α : [s⋆, T⋆] → Q and the system(Q, Eb◦α,R).

For a functionq ∈ W 1,1([s, T ],Q) it holds thatDissD(q, [s, t]) =
∫ t

s R(q̇(ξ)) dξ, which can be verified by applying
the positive1-homogeneity ofR and the mean value theorem of differentiability to the definition of DissD(q, [s, t]). Then,
for s = α(s⋆) andt = α(t⋆) the application of the chain rule onq(α(t⋆)) together with the positive1-homogeneity of
R imply that

∫ t

s R(q̇(ξ)) dξ =
∫ t⋆

s⋆
R(∂αq(α(ξ)))α̇(ξ) dξ =

∫ t⋆

s⋆
R(∂αq(α(ξ))α̇(ξ)) dξ =

∫ t⋆

s⋆
R(∂ξq ◦ α(ξ)) dξ, which

proves thatDissD(q, [s, t]) = DissD(q ◦ α, [s⋆, t⋆]). Again by the chain rule we calculate that
∫ t

s ∂ξEb(ξ, q(ξ)) dξ =∫ t⋆

s⋆
∂αEb◦α(ξ, q(ξ))α̇(ξ) dξ =

∫ t⋆

s⋆
∂ξEb◦α(ξ, q(ξ)) dξ and hence (E) is verified for allt⋆ ∈ [s⋆, T⋆] for q◦α and(Q, Eb◦α,R).

Moreover the initial condition is satisfied sinceq0 = q(s) = q ◦ α(s⋆).
With the same arguments we can verify for an energetic solution q⋆ : [s⋆, T⋆]→Q of (Q, Eb◦α,R) with q⋆(s⋆)=q0 that

q⋆ ◦ α−1 satisfies (S)&(E) with(Q, Eb,R) for all t∈ [s, T ] and withq0 =q⋆(s⋆)=q⋆ ◦ α−1(s). Thus, (5.3) is proved.

5.1.1 Different concepts of solutions and their relations

In this section we clarify the relation of energetic solutions with other types of solutions. To do so, we only treat the
simplest case here, namely whenE : [0, T ]×Q → R∞ is quadratic, i.e.

E(t, q) := 1
2 〈A q, q〉 − 〈b(t), q〉 (5.4)

for the given linear, symmetric, positive definite operatorA : Q → Q∗ and the given external loadingb ∈ C1([0, T ],Q∗).
TherebyQ is a Banach space andqn → q in Q indicates the convergence of a sequence(qn) ⊂ Q in the weak topology of
Q. As it can be easily verified in this setting,E satisfies

1. Continuity: If ‖qn − q‖Q → 0, then|E(t, qn) − E(t, q)| → 0 for all t ∈ [0, T ].

2. Coercivity: There is a constantc>0 such thatE(t, q)≥c‖q‖2
Q for all q∈Q and allt∈ [0, T ]. (Cf. R2 in Section 3.1.1)

3. Uniform convexity: There is a constantcA > 0 such that for allt ∈ [0, T ], all q0, q1 ∈ Q and allθ ∈ [0, 1] it holds

E(t, θq1+(1−θ)q0) ≤ θE(t, q1) + (1−θ)E(t, q0) − cAθ(1−θ)‖q1−q0‖2
Q. (5.5)

4. Uniform control of the powers: For allq ∈ Q with E(t⋆, q) <∞ for somet⋆ ∈ [0, T ] we have∂tE(·, q) ∈ L1([0, T ])

with ∂E(t, q) = −〈ḃ(t), q〉 and there are constantsc1 > 0, c2 ≥ 0 such that|∂tE(t, q)| ≤ c1(E(t, q) + c2).

5. Uniform continuity of the powers: For all (t, qn) → (t, q) in Q it holds∂tE(t, qn) → ∂tE(t, q).

6. Closedness of stable sets:If (tn, qn) satisfy (S) for alln ∈ N and(tn, qn) → (t, q) in [0, T ] × Q, then also(t, q)
satisfies (S).

7. Differentiability: For all t ∈ [0, T ] and all q ∈ Q the energy functionalE(t, ·) is Gâteaux-differentiable with
DqE(t, q) = Aq − b(t).

Thereby Items 1-5 and 7 can be easily verified using the properties of A and b. Item 6 can be obtained by choosing
q̃n = qn+v−q with v ∈ Q for all n ∈ N, which yieldsD(qn, q̃n) = R(q̃n − qn) = R(v − q) for all n ∈ N. Sinceb is
continuous in time we have〈b(tn), q̃n〉 → 〈b(t), v〉 and sinceA ∈ Lin(Q,Q∗) it holds〈A(v − q), qn〉 → 〈A(v − q), q〉.
Using these observations in (S) for alln ∈ N one recovers (S) for the limit(t, q).

In Section 5.1.2 it is explained that the properties 1–6 together with the properties of the extended pseudo-distance
D : Q ×Q → R∞ allow to prove the existence of an energetic solution. Furthermore in Section 5.2.2 it is discussed that
property 3 yields Lipschitz-continuity of the energetic solution q : [0, T ] → Q with respect to time, i.e. there is a constant
CL > 0 such that‖q(s)−q(t)‖Q ≤ CL|s−t|. Henceq ∈W 1,∞([0, T ],Q), which means thaṫq exists a.e. in[0, T ].

Copyright line will be provided by the publisher



32 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On time-dependent models with internal variables

Since the dissipation potentialR : Q → [0,∞] is convex and positively1-homogeneous but not necessarily differen-
tiable we introduce its subdifferential

∂vR(v) := {q∗ ∈ Q∗ |R(w) ≥ R(v) + 〈q∗, w−v〉 for all w ∈ Q} . (5.6)

Due to the validity of 1–7 and (5.6) we may consider the subdifferential formulation (SDF) and the formulation as a
variational inequality (VI), which directly usėq, as alternative formulations to the energetic one. The subdifferential
formulation of the evolutionary process reads as follows

Definition 5.4 (Subdifferential formulation) For a given initial condition q0 ∈ Q find q : [0, T ] → Q such that for a.e.
t ∈ [0, T ] it holds

0 ∈ ∂R(q̇(t)) + DqE(t, q(t)) ⊂ Q∗ andq(0) = q0 ∈ Q . (SDF)

Moreover (SDF) is equivalent to−DqE(t, q) ∈ ∂R(q̇) and due to the definition of the subdifferential we may equiva-
lently formulate the rate-independent process as a variational inequality

Definition 5.5 (Variational inequality) For a given inital conditionq0 ∈ Q find q : [0, T ] → Q such that for a.e.
t ∈ [0, T ] and for allv ∈ Q it holds

〈DqE(t, q), v − q̇〉 + R(v) −R(q̇) ≥ 0 andq(0) = q0 ∈ Q . (VI)

Between the three different formulations (S) & (E), (SDF) and (VI) the following relation holds

Lemma 5.6 If E : Q → R∞ satisfies the properties 1–7, ifD : Q × Q → [0,∞] is an extended pseudo-distance and
lower semicontinuous on the Banach spaceQ and ifq0 satisfies(S)at t = 0, every energetic solution of the rate-independent
system(Q, E ,D) also is a solution in the sense of(SDF)as well as(VI) and vice versa, i.e.(S)& (E) ⇔ (SDF) ⇔ (VI) .

P r o o f. Letq : [0, T ] → Q solve (S) & (E). By Theorem 5.13 we haveq ∈W 1,∞([0, T ],Q), so thatDissD(q, [0, t]) =∫ t

0
R(q̇(ξ)) dξ for all t ∈ [0, T ]. Hence (E) readsE(t, q(t)) +

∫ t

0
R(q̇(ξ)) dξ = E(0, q(0)) +

∫ t

0
∂tE(ξ, q(ξ)) dξ. Applying

d
dt leads tod

dtE(t, q(t)) + R(q̇(t)) = ∂tE(t, q(t)) for almost allt ∈ [0, T ]. Using the chain rule onddtE(t, q(t)) yields

〈DqE(t, q(t)), q̇(t)〉 + R(q̇(t)) = 0 . (Eloc)

Furthermore, insertingq(t) + hv for v ∈ Q in (S) together with Item 7 results in

〈DqE(t, q(t)), v〉 + R(v) ≥ 0 for all v ∈ Q (Sloc)

and subtracting (Eloc) from (Sloc) finally yields (VI), which is equivalent to (SDF).
Assume now thatq solves (VI) and (SDF) for a.e.t ∈ [0, T ]. Multiply (VI) by h > 0 and putv = q̃

h . Forh → 0 one
obtains (Sloc). Due to the convexity and the Gâteaux-differentiablility of E(t, ·) for all q ∈ Q we find from (Sloc) with
v = q̃ − q(t) that0 ≤ 〈DqE(t, q(t)), q̃ − q(t)〉 + R(q̃ − q(t)) ≤ E(t, q̃) − E(t, q(t)) + R(q̃ − q(t)) for a.e.t ∈ [0, T ]. But
sinceq : [0, T ] → Q is Lipschitz-continuous in time and sinceE(·, q̃) is continuous for all̃q ∈ Q we observe that (S) holds
for all t ∈ [0, T ]. Now (E) has to be proven. Choosing theretov = q̇(t) in (Sloc) gives〈DqE(t, q(t)), q̇(t)〉 + R(q̇(t)) ≥ 0
andv = 0 in (VI) yields 〈DqE(t, q(t)),−q̇(t)〉 − R(q̇(t)) ≥ 0, which proves (Eloc). By integrating (Eloc) over [0, t] we
verify that (E) holds for allt ∈ [0, T ].

The equivalence established in Lemma 5.6 is in general only true for energies satisfying the uniform convexity inequality
in property 3. For convex energies it can be verified if energetic solutions are supplied with sufficient temporal regularity.
In the case of nonconvex energies, or energies which are convex but not jointly convex inq = (u, z), energetic solutions
are of bounded variation with respect to time. Hence they mayhave jumps in time and the time-derivative is only a Radon-
measure. Relations between the three different formulations with q̇ as a Radon-measure are discussed in [70]. Furthermore
it comments on their relations in the case of doubly nonlinear problems, which were introduced in [27] and whereE is only
subdifferentiable but not Gâteaux-differentiable.

In many applications the dissipation potential only depends on the internal variablez, not on the full stateq = (u, z), i.e.
R(q̇) = R̃(ż), so that∂R(q̇) = ∂u̇R̃(ż)× ∂żR̃(ż) = {0}× ∂R̃(ż). This is also the case in the setting of plasticity studied
in Sections 2, 3. Using the duality theory of functionals onecan establish a relation between the flow rule given by (2.3)
and (2.9) and the dissipation potentialR : Z → [0,∞] under the assumption thatZ is a reflexive Banach space. In view
of the definition of the subdifferential∂R(z) = {z∗ ∈ Z∗ |R(z̃)−R(z) ≥ 〈z∗, z̃−z〉 for all z̃ ∈ Z} the direct calculation
of the Legendre-Fenchel transform of the positively1-homogeneous dissipation potentialR : Z → [0,∞] yields that its
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dual functional is given as the indicator function of∂R(0), i.e.R∗(z∗) = supz∈Z

(
〈z∗, z〉 − R(z)

)
= I∂R(0)(z

∗) for all
z∗ ∈ Z∗, whereI∂R(0)(z

∗) = 0 if z ∈ ∂R(0) andI∂R(0)(z
∗) = ∞ otherwise.

SinceR : Z → [0,∞] is assumed to be convex and lower semicontinuous on the reflexive Banach spaceZ the theorem
of Fenchel-Moreau implies thatR = (R∗)∗, see [51]. Assume now that the dissipation potential is an integral functional,
i.e. for all z ∈ Z it is R(z) =

∫
Ω
R(z(x)) dx, whereR is a positively1-homogeneous, convex density andΩ ⊂ R

d

is a d-dimensional domain. Then [51, p. 296, Th. 1] states thatR∗(·) =
( ∫

Ω
R(·) dx

)∗

=
∫
Ω
R∗(·) dx, i.e. for the

densityR : V → [0,∞], whereV ∈ {R,Rd,Rd×d}, holds the analogous relation to its Legendre-Fenchel transformed:
R(z) = R∗∗(z) for all z ∈ V. Thus, between the subdifferential formulation (SDF) of Definition 5.4 and the flow rule
given by (2.3) and (2.9) we have established the relationż ∈ g(−∇zψ(e, z)) = ∂R∗(−∇zψ(e, z)), whereR∗ is the
Legendre-Fenchel transformed of the densityR of the positively1-homogeneous dissipation potentialR.

Throughout this chapter we will in general consider dissipation potentialsR : Z → [0,∞] of the form

R(z) =

∫

Ω

R(z) dx with R : V → [0,∞], R(z) =

{
̺|z| if z ∈ A ⊂ V ,
∞ otherwise,

(5.7)

where0 < ̺0 ≤ ̺ ∈ L∞(Ω).

Example 5.7 ForKvM = {τ ∈ R
d×d
sym,dev | |τ | ≤ c0} from Example 3.5 it isRvM (εp) = c0|εp| for all εp ∈ R

d×d
sym,dev.

5.1.2 Existence of energetic solutions

The quasistatic evolution of mechanical processes in solids such as elasto-plastic deformations, damage, crack propagation
or contact angle hystheresis of droplets have been analyzedin various contributions, amongst these e.g. [16,28–30,40,63].
All these processes can be described in terms of an energy functionalE and a dissipation distanceD, so that the energetic
formulation from Definition 5.1 applies. Within the works [36,65,69,71]an abstract existence theory for energetic solutions
of rate-independent processes has been developed. It is based on the assumption thatD : Z × Z → [0,∞] satisfies

Quasi-distance: ∀ z1, z2, z3 ∈ Z : D(z1, z2) = 0 ⇔ z1 = z2 and
D(z1, z3) ≤ D(z1, z2) + D(z2, z3);

(D1)

Lower semi-continuity: D : Z × Z → [0,∞] is weakly seq. lower semi-continuous. (D2)

and it uses the following assumptions on the energyE : [0, T ]×Q → R∞

Compactness of energy sublevels:∀ t∈[0, T ] ∀E∈R :
LE(t) := {q ∈ Q | E(t, q) ≤ E} is weakly seq. compact.

(E1)

Uniform control of the power:∃ c0∈R ∃ c1>0 ∀ (tq, q)∈[0, T ]×Q with E(tq, q) <∞ :
E(·, q) ∈ C1([0, T ]) and|∂tE(t, q)| ≤ c1(c0+E(t, q)) for all t∈[0, T ].

(E2)

These properties ensure the following existence result forenergetic solutions of rate-independent processes.

Theorem 5.8( [69]) Let (Q, E ,D) satisfy conditions(E1), (E2) and (D1), (D2). Moreover, let the following compati-
bility conditions hold: For every sequence(tk, qk)k∈N with (tk, qk) ⇀ (t, q) in [0, T ] × Q and(tk, qk) satisfying(S) for
all k ∈ N we have

∂tE(t, qk) → ∂tE(t, q) , (C1)

(t, q) satisfies(S). (C2)

Then, for each initial condition(t=0, q0) satisfying(S) there exists an energetic solutionq : [0, T ] → Q for (Q, E ,D) with
q(0) = q0.

The proof of Theorem 5.8 is based on a time-discretization, where conditions (E1), (D2) ensure the existence of a
minimizer for the time-incremental minimization problem at each time-step. Thereto the direct method of the calculus of
variations is applied. In particular conditions (E1) and (D2) can be verified ifE andD are convex and coercive. Hence, for
a given partitionΠ := {0 = t0 < t1 < . . . < tM = T }, for everyk = 1, . . . ,M one has to

find qk ∈ argmin{E(tk, q̃) + D(zk−1, z̃) | q̃ = (ũ, z̃) ∈ Q} . (IP)

One then defines a piecewise constant interpolantqΠ with qΠ(t) := qk−1 for t ∈ [tk−1, tk) andqΠ(T ) = qM . Choosing
a sequence(Πm)m∈N of partitions, where the fineness ofΠm tends to0 asm → ∞, it is possible to apply a version of
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Helly’s selection principle to the sequence(qΠm)m∈N, see thereto [65]. Using (E2) and the compatibility conditions (C1),
(C2) it can be shown that the limit function fulfills the properties (S) and (E) of an energetic solution. See e.g. [69] for a
detailed proof.

In various works this abstract theory has been applied to prove the existence of energetic solutions to rate-independent
processes in the field of plasticity, damage, delamination,crack-propagation, hystheresis or shape memory alloys, amongst
these [60,66,68,70,72,73,87,106]. The way to verify the abstract conditions depends on the properties of the process under
consideration. In particular, unidirectional processes such as damage or delamination processes require additionaltechiques
to obtain compatibility condition (C2). In such a setting the dissipation distance takes the form (5.7) withA 6= V , where the
value∞ models the unidirectionality, i.e. it prohibits healing. This leads to the fact that the dissipation distance is neither
continuous nor weakly continuous onZ, so that (C2) cannot be directly obtained from the stability of the approximating
sequence(tk, qk) → (t, q) in [0, T ]×Q. Such unidirectional processes and alternative techniquesto prove (C2) are studied
in [68,87,106].

Finally it is worth mentioning that the quadratic energy defined in (5.4), which satisfies Items 1–7 fits into the abstract
setting of (E1), (E2) and Theorem 5.8.

5.2 The temporal regularity of energetic solutions

The two properties (S) & (E) provide a very weak result on the temporal regularity of an energetic solution only. (S) implies
thatE(t, q(t)) is uniformly bounded for allt ∈ [0, T ] and under the assumption of coercivity we findq ∈ L∞([0, T ],Q).
Furthermore one obtains from (E) thatDissD(z, [0, T ]) is finite and hencez ∈ BV ([0, T ], L1(Ω)). Thus neither the com-
ponentu nor z of an energetic solution has to be continuous – not to mentioncontinuously differentiable in time. In other
words, it cannot be excluded that an energetic solution has jumps with respect to time. The aim of this section is to discuss
settings which lead to a better temporal regularity of an energetic solution. In particular we want to obtain continuityin
time, so that jumps are forbidden.

5.2.1 Continuity with respect to time

In this section we discuss the temporal continuity of energetic solutions, which can be obtained in settings that guarantee
unique minimizers of the functionalJz∗

: Q → R∞, Jz∗
(q̃) = E(t, q̃) + D(z∗, z̃) for anyz∗ ∈ Z. In the following the

results are sketched. The details are developed in [106, Th.4.2, 4.3].
The uniqueness of the minimizer, which is guaranteed by the strict convexity ofJz−(t), enables to state the following

jump relations

Lemma 5.9(Jump relations)Assume that(Q, E ,D) satisfies (E1)—(C2). Moreover,

∀ t ∈ [0, T ] ∀ q = (u, z) ∈ S(t) : {u} = Argmin
ũ∈U

E(t, ũ, z). (5.8)

Then, for allt ∈ [0, T ] the weak limitsq−(t) = w-limτ→t− q(τ) andq+(t) = w-limτ→t+ q(τ) (whereq−(0) := q(0) and
q+(T ) = q(T )) exist and satisfy

E(t, q−(t)) = E(t, q(t)) + D(q−(t), q(t)),

E(t, q(t)) = E(t, q+(t)) + D(q(t), q+(t)),

D(q−(t), q+(t)) = D(q−(t), q(t))+D(q(t), q+(t)).

(5.9)

The existence of the limitsz−(t) = w-limτ→t− z(τ) andz+(t) = w-limτ→t+ z(τ) is due toDissD(z, [0, T ]) < ∞ for
an energetic solution, see [65]. From (E1) one findsu(t±k ) ⇀ v± for t±k → t and (C2) yields that(t, v±, z±) satisfy (S).
Due to assumption (5.8) the limitsv± are uniquely determined and thus they are the desired left and right limits tou±(th)
in the weak sense. To verify the jump relations (5.9) the energy balance for the energetic solutionq(t) is used

E(s, q(s)) + DissD(z, [r, s]) = E(r, z(r)) +

∫ s

r

∂τE(τ, q(τ)) dτ for all 0 ≤ r < s ≤ T .

The first and the second identity in (5.9) are based on the factthat bothq−(t) andq+(t) as well asq(t) satisfy (S). Hence
they can be obtained by considerings = t together withr → t− andr = t together withs→ t+. The third identity is due
to (D1) and the first two identities.

The next theorem provides the temporal continuity of the energetic solutionq = (u, z) : [0, T ] → Q = U × Z in
the case that the energyE(t, ·) is strictly convex onQ. This requirement is satisfied for an energy, which is defined via
a stored elastic energy densityW : R

m → R∞ being strictly convex onRm, i.e. for a bounded domainΩ ⊂ R
d it is
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E(t, u, z) :=
∫
ΩW

(
F (ũ+uD(t), z̃)

)
dx − 〈b(t), ũ+uD(t)〉. TherebyF (u, z) stands for all occuring components of the

pair(u, z) and all occuring derivatives, e.g.F (u, z) = (e(u), z) for kinematic hardening, whereasF (u, z) = (e(u), z,∇z)
for damage. In particular,F (u, z) has to be of such a form that it induces a norm for(u, z) onQ.

Theorem 5.10 Let the stored elastic energy densityW : R
m → R∞ be continuous and strictly convex onR

m. Let the
the given data satisfyuD ∈ C1([0, T ],U), b ∈ C1([0, T ],U∗). Then for allt ∈ [0, T ], z∗ ∈ Z the functionalJz∗

(t, q̃) =∫
Ω
W (F (ũ+uD(t), z̃)) dx−〈b(t), ũ+uD(t)〉+D(z∗, z̃) is strictly convex iñq. Assume thatq = (u, z) : [0, T ] → Q is an

energetic solution to(Q, E ,D). Thenq is (norm-) continuous with respect to time, i.e.q ∈ C0([0, T ],Q).

The strict convexity allows us to show that energetic solutions q = (u, z) : [0, T ] → Q have weak left and right
limits q−(t) andq+(t) for all t ∈ [0, T ]. Exploiting the jump relations one obtains thatq−(t), q(t) andq+(t) all provide
the same valueJz−(t)(t, q−(t)), which has to be the global minimum by stability ofq−(t). Since the strict convexity of
Jz−(t) guarantees a unique minimizer, all three states must coincide and weak continuity follows. Strong continuity is
deduced from a result of Visintin [109,§ 2 & Th. 8], which converts weak convergence and energy convergence into strong
convergence by exploiting the strict convexity once again.

5.2.2 Hölder- and Lipschitz-continuity in time

The temporal Hölder- or Lipschitz-continuity is based on the uniform convexity of the functionalJz∗
(t, q) = E(t, q) +

D(z∗, z) on a subset of a suitable Banach spaceV . As we will see in the examples of Section 5.3, the Banach spaceV may
differ significantly from the state spaceQ that is used to prove existence. This is due to fact that the choice ofV influences
the temporal regularity obtained, so that the use of a biggerspace may lead to a better temporal regularity result. The
uniform convexity is defined as follows

Definition 5.11 The functionalJ : V → R∞ is uniformly convex on the convex setM ⊂ V , if there exist constants
c⋆ > 0, 2 ≤ α < ∞, such that for all convex combinationsqθ := θq1 + (1−θ)q0 with θ ∈ (0, 1) andq0, q1 ∈ M the
following holds

J (t, qθ) ≤ θJ (t, q1) + (1−θ)J (t, q0) − θ(1−θ)c⋆‖q1 − q0‖α
V . (5.10)

For a better understanding of this notion of convexity we first investigate the definition for real valued, scalar functions.
A functionf : R → R is uniformly convex if there are constants2 ≤ α <∞, c⋆ > 0 such that for all convex combinations
qθ = (1−θ)q0 + θq1 with θ ∈ (0, 1), q0, q1 ∈ R the following holds

f(qθ) ≤ θf(q1) + (1−θ)f(q0) − θ(1−θ)c⋆|q1−q0|α . (5.11)

In other words, iff : R → R is uniformly convex, then for any two pointsf(q0), f(q1) of its graph there fits some
polynomial that is quadratic inθ, between the function and the chord, see Fig. 6. Hence uniformconvexity implies strict
convexity.

f

q0 qθ q1 Fig. 6 Uniformly convex function.

The meaning of the exponentα can be understood from the following example.

Example 5.12 First, consider the functionf(q) = q2.We immediately see thatf is strictly convex, sincef ′′(q) = 2 > 0
for all q ∈ R and by simple calculation we verifyf(qθ) = θf(q1) + (1−θ)f(q0) − θ(1−θ)(q1−q0)2. But there are
also functions being strictly convex althoughf ′′(q) = 0 for someq ∈ R. Such a candidate is e.g.f(q) = q4 with
f ′′(0) = 0. Sincef is continuously differentiable, the uniform convexity inequality (5.11) is equivalent tof(q1)− f(q0) ≥
f ′(q0)(q1−q0)+c⋆|q1−q0|α and hence equivalent to(f ′(q1)−f ′(q0))(q1−q0)−2c⋆|q1−q0|α ≥ 0. Therewith we verify for
c⋆ = 1/4 andα = 4 that(f ′(q1)−f ′(q0))(q1−q0) − 2c⋆|q1−q0|α = 1

2 (q1−q0)4 + 6
2 (q21−q20)2 ≥ 0 and thus we conclude

that (5.11) holds forf(q) = q4 with c⋆ = 1/4 andα = 4.

This notion of convexity is now transfered to the context of energy functionals. The theorem below generalizes the ideas
developed in [70,74], where Lipschitz-continuity with respect to time was derived. The generalization has two aspects. First
it is emphasized that the convexity properties can be formulated with respect to a norm‖ · ‖V that may differ significantly
from that underlying the state spaceQ. In particular, ifQ is chosen as small as possible under preservation of the coercivity
of E (see (E1)), it may be an advantage to investigate the temporal regularity of energetic solutions with respect to the norm
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of a larger Banach spaceV ⊃ Q, since temporal regularity may improve. Second, as can be seen from (5.10) the notion
of uniform convexity is not restricted to the exponentα = 2, so that a weaker lower bound is admissible due toα ≥ 2.
Previous work [70, 74] askedα = 2 andβ = 1 and enforced the uniform convexity condition on wholeQ, while the
theorem below only requires it on sublevels. In fact, the formulation of the conditions on sublevels is sufficient, sincean
energetic solutionq : [0, T ] → Q satisfiesq(t) ∈ LE⋆

(s) for some fixedE⋆ > 0 and alls, t ∈ [0, T ]. This is due to stability
(S) and the temporal Lipschitz-estimate|E(s, q)− E(t, q)| ≤ cE |s− t| for a constantcE > 0 and for all fixed statesq ∈ Q
with E(r, q) < E for somer ∈ [0, T ], which is a direct consequence of (E2) and Gronwall’s inequality.

Theorem 5.13(Temporal Hölder-continuity)Let (Q, E ,D) be a rate-independent system, whereQ is a closed, convex
subset of a Banach spaceX . LetLE(t) = {q ∈ Q | E(t, q) ≤ E}. Assume that there is a Banach spaceV and that there
are constantsα ≥ 2, β ≤ 1 such that for allE∗ there exist constantsC∗, c∗ > 0 so that for allt ∈ [0, T ], q0, q1 ∈ LE⋆

(t)
and allθ ∈ [0, 1] the following holds:

E(t, qθ) + D(z0, zθ) + c∗θ(1−θ)‖q1−q0‖α
V ≤ (1−θ)

(
E(t, q0)+D(z0, z0)

)
+ θ

(
E(t, q1)+D(z0, z1)

)
(5.12a)

|∂tE(t, q1) − ∂tE(t, q0)| ≤ C∗‖q1 − q0‖β
V , (5.12b)

where(uθ, zθ) = qθ = (1−θ)q0 + θq1.
Then, any energetic solutionq : [0, T ] → Q of (Q, E ,D) is Hölder-continuous from[0, T ] to V with the exponent

1/(α−β), i.e. there is a constantCH > 0 such that

‖q(s)−q(t)‖V ≤ CH|t−s|1/(α−β) for all s, t ∈ [0, T ] . (5.13)

The main idea of the proof is to use uniform convexity inequality (5.12a) to derive an improved stability estimate, which
contains the additional termc∗θ(1−θ)‖q1−q0‖α

V . Using assumption (5.12b) one obtains an upper estimate for‖q1−q0‖α
V

from the energy balance. Finally the Hölder estimate (5.13) can be proved with the aid of a differential inequality and
Gronwall’s lemma. The details are carried out in [106].

5.3 Applications

In this section we discuss examples for uniformly convex stored elastic energy densities arising from various types of rate-
independent processes, such as plasticity, phase transformations in shape memory alloys and damage. All these applications
can be treated as rate-independent processes in terms of theenergetic formulation. As the unknowns their models involve
the the linearized strain tensore(u) = 1

2 (∇u + ∇uT ) in terms of the displacement fieldu : Ω → R
d and an internal

variablez which may be scalar-, vector- or tensor valued depending on the problem. The way, howu andz are linked in
the model differs and here we distinguish between energies,which compose the different variables additively, such as in
the Example 3.5 for kinematic hardening, and energies whichuse a multiplicative composition of the variables, such as in
the case of damage, see Examples 5.16–5.18.

5.3.1 Additive energies: Plasticity, phase transformations in shape memory alloys

In the following we treat two applications with quadratic energies. We will obtain thatV = Q in these settings, thatα = 2
andβ = 1, so that energetic solutions are Lipschitz-continuous withrespect to time. This regularity is in good accordance
with the results proven in [70] and with classical existenceresults for elastoplasticity.

Example 5.14 As a first example for Theorem 5.13 we consider the particularsituation whereE(t, ·) is quadratic. Let
Q be a reflexive Banach space and assume thatA ∈ Lin(Q,Q∗) is a linear, bounded operator with〈Aq, q〉 ≥ c‖q‖2

Q for
all q ∈ Q and for some constantc > 0. GivenqD ∈ C1([0, T ],Q) andb ∈ C1([0, T ],Q∗) the energyE : [0, T ] ×Q → R
is defined by

E(t, q) = 1
2 〈A(q+qD(t)), (q+qD(t))〉 − 〈b(t), q+qD(t)〉 .

Moreover assume that the dissipation distanceD : Z ×Z → [0,∞] satisfiesD(z1, z2) = R(z2−z1) with R : Z → [0,∞)
being positively1-homogeneous, convex, weakly sequentially lower semicontinuous and satisfyingR(z) ≤ cR‖z‖Z for
all z ∈ Z and for a constantcR > 0. Then, for allqi ∈ Q, the system(Q, E ,D) satisfies the assumptions (5.12) with
V = Q, α = 2 andβ = 1. Thus, from (5.13) we obtain that energetic solutionsq : [0, T ] → Q are Lipschitz-continuous
with ‖q(s) − q(t)‖Q ≤ CH |s− t| 1

2−1 .
Thereby the uniform convexity inequality (5.12a) is a direct consequence of (5.5) and the convexity ofD. Estimate

(5.12b) can be vierified by straight forward calculations.
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Observe that the models of elastoplasticity with linear kinematic hardening and of elastoplasticity with Cosserat mi-
cropolar effects from Examples 3.5 and 3.6 fit into this framework. Let us finally note that the result on the temporal
Lipschitz-continuity due to Theorem 5.13 is in accordance with known results for equations of this type, see e.g. [17,47].

Example 5.15(The Souza-Auricchio model for thermally driven phase transformations in shape memory alloys [73])
In the context of phase transformations in shape memory alloys the internal variablez : Ω → R

d×d
sym,dev is the mesoscopic

transformation strain reflecting the phase distribution. The dissipation distance, which measures the energy dissipated due
to phase transformation, is assumed to take the formD(z, z̃) = ̺‖z−z̃‖L1(Ω) with ̺ > 0.

The phase transformations are considered to be thermally induced. For a body that is small in at least one direction, it is
reasonable to assume that the temperatureϑ ∈ C1([0, T ], H1(Ω)), with Cϑ := ‖ϑ‖C1([0,T ],H1(Ω)), is a priori given, since
it influences the transformation process like an applied load, see [10]. Thus the energy density takes the form

W (F (u, z), ϑ) = 1
2

(
e(u)−z

)
: B(ϑ) :

(
e(u)−z

)
+ h(z, ϑ) + σ

2 |∇z|2

with the constantσ > 0 and the elasticity tensorB ∈ C1([ϑmin, ϑmax],R
(d×d)×(d×d)) being symmetric and positive

definite for allϑ, i.e. there are constantscB
1 , c

B
2 > 0 so thatcB

1 |A|2 ≤ A : B : A ≤ cB
2 |A|2 for all A ∈ R

d×d. Moreover, let
cB

ϑ := ‖B‖C1([ϑmin,ϑmax],R(d×d)×(d×d)). The functionh : R
d×d
sym,dev × R → R is given by

h(z, ϑ) := c1(ϑ)
√
δ2 + |z|2 + c2(ϑ)|z|2 + 1

δ (|z|−c3(ϑ))3+ ,

whereδ > 0 is constant andci ∈ C1([ϑmin, ϑmax]) with 0 < c1i ≤ ci(ϑ) for all ϑ ∈ [ϑmin, ϑmax] and cϑi :=
‖ci‖C1([ϑmin,ϑmax]), i = 1, 2, 3. Therebyc1(ϑ) is an activation threshold for the initiation of martensitic phase transfor-
mations,c2(ϑ) measures the occurence of an hardening phenomenon with respect to the internal variablez and c3(ϑ)
represents the maximum modulus of transformation strain that can be obtained by alignment of martensitic variants. Fur-
thermore(f)+ := max{0, f}. For given datab ∈ C1([0, T ], H−1(Ω,Rd)) anduD ∈ C1([0, T ], H1(Ω,Rd)) the energy
functional is defined byE(t, q) =

∫
ΩW (F (u+uD(t), z), ϑ) dx− 〈b(t), u+uD(t)〉. Hence we have

∂tE(t, q) =

∫

Ω

(
∂uW (F (u+uD, z), ϑ) : e(u̇D)+ϑ̇ ∂ϑW (F (u+uD, z), ϑ)

)
dx− 〈ḃ, u+uD〉 − 〈b, u̇D〉 with

∂uW (F (u+uD, z), ϑ) : u̇D = (e(u+uD)−z):B(ϑ):e(u̇D) ,

ϑ̇ ∂ϑW (F (u+uD, z), ϑ) = ϑ̇
(
(e(u+uD)−z):∂ϑB(ϑ):(e(u+uD)−z) + ∂ϑh(ϑ, z)

)
.

To gain a Lipschitz-estimate for∂tE(t, ·) for the present model it is important that Theorem 5.13 is formulated for energy-
sublevelsLE⋆

(t) = {q ∈ Q | E(t, q) ≤ E⋆}, since this provides the bound‖ui‖H1+‖zi‖H1 ≤ CE⋆
. Thus for all

(u0, z0), (u1, z1) ∈ LE⋆
(t) it holds

∫

Ω

|ϑ̇
(
e(u1−u0)−(z1−z0)

)
:∂ϑB(ϑ):

(
e(u1−u0)−(z1−z0)

)
| dx ≤ Cϑc

B

ϑ

(
‖e(u1−u0)‖L2+‖z1−z0‖L2

)2

≤ Cϑc
B

ϑ

( 1∑

i=0

‖e(ui)‖L2+‖zi‖L2

)(
‖e(u1−u0)‖L2+‖z1−z0‖L2

)
≤ 2CE⋆

Cϑc
B

ϑ

(
‖u1−u0‖H1+‖z1−z0‖L2

)
.

Furthermore the application of the main theorem on differentiable functions yields|
√
δ2+|z1|2−

√
δ2+|z0|2| ≤ |z1−z0|,

||z1|2−|z0|2| ≤ 2(|z1|+|z0|)|z1−z0| and|(|z1|−c3(ϑ))3+−(|z0|−c3(ϑ))3+| ≤ 2(|z1|+|z0|)2|z1−z0|, so that
∫

Ω

|∂ϑh(ϑ, z1)−∂ϑh(ϑ, z0)| ≤ ‖z1−z0‖L1

(
cϑ1 + 2(Ld(Ω)CE⋆

)
1
2 cϑ2 + 6

δ c
ϑ
3CE⋆

)
≤ C̃⋆‖z1−z0‖L2

with C̃⋆ := Ld(Ω)
1
2

(
cϑ1 + 2(Ld(Ω)CE⋆

)
1
2 cϑ2 + 6

δ c
ϑ
3CE⋆

)
, whereLd(Ω) denotes thed-dimensional Lebesgue-measure of

Ω. Therefore Lipschitz-estimate (5.12b) holds true withβ = 1 andC⋆ = (C̃⋆ + 2CE⋆
Cϑc

B

ϑ + cB

ϑcD + cl).
Now it has to be verified that the densityW is uniformly convex with respect toF (u, z). Thereto we first calculate that

wθ:B(ϑ):wθ ≤ θw1:B(ϑ):w1+(1−θ)w0:B(ϑ):w0−θ(1−θ)cB
1 |w1−w0|2 for wi=ei−zi with (ei, zi) ∈ R

d×d
sym × R

d×d
sym,dev,

i = 0, 1, wθ = θw1 + (1−θ)w0 with θ ∈ (0, 1). Thereby a binomic formula and the positive definiteness ofB(ϑ) for all
ϑ were applied. The uniform convexity of|∇z|2 = ∇z : ∇z can be obtained similarly. We now show thath is uniformly
convex. We immediately see thath̃1(z) := (δ2 + |z|2) 1

2 is convex inz. Furthermore, sincẽh3(z) := (|z| − c3(ϑ))3+ is
the composition of the monotone functionx3 and the convex function(·)+, we conclude that alsõh3(z) is convex inz.
Additionally we obtain with similar calculations as applied for the other quadratic terms thath̃2(z) := |z|2 is uniformly
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convex. Sinceci(ϑ) ≥ c1i > 0 for all ϑ ∈ [ϑmin, ϑmax] andi = 1, 2, 3 we have proven thath is uniformly convex inz with
h(zθ, ϑ) ≤ θh(z1, ϑ) + (1−θ)h(z0, ϑ) − θ(1−θ)c12|z1−z0|2. Summing up all terms and taking into account all prefactors
yields a uniform convexity estimate forW, which leads to

E(t, qθ) ≤ θE(t, q1) + (1−θ)E(t, q0) − θ(1−θ)
(

cB

1

2 ‖w1−w0‖2
L2 + σ

2 ‖∇(z1−z0)‖2
L2 + c12‖z1−z0‖2

L2

)
.

Thereby we have used that the term describing the work of the external loadings is linear inu. Moreover we find with
Korn’s inequality that‖w1−w0‖2

L2 ≥ 1
2‖e(u1)−e(u0)‖2

L2 − ‖z1−z0‖2
L2 ≥ 1

2C2
K

‖u1−u0‖2
H1 − ‖z1−z0‖2

L2 . Under the

assumption that(c12 − (cB
1/2)) > 0 we conclude that (5.12a) holds forα = 2, c∗ := min

{
cB
1/(4C

2
K), σ/2, (c12−(cB

1/2))
}

and the spaceV = Q = {ũ ∈ H1(Ω,Rd) | ũ = 0 onΓD} × {z̃ ∈ H1(Ω,Rd×d
sym,dev)}. Hence any energetic solution

q : [0, T ] → Q is temporally Lipschitz-continuous, i.e.q ∈ C0,1([0, T ],Q).

5.3.2 Multiplicative energies: Damage

In the following we apply the temporal regularity results stated in Theorems 5.10 and 5.13 to energies used in the modeling
of partial, isotropic damage processes. Thereby, damage means the creation and growth of cracks and voids on the micro-
level of a solid material. To describe the influence of damageon the elastic behavior of the material one defines an internal
variable, the damage variablez(t, x) ∈ [z⋆, 1], as the volume fraction of undamaged material in a neighbourhood of
material dependent size aroundx ∈ Ω at timet ∈ [0, T ]. Thusz(t, x)=1 means that the material aroundx is perfectly
undamaged, whereasz(t, x)=z⋆ ≥ 0 stands for maximal damage of the neighbourhood. The condition z⋆ > 0 models
partial damage and the fact thatz is scalar valued reflects the isotropy of the damage process,which means that the cracks
and voids are presumed to have a uniform orientation distribution in the material. Furthermore it is assumed that damage
is a unidirectional process, so that healing is forbidden and ż(t, x) ≤ 0. This condition is preserved by the dissipation
distance, i.e. for̺ > 0 it is

D(z0, z1) :=

{∫
Ω
̺(z0 − z1) dx if z1 ≤ z0,

∞ else,
(5.14)

which punishes a decrease of damage with the value∞. The energy in the framework of damage is given by

E(t, u, z) :=

∫

Ω

W̃ (e(u+uD(t)), z) dx+

∫

Ω

κ

r
|∇z|r dx−

∫

Ω

l(t)(u+uD(t)) dx . (5.15)

The first term in (5.15) is the stored elastic energy, the second describes the influence of damage with1 < r < ∞ and
κ > 0 and the third term accounts for the work of the external loadings.

As in the previous sections we setW (F (u, z)) = W̃ (e(u+uD(t)), z) + κ
r |∇z|r. In engineering, see e.g. [64], a typical

ansatz for the stored elastic energy density is the following

W̃ (e, z) := f1(z)W1(e) +W2(e) + f2(z) and ∂zW (e, z) ≥ 0 . (5.16)

In Section 5.2.1 we obtained that the joint strict convexityof W̃ in (z, e) will ensure the temporal continuity of the energetic
solution. But the crucial point, which may spoil this regularity in the case of damage is, that not many stored elastic energy
densities̃W (e, z) := f1(z)W1(e), that satisfy∂zW̃ (e, z) ≥ 0, are also jointly strictly convex, although bothf1, W1 may
be convex. As a negative example we present the wellknown(1−d)-model for isotropic damage, see e.g. [64]:

Example 5.16 For the symmetric, positive definite fourth order tensorB the stored elastic energy density

Ŵ (e, d) =
(1−d)

2
e:B:e =

z

2
e:B:e = W̃ (e, z)

is not jointly convex in(e, z). This can be seen from calculating the Hessian; evaluating it in (e, z)=(e, 1), e ∈ R
d×d
sym , in

the direction(ẽ, z̃)=(− e
2 , 1) yieldsD2W̃ (e, z)[(ẽ, z̃), (ẽ, z̃)] = zẽ:B:ẽ+ 2z̃e:B:ẽ = − 3

4 e:B:e < 0.

To find a positive example on stored elastic energy densitiessatisfying (5.16) one may use the ideas of [88].

Example 5.17 ForB as in Example 5.16 the energy densitŷW (e, z) := e:B:e
2(2−z) is jointly convex in(e, z) and

W̃ (e, z) :=
e:B:e

2(2−z) +
z2

2
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is strictly convex in(e, z). Calculating the Hessian yields

D2Ŵ (e, z)[(ẽ, z̃), (ẽ, z̃)] =
z̃e:B:z̃e

(2−z)3 − 2
z̃e:B:ẽ

(2−z)2 +
ẽ:B:ẽ

(2−z) =
1

2−z (ê−ẽ):B:(ê−ẽ) ≥ 0

with ê := z̃e/(2−z) for all (e, z̃) ∈ R
d×d
sym × [z⋆, 1]. Since we haveD2Ŵ (e, z)[(ẽ, z̃), (ẽ, z̃)] = 0 for all (0, z̃) whenever

e = 0, we find thatŴ is jointly, but not strictly convex. We conclude that̃W is jointly strictly convex due to the term
f(z) = z2

2 , sincef ′′(z) = 1, so thatf ′′(z)z̃2 > 0 for all z̃ 6= 0, which ensures thatD2W̃ (e, z)[(ẽ, z̃), (ẽ, z̃)]> 0 for all
(ẽ, z̃) 6= 0 and for all(e, z)∈R

d×d
sym × [z⋆, 1].

Finally we discuss an example which refers to Theorem 5.13 onthe Hölder-and Lipschitz-continuity of energetic so-
lutions. With this example we want to point out the importance of the Banach spaceV . We will see that its choice is not
unique and that it may lead to different constantsα > 2. This is due to the fact that the energy will be chosen non-quadratic
in contrast to the Examples 5.14–5.15. We will clarify how the spaceV influences the magnitude of the Hölder constant
and explain how to achieve better regularity by a clever identification ofV .

Example 5.18(The effective use ofV) ForB as above and constantsa, â, c > 0 consider

W (e, z,∇z) :=
e:B:e

2
√

2−z +G(e) + a
2 z

2 + κ
2 |∇z|2 with G(e) := c

4 (â+| dev e|2)2 (5.17)

with the deviatordev e := e− tr e
d Id and the energyE(t, u, z) :=

∫
Ω
W (e+eD(t), z,∇z) dx−

∫
Ω
b(t)(u+uD(t)) dx.

We now determineV suitably. We first treat the case of time-dependent Dirichlet data, as investigated in [106]. Similarly
to the ideas applied in Example 5.12 we thereto deduce the following uniform convexity inequality forW

W (eθ, zθ) ≤ (1−θ)W (e0, z0) + θW (e1, z1) − θ(1−θ)c̃
(
|E|2 + |Z|2 + | devE|4 + |∇Z|2

)
(5.18)

with E := e1−e0, Z := z1−z0. For q0, q1 ∈ LE⋆
(t) we can verify

E(t, qθ) ≤ (1−θ)E(t, q0) + θE(t, q1) − θ(1−θ)c⋆
(
‖E‖L2 + ‖Z‖L2 + ‖ devE‖L4 + ‖∇Z‖L2

)α
(5.19)

for α = 4, c⋆ = 2−3c̃ min{(2E⋆)
2−α, (2E⋆)

4−α}. This estimate determines the Banach space

V1 := {ũ ∈ H1(Ω,Rd) | dev e(ũ) ∈ L4(Ω,Rd×d)} × {z̃ ∈ H1(Ω)} .

At this point we notice that the right-hand side of (5.19) is increased if we use theLp̃(Ω,Rd×d)-norm for some1 < p̃ ≤
4, which would lead to a smallerα = max{2, p̃} and hence to a Hölder exponent closer to1.

In order to find out whether the choice ofp̃ = 2 is suitable, assumption (5.12b) has to be investigated. Thereto we
calculate

∂tE(t, u, z)=

∫

Ω

∂eW (e(u)+eD(t), z,∇z):ėD(t) dx−
∫

Ω

ḃ(t)(u+uD(t)) dx−
∫

Ω

b(t)u̇D(t) dx .

The termDG(dev e):ê = c(â+| dev e|2) 4−2
2 (dev e):ê, with G defined in (5.17), plays the decisive role in estimate (5.12b).

Using Taylor expansion one can prove that∣∣DG(dev(ẽ1)):ėD(t) − DG(dev(ẽ0)):ėD(t)
∣∣ ≤ C

(
1+W0+W1

) p−2
p | devE|,

whereWi=W (ẽi, zi,∇zi), ẽi=ei+eD(t), eD(t)=e(uD(t)) andėD(t)=e(u̇D(t))∈C0([0, T ],W 1,∞(Ω,Rd×d)). Thus in-
tegration and Hölder’s inequality with̃p=2 andp̃′=2 yield

∫

Ω

∣∣DG(dev(e1+eD(t))):ėD(t) − DG(dev(e0+eD(t))):ėD(t)
∣∣ dx ≤ C1‖ devE‖

L
4
2
≤ C2‖u1−u0‖H1

with ei = e(ui) for (ui, zi) ∈ LE⋆
(t). This impliesβ = 1 and it is suitable to introduce the Banach space

V2 := {ũ ∈ H1(Ω,Rd)} × {z̃ ∈ H1(Ω)} .

With this choice ofV = V2 we haveα = 2, which leads to the Hölder exponent1α−1 = 1, so that an energetic solution

q : [0, T ] → Q satisfiesq ∈ C0,1([0, T ],V2), whereasV = V1 yieldsq ∈ C0, 1
3 ([0, T ],V1).

Finally we consider the case of time-independent DirichletdatauD, i.e. u̇D(t) = 0 for all t ∈ [0, T ]. Then we have
∂tE(t, q)=−

∫
Ω ḃ(t)(u+uD) dx. Therefore we may drop‖E‖Lp in (5.19) and chooseV = Q. For this choice we find

α = 2 and the Hölder-exponent1/(α−1) = 1, which means that the energetic solution is Lipschitz-continuous in time.
This is in accordance to the regularity result obtained [70], where only time-independent Dirichlet data were applied.
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