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In this paper some analytical and numerical aspects of tependent models with internal variables are discussed. Th
focus lies on elasto/visco-plastic models of monotone giging in the theory of inelastic behavior of materials.isTh
class of problems includes the classical models of eldststipity with hardening and viscous models of the Norton-
Hoff type. We discuss the existence theory for different sie@df monotone type, give an overview on spatial regularity
results for solutions to such models and illustrate a nuraésolution algorithm at an example. Finally, the relation
the energetic formulation for rate-independent processegplained and temporal regularity results based onréifite
convexity assumptions are presented.
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1 Introduction

In metallic materials various phenomena on the microsecalade macroscopically inelastic behavior: The hinderihg o
the dislocation motion by other dislocations or grain baanes cause hardening effects, which are observed on the@mac
scopic scale. The nucleation and growth of grain boundavitiea initiate the development of microcracks which may
cause the failure the whole structure.

From the phenomenological point of view the macroscopitesté inelastic bodies is completely determined by the
displacement or deformation field, the stress tensor andte finmber of internal variables representing internatpsses
on the microscale. The corresponding macroscopic modakistof the balance of forces, an evolution law for the imaér
variables and constitutive equations which relate thessé® with the displacement gradient and the internal Vagali
thermodynamically consistent framework for such modetlsésclass of generalized standard materials defined by alph
and Nguyen Son and the more general class of models of manttpe introduced by Alber. From the mathematical
point of view these models lead to coupled systems of lingpeibolic/elliptic partial differential equations andmimear
ordinary differential equations/inclusions. A typicaldipation of such models is elasto(visco)-plasticity witrdening at
small strains. In the rate-independent case an alternatigegetic formulation for such models was proposed by Mielk
al. in the last years. This formulation provides a genew@ltimrigorously analyze effects like damage, fracture mtasetic
behavior in magnetic and ferroelectric bodies at both, kamal finite strains. The aim of this paper is to review someméec
analytical and numerical aspects of models of this type.

The starting point for the models discussed in this papdradallowing: Given a time intervdD, T'] and a state space
Q =Ux Zletu: [0,T] — U denote the generalized displacements and[0, 7] — Z the internal variables. It is
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2 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On tippendent models with internal variables

assumed thd and Z are real, separable and reflexive Banach spaces. In theatptis of plasticity, typical choices are
Z = LP(Q) andU is identified with a suitable subspace of the Sobolev spEce (). The set2 C R¢ describes the
physical body. In the first chapters of this presentatiorefeociated elastic ener@y: Q — R is assumed to be quadratic
and positive semidefinite, i.e. we have

W(w,2) = (A (1)

whereA = (‘2; g‘;) :Q =Ux Z— Qisalinear, bounded symmetric and positive semidefiniteaipe In addition
to the elastic energy we also consider the energy

E(tyu,z) = U(u, z) — (b(t), u)

for given external loadings< C* ([0, T'];U4*). The evolution law for the internal variabtds characterized by a monotone,
multivalued mappingg : Z — P(Z*) with the propertyd0 € G(0). Therebyl/*, Z* and Q* are the duals of the
Banach spaced, Z and Q respectively and?(Z*) denotes the power set &*. The assumptions ofi and G are
motivated by thermodynamical considerations which areéexdiout in Section 2.1. There also the link to elasto-ptésti

is explained more detailed. The evolution model associatdds andg consists of the force balance equation (1.1) which
is coupled with the evolution law (1.2) for the internal \edsie: Find absolutely continuous functiomss AC'([0, T;U)
andz € AC([0,T]; Z) with z(0) = zo € Z such that for almost evetye [0, T it holds

0= 8u5(t,u(ﬁ), Z(ﬁ)) = Anu(t) + Algz(f) — b(ﬁ), (11)
Orz(t) € G(—0.E(t,u(t), 2(t)) = G(—(Agru(t) + Agez(t))). 1.2)

Systems of this structure constitute ttiass of models of monotone tyip&roduced by Alber [1]. The subclass of general-
ized standard materials is obtained if in addition to thevatibis assumed that is the convex subdifferential of a convex
and proper function. The particular choi@e= dx i, where0 € K C Z is convex and closed, and wheyg denotes the
characteristic function related 16, finally leads to the subclass of rate-independent evalutiodels. Typical examples for
these classes of models are elasto-plasticity in the stnaihssetting comprising for example linear kinematic feariag.
An example for a rate-dependent model is the visco-plastitds-Hoff model.

The mathematical analysis of rate-independent elasstiplanodels has its roots in the fundamental contributions b
Moreau, Duvaut/Lions and Johnson, [32,53, 78]. More retemstigations, which also cover rate-dependent modeds, a
due to Alber/Chelminski [2], see also [47]. M and hencel are positive definite, i.e. i (u,z) > %(HuHZ +1211%)
for all (u, z) € Q, and if in additionG is maximal monotone, then classical results state theendstof a unique solution
(u, z) € AC(]0,T]; Q) for sufficiently regular given dataandz,, which satisfy a certain compatibility condition.

In contrast to the positive definite case it is quite challegdo prove existence results for (1.1)—(1.2)4fis positive
semidefinite, only. Typical examples for such models areetflastic-perfectly plastic Prandtl-Reuss model and models
with linear isotropic hardening and we refer to [23, 28, 43],f6r the discussion of existence questions. In Sectiom25
present an existence proof for a model with a positive segfinide energyl under the assumption that a certain coupling
condition is satisfied between the operatdrs and As,. Here, we study the solvability far € L4(S; W14(Q)) and
z € AC(S; L9(Q)) for suitableg € (1, o).

Apart from existence results it is of great interest to gagrerinsight into the qualitative properties of solutiong;lsas
spatial or temporal regularity and stability. This knowdeds the basis for the construction of efficient and robusierical
algorithms. Section 3 is devoted to the discussion of spagaularity results for solutions of models of monotoneayp
Depending on the positivity properties of the free enebgyifferent regularity results may be achieved.

In the positive semi-definite case one typically obtainsgpatial regularityyr € L>°((0,7); H..(£2)) for the stress
tensoro. The basic observation enabling this result is the factttteatomplementary energy, which is the convex conjugate
of the free energy, is positive definite with respect to theegalized stresses, although the enebgyight not be positive
definite. In addition to the semidefinite case, for positigéirdte energies the following global spatial regularitguklts are
available for domains with smooth boundary: For evéry 0 it holds

we L=((0,T); H* () N L((0,T); Hige(€)), (1.3)
0,2 € L=((0,T); H2=*(Q)) N L ((0, T); Hipo(X2)). (1.4)

The proof of the global results relies on stability estinsdi@ the solutions of (1.1)—(1.2) and a reflection argumdnt.
discussion concerning the optimality of (1.3)—(1.4) aslaslan overview of the related literature is provided in Bect
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3.2 and 3.3. Moreover, we discuss an example which showstbkpite of smooth data and a smooth geometry one should
not expect a comparable spatial regularity result for timetderivative®;u ando; z.

In Section 4 we discuss and analyze a numerical algorithnsdbting rate-independent elasto-plastic models. After
a time discretization with an implicit Euler scheme the timeremental problem can be reformulated as a quasilinear
elliptic system of partial differential equations to detéme the displacements at time stepfrom the displacements and
internal variables of the previous time step. The interralable of the current time step then can be calculated via
a straightforward update formula. Since the nonlineap&tlioperator is not Gateaux-differentiable, classicalmMon
methods are not applicable for solving the PDE. Instead w&udis an approach where we use a so-calitting function
instead of the derivative resulting in a Slant Newton Methite behavior of this algorithmis illustrated at some exk®p

In the last section, Section 5, we focus on rate-independenels of the type (1.1)-(1.2) with = Oxx. As already
mentioned, in this case the model (1.1)—(1.2) can be ref@ateadi in the global energetic framework for rate-indepernde
evolution processes introduced by Mielke and Theil [70¢ided we will show in Section 5 that the model is equivalent to
the following problem: Find a paifu, z) : [0,7] — Q with (u(0), 2(0)) = (uo, z0) Which for everyt € [0, T] satisfies

Stability:  for every(v, () € Q we have E(t,u(t), z(t)) < E(t,v,() + R(¢ — z(t)),

Energy balance: £(t,u(t), z / R(0rz(7))dr = £(0,u(0 / OE (T, u(r), z(7))dT,

whereR : Z — [0,00] is the convex conjugate of the characteristic functighand hence is convex and positively
homogeneous of degree one.

The energetic framework allows for more general ener§jashich not necessarily have a quadratic structure or strict
convexity properties, or which might not be Gateaux déferable with respect to or z. The energetic formulation of
rate-independent processes provides a general tool, &fsotapplies to further physical phenomena like damagetyira,
shape memory effects or ferroelectric behavior. Since tleegy £ is not necessarily strictly convex, solutions may occur
which are discontinuous in time. A general existence theasecited. Subsequent it is investigated to what extene ifit
convexity assumptions on the energy yield solutions whietcantinuous, Holder-continuous or even Lipschitz-oamius
in time. These convexity assumptions are discussed faréifit examples modeling elasto-plasticity, shape menftagte
and damage.

2 Elasto(visco)-plastic models of monotone type

2.1 Thermodynamic framework

In this subsection we show that the problem (1.1) - (1.2) ésrtiodynamically admissible. We start with a macroscopic

model describing inelastic response of solids at smalirstria the most general form, and then we extract a subclass of
models, for which the Clausius-Duhem inequality is natyrsétisfied. This subclass of models consists of problems of
the type (1.1) - (1.2).

Setting of the problem

For the subsequent analysis we restrict ourselves onlyet@itimensional case, although all of our results hold in any
space-dimension. Le2 C R3 be a bounded domain with Lipschitz boundd@f and letS?® be the linear space of
symmetric3 x 3-matrices. Letl, denote a positive number (time of existence). BoxK ¢ < T, we introduce the
space-time cylindef2; = 2 x (0,1).

The initial boundary value problem for the unknown disptaeetu(z, t) € R3, the Cauchy stress tensbfz, t) € S?
and the vector of internal variablegr, t) € RY in a quasi-static setting is formed by the equations

—div, T(z,t) = b(x,t), (2.1)
T(x,t) = A(e(Vyu(x,t)) — Bz(z,t)), (2.2)
%Z(l’ t) € fe(Vyu(x,t)),z(x,t)), (2.3)

which must hold for all: € Q2 and allt € [0,00). The initial value forz(x,t) and the Dirichlet boundary condition for
u(z, t) are given by
z(x,0) = Z(O)($), forz € Q, (2.4)
u(z,t) = ~y(x,t), for(z,t) €N x[0,00). (2.5)
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4 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On tippendent models with internal variables

HereV u(z,t) denotes thé x 3-matrix of first order derivatives af, the deformation gradienty . u(z, t))” denotes the
transposed matrix, and

e(Vyu(z,t)) = %(un(m, t) + (Vau(z, 1)) € S,

is the strain tensor. The linear mappiBg: RY — S? is a projector withe, (z,t) = Bz(x,t), wheree,, € S is a plastic
strain tensor. We denote by : S* — S? a linear, symmetric, positive definite mapping, the elégtiensor. The given
data of the problem are the volume foice x [0, 00) — R3, the boundary displacement 99 x [0, 00) — R3, and the
initial data for the vector of the internal variable®) : Q — RY. The given functiorf : D(f) C 8% x RY — 28" isa

constitutive function with the domaib (/).

The differential inclusion (2.3) with a prescribed functiptogether with the equation (2.2) define the material belravio
They are the constitutive relations which model the elagd06)-plastic behavior of solid materials at small stsaimhereas
(2.1) is the force balance arising from the conservationdélinear momentum.

The initial boundary value problem (2.1) - (2.5) is writtegré in the most general form and, to the best of our knowledge,
includes all elasto(visco)-plastic models at small sgaised in the engineering. To guarantee that by equatiohs (2..5)

a thermodynamically admissible process is described, aimdhe existence of a free energy density D(f) — [0, c0)
such that the Clausius-Duhem inequality

9
P ot
holds in§2 x (0, co) for all solutions(u, T', z) of (2.1) - (2.5). The functiop denotes the mass density and it is assumed to

be constant. The requirement (2.6) restricts the possitdiees off. Indeed, le{u, z) be a sufficiently smooth solution of
(2.1) - (2.6). Firstly, we note that the symmetry of the treeisor implies

PY(e(Vyu), z) — divy(Tug) —b-uy <0 (2.6)

T-e(Vaus) =T - Voup = divy(TTuy) — (divy T) - uy.

Then, as a direct consequence of the Clausius-Duhem irigg{2ab), one gets with the help of the previous relation and
the symmetry ofl" the following inequality

PV - e(Vaur) + pVatb - 2z — dive (Tug) — b - uy

= PV51/1 ’ E(qut) + pvz"/’ vz =T - E(V:ﬁut) = (pvs"/) - T) ’ e(vxut) + pvz"/’ T2t

<0.

Due to the arbitrariness of the strain rate- £(V,u;), we conclude that
pVet(e,2) =T, (2.7)
PVa(e,2) - (<0 (2.8)

for every¢ € f(e,z) andfor all(e, z) € D(f). Inequality (2.8) is called the dissipation inequality.eFéfore, we call the
constitutive equations (2.2) and (2.3) thermodynamicatiynissible if a free energy densityexists such that (2.7) and
(2.8) are satisfied.

Now it is easy to extract a subclass of constitutive funaignfor which the dissipation inequality (2.8) is naturally
fulfilled. This subclass consists of those functighsvhich can be written in the form

f(g, Z) = 9(—Pvz¢(€a Z))a (2.9)

with a suitable free energy density: D(f) — [0, oo) satisfying (2.7), and with a suitable monotone functjonD(g) C
RN — 2B™ with the property) € ¢(0).

Relations (2.2) and (2.7) allow us to find the precise formheffree energy density: Integrating (2.7) with respect to
we can easily obtain that

ple,2) = 5 Ale — B2) - (e — B2) + 1 (2)

with a suitable function); : D(1) € RY — [0, 00) as a constant of integration. For mathematical reasons sueresin
this chapter that the free energy densithhas a special form, namely it is a positive semi-definite gatéalform given by

p(e,z) = %A(E — Bz)-(e—Bz)+ %(Lz) z (2.10)
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with a symmetric, non-negativ€ x N-matrix L. Differentiating (2.10) with respect toyields
—pV.ab(e,2) = BYA(e — Bz) — Lz = BT — Lz.

In view of these considerations the initial boundary valt@hem (2.1) - (2.5) can be written as

Cdiv, T(z,t) = ba,t), (2.11)
T(z,t) = A(e(Veulz,t)) — Bz(z,t)), (2.12)
%z(x,t) e g(BTT(x,t) — Lz(z,1)) (2.13)
2(2,0) = 20(), (2.14)

forall z € Q and allt € [0, o0), together with the Dirichlet boundary condition
u(z,t) =y(x,t) forz e dQ,t € [0,00). (2.15)

The initial boundary value problem (2.11) - (2.15) is calted problem/model of monotone type. As we have already
mentioned in the introduction, this class of models wasohiiced by Alber in [1] and it naturally generalizes the class
of problems of generalized standard materials proposeddiyhen and Nguyen Quoc Son. We recall that the models of
generalized standard materials are formed by equatioh$)(2(2.15) with the monotone functigngiven explicitly by the
subdifferential of a proper convex function. Typical exdegfor models of monotone type are elasto-plastic modets wi
linear or nonlinear hardening (for more details, consudtltbok [1, Chapter 3.3]).

First existence results for the classical model of perféastiity (Prandtl-Reuss-model) were derived in [32, 54, 7
Since the elastic energy in this case is positive semidefioitly, the displacements in general belong to the space of
bounded deformations, only, [102,104, 105]. The exist¢heery for elasto-plastic models with a positive definitergyy
(like elasto-plasticity with linear kinematic hardeningds initiated by Johnson [54], we refer to the monographs43p
for a historical survey on the subject. In the late 90iesdhesults were extended to models of monotone type with geéner
maximal monotone functiong still assuming that the energy is positive-definite, [1]8]3,22—-24,82,84,85] an approach
for the derivation of the existence of solutions to the peobl(2.11) - (2.15) initiated in [1] was continued and extahde
to particular models of monotone type with a positive segfirdte energy. In the present paper, we briefly discuss the
existence result in [2] for models with a positive definitergy in order to point out the main differences and diffiasti
which arise in the treatment of monotone problems with atpessemi-definite energy. An existence proof for a special
class with a positive semi-definite energy is discussedvadtals.

2.2 Function spaces and notation

Form € N, ¢ € [1, o], we denote byV™4(Q), R¥) the Banach space of Lebesgue integrable functions haviniggrable
weak derivatives up to orden. This space is equipped with the notm ||,,.q.o. If m = 0 we also write| - [|4,o. If m
is not integer, then the corresponding Sobolev-Sloboglspkice is denoted bl ™4(Q, R*). We setH™ (9, RF) =
Wm2(Q, R¥), cf. [42].

We choose the numbepsq satisfyingl < p,q < oo and1/p + 1/¢ = 1. For suchp andq one can define the bilinear
form on the product spade” (2, R¥) x Li(2, R¥) by

(€ Q)a Z/Q«E(ac) ((x)dz.

If (X, H,X*)is an evolution triple (known also as a “Gelfand triple” op&ces in normal position”), then
Wpq(0,Te; X) = {u e LP(0,T.; X) | u € LY(0,T.; X*)}

is a separable reflexive Banach space furnished with the ﬁlOHI%ﬂ:p)q = ||u||%,,(07TE;X) + |\u||iq(07TE:X*), where the time
derivativer of u is understood in the sense of vector-valued distributivvesrecall that the embeddirig, , (0, T.; X) C
C([0,T.], H) is continuous ( [50, p. 4], for instance). Finally we freqtignise the spaced’*(0, T..; X), which consist
of Bochner measurable functions withpeaintegrable weak derivatives up to order Observe thail’; »(0,7¢; X) =
wW2(0,T.; X).
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6 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On tippendent models with internal variables

2.3 Basic properties of the operator of linear elasticity
Here, we state the assumptions on the coefficient matrig@sia) - (2.13):

A€ L>(Q,Lin(83,8%)) is symmetric and uniformly positive definite,
i.e. there exists: > 0 such thatd(z)e - & > a||¢||* foralle € S? and a.ex € €, (2.16)
L € L>=(Q; Lin(RY,RY)) is symmetric and positive semi-definite.

Since the linear mapping(z) : S* — 8?2 is uniformly positive definite, a new bilinear form dif (92, S?) x LI(£2,S3)
can be defined by

€, (o = (A€, Q)a.

From [108, Theorem 4.2] we recall an existence theorem ferfttlowing boundary value problem describing linear
elasticity:

—div,T(z) = b(z), forxz € Q, (2.17)
T(x) = A(z)(e(Vau(z)) — €p(x)), forxz € Q, (2.18)
u(z) =5(x), for x € 092. (2.19)

To givenb € W—14(Q,R3), £, € LP(Q, ) andy € W?(Q, R3) the problem (2.17) - (2.19) has a unique weak solution
(u, T) € WHP(Q,R3) x LP(Q,S83) with 1 < p < cc @and1/p + 1/q = 1 providedA € C(Q, Lin(S?,S83)) and( is of
classC!. Forp = 2 this result for the problem (2.17) - (2.19) holds provideatth satisfies condition (2.16) and th@tis
a Lipschitz domain. Fd}:ﬁ:O there is a constardt > 0 such that the solution of (2.17) - (2.19) satisfies the inftyua

le(Vau)llp,a < Cllép]lp0-

Definition 2.1 For everyé, € L?(Q, S?) we define a linear operatdt, : LP(Q2,S3) — LP(Q, S?) by Pyé, = e(V,u),
whereu € Wol’p(Q, R?) is the unique weak solution of (2.17) - (2.19) for the givendtions,, andb =4 = 0.
Let the subse§? C LP(), S?) be defined by

GF = {e(Vu) |u € WyP(Q,R?)}.

The following lemma states the main propertieg}Hf

Lemma 2.2 For everyl < p < oo the operatorP, is a bounded projector onto the subggt of L?(Q,S?). The
projector (P,)*, which is the adjoint with respect to the bilinear fofg (] on LP(Q2, 83) x L4(£2, S?), satisfies

(Pp)* = Py, where %+ % =1.

This impliesker(P,) = H? , with HY | = {¢ € LP(Q,8%) | [£,(la =0 forall ¢ € G9}.

sol s

The projection operator
Qp=(I—PB,): LP(Q,8°) — LP(Q, S?)
with @, (LP(Q2, 8%)) = H? , is a generalization of the classical Helmholtz projection.
Corollary 2.3 Let(BTAQ,B + L)T be the adjoint operator of
BTAQ,B + L: LP(Q,RY) — LP(Q,RY)
with respect to the bilinear forrt¢, ¢ ), on the product space?(Q, RY)x L¢(Q, RY). Then
(B"AQ,B + L)" = BTAQ,B + L : LY(Q,RY) — LI(Q,RY).

Moreover, the operatoB” AQ, B + L is non-negative and self-adjoint.
The last result in this corollary is proved in [2].
Remark 2.4 If the matrix L is uniformly positive definite, then the operatBf AQ» B + L is positive definite.
Remark 2.5 H? , is a reflexive Banach space with dual spat§, .
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Finally we cite an existence result for the following Caugitgblem in a Hilbert spacé with a maximal monotone
operatord : D(A) c H — 2%

d

St + A@®) > f), (2.20)
u(0) = wup. (2.21)

Theorem 2.6 [11,97] Assume thaty, € D(A). If f € WH1(0,T.; H), then the Cauchy problem (2.20) - (2.21) has a

unique solution, € W1°°(0, T.; H). If A = d¢, whered¢ is the subdifferential of a proper convex lower-semi-amnius
function, then for every € L?(0,T.; H) the problem (2.20) - (2.21) has a unique solutioa W2(0,T,; H).

2.4 Existence of solutions in the case of positive definite ergy

It is already known (see [2, Theorem 1.3]) that the initialbdary value problem (2.11) - (2.15) has a unique solution
provided the mapping — g(z) is maximal monotone and the mattixis uniformly positive definite. We now state the
existence result due to Alber and Chelminski [2].

Theorem 2.7 Assume that the coefficient matrices saf(&f{6) thatin additionZ in (2.13) is uniformly positive definite
and that the mapping : RV — 2B is maximal monotone with € ¢(0). Suppose that € W21(0, T.; L*(2, R%)) and
v € W20, T,; H'(,R?)). Finally, assume that(®) ¢ L2(Q, RY) and that there exist$ € L?(©2, RY) such that

¢(z) € g(BTTO (z) — L(x)2(z)), a.e.in, (2.22)
where(u(®, 7)) is a weak solution of the elasticity problem (2.17)-(2.18ite datab = b(0), £, = Bz, 4 = ~(0).
Then for everyl, > 0 there is a unique solution of the initial boundary value deosh (2.11) - (2.15)

(u,T,z) € W20, T,; H'(Q,R3) x L*(Q,8%) x L*(Q,RM)).

If, in addition,g = Ox k, wheredx k is the subdifferential of the characteristic function asisted with the convex, closed
set0 € K C RY, then itis sufficient to require € W2(0,T.; L?(Q,R?)) andy € W2(0,T.; H' (2, R?)).

Remark 2.8 We note thatl. is uniformly positive definite if and only if the free energgrbity«) is a positive definite
quadratic form onS? x RY. The constitutive equations for linear kinematic hardgrsatisfy this requirement, while
models for linear isotropic hardening are not covered.

The main idea of the proof of Theorem 2.7 consists in the réoluof the equations (2.11) - (2.15) to an autonomous
evolution inclusion in a Hilbert space governed by a maximahotone operator. To this evolution inclusion Theorem 2.6
is applied, which allows to conclude that the initial bounydaalue problem (2.11) - (2.15) has a (unique!) solutiorr. the
reduction itis crucial that the coefficient functidris uniformly positive definite. To indicate the main diffaces between
the case of a positive definite free energy density comparadipsitive semi-definite density we briefly sketch the proof
of Theorem 2.7. Details can be found in [2].

Proof. We note that equations (2.11) - (2.12), (2.15) fornoaridary value problem for the compone(ist), 7'(t))
of the solution. Obviously one has an additive decompasitio
(u(t), (1)) = (a(t), T(t)) + (v(t), 0 (1),
with the solution(v(t), o(t)) of the Dirichlet boundary value problem (2.17) - (2.19) te thatah = b(t), ¥ =~(t),é, =0,
and with the solutiorfa(t), T(t)) of the problem (2.17) - (2.19) to the ddta= 4 = 0, é, = Bz(t). We thus obtain
e(Vyu) — Bz = (Py — I)Bz + ¢(V,v).
Inserting this into (2.12) we receive that (2.13) can be itb&r in the form
z(t) € G(— (BTAQ2B + L)z(t) + BT o (1)), (2.23)
whereG : D(G) C L2(Q,RY) — 2L*(QRY) defined by (¢) = {€ € L2(Q,RY) | £(z) € g(£(x)) a.e.}. The functions,
as a solution of the problem (2.17) - (2.19) to the given data is considered as known.
According to Remark 2.4 the operatBf AQ, B + L is positive definite, therefore the equation (2.23) can bleiced to

an autonomous evolution equationiid(Q, RY) using the transformatioh(t) = —(BTAQ2B + L)z(t) + BT o(t). It
then reads as

hi(t) + C(h(t)) > BYoy(t) with C(&) = (BT AQ2B + L)G(¢) for & € L?(Q,RY). (2.24)
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Thecrucial stepin the proof is that the operat6t is maximal monotone with respect to the new scalar proféict]] :=
(BT AQ2B+ L)€, ) (see [2]). This scalar product is well defined, since the apei3” AQ, B + L is positive definite
due to the uniform positivity of.. Therefore, Theorem 2.6 can be applied to (2.24)3(€2, R"V) equipped with the scalar
product[[é, ¢]] to derive the existence and uniqueness of solutions. Therggon (2.22) guarantees that the initial value
h(0) belongs to the domain of the operator Substituting the solution of (2.23), which exists due te #yuivalence of
(2.23) and (2.24), into the boundary value problem formeeédpyations (2.11) - (2.12) and (2.15) yields the existence of
(u, T') by the existence theory for linear elliptic problems. O

2.5 Existence of solutions in the case of a positive semi-defe energy

As we saw in the proof of Theorem 2.7 the positivityloplays the essential role: It allowed to define a new scalatymrb
in L2(2,RY), with respect to which the operat6rfrom (2.24) is maximal monotone so that Theorem 2.6 is applie
Obviously, this strategy cannot be applied.ifis only positive semi-definite and one has to overcome ttfcdity. In
the following we restrict ourselves to a subclass of prolsl@ihmonotone type with a positive semi-definite free energy
density, for which the existence of solutions can be verifiedstence theorems for the entire class of models of maomoto
type are still an open problem. For simplicity, we assuméttiecoefficient matrices in (2.11) - (2.13) are independént
Z.

Under the assumption thatis single-valued and thdfer B + Ker L = R, the authors of [3] showed that the initial
boundary value problem (2.11) - (2.15) is equivalent to tikWing problem: for allt € [0, c0) andz € Q

—div, T(z,t) = b(x,t), (2.25)
T(x,t) = A(e(Voula,t)) —ep(z,t)), (2.26)
drep(z,t) = CHLQ (ﬂ) (2.27)
Bi3(x,t) = (ﬂmﬂ,é( 0 (2.28)

u(z,t) = y(x,t), (x,t) € 9N x[0,00), (2.29)

ep(x,0) = 5(0)(30), 2(x,0) = 20(x). (2.30)

Here the vector of internal variablegz, t) is split into two parts, i.e.2(z,t) = (gp(z,t), 2(z,t)) € S* x RVN=6. We
assume for simplicity that'”) (z) = 0. The functiongy; : S% x R¥=6 — 83 andg, : $% x RV—6 — RN=6 are given
such that(T,y) — (g1(T,y), 92(T,y)) : RY — RY is a monotone mapping.

Following [3] we rewrite the problem (2.25) - (2.29) in terman operatof{ : F(Q7.,S3) — F(Qr.,S?), where
F(Qr,,S8%) denotes the set of all functions mappiidg, to S. The operato# is defined by the following rule: For given
T andz() let (h, ) be a solution of the problem

h(z,t) = g1 (T (z,t), —Z(z,t)) for (z,t) € Qr,, (2.31)
i (z,t) = g2(T(2,t), —2(x,t)) for (z,t) € Qr,, (2.32)
#(x,0) = 20 (x) forz € Q, (2.33)

Then the operatdk on F (., S3) is given byH(T') = h. In terms of the operatdi the problem (2.25) - (2.29) reads as
follows: for all (x,t) € Qr,

—div,T(x,t) = b(x,t), (2.34)
T(x,t) = A(e(Vyu(a,t)) (2,1)) (2.35)
Oep(z,t) = H(T), (2.36)
e)(1,0) = 0, (2.37)
u(z,t) = y(x,t), (x,t) € 9N x[0,00). (2.38)

Now we can state the existence result of [82] for the probl2/34) - (2.38).

Theorem 2.9 Let2 < p < oo and1 < ¢ < 2 be numbers with /p + 1/q = 1. Assume that{ : L?(Qr,,S%) —
L(Qr,,S?) is maximal monotone and that the inverse ! is locally bounded at 3 and strongly coercive, i.e. either

1 An operatorA : V. — 2V" is called locally bounded at a poing € V' if there exists a neighborhodd of vg such that the set
AWU) = {Av|v € D(A)NU }is bounded i/ *.
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D(H~1) is bounded oiD(H ') is unbounded and

(v*,v)

ol — 400 as ||[v]lg,0n, — 00, V" E H_l(v).

4,97,
Suppose that € LP(Qr,,R?) andy € LP(0, T, WP(£2,R?)). Then there exists a solution of the problem (2.34) - (2.38)
u € LU0, T.; WH(Q,R3)), T € LP(Q1.S?), ¢, € WH4(0,T,, LY (Q,S?)).

Remark 2.10 The monotonicity ofH is implied by the monotonicity of the mappin@, y) — (91(T,y), 92(T,v))
(see [3, Lemma 4.1]).

Remark 2.11 To gain the existence of solutions to (2.25) - (2.29) one basheck first whether the operatsf :
LP(Q7.,83) — L9(Qr,,S?) is well defined, i.e. whether the problem (2.31) -(2.33) haslation (not necessary unique).
Then apply Theorem 2.9.

Remark 2.12 The proof of Theorem 2.9 in [82] contains a gap, although #selt remains true. The operator defined
in Lemma 4.1 of [82] is not maximal monotone as it is statedeh@&he proof of this is given in the end of this section.

In [3] Theorem 2.9 is proved fok with polynomial growth and under the additional assumpttuat 7 is coercive.
The last assumption causes there difficulties in the dévivadf the existence of the solutions to the model of nonlinea
kinematic hardening (see the next section for more detaiisjrder to show the coercivity of the operatérdefined by the
constitutive relations (specific choice of the functigh®ndg,) of nonlinear kinematic hardening, the authors of [3] had to
impose a restriction on the exponents in the constitutilaions for the different internal variables. The approenitiated
in [82] is actually based on the constructions in [3] and e¢p¢he main steps of that work with the major difference that
the general duality principle for the sum of two operatomstir[9] is used to obtain the existence of the solutions to the
problem (2.34) - (2.38). The application of this dualityraiple allows to avoid the coercivity assumptionah Here we
present the improved version of the proof of Theorem 2.9quries] in [82].

Proof. Letus denote

W =LP(Q,8%), W=LP0O,T.;W), X =H"

sol

(2.8%), X =LP(0,Te; X).

Repeating word by word the proof of Theorem 2.7 one can rethecmitial-boundary value problem (2.34) - (2.38) to the
following abstract equation

Le, = H(—AQpe, +0), (2.39)
where the linear operatdl : W — W* is defined by

Ln = 9 with D(L) = {n € Wy4(0,Te; W) [ 9(0) = 0}.

The functione in (2.39) is given as in the proof of Theorem 2.7. Applying tiperatorQ), to (2.39) from the left formally
and denoting = Q,¢, we arrive at the equation

LT = QqH(*A’T+O'), (2.40)

where nowl : X — X* denotes the operator
Ln = 0yn with D(L) = {n € W, 4(0,T¢; X) | n(0) = 0}.

The strategy of Theorem 2.7 is not applicable here, sincedhgosition of two operators, one of them being monotone,
& — QqH( — A + a) is not monotone in general. It turns out that applying theeganduality principle (see [9]) it

is possible to “release” the monotone operator from anotiperator preserving its monotonicity property and use the
classical theory of monotone operators. This is the maia afehe proof of Theorem 2.9.

By the general duality principle [9], the inclusion (2.4Q)Y is equivalent to the following inclusion iA™*

L7'AQu+H w0, we X" (2.41)

Indeed, (2.40) holds iff there existse L7 N Q,w with w = H(—A7 + o). Taking the inverse of the operatofsand’®
gives (2.41). Thus, if we can solve (2.41), by the equivademe obtain that the problem (2.40) has a solution as well.

Due to Lemma 2.13, which we state after the proof, the opeatd AQ, : D(L~1AQ,) C X* — X is linear and
maximal monotone.
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Now we can show that (2.41) has a solution. Note first that frerator/ ! is maximal monotone as the inverse of
a maximal monotone operator. Singe ! is locally bounded at 0, by Lemma 111.24n [48] the point O belongs to the
interior of D(H~') = R(H). Therefore, the operatos* AQ, andH ! satisfy the condition

D(L7YAQ,) NintD(H™1) # 0,

yielding that the sunL =1 AQ, + H~' is maximal monotone (by Theorem 11.1.7 in [11]). The coeitgiof H~! implies
the coercivity of the sum, i.e.

<E71Aqu + v*, v>

[[o]] — 400 as v = 00, v* € HT(v).
v

Y

{v*, v)
o]

Theorem 111.2.10 in [83] guarantees that the maximal monetand coercive operatdr ' AQ, + H ' is surjective. Thus,
equation (2.41) is solvable and, as consequence, probldif) (2as a solution.

The construction of the solution of the problem (2.34) - 8.8an be now performed as in [3]: Let(t),o(t)) be the
solution of the Dirichlet boundary value problem (2.17) @) to the datd = b(t), ¥ = ~(t), é, = 0and letr € X be
the unique solution of (2.40). With the functieriete, € W14(0, T., L4(£2, S*)) be the solution of

dep(t) = H(—Ar(t)+o(t), foraete(0,T.) (2.42)
e,(0) = 0. (2.43)

Moreover, by the linear elliptic theory, there is a uniqulaiion (i (t), T'(t)) of problem (2.17) - (2.19) to the daba= 4 =
0, €, = £,(t). The solution of (2.34) - (2.38) is now given as follows

(u, Tyep) = (@4 v, T + 0,6,) € LI(0, To; WHI(Q,R?)) x LP(Qp, S3) x W90, T, L9(Q, S?)).
To see thatu, T, ¢,,) satisfies (2.36), we apply the operafgy to (2.42) - (2.43) from the left and obtain
0(Qqep) = QeH( — AT(t) +o(t)) = 01,  Qqep(0) = 7(0) = 0.
The last line implies thaf),s,, = 7. Thus
T=T+0=—-AQ.p +0 = —AT + 0 € LP(Qr,S?).
The last observation completes the proof. O
Lemma 2.13 The operatot. "' AQ, : D(L~'AQ,) C X* — X is linear and maximal monotone.

Proof. Accordingto Theorem 2.7 in [83], the operafor' AQ,, is maximal monotone, if it is a densely defined closed
monotone operator such that its adjojft~' AQ,)* is monotone. Since all these propertiesfof' AQ, can be easily
established, we leave their verification to the reader. Mietails can be also found in [81]. O

Now we prove the result announced in Remark 2.12.
Lemma 2.14 The operato),£L~! : W* — W is not maximal monotone (we use the notations introduceslg)oo

Proof. Note first of all that the following identity
QpL™ v =LT1Qqu (2.44)
holds for allv € D(Q,£~') = D(£~") 3. The previous identity (2.44) follows easily from
P,L™'w =L Py, (2.45)

which holds forv € D(£!). Relation (2.45) can be proved as follows: Choose D(£~!). Then, according to the
definition of P,, the boundary value problem
—div Ae(Vu(x,t)) = —div Av(x,t) forz € Q, (2.46)
u(z,t) =0 for z € 092, (2.47)

2 This result is proved in a Hilbert space, but it can be ea®lyegalized to reflexive Banach spaces.
3 Recall thatD(£ 1) = {z € W* | [ 2(s)ds € W}
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has a unique solution(t) € W, (2, R3), i.e. the function; satisfies the equation
(Ae(Vu(t),e(Vo))a = (Av(t),e(Ve))q, forall g € WyP(Q,R?).

Similarly, we obtain that the problem

t

—div Ae(Vw(z,t)) = —divA(/ v(x, s)ds) forx € Q,
0

w(z,t) =0 for z € 02

has a unique solution(t) € Wol’p(ﬂ, R3). Integrating (2.46) we get that the identity

t

(Ag(v /Otu(s)ds),E(qu))Q = (A(/O v(s)ds),s(V@)Q

holds for allgp € W,? (2, R3). Thus, by the definition oP,, we have thatv(t) = f(f u(s)ds. This proves (2.45).

Next we show that the operat@, £~* is not maximal monotone. To this end, consider a functioa 1W* such that
¥ = e(Vu) with u € Wol’q(Q,R3) ande(Vu) ¢ W for anyp > ¢ (sinces(Vu) ¢ D(L£~1)). Obviously, such a function
u is the solution of the problem

—div Ae(Va) = —div Ay, @€ Wy'(Q,R3).

The last relation implies that € R(F,) and consequently that € ker Q).
To show that),£~! is not maximal monotone, we need to find a faif, y) € W x W* such that the inequality

QL™ v —y" v —y)a >0 (2.48)

holds for allv € D(£71), but(y*,y) & Graph (Q,L£~!). Take anyv € D(L™!). Sety = v + ¢ with + from above and
v =L7'Qqy,ie.y* = L71Quu = QL v. Then

(@QpL™'v—y* v —y)a = 0.
Therefore (2.48) is fulfilled for alb € D(L£™!), butv + ¢ & D(Q,L~"). Thus, the proof is complete. O

2.6 Model of nonlinear kinematic hardening

We apply Theorem 2.9 to the model of nonlinear kinematic déairyy. It consists of the equations (cf. [1, 3])

—div,T = b, (2.49)
T = A(e(Vyu) —gp), (2.50)
» T — k(e En
ey, = T —k(ep —en) T kE; — ;I’ (2.51)
P n
k(e, —ep
Oen = calk(ep —en)|™ |kE€p E §|, (2.52)
p n
En(o) = 5?1; Ep(o) = 07 (253)
u = 7, x€df, (2.54)

wherecy, ¢, k > 0 are given constants ang, ¢, € S3. The equations (2.49) - (2.53) can be written in the generahf
(2.25) - (2.29) withg = (g1, g2) : S? x 83 — 8% x 83 defined by

T+ k2%
|T + k/2z|’

T+ k1/2z

o
T e A )

k2| T + kY227 H
z

(91, 92)(T, 2) = (01|T + kY23

where? = k'/2(¢, — ¢,,). Maximal monotonicity of the mappind’, 2) — (g1(T, %), g2(T, 2)) follows from the fact that
g = (g1, g2) is the gradient of the continuous convex function

C1
r—+1

We have the following existence result for the problem (2-42.54) (see also [3]).

C2 |k1/22|m+1.

m—+1

o(T,%) = |T + EY/2z"+1 +
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12 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On taperdient models with internal variables

Theorem 2.15 Letcy, co, k be positive constants and letr and m satisfy. > 1. Letusdefing =1+r,¢q=1+1/r,
p = max{p,1+m} and§ = min{q,1+ 1/m}. Suppose thak € LP(Qr ,R3), v € LP(0,T,, W"P(Q,R?)) and
e € 12(Q, 8%). Then there exists a solution

u e L0, T,; WH(Q,R3)), T € LP(Qr,,S?), e, € WH(0,T., L4(Q,S?)), &, € Wh4(0,T., LI(Q, S?))

of the problem (2.49) - (2.54). Moreovey, — ¢, € W; 4(0, T, LP(£2, S?)).
Remark 2.16 In [3] Theorem 2.15 is proved provided andr satisfy the inequalityn > r. This condition the authors
of [3] use to show that the operattfdefined by the equations (2.51) - (2.53) according to thegivien above is coercive.

Remark 2.17 Using the theory of Orlic spaces and the monotone operattitadesimilar results are obtained in [85]
with the same restrictions on andr as in Theorem 2.15.

Proof. To apply Theorem 2.9 one has to show that the opetétdefined by (2.51) - (2.53) is well-defined, the
(multivalued) inversé{~! is locally bounded at 0 and coercive . The coercivityrf! as well as the fact that the well-
posedness of{ are shown in [82]. Therefore, it remains to verify that ! is locally bounded at 0. Here we show that
H~! is not only locally bounded at 0, but has even a polynomican.

For the functiory = ¢, — ¢,, we have

k ol
g ly(a. O = ky-ea| T = byl e = ky-cal k] 7 < 1 (= byl ST = k) = eally .

T - kf vl
Here we used Young's inequality with > 0. Therefore,

k 9 mal al » k 9

ST + ol e, < e (S0l 0, + ST = kol ) + 5100) B
and consequently

allulithe, < (= klfa, + 1T~ kla, ) + 51O Bo (2.55)

On the other hand we have

1T, < Ikyl;q. + 1T =yl o, - (2.56)
Multiplying (2.56) by -7
c2 m+1 1 k 2
|| I5.0r, — a||ky| m+1,9r, = (IE - —)||T kylly.or, — Q—CIHZ/(O)HzQ
1
< (o~ DI =kl (2.57)

For sufficiently smalky the constan pap — —) is positive. More preciselyy € (0, ag) with ag := (¢/p)'/P+9. Later

we give more precisely the upper bound for
Now we derive the estimate fd#y|| 11,0, interms of| T, o,

T —ky

m kY k:

. 1 5 .
< —ar|T—ky|? —calky|™ ' + e | T T = ky|” < *ClIT*kylp*CQIkylmH*Cl(W|T|p+g|Tfkqu7)'

k
Oe5ly(x, )" = —(T = ky) - [T — kyl’” T alT — kyl"

T - kl

Here we used Young’s inequality with Choosing = (¢/2)'/¢ we arrive at the estimate

p
p,Q7,

k m 1
5 1y (T. e+ S IIT kyllp o, +c2llkylini o, < 2IIy( Mz.a+ e 5PIIT|
and consequently

m+1

collkyllnii o, < 2||y( M3+ 5pH 5.2, (2.58)
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Thus from (2.57) and (2.58) we obtain

1 1 » k ) 1 af
—_—— - — <(—-— —kyll? o . .

e L e e e R LA (2.59)
Choosingy = min {6/2, ap/2} in (2.59) we obtain

Cill T} qr, = C2 < CslIT = kylly o, (2.60)
with some positive constants, C; andCs. Recalling that|H(T) || o, = c{IT—kyll; o, , the inequality (2.60) implies

Cil T} qr, = C2 < Cscl[H(T) g 0r, »
which yields the polynomial growth for the inverse®{T), i.e.

117 @), < Ca(l+Il0l76,) (2.61)

with some positive constant,. ThusH ! is coercive and bounded. Hence, Theorem 2.9 yields theeexistofu, 7 and
ep. The existence of,, is shown in [82] (see also [3]). Therefore, the proof of Tleen2.15 is complete. O

3 Spatial regularity for elasto-(visco)plastic models of ronotone type

In order to predict convergence rates of numerical schemess information about higher spatial regularity of sauas
is needed. Depending on the properties of the constitutivetiong in (2.9) different results can be obtained.

While local regularity properties were derived in the reigazars for a quite large class of models of monotone typsy, onl
very few results are known concerning the global regulahitysection 3.1 we present in detail global regularity ressahd
discuss their optimality in Section 3.2 . An overview on thierbture on spatial regularity results for models of monet
type, for viscous regularizations of these models and fatef®which appear as a time discretized version of the @eolut
models is given in Section 3.3. By = [0, 7] we denote the time interval.

3.1 Regularity for maximal monotoneg and positive definite elastic energy

Historically, local spatial regularity results were firgdiiced by Seregin [93] for elasto-plasticity with lineandiinatic
or isotropic hardening and with a von Mises flow rule. The pisalone by carrying over local regularity properties of
a time-discretized version to the time-continuous problelare we follow a different approach working directly witiet
time-continuous model.

The model of monotone type formulated in (2.11)—(2.15) ststs of an elliptic system of partial differential equaiso
which is strongly coupled with an evolutionary variatioiraquality describing the evolution of the displacementnd
the internal variable subjected to external loadings. There exist various pawarfalytic tools to characterize the spatial
regularity of systems of elliptic PDEs both on smooth andsmoooth domains. The problem in the elasto-plastic case is to
maintain the regularity properties of the elliptic systemspite of the strong coupling between the elliptic systeih the
evolutionary variational inequality.

Let Q ¢ HY(Q) x L?(Q) > (u(t), 2(t)) denote the state space and assume for the moment that tiaé daium
2Y = 0. The intrinsic difficulty of proving spatial regularity reks for plasticity problems stems from the fact that the
flow rule (2.12) is non smooth and has no regularizing termsaAonsequence the data-to-solution-map is not Lipschitz
from WL1(S; Q*) — WH1(S; Q), but only as a map fromi’1(S; Q*) — L°°(S; Q). The latter Lipschitz property is
the basis for proving the local and tangential regularigutes in Sobolev spaces. Roughly spoken, the local redylari
(u, z) follows from the Lipschitz estimate

[Cun = w20 = 2)|[ oo (5:0) < €lip [ = Fllwii(s,00) s 3.1
where the index indicates a local shift of the functionsandz by a (small) vectok € R?. The functionf;, contains the

shifted datumf and further corrections due to the shift, so that, z;,) is a solution to (2.11)—(2.13) with respect to the
datumfy,. If fis smooth enough such that the estimate

-1
Sup|h‘<hu |h| ||fh - f”lel(S;Q*) S cr (32)
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is valid, then it follows thatu, z) € L>(S; H2.(Q) x Hb.(€2)). Since a similar Lipschitz estimate is not known for the
time derivativegd;u, ;2), we cannot show that e.§:z € L'(S; H..(Q2)). Indeed, the example in Section 3.2 reveals
that the latter regularity is not valid in spite of smoothalgimilar arguments can be applied in order to derive tatigen
regularity properties at the boundary of smooth domains.

In order to obtain information on the regularity in the notmiection, the problem is reflected af). The reflected
functions(w, Z) solve an evolution system of similar type with new datfinwhich consists of the reflected datufrand
the tangential derivatives & u and z: f‘ = (frefl, OrangVU, Otangz). Due to the term@angVu anddangz the new datum
does not have the temporal regularity allowing for an edtirtike (3.2). In view of the tangential regularity resultge can
guarantee at least that

SUP|n|<hgo A~ Hfh - fHLoo(s;Q*) <c

Hence, the Lipschitz estimate (3.1) has to be replaced Wilidllowing weaker version for the extended functidasz):
||(ﬂh - ﬁaéh - Z)HLOO(S;Q) S CH.fh - .]EHEW(S;Q*) S C|h|§ ) (33)

see Theorem 3.2. From the latter estimate we finally dedwtéithz) € L>(S; H2~9(Q) x Hz~%(Q)) for everys > 0.
These steps are explained in detail in Sections 3.1.1-3.1.3

3.1.1 Basic assumptions and stability estimates

The arguments explained above are not restricted to thetmpaf linear elasticity occuring in (2.11)—(2.12). We simter
here the case with general displacementsS x @ — R™, whereQ2 ¢ R is a bounded domain, and replace the operator
of linear elasticity by a more general linear elliptic ogeraForg € R™*? andz € R" the energy density is assumed

to be of the form

(x,0,2) = %<A($) (9).(9) = % ((A11(2)0,0) + (A12(2)2,0) + (A2 (2)0, 2) + (A22(2)2,2))  (3.4)

whereA € L°°(Q; Lin(R™*4 x RN R™*4 x RN)) is a given coefficient matrix and, -) denotes the inner producti&r.
Foru € H'(Q,R™) andz € L2(Q2,RY) the corresponding elastic energy is defined as

\I/(u,z):/g;w(x,Vu(z),z(x))d:r. (3.5)

The basic assumptions in this section are the following
R1 © c R%is a bounded domain wittr!-!-smooth boundary, see e.g. [42].

R2 The coefficient matrixi belongs taC%! (2, Lin(R™* 4 x RN R™*4 x RY)), is symmetric and there exists a constant
a > 0suchthaW (v, 2) > §([[vl7 ) + 1272 ) forallv € HE(Q) andz € L*(Q).

R3 The functiong : RY — 2&" is maximal monotone with € ¢(0) andG : D(G) C L2(Q,RY) — P(L2(Q,RN)) is
defined agi(n) = { z € L2(,RY); z(x) € g(n(z)) a.e.inQ2 }.

Observe tha@ is a maximal monotone operator. The energy dengiigtroduced in (2.10) is contained as a special case
and further examples are given in Section 3.1.3.

In order to shorten the presentation, the discussion isice=st to the case with vanishing Dirichlet conditions@.
Hence, withV = H}(Q,R™) andZ = L?(Q, RY) the state spac@ takes the fornQ = V x Z. We investigate the spatial
regularity properties of function@, z) : [0, 7] — Q which for allv € V" and almost every € S satisfy

DLW (u(t), 2(6)) 0] = / A (D)) de = (o), ), (36)
Biz(t) € G(—D.W(u(t), (1)) + F(t)), (3.7)
2(0) = 2°, u(t)|8Q = 0. (3.8)

Here, D,V and D, ¥ denote the variational derivatives @fwith respect tax andz, andF' is a further forcing term not
presentin (2.11)-(2.13). The ddtaF’ are comprised in the functiofy, F') = f : S — V* x Z = Q*. We call the initial
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valuez, and the forceg compatible if there exista, € V with D, ¥ (ug, zo) = b(0) and—D, ¥ (ug, z0) + F(0) € D(G),
whereD(G) denotes the domain 6f. The compatibility assumption is equivalent to the assimnph Theorem 5.8, where
the initial data shall belong to the set of stable states.

Since the elastic energy is assumed to be positive definite @) seeR2, similar arguments as pointed out in Section
2.4 lead to the following existence theorem:

Theorem 3.1 Assume thalR2 andR3 are satisfied and that the datg € L?*(Q,RY) andf = (b, F) € W21(S; Q%)
are compatible. Then there exists a unique fairz) € W1(S; Q) satisfying(3.6)+3.8). If G = dxx, whereK C
L2(9,RY) is convex, closed and withe K andy is the characteristic function of the convex &gtthen it is sufficient
to assume thaf = (b, F) € W11(S; Q).

The next stability estimates rely on the positivity of thersgy ¥ and are the basis for our regularity results.

Theorem 3.2 Assume thaR2 andR3 are satisfied.

(@) There exists a constart> 0 such that for alky; € W11(S; HL(Q2)), z, € WH(S; L2(Q)), i € {1,2}, which satisfy
(3.6)(3.8)with f; € W1(S; Q%) andz? € L2(Q,RY), it holds

||U1 - uQHL“’(S;Hl(Q)) + Hzl - ZQHLOC(S;L?(Q)) < H(Hz(l) - Z3HL2(Q) + Hfl - f2HW1v1(S;Q*))' (39)

(b) There exists a constart> 0 such that for allu; € L°°(S; H'(2)), z; € WH(S; L%(Q)), i € {1, 2}, which satisfy
(3.6)(3.8)with f; € L>°(S; 9*) andz? € L?(Q,RY), it holds

lur = 2]l oo 55701 0y + 1121 = 220l L (552000

1 1
< “(HZ? - ZSHLZ(Q) +[f1 - f2||L°°(S;Q*) + [z — ZQHﬁvlwl(s;m(sz)) If1 = fQsz(S;Q*) ). (3.10)

Part (a) of the theorem gives the Lipschitz continuity of ttea-to-solution mapping : Z x WhHi(S; Q%) —
L*(S;Q); (2 f) — (u, z), while part (b) describes Holder-like continuity of thetalo-solution mapping in the case
where the data have less temporal regularity. We refer to[Bjaand the references therein for a proof of the estimates.

3.1.2 Local spatial regularity and tangential regularity
Local and tangential regularity results are derived withfeeence quotient argument in combination with the siapil
estimates of Theorem 3.2. Concerning the data it is assumag¢d t
R4, 20¢€ HY(Q), f = (b, F) € WHL(S; V1) with Yy = L2(Q,R™) x HY(Q,RY).
R4, 20 € HYQ), f = (b, F) € L>=(S;Y;) with J; = L*(Q,R™) x {0 € L?(Q,RY); 9;0 € L?(Q,RY) } for a fixed
ie{l,...,d}.

Letz, €  and choose € C5°(2,R) with ¢ = 1 in a ball B,(x). Forh € RY, the inner variatiorr, :  — R is
defined agy, () = « + ¢(x)h. There exists a constahy > 0 such that the mappings : 2 — Q are diffeomorphisms
for everyh € R? with |h| < hg. Let the pairu € L>=(S; V) andz € W11(S; Z) be a solution of (3.6)—(3.8). We define
up(t,x) = u(t,mh(x)), zn(t,x) = z(t,7(x)). Straightforward calculations show that the shifted gair, z;,) solves
(3.6)—(3.8) with respect to the shifted initial conditighand modified datd), having the property

| fn — Flwrasign < eI 2) i s cvxzz) (3.11)
if f satisfiesR4,, and
Hfh - fHLOO(S;Q*) < clh| ”(f’u’Z)HLw(S;'yixVxL?(Q)) (3.12)

if f is given according tdR4,. The local regularity Theorem 3.3 here below is now an im@agdconsequence of the
stability estimates in Theorem 3.2.

Theorem 3.3 Let conditiondR2 andR3 be satisfied.
(@) Let(u,2) € Wh1(S;V x Z) be a solution of(3.6)3.8) with data satisfyindR4,. Thenu € L>°(S; H2.(Q2)) and
2 € L(S; Hig()).
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(b) Letu € L>°(S;V) andz € W11(S; Z) be a solution of(3.6)(3.8) with data according tdR4;,. Then there exists
ho > 0 such that

_1 _1
0<S}1Ll£h0h 2 Hvuhei - VUHLOO(S;LQ(B,,(;EU))) < 00, 0<S}1Ll£h0h 2 ||Zheq-, - Z||L°°(S;L2(B,,(J;0))) < 00.

Proof. Estimate (3.11) in combination with Theorem 3.21 fa), yields

—1
Sup (s = Wl s 3 3y ooy + 12 = 20l e 525, op ) < NCF 2 s s vy
>No

from which we conclude with Lemma 7.24 in [41] that L>(S; HZ.(Q2)) andz € L>(S; H\L.()). The results in part
(b) of the theorem are obtained in a similar way. O

If R4, is satisfied for all basis vectoes, 1 < i < d, and allzp € Q, thenu(t) andz(¢) belong to the Besov spaces
3 1
B3 (') andB; (') foreveryQ)' € Q. Viathe embedding theorems for Besov spaces into Sobdihe8eckij spaces
we conclude that € L>°(S; H%_‘S(Q)) andz € L>(S,; H%_‘S(Q)) for everyd > 0.

loc loc

In a similar way, tangential regularity properties can bduted after a suitable local transformation of the bounttary
a subset of a hyperplane. Here, the assum@Ribon the smoothness oK is essential.

Part (a) of Theorem 3.2 with a general maximal monotone fangtand withe as in (2.10) was proved by Alber and
Nesenenko in [4,5] and extended in [25] to an elasto-plastidel including Cosserat effects. In the paper [58] theltesu
was extended to the slightly more general situation, wheseperator of linear elasticity and the Cosserat operarers
replaced by a more general linear elliptic system, part @3 added and more general boundary conditions allowing for
different kinds of boundary conditions in the different qoonents ofu were investigated. We refer to Section 3.3 for a
more detailed discussion of the related literature.

3.1.3 Global spatial regularity

The first global spatial regularity result for problems o tiipe (3.6)—(3.8) was proved by Alber and Nesenenko [4,B& T
authors showed that the local and tangential regularitpgnttes in Theorem 3.3, part (), already imply that the tsmhu
belongs to the spaces € L>(S; H'*i (1)), z € L>(S; Hi(f2)). By an iteration procedure the final regularitye
L>°(S; H'75 () andz € L°°(S; H=(Q2)) was obtained. With a completely different argument, a réflacargument,
the result can be improved. This will be explained in detathiis section.

To shorten the presentation we assume that there is appiptoS2 such thav? locally coincides with a hyperplane
and that lies above the hyperplane. The general case can be reduttgsl $duation by a suitable local transformation of
coordinates. Moreover it is assumed that the data are goeor@ing toR4,,.

LetCy = (—1,1)%! x (0,1) be the upper half cub€;_ = (—1,1)?~! x (—1,0) the lower half cube and assume that
= (-1,1)1 x {0} c 9 and thatC, N = C; andC_ N Q = (), see Figure 1. By’ = (—1,1)? we denote the unit
cube inR?. Let R =1 — 2¢,4 ® e4 be the orthogonal reflection Bt The elasto-plastic model is extended frém to C by
means of an odd extension for the displacements and an etams@n for the internal variable and the initial datum:

0 :
uo(t z) = u(t, x) rxeCy  alta) = z(t,x) xeCy 0o z !n Cy . (313)
—u(t,Rz) xe€C_ z(t,Rx) xe€C_ 2% R inC_

Moreover, the extended coefficient matrlx and the extended elastic energy are defined as

A inC '
Ae{AoR D W) =g [ AT () de (314)

forv e HY(QUC) andz € L*(QUC). Technical calculations show that the extended functiatisfy for allv € H{(C)

Vue (£) V))dr = -vdz
L (T58) (e = [ o) v,
Or2e(t) € G(—=D Ve (Vue(t), ze(t)) + Fe(t)),
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where
bt ) b(t, x) xe Oy (3.15)
TZN Ly, Re) — div ((A11Vu(t) +A12z(t))}Rw(R+]I)) reC.’ .
_ F(t,:L') xr € C+
Fet, o) = {F(t, Rx) — Ag1o(Vu(t)|, (R+1)) zeC_ (3.16)

The tangential regularity results from the previous secgoarantee thaﬁe}ci € L>=(S;L*(C_)). Indeed, due to the

factor (R + I) terms liked3u andd,z do not appear in the definition f and hence, tangential derivativesf, and z
enter in the definition ob., only, which, by Theorem 3.3, belong #6>°(S; L?(C_)). Again from the regularity results
in the previous section we obtain tha;Fe\Ci € L*>(S;L?*(Cy)). Taking into account thazlz|F = 0, it follows that

Vu(R +1I)| . = 0 and hence the traces 6f|, andF[,, coincide orl. This implies that, Fe € L>(S; L*(C)). The
local regularity result described in Theorem 3.3, parti@dherefore applicable and leads to the following theorem:

Theorem 3.4 Assume thaR1-R3andR4, are satisfied. Then the unique solutien z) of problem(3.6)+3.8)satisfies:
For everyd > 0

w€ L®(S; H?0(Q) NL¥(S; Higel(R), 2 € (85 H2 () N L(S; Higo(9)). (3.17)
Moreover, for every > 0 there exists a constanf > 0 such that
0
Hu”Loc(S;H%*tS(Q)) + HZHLOO(S;H%ffF(Q)) < CJ(H'Z HHl(Q) + ||f||W171(s;y1))- (318)

We refer to [58] for a detailed proof of the global results arslightly more general variant of Theorem 3.4, where also
further types of boundary conditions are discussed.

Estimates (3.9) and (3.18) allow to apply Tartar’s nonliriaterpolation theorem showing that for data with less ispat
regularity than required in Theorem 3.4, one obtains theesponding spatial regularity of the solution in a naturayw\e
assume here thagt= 0y, whereK C RY is convex, closed andl € K. dxx denotes the convex subdifferential of the
characteristic function x associated with(. Let), := Q*, V1 := L%(Q,R™) x HY(Q,RY) andQf := (H(Q,R™) N
H279(Q,R™)) x Hz=5(Q,RN) for § > 0. Due to Theorem 3.1 and the stability estimate (3.9) forajl € [1, o0] the
solution operato? defined by

T L(Q,RY) x WH(S;00) — LUS;Q),  (2°,f) = T (2%, f) = (u, 2),

where (u, z) € WHL(S; Q) is the unique solution of (3.6)—(3.8) with dafa= (b, ') and initial conditionz?, is well
defined and Lipschitz-continuous. Moreover, foralb 0 the solution operator

T: HYQRY) x WH(S; 1) — L(S; Q%)

is a bounded operator according to Theorem 3.4. Hence rEartterpolation Theorem [103, Thm. 1] guarantees that for
allg € (0,1) and allp € [1, oo] the following implication holds true:

20 € (HY(Q); L2 ()op, f€ (WH(S;1); WH(S;20))a.p
= T f) = (u,2) € (LU(S; Q); L(S; Q))o.p-

Here, (-; -)g,, Stands for real interpolation, see e.g. [107]. If for exaenpl= ¢ = p = 2 andf € (0,1), then given
20 € HO(Q), b e Wh2(S; (H'-9(Q))*), whereH*(Q) = {ne H*(Q); 3ij€ H*(R™) with supp7 C O, 7|, =7 }, and
F e Wh2(S; H(Q)) we obtain that, € L2(S; H+(2=9)(Q)) andz € L2(S; H*(z=9(Q)).

Example 3.5 Theorem 3.4 and the interpolation result are applicablate-independent elasto-plasticity with linear

kinematic hardening and with a von Mises or a Tresca flow td&re, the vector of internal variables is identified with the

plastic straing,, € ngxnfl’dev(i.e. tre, = 0) and the elastic energy takes the form

U(u,ep) = ; Y(e(Vu),ep)dz with (e,e,) = 3A(e —¢p) - (e — &p) + 2 Ley, - &), (3.19)
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for (e,e,) € REGIXRE whered € C1(Q, Lin(RExd, RE<d)) andL € CO'(Q, Lin(Re 50, R, are assumed

to be symmetric and uniformly positive definite. Hence, du&oérn’s inequality, assumptioR2 is satisfied. Letk C
Rgfmffdevbe convex, closed and withe K. The setK describes the set of admissible stress states. Chogsingy x
as the convex subdifferential of the characteristic florcy x associated with', we obtain classical rate-independent

models for elasto-plastic material behavior. In particulae von Mises flow rule is associated with the &gty = {7 €

Reties (7-7)% < co }, whereas the Tresca flow rule is based on théget= { € R o maxis; |7 — 7 < co }.
Here,{7;; 1 < i < d} are the eigenvalues (principle stresses) of R‘siyxnf’dev The regularity Theorem 3.4 and the

interpolation result are applicable to these models.

Example 3.6 In [80] an elastic-plastic model was introduced which impmoates Cosserat micropolar effects. This
model is analyzed in [25, 80] with respect to existence awdlloegularity and in [59] with respect to global regularity
of a time discretized version. In this model, not only theptisements: but also linearized micro-rotatiorig are taken
into account. The generalized displacements are given éydir (u, Q) € RY x R‘sﬂfej, =~ R™, whereas the internal
variable z is identified with the plastic strain tenser= ¢, € RZ? = Foru € H'(Q,RY), Q € H'(Q,RLY) and

sym, dev skew.
ep € L*(Q, R ) the elastic energy reads

A
Ueo((u,Q),ep) = / wle(Vu) — €p|2 + pe |skew(Vu — Q)|2 + B [tr Vu|2 + |VQ|2 dz.
Q

Here,\, u > 0 are the Lamé constantg, > 0 is the Cosserat couple modulus and- 0 depends on the Lamé constants
and a further internal length parameter. It is shown in [8@ft ¥ satisfies conditiofR2. If G is chosen according to
R3, then solutions to (3.6)—(3.8) witlr~ have the global regularity properties described in TheoBefn In addition,

Q € L>=(S; H*(Q2)), sinceq is coupled withe(Vu) ande, through lower order terms, only, see [25].

3.2 Discussion of the regularity results

It is an unsolved problem whether the result in Theorem 3a@ptimal or whether one should expect the regulatity
L*(S; H2()), z € L>=(S; H(Q)) for domains with smooth boundaries. This would extend ticalloegularity results
described in Theorem 3.3 in a natural wayu I§ a scalar function, then under certain coupling condgtimmthe coefficients
the spatial regularity, € L>°(S; H?(£2)) can be achieved for the evolution model (see Section 3.l Bection 3.2.2 we
give an example which shows that in spite of smooth data dasingigularity result is not valid for the time derivativés:
ando; z.

3.2.1 Improved regularity for scalar u

The regularity results in Theorem 3.4 can be improved i$ scalar and if certain compatibility conditions betwehka t
submatricesd;; of A and the constitutive function are satisfied. Here the idea is to construct a reflection opefy
which is adapted to the structure of the the coefficient madsi, . In contrast to Section 3.1.3 the problem is not reflected
perpendicular to the boundary but with respect to the vedter, wherev : 9Q — 9B;(0) C R is the interior normal
vector toof). Due to the compatibility conditions between the coeffitsesind the constitutive functiogm the reflected
data do not contain second spatial derivatives afr first derivatives ofz. Hence the reflected data have the regularity
(be, F.) € WHL(S; ) instead of(b, F,.) € L>(S; Y1) with Y1 = L?(Q.) x H*(). Thus, we may apply part (a) of
Theorem 3.3 and obtain the improved global regularity desdrin Theorem 3.7 here below.

To be more precise, the problem under consideration reandF S x Q — R, z : S x Q — RY such that for given
Ay € COMQ,RE, Ay = Ajy € C%H(Q, Lin(RY,R?)) and Ay, € C%1(Q, RY#Y) we have

sym

D, Y (u(t))[v] = /Q(AuVu(t) + Aq22(t)) - Vodz = / b(t) - vdx Yv eV,

Q
8tz(t) S g(—(A21Vu(t) + Aggz(t)) + F(ﬁ)),
z(0) = 2o.

Itis assumed thatl = (41! 412) € CO1(Q; RN *(d+N) js uniformly positive definite. Let : 9Q — 9B;(0) be the

22

interior normal vector ow(2. In order to formulate the compatibility conditions, we defforz € 02
2

C Ay (x)v(z) - v(x)

The matrix R, locally determines the reflection &f2. Observe thaR?,(I) =1 ande,(I)Au(x)RI(w) = Aj1(x). The

basic assumptions and compatibility conditions read devist

Ry =1 A (2)v(z) @ v(z). (3.20)
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R5 Q c R is a bounded domain with@*!-smooth boundary (it is used thate C'*:!(9Q)).
R6 (b, F) € WHi(S; Y1) with Yy from R4, zo = 0.

R7 There exists a mapping € C%1(9Q, RV*N) such that for every: € 92 the inverse matrixP(x))~! exists and the
following conditions hold for all) € RV

Ru(w)A12($)P($) = Aa(x), P(f)TA22(5E)P($) = Ay (x), *P(w)*lg(*P(w)*Tn) =g(n)-

Theorem 3.7 [58] Let R5-R7 be satisfied and assume that the pairz) € Wh1(S; HE(Q) x L%(Q)) solves(3.6)-
(3.8). Thenu € L>°(S; H2(2)) andz € L>°(S; H(2)).

We refer to [58] for a detailed proof.

Example 3.8 Assume that the coefficient matrix is constant, thalv = d, A;2 = —Aj; and Ass = Aq; + L with
Le ngx,ﬁ positive definite. Hencel (u, z)=1 [, A11(Vu — z)-(Vu — z)+ Lz - zdz. Moreover we assume thalt; ;=
which can always be achieved after a suitable change of owies and a suitable transformation in the state space of
The mappingR, now takes the fornk, =1 — 2v ® v for v € 9B1(0) and the compatibility conditions reduce to

R7 P,=R,,R)LR, =Land—R/g(—R,n) = g(n) foralln € R,

It is shown in [58] thatR7’ is satisfied if and only if there exists > 0 such thatl, = all. Moreover, ifg = Oxx with
K c R? convex, closed andl € K, thenR7’ holds if and only ifX = —R, K for all v € R?. In this situation, Theorem
3.7 yields the improved regularity result.

This example shows that if the “anisotropy” in Hooke’s lawegi by the matrixA;, is correlated with the anisotropy in
the hardening coefficients,, andL and the constitutive function then the displacementst) have full H2-regularity up
to the boundary(). It is an open question whether this regularity is still gafithe compatibility conditiorR7 is violated.
Moreover it is not known, whether a similar result is trueifeal elasto-plastic models, wherés not a scalar function.

3.2.2 Example:9;z(t) ¢ H'(Q)

The following example shows that in spite of smooth dataetineight exist a time intervat , t2) such thad,z(t) ¢ H'(Q)
forallt € (t1,t2). Hence, one should not expece W1(S; H'(Q)). The example is inspired by Seregin’s paper [95].
Let0 < Ry < Ry. We set) = Bg,(0)\Bg, (0) and choose the following energy farz : ! — R:

V(u,z) = %/Q|Vu - |§—|z|2 + 2% du.

Moreoverg(n) := dx(-1,1)(n) forn € R. Itis assumed thaI(t)|aBR =0, u(t)\aBR = t, zp = 0 and that the remaining

data (', b) vanish. It is easily checked that the assumptions of The@¢ are satisfied and hence the problem has a
unique solution with the regularityu, = € W11(S; L?(2)) N L>(S; H(Q2)). Due to the rotational symmetry of the
problem the solution does not depend on the angle and canlcdatad explicitly. Introducing polar-coordinates, the
solutionu, z : S x (Ry, R2) — R has to satisfy for € (Ry, R2) andt € S

8,2.u +r 9u—0,z—r"t2=0 inSx (R1, Ra2),

Oz € 8)([_1,1] (&«U — 22) in S x (Rl,Rg),

Z(Oa ) = 05 u(ta Rl) - 05 ’U,(t, RQ) =t.
Fort < t; := Ry In(R2/Ry) it follows thatu(t, r) = %, z(t,r) = 0. In this regime, no plastic strains are present.
Fort > t; the plastic variable starts to grow and there exists(t) such that:(¢,r) > 0 for r < r, andz(r,t) = 0 for
r > 1., 1.e.7.(t) separates the plastic region from the elastic region. Thpemtence of.. ont is given implicitly by the
relation

t(ry) = Ry — 74 + 7 (In Rory, — In RY).

Simple calculations show théfr..) is strictly increasing, and heneg(t) > R; is strictly growing, as well. Moreover, for
t > t; we have

b)) —r 2 (t)Inr i r < ri(t) ) )Tt i < ri(t),
u(t,r) = {c(t) +ro(t)Inr else #ltr) = {0 else

)

with functionsb(t) = Ry — 2r.(t)In Ry andc(t) = t — r.(t)In Ra. Sincedyr.(t) > 0 for t > t; it follows that
Oiz(t,-) ¢ HY(Ry, Ry) fort > t1, see also Figure 1.

Copyright line will be provided by the publisher



20 P. Gruber, D. Knees, S. Nesenenko, and M. Thomas: On taperdient models with internal variables

C Xd TR
+ ’ & PRI
S i W
s s
SR
AT
oSy

Ly

Fig. 1 Example for the notation in Section 3.1.3 (left); Graph df golutionz : (0,7) x (R1, R2) — R (middle) and of the time
derivatived, z (right).

3.3 Regularity for variants of the elasto-plastic model andverview on the corresponding literature
The starting point for the review of the literature on spatégularity properties of elasto-plastic models is theteys
introduced in (3.6)—(3.8) with the particular energy dgnsi

U(e,z) = 3(A(e — Bz)- (e — Bz) + Lz - 2) (3.21)

2
fore € Ry andz € RY. Itis assumed that € Lin(Rg:, REx) is symmetric and positive definité, € Lin(RY, R™)
is symmetric and positive semi-definite aBdc Lin(RY, ngx,#). The corresponding evolution model reads

divo(t) +b(t) = 0, a(t) = A(e(Vu(t)) — Bz(t)), (3.22)
Oz(t) € G(—0,¢(e(Vul(t)), z(t)) + F(t)). (3.23)

together with initial and boundary conditions. Dependimgtioe properties of. andg different spatial regularity results
were derived in the literature.

3.3.1 Regularity for models with positive semi-definite elstic energy and monotone, multivaluedy

Only very few regularity results are available for modelsenenthe elastic energy densityin (3.21) is positive semi-
definite but not positive definite. The corresponding etastiergy is convex but not strictly convex on the full statacgp

Q. As a consequence, a-priori estimates like those providdteorem 3.2 cannot be obtained in general. In contrast,
the complementary energy, which is expressed via the gieresiastresses, is still coercive. The regularity investigns
therefore typically take a stress based version of (3.323] as a starting point. In this framework to the authorswl-
edge only the Prandtl-Reuss model and models with linetnoigiz hardening are discussed in the literature with reé¢@ar
regularity questions.

The Prandtl-Reuss model describes elastic, perfectlyiplasiterial behavior without hardening. The internal &bfez
is identified with the plastic strain tensgy € ngxm‘fde\, B =TandL = 0. Moreover, the constitutive functianis typically
identified withOy k-, whereK is a convex set given according to the von Mises or the Tresearflle, see Example 3.5.

The existence theorems provide stresses with € L?(2) andu(t) € BD(Q2), whereBD(2) denotes the space of
bounded deformations, see e.qg. [8,28,53, 67,102, 105heHigpatial regularity is derived by Bensoussan and Frelt8je [
and Demyanov [31] for the case thitis defined by the von Mises yield condition. They obtair L>°([0, T|; H,5.(€2)),
which coincides with the local results in Theorem 3.4. Thesst regularity is proved by approximating the Prandtlgeu
model with the viscous power-law like Norton-Hoff model [E3d by time discretization [31]. Tangential properties ar
discussed in [18]. To the author’s knowledge these are tiye larown spatial regularity results for the Prandtl-Reuss
model. In particular there is no information about highertgll regularity. In the dynamical case, Shi proved a locatiap
result foroc andu [96].

If z(0) = 0, then the first step in the time discretization of the PraR#liss model leads to the stationary, elastic,
perfectly plastic Hencky model. Here, it is proved for the\ises case that € H,..(Q) N Hz=%(() for everys > 0,
where(2 is a bounded Lipschitz domain which satisfies an additiorahgetrical condition near those points, where the
Dirichlet and Neumann boundary intersect. We refer to [12] B89, 92] together with the references therein for thelloca
result and to [15, 56] for the global and a tangential reste key of the proofs is to approximate the Hencky model with
nonlinear elastic models and to derive uniform regular#fjreates for the approximating models. In addition, thdars
in [39] obtain a result concerning partial regularity of g@utions. It is an open problem whether the global resulttza
improved in the case of a smooth boundary with pure Dirichtgiure Neumann conditions, see the discussion in [95].

A further typical elasto-plastic model with a positive sdgfinite energy density describes linear isotropic hardening.
Here, the internal variable consists of the plastic straimg and a scalar hardening variableharacterizing the radius of
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the set of admissible stress states. The elastic energyeis by (¢, e, 7) = 3 (A(e —¢&p) - (e —&) +av?) fore € RE,

2
ep € RES! o and fixeda > 0. The constitutive function is defined as= dxx with K = { (7, 1) € R0, x R p >
0, |7| < oo+ o1} and constants; > 0. The first investigations concerning spatial regularityhia isotropic case were
carried out by Seregin [93]. Here, the resutts L>°(S; H\L.(Q)), v € L>=(S; HL()), Vu € L*°(S; BDioc(£2)) were
obtained by studying the regularity properties of a timsethtized version and proving uniform bounds. Holder props

of the solutions were investigated in [37].

3.3.2 Spatial regularity for regularized models

Replacing the maximal monotone constitutive functibon L2(Q,RY) — P(L2(Q,RY)) from (3.23) with its Yosida
approximation leads to regularized elasto-visco-plasticiels with a Lipschitz-continuous nonlinearity in the lexion

law. The therewith obtained models are a subclass of théoel@sco-plastic models studied e.g. by Sofonea et al., see
[35,52]. Given an energy : Q — R as defined in (3.4)—(3.5) with a coefficient mateix € L>°(£2, Lin(R™*? x

RY R™*d x RYN)) and given a Lipschitz-continuous operar Q — L?(Q2, R"Y) these models read as follows:

DY (u(t),z(t)) = b(t), 0z(t) = F(u(t),2(t)), =z(0)=z (3.24)

together with boundary conditions @K If the submatrix4;; € L°°(Q, Lin(R™*4, R™*4)) of A is symmetric and if the
induced bilinear formu(u, v) = fQ A11Vu - Vo dz is coercive onV/, then a standard application of Banach’s fixed point
theorem implies the existence of a unique solution:) € W°°(S; Q) provided thab € W1°°(S; V*).

For these models the local spatial regularity was inves@ya [75] with a difference quotient argument and in [61],
while the global regularity was studied in [19]. The globegdularity theorem in [19] states that if the linear ellipsjgerator
induced byA;; is an isomorphism between the spa¢é§ (Q) N H'*#(Q) andY; for somes € (0,1], whereY; is a
suitable subspace df*~'(12), then for everyp € W°°(S;Yj) the solution of (3.24) satisfies € W (S; H!*%(Q))
andz € Wb (S; H*(£2)). In this way, global regularity properties of elliptic opéors on possibly nonsmooth domains
and with mixed boundary conditions directly influence thgularity properties of the viscous evolution model (3.24).
The proof is carried out by deriving uniform regularity baisnfor the sequence of approximating solutions generated
via the Banach fixed point theorem. Here it is not needed tieetastic energy is coercive onQ, the coercivity of
a(u,v) := [, A11Vu- Vudz onV is sufficient.

While for elasto-plasticity models (with a multivalued natane constitutive functiog) local regularity results can
be deduced by proving uniform regularity bounds for the sege of the approximating Yosida-regularized models, see
e.g. [9], it is an unsolved problem, how to obtain uniform bds in order to carry oveglobal spatial regularity results
from the viscous model to the elasto-plastic limit problem.

A further possibility to regularize elasto-plastic modsl# replace the constitutive functigh= 0xx with a power-law
like ansatz. This approach is used in [105] in order to reggéahe Prandtl-Reuss model. Assume again that e, €
Réxd B =1, L =0and replacéy,, (cf. Example 3.5) with

sym,dev

1-N ‘JD|N*2 oD,

gn(o) = ¢
foro € ngxmd. Here,o? = o — étrzﬂl denotes the deviatoric part of the tensor The parameteN > 1 is a strain
hardening exponent, wheregsan be interpreted as a yield stress. The resulting viscodghs the so called Norton/Hoff
model and consists of the relation (3.22) which is complétethe evolution lawd;e, (t) = gn(o(t)). ForN — oo, the
Norton/Hoff model approximates the Prandtl/Reuss mod@b]1After eliminating the plastic strairns, one obtains the
usual form of the Norton/Hoff model:

divo(t) +b(t) =0, A700(t) +cb N [oP "7 0P (t) = de(Vu(t)).
Bensoussan/Frehse [12] proved the local spatial regyleegultc € L°°((0,7); HS.(2)) for the stress tensor via a
difference quotient argument. A global result seems noetavailable in the literature.

A time discretization of the Norton/Hoff model leads to that®nary Norton/Hoff or Ramberg/Osgood model, which
is given by equation (3.22) in combination with the relatioRV«) = A=1o + c})_N |O’D |N72 oP. Several authors studied
local and global regularity and the Holder properties @& ftresses and displacements of this model for domains with
smooth boundaries as well as for domains with nonsmoothdemies [12, 14, 33, 55,56, 101].

3.3.3 Spatial regularity for time incremental versions

A further way to prove regularity properties of elasto-wigtastic models is to study the smoothness of solutionsrte-ti
discretized versions and to derive regularity bounds whiehuniform with respect to the time step size. This methosl wa
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applied e.g. in [93] to obtain local results, while for glbbasults uniform bounds are not known. We discuss here globa
regularity properties for the time discretized version emthhe assumption that the elastic enevgys coercive and that
g = Oxx Wwith a convex and closed séf. The different equivalent formulations of the discretizgpiations, which we
present here below, are commonly used in a computation&xbof elasto-plasticity, [98, 99].

Let R1 andR2 be satisfied and assume that 0y, whereK C RY is convex, closed and with ¢ K. Let further
K={neL*Q);nlx) € K ae.inQ}. Atime discretization via an implicit Euler scheme leadth®following problem
With At =T/n, 0 =t < t7 <...<t" =T:Find (u},27) € V x L?(Q2), 1 < k < n, which satisfy

Dy (ug, z) = b(tR) =0,  z7(z — 2z 1) € Oxc(—D:P(ug, 21)). (3.25)

Observe that;' solves (3.25) if and only if

zip = argmin{ F(uf,n, z¢_,, At); n € L*(2) }, (3.26)
1
Fluy,n, z;_1, At) = 5 / Aga(n — zk—1) - (0 — 2k—1) Ao + At xc(—(A21 Vg + Agazy)). (3.27)
Q
In terms of the new variables{® = — (A5 Vup + Agozl ) andSy = — (A2 Vul + Axnzl), it follows thatzy, satisfies
(3.26) if and only if
Zp = 2p_y + Ay (ST — 5y, (3.28)
Y, = argmin{ 13(9, yiRlUAL): 0 e L2(Q) ), (3.29)
- ‘ 1 , ‘
F(0, 28 At) = 3 / A0 — 2 (9 — 2@ da + Aty (6). (3.30)
Q

Since the coefficient matrixd,, induces a scalar product dit(Q), ), can be interpreted as the projectionsgff?’ onto
the convex and closed sEtwith respect to this scalar product. Lié;,;;ﬁ : L2(Q) — L?*(Q) be the projection operator
onkK. HenceX; = PA;;_’,C(E‘,QE") and in additionY (z) = PA;;@)_’K(zgia'(x)) in Q, whereP, 1, ;- : RV — RV is
the corresponding pointwise projection operatoonWith these notations, problem (3.25) is equivalent to tifing
problem: Finduf € V andz' € L?(2) such that for given? , € L?(2) we have

5 Mz, Vui(x), zj_1(z)) - Vo(z) de = (b(tE),v) Yo eV, (3.31)

Z]? = —A2—21 (A21Vu}§ + /PA;;,IC( — A21Vu}§ — Aggzg_l)), (332)
where the mapping/ : Q x R™*4 x RN — R™*4 js defined as
M(IL’, F, Z) = Ll(IL')F — A12($)A22(IE)71PA2—21(1)_’K( — A21($)F — AQQ(IL‘)Z)

with the Schur complement matri; = Ay — A2 A5, Asy € CO1(Q, Lin(R™*4 R™*4)). Observe that in generan
is not differentiable with respect t8 andz. The Lipschitz-continuity of the projection operator, @sptionR2 and the
assumptiord € K imply that the mapping\U has the following properties: there exist constantsgs > 0 such that for
everyz, z; € Q, F, F; ¢ R™*? andz, z; € RY we have

|M(IE1,F,Z) - M(z25F52)| S Cl(|17| + |Z|) |‘T1 - :E2|7 (333)
|M(z, F1, z1) — M(z, Fa, z2)| < co(|F1 — Fa| 4 |21 — 22]), (3.34)
M(z,0,0) = 0, (3.35)

Moreover, M induces a strongly monotone operatorioni.e. there exists a constafit> 0 such that for alki;,us € V'
andz € L?(Q2) we have:

/ (M(z, Vuy, z) = M(z,Vug, 2)) : V(ug — ug)dz > 3 llug — UQHi[l(Q) .
Q
This follows from the monotonicity of the projection operaaind from the fact that due to assumptieg, the induced

bilinear formb(u,v) := [, LiVu - Vodz, u,v € V, is symmetric and’-coercive. Finally, the mapping/ is strongly
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rank-one monotone. That means that there exists a constant- 0 such that for every € Q, ' € R™*¢, z ¢ RV,
¢ € R™ andn € R? we have

(M($1F+§®naz) - M(SE,F,Z)) :§®@n=>cLu |§|2 |"7|2 : (336)

This is a consequence of the monotonicity of the pointwisggetion operator and the positivity propertiesiaf, see e.g.
[108, Th. 6.1]. Altogether it follows thaé generates a quasilinear elliptic system of PDEs of secathet dor determining
u}. Standard existence results for equations involving Lifigecontinuous, strongly monotone operators guararee t
existence of a unique elemen} € V solving (3.31) for arbitrary data’ , € L*(Q) andb € V*, [110]. Moreover,
u} depends Lipschitz-continuously on the data. The regylaeisult in [59] guarantees that for giveft,) € L?(2)
andz , € H'(Q2) we have the global regularitf?, 27') € H?(2) x H'(2) provided thatR1 and R2 are satisfied.
Unfortunately it is not known how to derive estimates IIQQHHQ(Q) which are uniform with respect to the time stap.

Quasilinear elliptic systems of a similar structure rasglfrom various regularizing ansatzes for elasto-plasiicels
were also studied with respect to regularity questionséréfierences [20, 38,57, 79, 86,89, 91, 94].

4 Numerical realization via a Slant Newton Method

As it is pointed out in Section 3.3.3 one possibility to nuioalty solve the system of elasto-plasticity is to solve the
system of nonlinear elliptic equations which emerges afitfimplicit) time discretization and an elimination of héernal
variables. This system in general involves a nonlinearfjcis not differentiable as an operator between functacss.
Hence, a standard Newton’s method, which relies on the @#ré/of the nonlinear operator, is not appropriate to stitee
nonlinear system. Instead we discuss a Newton-like methibere the derivative is replaced by a slanting functionilegd

to a Slant Newton Method. This approach is explained for e-imdependent elasto-plastic model with linear isotropic
hardening.

4.1 Problem Specification
Consider thdPrandtl-Reul3 elastoplasticity problem with isotropic th@ning which is a specialization of (2.1)—(2.5) in the

following way: Define the internal variablg(z, t) = (z1(x,t), ..., z¢(x, t), v(z, t)) with size N = 7, and the projection
Z1 R4 Z5

B:RVN -8 ze,=z1 20 2. (4.1)
zZ5 2 23

For easier notation let us, from now on, denote the plastarsby p instead of,,. The associated free energy density is
assumed to be of the form

1 1

v(e,p ) = 5{Ale —p), e —phr + 572,

wheres € 83, p € 83, v € R, the Frobenius scalar product for matrices is defiBdC) r = > Bij Cij, and it is
assumed that the elasticity tensbcharacterizes isotropic material behavior and has theaixfarm

A:8%— 83 e 2ue+ Mrel.

Here, )\, 1 > 0 are the Lamé constants and describe the elastic behavibe afiaterial. This choice of the elastic energy
density induces the following relation between the gerwzdlplastic strain$l = (p,v) € S? x R and the generalized
stresse& = (T, a) € 83 x R:

T = 8Ew(€ap7’y) = _ap’d}({;pa/y) = A(E - p) )
a=—0y(e,p,7) = —7.
The constitutive flow law (2.3) in the Prandtl-Reuss casé vgivtropic hardening reads
atH(zat) € aXK(Z(xvt)) ) (42)

wheredy x denotes the subgradient of the indicator function regartfia convex sek” of admissible generalized stresses,
which is given by

K={YeS8 xR;¢(X) <0} (4.3)
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with the yield function
¢(X) = [[dev Tl = T, (1 + Ha) + Xj0,00) (@)- (4.4)

The parametergield stressl}, > 0 andmodulus of hardeningf > 0 describe the plastic behavior of the material, the
deviator, a projection onto the trace-free subspac&®pfis calculated bylev T = T — (tr 7/ trI) I, and the Frobenius
norm reads|T'||% = (T, T)r. Notice, that (4.2) is a specialization of (2.3). Geometticspoken, the subgradiefty x
describes the normal cone of the convex set of admissitdssgs/k™ at the pointX. In other words, the prescription
%—1} € Oxk(X) means that either there is no solution with respect to themgdimed strairll (if X is not in K), or IT
remains constant (if is in the interior ofK), or %—1} has to be chosen such that it is orthogonal to the boundahecgét
of admissible stressds at the point (if X is on the boundary oK).

Summarizing, the problem of Prandtl-Reul3 elastoplagtigith isotropic hardening reads: Find the displacement

u(z,t) € R3, the plastic straip(z,t) € S, and the hardening parametefr, t) € R, which solve

—div, T(z,t) = b(z,1), (4.5)
T(x,t) = A(e(u(z,t)) —p(z,t)), (4.6)
88—13(:5, t) € Oxk(X(x,t)), wherell = (p,—a)andX = (T,«a), 4.7)
M(z,0) = I9(), (4.8)
u(z,t) = ~p(z,t), fzelpcCoR, (4.9
T(z,t)n(x,t) = ~n(x,t), fzelyCON. (4.10)

We turn to the numerical solution of the problem (4.5)—(4.Ithe algorithm described in this section is of Newton’s
type, enjoying the property of local super-linear conveigge It is an interesting question for future investigatiohether
there is a more general class of problems covered by the Badjs-(2.5), to which this algorithm is applicable.

We definel” := [Hl(Q)]B, Vo:={veV;v=00nTp},Vp:={veV;v=uponlp}forup € [H1/2(FD)}3,

Q := [L*(©,8%)], andR := R U {+00}.

Analogously to the discussion in Section 5 the problem {4&)10) may equivalently be formulated in the global

energetic framework based on the energy

E(t,u,T1) = / B(e(Vu), py) da — (b(), u)

and the dissipation potential

R(uvpﬁ):/ﬂp(p(x)ﬁ(x))dw

foru € Vp, p € Q andy € L?(2). The density is given as the convex conjugatepf and has the structure

. Tyllpllp if trp=0and|pllp < 7%,
p(p,7) = Xic(p,7) = { v . F= TH
00 otherwise
Using an implicit Euler-discretization for a partition=to < ¢t; < ... < t, = T and the sets
LZ(Q)={f e L*); f > 0almost everywherp, L2 (Q) = {f € L*(Q); f < 0almost everywherg,
the time discretized problem reads:
Problem 4.1 Given (ug_1,px—1, V1) € Vo x Q x L2 (Q) find (ur, px, %) € Vp x Q x L% () such that
(Uk,pk,’)/k) € a’rgmin{g(tka v, qvf) + R(’U —Uk—-1,49 — pk’flag - ’Yk’fl) 5 (U, Qag) S VD X Q X L2—(Q) } .

It is shown in [6, 21] that the hardening variallg = —~;. can be eliminated from the minimization problem in such a
way that for determininguy, px, —y) one can equivalently solve the following problem:

Problem 4.2 Given (ug—1, pr—1,ax—1) € Vp x Q x L3(Q) find (ux, pi, ax) € Vp x Q x L3 () such that

(ug,pr) € argmin{ Ji,(v,0); (v,0) € Vp x Q }, (4.11)
o = ag—1 +TyH ||px — pr—1lp - (4.12)
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Here, the global energy functiond} : Vp x Q — R is defined by

Tolw,4) = lle(v) — alld +vxla) ~ ), (4.13)
with
(a1 a2)a :léMm@%@@%FM, lala = (@ a{>, (4.19)
ar(q) = ar-1+TyHllq—pr-1llF, (4.15)
Velg) = { &O((D%dk(qy +Tyllg — pr-illr) dz glgé,q =trpr-1, (4.16)
L(v) = /Qbk-vdzwL/F.N’YN,kwds. (4.17)

The body forceb(tx) = by, € [LQ(Q)]3 and the tractionyy (tx) = ynv.x € [H*l/Q(FN)]3 are given. The functional},
expresses the mechanical energy of the deformed system/ahttime step. Notice, thafy, is smooth with respect to the
displacements, but not with respect to the plastic straips

4.2 Solver Analysis

In [21] a method of an alternate minimization regarding tiepldcement and the plastic straip was investigated to
solve Problem 4.2. The global linear convergence of thdtingumethod was shown and a local super-linear convergence
was conjectured. Another interesting technique is to redroblem 4.2 to a minimization problem with respect to the
displacements only. This can be achieved by substituting the known exgiicnimizer of J;, with respect to the plastic
strain field for some given displacementnamely byg = pi(e(v)). We will observe that such a reduced minimization
problem is smooth with respect to the displacemerdsd its derivative is explicitly computable.

The following theorem is formulated for functionals mappfnom a Hilbert spacél provided with the scalar product
(0, 0y and the norm|-|| := (-, -)u. If a functionF' is Fréchet differentiable, we shall denote its derivaiiva pointz by
D F(z) and its Gateaux differential in the directigrby D F'(z; y). We refer to [34] concerning the definitions of convex,
proper, lower semi-continuous, and coercive.

Theorem 4.3 Let the functionf : H x H — R be defined
1
Flay) = e~ yliE + ) (4.18)

wherey is a convex, proper, lower semi-continuous, and coercimetfan of H into R. ThenF (y) := inf,cx f(z,y) maps

into R, and there exists a unique functien H — H such thatF'(y) = f(Z(y), y) for all y € H. Moreover, it holds:
1. Fis strictly convex and continuous .
2. Fis Fréchet differentiable with the Echet derivative

DF(y)={(y—Z(y), )u forally e H. (4.19)

Proof. See[77,7.d. Proposition]. O

We apply Theorem 4.3 to Problem 4.2 and obtain the followirgppsition.
Proposition 4.4 Letk € {1,...,n} denote the time step, and l&t be defined as in (4.13). Then there exists a unique
mappingp, : Q — @ satisfying

T (v, 5k (€ (v))) = qlgcg Ty (v,9) Vv eVp. (4.20)
LetJ; be a mapping o/ into R defined as

Ji(v) = (v, Pr(e(v))) Yo € Vp. (4.21)
Then,Jy, is strictly convex and Frchet differentiable. The associate@t@aux differential reads

D Ji(v; w) = (e(v) = pr(e(v)), e(w))a — l(w) Vw € Vo (4.22)
with the scalar producto, ¢) 4 defined in (4.14) and, defined in (4.17).
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Proof. The functionall, : V x @Q — R defined in (4.13) using (4.14), (4.16) and (4.17) can be deosed in
Je(v,q) = fr(e(v),q) — lx(v), where the functionafy, : @ x Q — R readsfy (s, q) := %|lg — s||4 +vx(g). Theorem 4.3
states the existence of a unique minimiggr: @ — @ which satisfies the conditioffi, (s, px(s)) = infyeq fr(s,q),
where the functionaFy(s) := fi(s,px(s)) is strictly convex and differentiable with respectd¢ce ). Since the strain
e(v) is a Fréchet differentiable, linear and injective mapgiogn V5, into @, the composed functiondl, (s(v)) is Fréchet
differentiable and strictly convex with respectitae V. Considering the Fréchet differentiability and lineaof [, with
respect ta € Vp, we conclude the strict convexity and Fréchet differebiliy of the functional.J;, defined in (4.21). The
explicit form of the Gateaux differenti@ J. (v ; w) in (4.22) results from the linearity of the two mappirgsnde, and
the Fréchet derivativ® F, (e(v) ; -) = (e(v) — pr(e(v)), -) 4 as in (4.19), combined with the chain rule. O

The minimizerp,, can be calculated by hand (see [6, 43]) and it exactly resdierclassical return mapping algorithm
[98]. Let the trial stres§}. : @ — @ at thekth time step and the yield functiaf),_; : Q — R at thek — 1st time step be
defined by

Ti(q) :== A(q — pr—1) and ¢p_1(T) := ||devT||p — T,(1 + Hap_1). (4.23)
Then, the minimizep;, reads

dev Ty (g(v))

max{0, ¢r—1(Tk(e(v)))} |dev Ti(e(v))]| ¢

ﬁk(s(v)) + Pr—1 - (424)

1
S 2u+ T2H?
We obtain a smooth minimization problem by usingas in (4.21) withp, as in (4.24):

Problem 4.5 Find uy, € Vp such that/y (ug) = inf,cv,, Ji(v).

Remark 4.6 Problem 4.5 is uniquely solvable. This is due to the fact thattional J;, is strictly convex, coercive,
proper and lower semi-continuous (see, e. g., [34, Chapteérdposition 1.2]). Solving Problem 4.5 numerically midpe
realized by applying Newton's Methad ™! = v/ — (D QJk(vj))*1 D Ji(v7) . Unfortunately, the second derivative &f
does not exist since theax-function in (4.24) is not differentiable. Therefore, wephpa Newton-like method which uses
slanting functions (see [26]) instead of the second devieatVe shall call such a method a Slant Newton Method.

Henceforth, letX andY be Banach spaces, afidX, Y') denote the set of all linear mappingsX¥finto Y.

Definition 4.7 LetU C X be an open subset ande U. A function /" : U — Y is said to beslantly differentiable at
x if there exists a mapping® : U — L£(X,Y") which is uniformly bounded in an open neighborhood:pand a mapping
r: X — Y with limy, o7 (h)|ly [|h]| X" = 0 such thatF (x + h) = F(z) + F°(z + h) h + r(h) holds for allh € X
satisfying(z + h) € U. We say,F°(z) is aslanting function forF’ at =. F is calledslantly differentiable iriJ if there
existsF° : U — L(X,Y) such thatF'° is a slanting function fo¥’ for all z € U. F° is then called &lanting function for
FinU.

Theorem 4.8 Let U C X be an open subset, and : U — Y be a slantly differentiable function with a slanting
functionF° : U — L(X,Y). We suppose, that* € U is a solution to the nonlinear probletfi(x) = 0. If F°(z) is
non-singular for allz € U and{||F°(x)~*| z(v,x) : « € U} is bounded, then the Newton-like iteration

Tt = 2f — FO(x?) T R (27) (4.25)

converges super-linearly to*, provided that|z® — z*|| x is sufficiently small.

The proof can be found in [26, Theorem 3.4] or [49, Theorenp 1.1

We apply the Slant Newton Method (4.25) to elastoplasticitychoosingl” = D Jj, as in (4.22). Thenax-function is
slantly differentiable [49, Proposition 4.1] as a mappifid:8(f2) into L4(Q2) if p > ¢ but notifp < ¢. Therefore, if it
holds¢y_1 (T (e(v))) € L*+%(Q2) for somed > 0, thenD .J;, (cf. (4.22),(4.24)) has a slanting function which reads

(D Ji)” (v;w, @) := (e(w) — pr(e(v);e(w)), e(@))a (4.26)
with a slanting function fopy, e. g.,

-0 . ) 0 B if ﬁk <0,
Pr(e(v); q) = ¢ (5k devg+ (1— ) Mdevfk) else,

[dev Ty %

(4.27)

iatioe. 2 5 o e (T ; 7 . ;
where the abbreviatiorfs:= QH—H% Ty = T (c(v)) andfy := ﬁ with ¢, andT}, defined in (4.23) are used.

(D Jx)? in Equation (4.26) is commonly known as tbensistent tangensee [98]. For fixed € Vp, the bilinear form
(D Ji)? (v;-,+) in (4.26) is elliptic and bounded i, (see [43, Lemma 2]).
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Fig. 2 Problem setup.

Corollary 4.9 Letke{1,...,n}, 6 >0 be fixed and;, denote the:th time step. Let the mappidyJ; : Vp — V" be
definedD Ji(v) := D Ji(v; o) asin (4.22), andD Ji)? : Vp — L(Vy, Vo) be definedD Ji)° (v) := (D Jx)° (v; ©,0)
as in(4.26) Then, the Slant Newton iteration

vt =0l — [(D Ji)° (Uj)]_lDJk(vj)

converges super-linearly to the solutian of Problem 4.5, provided thafv® — uy |y is sufficiently small, and that
dr—1(Tk(e(v))) asin(4.23)is in L2T9(Q) forall v € Vp.

Proof. We check the assumptions of Theorem 4.8 for the chBiee D J;. Letv € Vp be arbitrarily fixed. The
mapping(D J;)’ (v) : Vo — Vo™ serves as a slanting function fér.J, at v, since¢y_1(Tk(c(v))) is in L2T9(Q).
Moreover,(D Ji)? (v) : Vo — Vo™ is bijective if and only if there exists a unique elemenin Vj, such, that for arbitrary
but fixed f € V" there holds

(D Jp)° (v; w,w) = f(w) Yw e V. (4.28)

Since the bilinear forniD J ) (v) is elliptic and bounded (see [43, Lemma 4.9]), we apply theMilgram Theorem to
ensure the existence of a unique solutioto (4.28). Finally, withx; denoting thev-independent ellipticity constant for

(D Jx)? (v;0,0), the uniform boundedness gD J;)° (-)]71 :Vp — L(Vu™, Vp) follows from the estimate

o —1
0\l (D Jk)” (v)] ~ w]] [[wllv
(D Jk)" (0)] || = sup . = sup 5
weEVo* lJw*[lvo- wevp (D k)" (v; w,-)|lvp-
. [wllv llo]lv [l 1
= sup inf > — < sup 5 < —.
wevo ©€Vo [(DJk)" (05 w, @)~ wevy [((DJk)7 (05 w,w)] =k

O

Remark 4.10 Notice the required assumption on the integrabilitypf ; (T, (<(v))). Itis still an open question, under
which extra conditions this property can be satisfied fovatl V, or, at least for all Newton iterated. The local super-
linear convergence in the spatially discrete case (aftediBEretization) can be shown without any additional agsion,
see [43, Theorem 4.14].

4.3 Numerical Examples

Finite Element Method with nodal linear shape functions wsed in the test examples below. The interested reader is
referred to [44—46] for more convergence tables and numlegicamples. The super-linear convergence was observed in
both 2D and 3D computations.

4.3.1 2D-Example

We simulate the deformation of a screw-wrench under pressibe problem geometry is shown in Figure 2. A screw-
wrench sticks on a screw (homogeneous Dirichlet boundangiion) and a surface loag is applied to a part of the
wrench’s handhold in interior normal direction. The makparameters are set

A=1.15e8 L p="17e7TX T, =262 H =0.001,
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Fig. 3 Elastoplastic zones (left) and yield function (right) oéttieformed wrench geometry. The displacement is magnifiedfagtor

10 for visualization reasons.

and the traction intensity amounjtg = 6e4 % Figure 3 shows the yield function (right) and the elaststitazones (left),
where purely elastic zones are light, and plastic zones anle drable 1 reports on the super-linear convergence of the
Newton-like method for graded uniform meshes. The implesat@n was done in Matlab.

DOF: 202 10590 41662 165246 658174 2627070
j=1:  1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.0@De+0.000e+00
j=2:  6.510e-04 3.394e-01 4.344e-01 4.682e-01  5.038e-(.417e-01
j=3:  4.238e-09 4.018e-02 5.786e-02  8.919e-02  1.892e-(.552e-01
j=4: 1.266e-12 1.009e-03  3.076e-03  1.642e-02 2.223e-(B.049e-02
j=5: 2.679e-07 4.550e-05 1.473e-03 7.595e-04 1.2%4e-0
j=6: 3.817e-13  2.244e-09 1.014e-04 6.519e-05 1.264e-04
=7 6.000e-13  2.628e-08 7.342e-09  8.528e-06
j=8: 1.047e-12  1.892e-12  4.153e-08
j=9: 3.638e-12

Table 1 The relative error in displacemenits’ — v/ ~'|./ (|v7|- + [v/7"|-) is displayed for increasing degrees of freedom (DOF),

wherev|. := ([,,(e(v), e(v))r dz)

4.3.2 3D-Example

1/2

This three dimensional test example is similar to a two disi@mal example in [100]. Figure 4 shows the quarter of a thin

g
Pttt tttd
2 1
@,
3 4
v
g

COOOO0O0O0000

~

000000000

10

50

Fig. 4 Here, the geometry of the example domain is outlined. Dueadsans of symmetry, only one of the quarters is solved.
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DOF: 717 5736 45888 367104
j=1: 1.000e+00 1.000e+00 1.000e+00 1.000e+00
j=2:  1.013e-01 1.254e-01 1.367e-01 1.419e-01
j=3:  7.024e-03  6.919e-03  7.159e-03  6.993e-03
j=4: 1.076e-04 9.359e-05 1.263e-04 1.176e-04
j=5: 2.451e-08 6.768e-07 1.744e-06  1.849e-06
j=6:  7.149e-15 6.887e-12  4.874e-09  1.001e-08
=7 4.298e-13  2.368e-14

Table 2 This table outlines the convergence of the Slant Newton btkéih 3D. We observe super-linear convergence and (almost) a
constant number of iterations at each refinement.

plate(—10,10) x (—10,10) x (0,2) with a circular hole of the radius = 1 in the middle. One elastoplastic time step is
performed, where a surface loadvith the intensity|g| = 450 % is applied to the plate’'s upper and lower edge in outer
normal direction. Due to the symmetry of the domain, the tsmiuis calculated on one quarter of the domain only. Thus,
homogeneous Dirichlet boundary conditions in the norm&ddion (gliding conditions) are considered for both syrtine
axes. The material parameters are set

N N N 1
A=110744—, p=801938—, oy :450‘/2/3W’ H=3.
Differently to the original problem in [100], the moduluslwdrdeningH is nonzero, i.e., hardening effects are considered.
Figure 5 shows the norm of the plastic strain figlgight) and the coarsest refinement of the geometry (leéhld2 reports
on the convergence of the Slant Newton Method. The impleatiomt was done in C++ using the NETGEN/NGSolve
software package developed by J. Schoberl [90].

3,991e-14 3‘054?03 5, TbBs-03 B, 40303 1,11de-02 0, 00e=00 1,535:-03 3.071e-03 4.806z-03 b,142e-03

Fig. 5 The Frobenius norms of the total straiifleft) and of the plastic straip (right).

5 Rate-independent evolutionary processes — Temporal retarity of solutions

This section is devoted to the subclass of quasistatic;imdgpendent evolutionary processes. The time-evoludfom
system can be considered as rate-independent if the tinesdogposed to the system from the exterior are much larger
than the intrinsic ones, i.e. if the external loadings egatwich slower than the internal variables. Throughout #isicn

we will apply the energetic formulation of a rate-indepemg®ocess. This approach does not use the classical faionla
(2.1)—(2.5) but considers the energy functiofial [0,7] x Q@ — R, =: R U {oo} and the dissipation distand® :

Q x Q — [0, 0] related to the evolution equation (2.3) in an appropriatestpace&, which is assumed to be a Banach
space with dual*. An energetic solution of the rate-independent syst&y¢, D) is defined as follows

Definition 5.1 The procesg=(u, z) : [0,7] — Q is an energetic solution of the rate-independent sys@ng, D), if
t—0;E(t,q(t)) € LY((0,7)),if forall t € [0,T] we havet(t, q(t)) < oo and if the global stability inequality (S) and the
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global energy balance (E) are satisfied:
Stability :  forallge Q: £(t,q(t)) <&(t,q) + D(q(t (S)

Energy balance :  £(t,q(t)) + Dissp(q, [0,1]) = / 0:E€(&,q(&)) d¢ (E)

with Dissp(q, [0, t]) := sup Z;il D(q(&j-1),q(&;)), where the supremum is taken over all partitiong0of].

In Section 5.1.1 we will clarify the relations between thasslical and the energetic formulation. Since the condition
(S) & (E) do not require thaj exists, an energetic solution may in general have jumps ipect to time. In particular,
(S) provides the uniform boundednes<¢f, ¢(t)) and hence (E) yields that: [0, 7] — Q is only of bounded variation in
time with respect to the dissipation distance providing:amorm in space. This means that in general the time derwativ
¢ is only given as a Radon-measure. Therefore, Section 5.2 gf@cial attention to the temporal regularity of energetic
solutions. It is investigated how their temporal regulacian be improved due to additional convexity assumptionthen
energy€. In Section 5.2.1 it is explained that strict convexityt&®bn Q yields continuity of the solutions with respect
to time. Section 5.2.2 deals with the Holder- and Lipscbitntinuity of energetic solutions, which can be obtaingd b
claiming a kind of uniform convexity o&. In Section 5.3 the theory introduced in Section 5.2 is agpld evolutionary
processes modeling plasticity, damage or phase transfimmsan shape memory alloys and we give examples on stored
elastic energy densities that lead to such improved terhpegalarity.

5.1 The energetic formulation of rate-independent process

The outline of this section is to clarify the energetic fotation of rate-indepedent processes. Thereto Sectiod 5.1.
indicates the relation of energetic solutions to the cohoégolution used in the Sections 2, 3. Moreover Section25.1.
gives a short introduction to the existence theory of ertergelutions. At this point we want to start our discussiathw
the mathematical characterization of rate-independence.

The energetic formulation of a rate-independent processl@y based on an energy functiodal [s, 7] x Q — R,
which depends on timeand the state, and a dissipation potenti® : Q — [0, oc] depending on the velocity. It is
assumed that the potenti@lis convex and positively-homogeneous, i.&2(0) =0 andR (Av) = AR (v) for all A>0 and
all ve Q. Due to these two propertig® satisfies a triangle inequality, i.e. for all, g2, g3 € Q it holds

R(g1—q2) = 2R (3(q1—a3) + 3(03—q2)) < 2(3R(q1—a3) + 3R(g3—q2)) = R(q1—q3) + R(g3—q2) -

Hence the dissipation potential generates a dissipatgiarte

which is an extended pseudo-distance on the state pathis means thaD satisfies the axioms of a metric (positivity,
triangle inequality), except symmetry and it may attainthkieco, as we will see in the examples of Section 5.3.

Rate-independence of a procésy £, R) with the initial conditiong(s) = ¢ € Q, the given external loadings €
C!([s,T], Q%) and a solutiony : [s, T] — Q can be defined using an input-output operator

H[s 7] - 1 QX C ([ ] Q*> *)LOO([SvT]aQ)QBVD([SvT]aQ)v (q()vb) = 4q, (52)

where BVp([s,T], Q) :={q: [s,T] — Q|Dissp(q,[s,T]) < oo}. Thus, the input-output operator maps the given data
(qo, b) onto a solution of the problem. Therewith the rate-indejeaice of the systertQ, £, R) can be characterized as
follows

Definition 5.2 An evolutionary proces&, £, R), which can be expressed by (5.2), is called rate-indeperidentall
s, < T, and alla € C([s4, T%]) with & > 0 anda(s,) = s, a(T,) = T the following holds:

His, 1.1(q0, b o ) = Hs 71(q0, ) 0 cv. (5.3)

We verify now that the positivé-homogeneity ofR implies (5.3). We prove this implication for input-outpuyderators
His: OxC([s,t], Q%) = Whi([s,t], Q). Thereby,Q is in general a Lebesgue or Sobolev space defined with respact
domainf ¢ R<. By mollification, see also [7], one can therefore show thatftyq € BV ([0, T, Q) there is a sequence
(qn)nen CC([0,T], Q) satisfyingg,, — ¢ in L1 ([0,T]x), Dissp(qn, [0,t]) < C andDissp(qy, [0,t]) — Dissp(q, [0, t])
for all t [0, T]. Thus, the above mentioned implication also holds true feiitiput-output operators from (5.2).
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Proposition 5.3 Let H{, ) : Q x C'([s, T], Q%) — W([s,t], Q). (qo.b) — ¢, be the input-output-operator for the
rate-independent systef@, &, R), where&, depends continuously on the external loadire;nd whereR is convex and
positivelyl-homogeneous. Thg¢h.3) holds true.

Proof. Lets, < T, anda € C!([s, Ti]) with & > 0 anda(s,) = s, a(Ty) = T. In particular it holdss, = a~!(s),
T, = o~ 1(T) and(a~1)" > 0. Assume that : [s,7] — Q is an energetic solution ¢fQ, &,, R, ) satisfyingq(s) = qo.
Hence (S)&(E) are satisfied for alle [s, T]. Now the time interval is rescaled, ie= a(t,) for all t € [s,T]. Then (S)
implies that€on (tx, ¢ © a(ty)) < Epon(ts, @) +D(q o a(ty),q) forall ¢ € Q, i.e. (S) holds true for alt, € [s,,T%] for
qgoa: [s., Ty] — Qand the systeniQ, on, R).

For a functiong € Wh([s, T], Q) it holds thatDissp(q, [s, t]) f R(¢(€)) d¢, which can be verified by applying
the positivel-homogeneity ofR and the mean value theorem of dlfferentlablllty to the d@bniof Dissp(q, [s, t]). Then,
for s = a(sy) andt = «(t,.) the application of the chain rule ar{a(t,)) together with the positivé-homogeneity of

R imply that [* R((€)) d€ = [ R(Daq((£)))a(€) dE = [* R(Dag(a(€))d = [ R(eq o a(§)) dg, which
proves thatDissD(q, [s t]) = DiSSD(q o a,[s4,ts]). Again by the chain rule we calculate thﬁs't 0:&p(&,q(8)) de =
f 0o (&, q(8)) f eEron (€, q(€)) A€ and hence (E) is verified for al| € [s,, 7] for goaand(Q, Epon, R).

Moreover the initial condltlon is satisfied singg= ¢(s) = q o a(sy).
With the same arguments we can verify for an energetic smlgti: [s, T%] — Q 0f (Q, Epon, R) With ¢, (s, ) =qo that
¢, o o~ ! satisfies (S)&(E) with Q, &, R) for all t € [s, T'| and withgo = g, (s+) =qx o a~1(s). Thus, (5.3) is proved. O

5.1.1 Different concepts of solutions and their relations

In this section we clarify the relation of energetic solngowith other types of solutions. To do so, we only treat the
simplest case here, namely wheén [0, 7] x Q — R, is quadratic, i.e.

E(t,q) = 5(Aq,q) — (b(t),q) (5.4)

for the given linear, symmetric, positive definite operator Q — Q* and the given external loadirige C* ([0, T, Q).
TherebyQ is a Banach space aggd — ¢ in Q indicates the convergence of a sequefagg C Q in the weak topology of
Q. As it can be easily verified in this setting§ satisfies

1. Continuity: If ||¢, — ¢llo — 0, then|E(t, ¢,) — E(t,q)| — O forall t € [0, T].
2. Coercivity: There is a constart> 0 such tha€(t, ¢) > c||¢||3, for all g Q and allt € [0, T]. (Cf. R2in Section 3.1.1)

3. Uniform convexity: There is a constanty > 0 such that for alt € [0, 77, all g0, 1 € Q and alld € [0, 1] it holds
Et,0q1+(1-0)q0) < 0E(t, q1) + (1-0)E(t, q0) — ca0(1-0) a1 —qol|3- (5.5)

4. Uniform control of the powers: Forallg € Q with £(t,q) < oo for somet, € [0,7] we haved,£(-, q) € L*([0,T])
with 9&(t, ¢) = —(b(t), q) and there are constants > 0, ¢, > 0 such tha{o:£(t, q)| < c1(E(t, q) + c2).

5. Uniform continuity of the powers: For all (¢, g,) — (t,q) in Q itholdso:E(t, q,) — 9:E(t, q).

6. Closedness of stable setdf (¢,,,q,) satisfy (S) for alln € N and(¢,,,¢,) — (t,q) in [0,T] x Q, then also(t, q)
satisfies (S).

7. Differentiability: For allt € [0,7] and allg € Q the energy functionaf(t, ) is Gateaux-differentiable with
DyE(t, q) = Ag — b(t).

Thereby Items 1-5 and 7 can be easily verified using the ptiegeof .4 andb. Iltem 6 can be obtained by choosing
Gn = qntv—q with v € Q for all n € N, which yieldsD(q¢,,, ¢,) = R(Gn — ¢») = R(v — ¢) for all n € N. Sinceb is
continuous in time we havé(t,,), G,) — (b(t),v) and sinced € Lin(Q, Q*) it holds (A(v — q), ¢n) — (A(v — q),q).
Using these observations in (S) for alie N one recovers (S) for the limit, ¢).

In Section 5.1.2 it is explained that the properties 1-6 ttogrewith the properties of the extended pseudo-distance
D: Q x Q — R allow to prove the existence of an energetic solution. Farrttore in Section 5.2.2 it is discussed that
property 3 yields Lipschitz-continuity of the energetidwtmn ¢ : [0,7] — Q with respect to time, i.e. there is a constant
Cr, > 0suchthat|q(s)—q(t)| o < CL|s—t|. Henceg € W1°°([0,T7], Q), which means thaj exists a.e. if0, 7.
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Since the dissipation potenti® : Q — [0, o] is convex and positivel{-homogeneous but not necessarily differen-
tiable we introduce its subdifferential

OyR(W) :={¢" € Q" | R(w) > R(v) + {¢*,w—v) forall w € Q}. (5.6)

Due to the validity of 1-7 and (5.6) we may consider the sdedihtial formulation (SDF) and the formulation as a
variational inequality (VI), which directly use, as alternative formulations to the energetic one. The $igvential
formulation of the evolutionary process reads as follows

Definition 5.4 (Subdifferential formulation) For a given initial conditi¢y € Q find ¢ : [0,7] — Q such that for a.e.
t € [0, 7] it holds

0 € 0R(4(t)) + DgE(t, q(t)) C Q° andg(0) =qo € Q. (SDF)

Moreover (SDF) is equivalent te D,£(t, ¢) € OR(¢) and due to the definition of the subdifferential we may equiva
lently formulate the rate-independent process as a vaniatinequality

Definition 5.5 (Variational inequality) For a given inital conditiopy € Q find ¢ : [0,7] — Q such that for a.e.
t € [0, 7] and for allv € Q it holds

(Dg&(t q),v = ¢) + R(v) = R(¢) =0 andq(0) = go € Q. (V1)

Between the three different formulations (S) & (E), (SDFJi 1) the following relation holds

Lemma 5.6 If £ : Q — R, satisfies the properties 1-7,5f : Q x Q — [0, oo] is an extended pseudo-distance and
lower semicontinuous on the Banach spacend ifq satisfie{S)att = 0, every energetic solution of the rate-independent
system(Q, £, D) also is a solution in the sense (BDF)as well agVI) and vice versa, i.§S)& (E) < (SDF) < (VI).

Proof Letg : [0,7] — Q solve (S) & (E). By Theorem 5. 13 we haqGE Wteo(]0,T], Q), so thatDissp(q, [0,t]) =

fo ))d¢ forall ¢ € [0, T]. Hence (E) read§ (¢, q(t +f0 ))d¢ = £(0,¢(0)) +f0t hE(&,q(§)) dE. Applying
Ieadsto—E( ,q(t)) + R(4(t)) = 0:£(t, q(t)) for almost allt € [0 T] Using the chain rule or:£(t, (1)) yields
<Dq5(t7 q(ﬁ))a Q(ﬁ» + R(Q(t)) =0. (Eloc)

Furthermore, inserting(t) + hv for v € Q in (S) together with Item 7 results in
(Dg&(t, q(t)),v) + R(v) >0 forallve Q (Sioc)

and subtractingH;,.) from (Si.c) finally yields (VI), which is equivalent to (SDF).

Assume now thag solves (VI) and (SDF) for a.¢. < [0, 7. Multiply (VI) by & > 0 and putv = . Forh — 0 one
obtains B,.). Due to the convexity and the Gateaux-differentialylibf £(¢, -) for all ¢ € Q we find from §,.) with
v=¢—q(t)that0 < (D,E(t,q(t)),d —q(t)) + R(G —q(t)) < E(t,q) — E(t, q(t)) + R(G — ¢(t)) fora.e.t € [0,T]. But
sinceq : [0,7] — Q is Lipschitz-continuous in time and siné¢-, ) is continuous for alfj € Q we observe that (S) holds
forall ¢ € [0,7]. Now (E) has to be proven. Choosing therete: ¢(t) in (Sioc) gives(D,E(t, q(t)), ¢(t)) + R(¢(t)) > 0
andv = 0 in (VI) yields (D,E(t, q(t)), —¢(t)) — R(¢(t)) > 0, which proves Ei,.). By integrating Ei..) over|0, t] we
verify that (E) holds for alk € [0, T'). O

=

The equivalence established in Lemma 5.6 is in general amdyfor energies satisfying the uniform convexity ineqtyali
in property 3. For convex energies it can be verified if entcgmlutions are supplied with sufficient temporal regitar
In the case of nonconvex energies, or energies which areegdnut not jointly convex inp = (u, z), energetic solutions
are of bounded variation with respect to time. Hence they hasy jumps in time and the time-derivative is only a Radon-
measure. Relations between the three different formulatigth ¢ as a Radon-measure are discussed in [70]. Furthermore
it comments on their relations in the case of doubly nonlipeablems, which were introduced in [27] and whéris only
subdifferentiable but not Gateaux-differentiable.

In many applications the d|SS|pat|on potentlal only depamithe internal variable not on the full statg = (u, z), i.e.
R(§) = R(2), sothatIR(§) = 8, R(2) x D:R(2) = {0} x dR(%). This is also the case in the setting of plasticity studied
in Sections 2, 3. Using the duality theory of functionals caa establish a relation between the flow rule given by (2.3)
and (2.9) and the dissipation potentRal: Z — [0, o] under the assumption thatis a reflexive Banach space. In view
of the definition of the subdifferenti@fR (z) = {z* € Z* | R(2)—R(z) > (z*,2—=z) forall Z € Z} the direct calculation
of the Legendre-Fenchel transform of the positivelgomogeneous dissipation potential: Z — [0, oc] yields that its
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dual functional is given as the indicator functiona@R (0), i.e. R*(2*) = sup.cz ((z*,2) — R(2)) = Ior(0)(z*) for all
z* € Z*,wherelyr ) (z*) = 0if 2 € OR(0) andlyr (o) (2*) = oo otherwise.

SinceR : Z — [0, oo] is assumed to be convex and lower semicontinuous on theixeflBanach spacg the theorem
of Fenchel-Moreau implies th& = (R*)*, see [51]. Assume now that the dissipation potential is aegiratl functional,
ie forallz € Zitis R(z) = [, R(z(x))dz, whereR is a positivelyl-homogeneous, convex density atdc R

is a d-dimensional domain. Then [51, p. 296, Th. 1] states ®Rat-) = (fQ R(~)d:z:)* = [, R*(-)dz, i.e. for the

densityR : V — [0, 0], whereV € {R,R? R?*4} holds the analogous relation to its Legendre-Fenchelfoamed:
R(z) = R**(z) for all z € V. Thus, between the subdifferential formulation (SDF) of Di¢ifin 5.4 and the flow rule
given by (2.3) and (2.9) we have established the relation g(—V ¢ (e,z)) = OR*(—V (e, 2z)), where R* is the
Legendre-Fenchel transformed of the densitgf the positivelyl-homogeneous dissipation potentil

Throughout this chapter we will in general consider dissgrapotentialsk : Z — [0, oo] of the form

R(z):/QR(z)dx with R:V — [0, 0], R(z){ oz| ffzeAdcCV, (5.7)

oo otherwise

where0 < 9o < o € L>(9).

Example 5.7 For K,y = {7 € R%*?

sym,dev

||7] < co} from Example 3.5 it iR, 1/ (g,) = cole,| for all e, € R4

sym,dev”

5.1.2 Existence of energetic solutions

The quasistatic evolution of mechanical processes insslidh as elasto-plastic deformations, damage, crack gatpa
or contact angle hystheresis of droplets have been anailyz@dious contributions, amongst these e.g. [16, 28—-3®&3|0
All these processes can be described in terms of an energiidoal £ and a dissipation distand?, so that the energetic
formulation from Definition 5.1 applies. Within the worksg,%5,69,71] an abstract existence theory for energetitisols
of rate-independent processes has been developed. led baghe assumption thBt: Z x Z — [0, oo] satisfies

Quasi-distance: Vz1, 22,23 € Z: D(z1,22) =0 < 21 = z5 and

D(z1,23) < D(z1,22) + D(22, 23); (01
Lower semi-continuity: D : Z x Z — [0, oo] is weakly seq. lower semi-continuous. (D2)
and it uses the following assumptions on the enérgy0, 7] x Q — R,
Compactness of energy sublevel&t€[0,T] V E€R : _ (E1)
Le(t):={qe€ Q|&(t,q) < E} is weakly seq. compact.
Uniform control of the power3 coeR 3 ¢1>0 VY (¢4, ¢)€[0, T1x Q with E(tg, q) < oo : (E2)

E(-,q) € CH[0,T)) and|0:E(t, q)| < e1(co+E(t, q)) for all te[0, T).

These properties ensure the following existence resu#triergetic solutions of rate-independent processes.

Theorem 5.8([69]) Let(Q, &, D) satisfy conditiongE1), (E2) and (D1), (D2). Moreover, let the following compati-
bility conditions hold: For every sequen¢€g;, g )ren With (tx, ) — (t,q) in [0,T] x Q and (t, ¢;.) satisfying(S) for
all £ € Nwe have

8t5(t, qk) - 8t5(t7 Q) ’ (Cl)
(t,q) satisfiegS). (C2)

Then, for each initial conditiolit =0, qo) satisfying(S)there exists an energetic solutign [0, 7] — Q for (Q, £, D) with
q(0) = qo.

The proof of Theorem 5.8 is based on a time-discretizatidmere conditions (E1), (D2) ensure the existence of a
minimizer for the time-incremental minimization problemeach time-step. Thereto the direct method of the calculus o
variations is applied. In particular conditions (E1) an@]Dan be verified i€ andD are convex and coercive. Hence, for
agiven partitioll := {0 =ty < t; < ... <ty =T}, foreveryk =1,..., M one has to

find gi € argmin{€(ti, @) + D(z41,) |4 = (. 5) € Q} . (IP)

One then defines a piecewise constant interpajanwith ¢'(¢) := g1 for t € [ti_1,tx) andq(T)) = gas. Choosing
a sequencéll,, ),y of partitions, where the fineness 0f,, tends to0 asm — oo, it is possible to apply a version of
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Helly’s selection principle to the sequen@e'™ ).y, See thereto [65]. Using (E2) and the compatibility condisi¢C1),
(C2) it can be shown that the limit function fulfills the prapes (S) and (E) of an energetic solution. See e.g. [69] for a
detailed proof.

In various works this abstract theory has been applied teepttoe existence of energetic solutions to rate-indepanden
processes in the field of plasticity, damage, delaminaticagk-propagation, hystheresis or shape memory alloysngst
these [60,66,68,70,72,73,87,106]. The way to verify thatralst conditions depends on the properties of the proceteru
consideration. In particular, unidirectional processghsas damage or delamination processes require additémmadues
to obtain compatibility condition (C2). In such a setting tfissipation distance takes the form (5.7) wit V', where the
valueco models the unidirectionality, i.e. it prohibits healinghi¥ leads to the fact that the dissipation distance is neithe
continuous nor weakly continuous ¢, so that (C2) cannot be directly obtained from the stabilityhe approximating
sequencéty, g;) — (t,q) in [0,T] x Q. Such unidirectional processes and alternative technigua®ve (C2) are studied
in [68,87,106].

Finally it is worth mentioning that the quadratic energy defl in (5.4), which satisfies Items 1-7 fits into the abstract
setting of (E1), (E2) and Theorem 5.8.

5.2 The temporal regularity of energetic solutions

The two properties (S) & (E) provide a very weak result on gmeporal regularity of an energetic solution only. (S) irepli
that&(t, ¢(t)) is uniformly bounded for alt € [0, 7] and under the assumption of coercivity we fipd L>°([0, 7], Q).
Furthermore one obtains from (E) tHaissp(z, [0, 7)) is finite and hence € BV ([0, T], L*(€2)). Thus neither the com-
ponentu nor z of an energetic solution has to be continuous — not to mertotinuously differentiable in time. In other
words, it cannot be excluded that an energetic solutionurap$ with respect to time. The aim of this section is to discus
settings which lead to a better temporal regularity of arrgetéc solution. In particular we want to obtain continuiity
time, so that jumps are forbidden.

5.2.1 Continuity with respect to time

In this section we discuss the temporal continuity of en@gg®lutions, which can be obtained in settings that guaean
unique minimizers of the functiondl’., : Q — Ru., J..(q) = £(t,q4) + D(z., 2) for anyz, € Z. In the following the
results are sketched. The details are developed in [1061.Zh4.3].

The uniqueness of the minimizer, which is guaranteed byttt sonvexity of 7. _(;), enables to state the following
jump relations

Lemma 5.9(Jump relations)Assume thatQ, £, D) satisfies (E1)—(C2). Moreover,

Vte[0,T|Vqg=(u,z) € S(t): {u}=Argmin&(¢t,a,z). (5.8)
aeu
Then, for allt € [0, 7] the weak limits;_ (¢) = w-lim,_;- ¢(7) and g4 (t) = w-lim._;+ ¢(7) (Whereg_(0) := ¢(0) and
q+(T) = q(T)) exist and satisfy

E(t,q-(t) = E(t, q(t)) + D(g-(1), q(1)),
5(t7Q(t)) = g(t,Q+(t)) +D(Q(t)7q+(t))7 (59)
D(q-(1),q+(t)) = D(g-(t), q(t))+D(q(t), ¢+ (1))

The existence of the limits_(t) = w-lim__,— z(7) andz4(t) = w-lim__;+ z(7) is due toDissp(z, [0, T]) < oo for
an energetic solution, see [65]. From (E1) one fin(ﬂs‘f) — pq for t,ff — t and (C2) yields thaft, vy, z1 ) satisfy (S).
Due to assumption (5.8) the limits~ are uniquely determined and thus they are the desired ldftight limits tou. (¢1,)
in the weak sense. To verify the jump relations (5.9) the@nbalance for the energetic solutigft) is used

E(s,q(s)) + Dissp(z,[r, s]) = E(r, z(r)) + /S 0:E(1,q(1))dr forall0 <r<s<T.

The first and the second identity in (5.9) are based on theHatbothg_ (¢) andq, (¢) as well ag;(t) satisfy (S). Hence
they can be obtained by considering- t together withr — ¢~ andr = ¢ together withs — ¢*. The third identity is due
to (D1) and the first two identities.

The next theorem provides the temporal continuity of thergeté solutiong = (u,z) : [0,7] — Q@ = U x Zin
the case that the energdj(t, -) is strictly convex onQ. This requirement is satisfied for an energy, which is definad v
a stored elastic energy density : R™ — R, being strictly convex oiR™, i.e. for a bounded domaift ¢ R? it is
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Et,u,2) == [ W(F(atup(t),z)) do — (b(t), a+up(t)). TherebyF(u, z) stands for all occuring components of the
pair (u, z) and all occuring derivatives, e.g(u, z) = (e(u), z) for kinematic hardening, where@¥u, z) = (e(u), z, Vz)
for damage. In particulaf’(u, z) has to be of such a form that it induces a norm(farz) on Q.

Theorem 5.10 Let the stored elastic energy density : R™ — R, be continuous and strictly convex &t*. Let the
the given data satisfyp, € C*([0,T],U), b € C1([0,T],U*). Then for allt € [0,T], z. € Z the functional7,, (t,§) =
Jo W(F(u4up(t), z)) dz — (b(t), a+up(t)) + D(z, 2) is strictly convex inj. Assume thaj = (u, z) : [0,7] — Qis an
energetic solution t¢Q, £, D). Theng is (norm-) continuous with respect to time, igez C°([0, 71, Q).

The strict convexity allows us to show that energetic sohgiq = (u,z) : [0,7] — Q have weak left and right
limits ¢_(t) andqy(t) for all ¢ € [0, T]. Exploiting the jump relations one obtains that(t), ¢(t) andq,(¢) all provide
the same valugZ,_ 4 (t, ¢—(t)), which has to be the global minimum by stability @f (¢). Since the strict convexity of
J._ ) guarantees a unique minimizer, all three states must a@nand weak continuity follows. Strong continuity is
deduced from a result of Visintin [1092 & Th. 8], which converts weak convergence and energy cgarere into strong
convergence by exploiting the strict convexity once again.

5.2.2 Holder- and Lipschitz-continuity in time

The temporal Holder- or Lipschitz-continuity is based be tiniform convexity of the functionar., (¢,q) = £(t,q) +
D(z., z) on a subset of a suitable Banach specés we will see in the examples of Section 5.3, the Banach spanay
differ significantly from the state spa&2that is used to prove existence. This is due to fact that tbeeetofV influences

the temporal regularity obtained, so that the use of a biggace may lead to a better temporal regularity result. The
uniform convexity is defined as follows

Definition 5.11 The functional7 : V — R is uniformly convex on the convex sait C V), if there exist constants
¢ > 0,2 < a < oo, such that for all convex combinatiogg := 0¢1 + (1—0)go with 8 € (0,1) andgo,q1 € M the
following holds

T(t,q0) < 0T (t,q1) + (1-0)T (¢, q0) — 0(1—0)cullqr — qol|Ss - (5.10)

For a better understanding of this notion of convexity we firgestigate the definition for real valued, scalar funcsio
A function f : R — R is uniformly convex if there are constais< o < oo, ¢, > 0 such that for all convex combinations
q0 = (1—0)qo + 0q1 with 6 € (0,1), q0, (1 € R the following holds

fa9) < 0f(q1) + (1-0)f(q0) — 0(1=0)culg1—qo|” . (5.11)

In other words, iff : R — R is uniformly convex, then for any two point&(qo), f(q1) of its graph there fits some
polynomial that is quadratic ifi,, between the function and the chord, see Fig. 6. Hence unif@maexity implies strict
convexity.

Fig. 6 Uniformly convex function.

The meaning of the exponentcan be understood from the following example.

Example 5.12 First, consider the functiofi(¢) = ¢*. We immediately see thatis strictly convex, sincg¢” (¢) =2 > 0
for all ¢ € R and by simple calculation we verify(gy) = 0f(q1) + (1—0)f(q0) — 0(1—0)(q1—qo)*. But there are
also functions being strictly convex althougt(¢q) = 0 for someq € R. Such a candidate is e.g(q) = ¢* with
f"(0) = 0. Sincef is continuously differentiable, the uniform convexity quality (5.11) is equivalent t@(¢1) — f(q0) >
1(q0)(q1—q0) + ¢+]g1 —qo|™ and hence equivalent{g’ (q1)— 1" (q0))(q1 —qo) — 2¢x|g1—qo|™ > 0. Therewith we verify for
¢ = 1/4anda = 4 that(f'(q1)—f'(90))(q1—q0) — 2cx|g1—qo|* = F(q1—q0)* + S(¢3—4d)? > 0 and thus we conclude
that (5.11) holds forf (¢) = ¢* with ¢, = 1/4 anda = 4.

This notion of convexity is now transfered to the contextrérgy functionals. The theorem below generalizes the ideas
developedin [70,74], where Lipschitz-continuity with pest to time was derived. The generalization has two aspeicts
it is emphasized that the convexity properties can be foatadlwith respect to a north- ||, that may differ significantly
from that underlying the state spa@e In particular, ifQ is chosen as small as possible under preservation of theiciber
of £ (see (E1)), it may be an advantage to investigate the teriyagpalarity of energetic solutions with respect to the norm
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of a larger Banach spadé > Q, since temporal regularity may improve. Second, as can hefsem (5.10) the notion
of uniform convexity is not restricted to the exponent 2, so that a weaker lower bound is admissible due to 2.
Previous work [70, 74] asked = 2 and/3 = 1 and enforced the uniform convexity condition on wh@le while the
theorem below only requires it on sublevels. In fact, therfiolation of the conditions on sublevels is sufficient, sinoe
energetic solution : [0,7] — Q satisfies)(t) € Lg, (s) for some fixedE, > 0 and alls,t € [0, T]. This is due to stability
(S) and the temporal Lipschitz-estima&d s, ) — £(t, q)| < cg|s — t| for a constant > 0 and for all fixed stateg € Q
with £(r, q) < E for somer € [0, 7], which is a direct consequence of (E2) and Gronwall’s ineiual

Theorem 5.13(Temporal Holder-continuity) et (Q, £, D) be a rate-independent system, whé)és a closed, convex
subset of a Banach spaéé LetLg(t) = {q € Q|&(t,q) < E}. Assume that there is a Banach spatand that there
are constants > 2, 5 < 1 such that for allE, there exist constants,, c. > 0 so thatfor allt € [0, 7], go,¢1 € L, (t)
and all§ € [0, 1] the following holds:

E(t,q0) + D(20, 29) + cx0(1—0)|lqr—qol|s < (1—0)(E(t, q0)+D (20, 20)) + 0(E(t, q1)+D(20,21)) (5.12a)
0E(t, 1) — 0E(t,q0)| < Cillr — aollY), (5.12b)

where(ug, z9) = go = (1-0)qo + 0q1.
Then, any energetic solutionp: [0,7] — Q of (Q,&,D) is Holder-continuous from0, 7] to V with the exponent
1/(a—0), i.e. there is a constartty > 0 such that

lg(s)—q(t)llv < Cult—s"/ >~ forall s,t € [0,T]. (5.13)

The main idea of the proof is to use uniform convexity inegy#b.12a) to derive an improved stability estimate, which
contains the additional term.6(1—0)|q1 —qo||$5- Using assumption (5.12b) one obtains an upper estimatg;ferqo ||
from the energy balance. Finally the Holder estimate (bcE® be proved with the aid of a differential inequality and
Gronwall's lemma. The details are carried out in [106].

5.3 Applications

In this section we discuss examples for uniformly convexest@lastic energy densities arising from various typesia-r
independent processes, such as plasticity, phase trarafons in shape memory alloys and damage. All these apiplsa
can be treated as rate-independent processes in termsefehgetic formulation. As the unknowns their models ingolv
the the linearized strain tensefu) = $(Vu + Vu”) in terms of the displacement fietd : & — R? and an internal
variablez which may be scalar-, vector- or tensor valued dependindgpemtoblem. The way, how andz are linked in
the model differs and here we distinguish between energieieh compose the different variables additively, suchnas i
the Example 3.5 for kinematic hardening, and energies winseha multiplicative composition of the variables, suchmas i
the case of damage, see Examples 5.16-5.18.

5.3.1 Additive energies: Plasticity, phase transformatios in shape memory alloys

In the following we treat two applications with quadraticegies. We will obtain that = Q in these settings, that = 2
and = 1, so that energetic solutions are Lipschitz-continuous vagpect to time. This regularity is in good accordance
with the results proven in [70] and with classical existere=sults for elastoplasticity.

Example 5.14 As a first example for Theorem 5.13 we consider the particitaation wheref (¢, -) is quadratic. Let
Q be a reflexive Banach space and assume.thatLin(Q, Q*) is a linear, bounded operator wittlq, ) > ¢/ ¢||3 for
all ¢ € Q and for some constant> 0. Givengp € C*([0, 7], Q) andb € C*([0,T], Q*) the energyf : [0,7] x Q — R
is defined by

E(t,q) = 2(A(g+ap(t)), (g+ap(t))) — (b(t), a+ap(t)) .

Moreover assume that the dissipation distafceZ x Z — [0, oo] satisfiesD(z1, 22) = R(22—z1) With R : Z — [0, 00)
being positivelyl-homogeneous, convex, weakly sequentially lower semigcoats and satisfyin@®R(z) < cg||z||z for
all z € Z and for a constantz > 0. Then, for allg; € Q, the system(Q, £, D) satisfies the assumptions (5.12) with
Y = Q,a =2andg = 1. Thus, from (5.13) we obtain that energetic solutigng[0, 7] — Q are Lipschitz-continuous
with [|g(s) — q(t)|o < Crls —t]>1.

Thereby the uniform convexity inequality (5.12a) is a direansequence of (5.5) and the convexitylaf Estimate
(5.12b) can be vierified by straight forward calculations.
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Observe that the models of elastoplasticity with linearkiatic hardening and of elastoplasticity with Cosserat mi-
cropolar effects from Examples 3.5 and 3.6 fit into this fravoek. Let us finally note that the result on the temporal
Lipschitz-continuity due to Theorem 5.13 is in accordandd Wnown results for equations of this type, see e.g. [1V,47

Example 5.15(The Souza-Auricchio model for thermally driven phase farmations in shape memory alloys [73])
In the context of phase transformations in shape memorysathe internal variable : 2 — Rg;nidev is the mesoscopic
transformation strain reflecting the phase distributione @issipation distance, which measures the energy disdipae
to phase transformation, is assumed to take the (m z) = o[z —Z|| 1 () With o > 0.

The phase transformations are considered to be thermdilgéd. For a body that is small in at least one direction, it is
reasonable to assume that the temperatugeC" ([0, T], H'(2)), with Cy := [|9||c1(jo,77, 51 (02)), iS @ priori given, since
it influences the transformation process like an applied,lsae [10]. Thus the energy density takes the form

W(F(u,z),9) = (e(u)—2) : B(Y) : (e(u)—z) + h(z,9) + Z|Vz|?

with the constant: > 0 and the elasticity tensd € C"([Umin, Imax], R(E*D*(@xd)) peing symmetric and positive
definite for all¥, i.e. there are constant$, c5 > 0 so thatc}|A|? < A : B : A < 5| AJ? for all A € R?*4. Moreover, let
Clg) = ||BHCl([ﬁminﬂgmax]yR(dxd)><(d><d) The functionh : R‘Siyxnlf dev X xR —=Ris given by

h(z,9) = c1(9)/0% + |22 + ()2 + (2] —es(9))3

whered > 0 is constant and; € C'([Urmin, Imax)) With 0 < ¢} < ¢;(9) for all ¥ € [Uimin, Imax] @and el =
lcill &t ([9mim, omax)» @ = 152, 3. Therebye; (¥) is an activation threshold for the initiation of martersighase transfor-
mations,c; () measures the occurence of an hardening phenomenon witkctespthe internal variable and cs(v)
represents the maximum modulus of transformation straibhdan be obtained by alignment of martensitic variants: Fur
thermore(f)+ := max{0, f} For given data € C'([0,T], H=1(,R%)) andup € CL([0,T], H*(2,R%)) the energy
functional is defined by (¢, q) = [, W (F (u+up(t), z),9) dz — (b(t), u+up(t)). Hence we have

HE(t,q) = / (0uW (F(u+up, 2),9) : e(tp)+0 d9W (F (u+up, 2),9)) dz — (b, u+up) — (b, up) with
Q

OuW (F(utup, 2),9) : ip = (e(utup)—=z): IB%(19) e(up),

D OyW (F(utup, z),0) =0 ((e(utup)—=2):09B(9):(e(utup)—z) + Oyh(¥, 2)) .

To gain a Lipschitz-estimate fax £(¢, -) for the present model it is important that Theorem 5.13 isnigated for energy-
sublevelsLg, (t) = {q¢ € Q|&(t,q) < E.}, since this provides the bounf;| g+ zi||z: < Cg,. Thus for all
(UO, ZQ), (ul, 21) S LE* (t) it holds

Q |0 (e(ur—up) —(21—20)) <O B(Y): (e(us —u0) — (21— 20)) | dx < Coc (|l e(ua—uo)|| 2+ 2120 2)*

< Cocy (D lle(ui)llz2+|zill 2 ) (le(ur—uo)|| L2+ 21— 20l| z2) < 2Cm, Cocy(|lua—uo| i +]21—20l22) -
1=0

Furthermore the application of the main theorem on difféadte functions yield$/62+[z1[2—+/62+|20[2| < |21—20],
[211?=[20]?] < 2(|z1|+20])|21—20] @nd|(|z1|—c5(9))3 = (|20l —e3()) 3| < 2(]21]+]20])?|21—20], SO that

5 |99h (9, 21) =B h(¥, 20)| < |z1—20ll11 (¢] + 2(LUQ)Cr, )2 b + $ciCr,) < Cillz1—20| 2
with C, := £(Q)7 (¢! + 2(LYQ)Cr, )3 ¢4 + Sc§Cp, ), where£%(Q) denotes the-dimensional Lebesgue-measure of
Q. Therefore Lipschitz-estimate (5.12b) holds true wite- 1 andC, = (C, + 2Cg, Cyck + ciep + ).

Now it has to be verified that the density is uniformly convex with respect t'(u, z). Thereto we first calculate that
wo:B(0):wp < Gwy:B(9):w14(1—0)wo:B(1):wo—0(1—0)cF |wi —wo |* for wi=e;—z; with (e;, ;) € REXT x R‘:yxn‘fdev,
i=0,1, wg = Owy + (1—0)wy with 6 € (0,1). Thereby a binomic formula and the positive definitenesB (@) for all
¥ were applied. The uniform convexity 6¥z|?> = Vz : Vz can be obtained similarly. We now show tlaits uniformly
convex. We immediately see thai(z) := (6% + |2|?) is convex inz. Furthermore, sincés(z) := (|z| — c3(9))3 is
the composition of the monotone functief and the convex functioft),., we conclude that alsbs(z) is convex inz.
Additionally we obtain with similar calculations as applitor the other quadratic terms thiag(z) := |z|? is uniformly
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convex. Since;(9) > ¢} > 0forall ¥ € [Umin, Imax) @andi = 1,2, 3 we have proven that is uniformly convex inz with
h(zg,9) < Oh(z1,9) + (1—0)h(20,9) — 0(1—0)cd|21—20]?. Summing up all terms and taking into account all prefactors
yields a uniform convexity estimate fo¥, which leads to

E(t,qo) < OE(t, qu) + (1-0)E(t,q0) — 0(1-0) (%|\w1—w0||iz + %IV(z1—20)l172 + C§||21—ZO||%2) :

Thereby we have used that the term describing the work of xterreal loadings is linear im. Moreover we find with

Korn's inequality that|wy —wo||2. > %[le(u1)—e(uo)l|22 — [|z1—20|%2 > ﬁ”uﬁuoﬂfp — ||z1—20]|%. Under the

assumption thafc} — (¢} /2)) > 0 we conclude that (5.12a) holds far= 2, ¢, := min {}/(4C%),0/2, (c3—(}/2))}
and the spac¥’ = Q = {a € H'(Q,R?)|@ = 0Oonl'p} x {z € H'(Q,RL )} Hence any energetic solution
q:[0,7] — Qs temporally Lipschitz-continuous, i.e.c C%*([0,T], Q).

5.3.2 Multiplicative energies: Damage

In the following we apply the temporal regularity resulistet in Theorems 5.10 and 5.13 to energies used in the mgdelin
of partial, isotropic damage processes. Thereby, damagasrbe creation and growth of cracks and voids on the micro-
level of a solid material. To describe the influence of dan@ythe elastic behavior of the material one defines an interna
variable, the damage variabi¢t,z) € [z*,1], as the volume fraction of undamaged material in a neightmmdtof
material dependent size arounde 2 at timet¢ € [0, T]. Thusz(t,z)=1 means that the material aroumds perfectly
undamaged, whereast, z)=z* > 0 stands for maximal damage of the neighbourhood. The comditi > 0 models
partial damage and the fact thais scalar valued reflects the isotropy of the damage proedssh means that the cracks
and voids are presumed to have a uniform orientation digtdb in the material. Furthermore it is assumed that damage
is a unidirectional process, so that healing is forbiddesh #m, ) < 0. This condition is preserved by the dissipation
distance, i.e. fop > 0 itis

D(Z(), Zl) = {fﬂ Q(ZOO; Zl) dz if zélsgezO) (514)

which punishes a decrease of damage with the valu&he energy in the framework of damage is given by

E(t,u,z) = .VIN/(e(quuD(t)),z)d:z:Jr/ E|Vz|7“dxf / () (utup(t))de. (5.15)
Q ar Q

The first term in (5.15) is the stored elastic energy, the s@a®escribes the influence of damage witkc » < oo and
x> 0 and the third term accounts for the work of the external logsli

As in the previous sections we dét(F (u, z)) = W(e(u+up(t)), z) + %|Vz|". In engineering, see e.g. [64], a typical
ansatz for the stored elastic energy density is the follgwin

Wie, 2) = f1(2)Wi(e) + Wa(e) + fo(z) and 8.W(e,z) > 0. (5.16)

In Section 5.2.1 we obtained that the joint strict conve@ftyNV in (z, e) will ensure the temporal continuity of the energetic
solution. But the crucial point, which may spoil this regithain the case of damage is, that not many stored elastiggne
densitiesW(e, z) = fi1(2)Wi(e), that satisfy&ZW(e, z) > 0, are also jointly strictly convex, although baofh, W; may
be convex. As a negative example we present the wellkndwid )-model for isotropic damage, see e.qg. [64]:

Example 5.16 For the symmetric, positive definite fourth order tenBdhe stored elastic energy density

We,d) = (1;‘”

e:B:e = ge:IB%:e = VIN/(e, 1)

is not jointly convex in(e, z). This can be seen from calculating the Hessian; evaluating(é, z)=(e, 1), e € RL<E, in
the direction(¢, 2)=(—¢, 1) yieldsD>W (e, 2)[(¢, 2), (¢, 2)] = 2&:B:é + 2Ze:B:é = —3 e:Bie < 0.
To find a positive example on stored elastic energy densitiisfying (5.16) one may use the ideas of [88].

Example 5.17 ForB as in Example 5.16 the energy dens’j@(e, z) = % is jointly convex in(e, z) and
—~ e:B:e 22
Wie,z) := 22—2) + )
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is strictly convex in(e, z). Calculating the Hessian yields

D2 (e, 2)[(2, 2), (¢, 7)) = f;i;ﬁ 2 éef)i + (ef; = (O B(e8) > 0

with é := Ze/(2—z) for all (e, 2) € RE%Y x [2*, 1]. Since we havd?2W (e, 2)[(¢, 2), (¢, 2)] = O for all (0, %) whenever
e = 0, we find thatiV’ is jointly, but not strictly convex. We conclude thit is jointly strictly convex due to the term
f(z) = é, sincef”(z) = 1, so thatf”(z)z% > 0 for all Z # 0, which ensures thab2 W (e, 2)[(¢, 2), (¢, Z)] > 0 for all
(¢,%) # 0 and for all(e, z) € ngxn‘f [2%,1].

Finally we discuss an example which refers to Theorem 5.18erHolder-and Lipschitz-continuity of energetic so-
lutions. With this example we want to point out the importain€ the Banach spade. We will see that its choice is not
unique and that it may lead to different constamts 2. This is due to the fact that the energy will be chosen nordratiac
in contrast to the Examples 5.14-5.15. We will clarify how #pace) influences the magnitude of the Holder constant

and explain how to achieve better regularity by a clevertifieation of V.
Example 5.18(The effective use o) ForB as above and constantsa, ¢ > 0 consider

e:B:e
2\/2 z

with the deviatorlev e := e—£1d and the energ§ (t, u, z) := [, W(e+ep(t), z, Vz)da — [, b(t)(u+up(t))dz.
We now determin® suitably. We first treat the case of time-dependent Diriodidea, as investigated in [106]. Similarly
to the ideas applied in Example 5.12 we thereto deduce theniiolg uniform convexity inequality fobV

W(eg,z0) < (1—0)W (eq, 20) + OW (e1,21) — 0(1=0)&(|E|* + |Z|*> + | dev E|* + |V Z|?) (5.18)

Wi(e,z,Vz):= Gle) + 22 + 5|Vz|> with G(e) := £(a+|devel?)? (5.17)

with E := ey —eq, Z := z1—20. FOrqo, q1 € Lg, (t) we can verify

E(t.a0) < (1=-0)E(t,q0) + 0E(t, 1) — 0(1—0)e. (| Ell s + |1 Zl| 2 + | dev Bl o + [VZ]|12)"  (5.19)
fora =4, ¢, = 273¢ min{(2E,)?~%, (2E,)*~“}. This estimate determines the Banach space

Vi o= {a € H' (Q,RY)| deve(a) € L*(Q,R> )} x {2€ HY(Q)}.

At this point we notice that the right-hand side of (5.19)isreased if we use th? (2, R?*%)-norm for somel < j <
4, which would lead to a smaller = max{2, p} and hence to a Holder exponent closet to

In order to find out whether the choice pf= 2 is suitable, assumption (5.12b) has to be investigated rethave
calculate

& (t,u, 2)= A 0. W (e(u)+ep(t), z, Vz):ép(t) de— /Q

b(#) (utup (£)) da— / b(t)in (1) da

Q
The termDG (dev e):é = c(a+|deve|? ) (dev e):é, with G defined in (5.17), plays the decisive role in estimate (5)12b
Using Taylor expansion one can prove that

|DG(dev(é1)):ép(t) — DG(dev(ég)):ép(t)| < C(1+W0+W1)p7|devE|,
whereW, =W (&;, z;, Vz;), é&;=e;+ep(t), ep(t)=e(up(t)) andép(t)=e(up(t))cC?([0, T], W1>°(Q, R4*4)). Thus in-
tegration and Holder’s inequality with=2 andp’=2 yield

‘DG(deV(elJreD(t))):éD(t) — DG(deV(eo+eD(t))):éD(t)’ dz < C| dev EHL% < Collur—uo|| 1

with e; = e(u;) for (u;, z;) € L, (t). Thisimpliesg = 1 and it is suitable to introduce the Banach space
Vo= {ue H(QRY} x {z € H'(Q)}.

With this choice ofy = V, we havea = 2, which leads to the Holder exponegi—1 = 1, so that an energetic solution
q:[0,7] — Q satisfies; € C%1([0, 77, V,), whereas) = V) yieldsq € C%3 ([0, T], Vy).
Finally we consider the case of time-independent DirictBup, i.e.up(t) = 0 for all ¢ € [0,T]. Then we have
— Jo b(t)(u+up) dz. Therefore we may drofiE||z» in (5.19) and choos® = Q. For this choice we find
o= 2 and the Holder-exponent/(a—1) = 1, which means that the energetic solution is Lipschitz-cardus in time.
This is in accordance to the regularity result obtained,[W@lere only time-independent Dirichlet data were applied.
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