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Abstract

For linear and fully non-linear diffusion equations of Bellman-Isaacs type, we introduce a class of monotone approxima-

tion schemes relying on monotone interpolation. As opposed to classical numerical methods, these schemes converge for
degenerate diffusion equations having general non-diagonal dominant coefficient matrices. Such schemes have to have
a wide stencil in general. Besides providing a unifying framework for several known first order accurate schemes, our
class of schemes also includes more efficient versions, and a new second order scheme that converges only for essentially
monotone solutions. The methods are easy to implement and analyze, and they are more efficient than some other
known schemes. We prove stability and convergence of the schemes in the general case, and provide error estimates in
the convex case which are robust in the sense that they apply to degenerate equations and non-smooth solutions. The
methods are extensively tested.
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1 Introduction

In this paper we introduce and analyze a class of monotone approximation schemes for fully non-linear diffusion equa-
tions of Bellman-Isaacs type,

u, — inf sup {L“’ﬁ [u](t, x) + c®P (¢, x)u +f‘1’ﬁ(t,x)} =0 in Qr, (1.1)
aeAﬁeB

u(0,x) = g(x) in RV, (1.2)
where Q; :=(0,T] x RN and
L%P[u](t, x) = tr[a®P (¢, x)D%u(t, x)] + b*P (¢, x)Du(t, x).

The coefficients a® = %o“’ﬁ o®PT p®P 4P faB and the initial data g take values respectively in S, the space of N x N
symmetric matrices, RV, R, R, and R. We will only assume that a®* is positive semi-definite, thus the equation is allowed
to degenerate and does not have any smooth solutions in general. Under suitable assumptions (see Section 2), the initial
value problem (1.1)-(1.2) has a unique, bounded, Holder continuous, viscosity solution u. This function is the upper or
lower value of a stochastic differential game, or, if A or B is a singleton, the value function of a finite horizon, optimal
stochastic control problem [25].

We introduce a family of schemes that we call Semi-Lagrangian (SL) schemes. They are a type difference-interpolation
schemes and arise as time-discretizations of the following semi-discrete equation

u, — inf sup {LZ’ﬁ [Zul(t, x) + c*P(t, x)u +f"’/j(t,x)} =0 in X"x(0,7),
aeAﬁeB

where Lg’ﬁ is a monotone difference approximation of L*? and 7, is a monotone interpolation operator on the spatial
grid X". For more details see Section 3. Typically these scheme are first order wide-stencil schemes, and if the matrix a®#
is bad enough, the stencil has to keep increasing as the grid is refined to have convergence. They include as special cases
schemes from [16, 19, 7, 12], more efficient versions of these schemes, and a new second order compact stencil scheme.
There are two main advantages of these schemes: (i) they are easy to understand and implement, and more importantly,
(ii) they are consistent and monotone for every positive semi-definite diffusion matrix a®f = %U""ﬁ o®P T, The last point
is important because monotone methods are known to converge to the correct solution [3], while non-monotone methods
need not converge [21] or can even converge to false solutions [23].

Classical finite difference approximations (FDMs) of (1.1) are not monotone (of positive type) unless the matrix a%h
satisfies additional assumptions like e. g. being diagonally dominant [18]. More general assumptions are given in e. g.
[5, 14] but at the cost of increased stencil length. In fact, Dong and Krylov [14] proved that no fixed stencil FDM can
approximate equations with a second derivative term involving a general positive semi-definite matrix function a®#.
Note that this type of result has been known for a long time, see e. g. [20, 12]. Some very simple examples of such “bad”
matrices are given by

2 1 2
X3 Exlxz) . 2 a® af Du® Du
1 2 n [0:1] > ( 2 fOl’.A=B=|:O,1:|, I_—:
(2 af B |Dul?

and these type of matrices appear in Finance, Stochastic Control Theory, and Mean Curvature Motion. The third example
leads to quasi-linear equations and will not be considered here, we refer instead to [12].

To obtain convergent or monotone methods for problems involving non-diagonally dominant matrices, we know of two
strategies: (i) The classical method of rotating the coordinate system locally to obtain diagonally dominant matrices a®#,
see e. g. Section 5.4 in [18], and (ii) the use of wide stencil methods. The two solutions seem to be somewhat related,
but at least the defining ideas and implementation are different. Both ways lead to methods that have reduced order
compared to standard schemes for diagonally dominant problems. But it seems to us that it is much more difficult to
implement the first strategy.

In addition to the wide-stencil methods mentioned above, we also mention the method of Bonnans-Zidani [5] which is
not an SL type scheme. Schemes for other types of equations related to our SL schemes have been studied by Crandall-
Lions [12] for the Mean Curvature Motion equation, by Oberman [22] for Monge-Ampére equations, and by Camilli and
the second author for non-local Bellman equations [8]. The terminology SL schemes is already used for schemes for




transport equations, conservation laws, and first order Hamilton-Jacobi equations. In the Hamilton-Jacobi setting, these
schemes go back to the 1983 paper [9] of Capuzzo-Dolcetta.

The rest of this paper is organized as follows. In the next Section we explain the notation and state a well-posedness and
regularity result for (1.1)-(1.2). The SL schemes are motivated and defined in an abstract setting in Section 3, and in
Section 4 we prove that they are consistent, monotone, L*-stable, and convergent. We provide several examples of SL
schemes in Section 5, including the linear interpolation SL (LISL) scheme. This is the basic example of this paper, and it
is a first order scheme that can be defined on unstructured grids.

Our SL schemes make use of monotone interpolation, and higher order interpolation is not monotone in general. But
for essentially monotone solutions, we can use monotone cubic Hermite interpolation (see Fritsch and Carlson [17] and
Eisenstat, Jackson and Lewis [15]) to obtain new second order schemes called monotone cubic interpolation SL (MCSL)
schemes. These new schemes are defined in Section 6, and in contrast to the LISL schemes they are compact stencil
schemes. Note well that in the special case of first order HJ-equations with monotone solutions, these schemes are
consistent, monotone, second order schemes! To our knowledge, this is the first example of a monotone scheme which is
more than first order accurate in the HJ-setting.

We discuss various issues concerning the SL schemes in Section 7. We compare the LISL scheme to the scheme of
Bonnans-Zidani [5] and find that the LISL scheme is much easier to understand and implement, and in general it is much
faster. However, on bounded domains the LISL scheme will in some cases over-step the boundaries and some ad hoc
solution has to be found. This problem is avoided by the Bonnans-Zidani scheme at the cost of being less accurate near
the boundary than in the interior. Finally, we explain that the SL schemes can be interpreted as collocation methods
for derivative free equations, or as dynamic programming equations of discrete stochastic differential games or optimal
control problems.

In Sections 8, 9 and Appendix B, we produce robust error estimates for convex equations (i. e. 3 is a singleton in (1.1)).
These estimates are obtained through the regularization method of Krylov and apply to degenerate equations, non-
smooth solutions, and both the LISL and MCSL schemes. Finally, in Section 10, our methods are extensively tested. In
particular we find that the LISL and MCSL schemes yield much faster methods to solve the finance problem of Bruder,
Bokanowski, Maroso, and Zidani [6].

2 Notation and well-posedness

In this section we introduce notation and assumptions, and give a well-posedness and comparison result for the initial
value problem (1.1) - (1.2).

We denote by < the component by component ordering in R and the ordering in the sense of positive semi-definite
matrices in S¥. The symbols A and Vv denote the minimum respectively the maximum. By |- | we mean the Euclidean
vector norm in any RP type space (including the spaces of matrices and tensors). Hence if X € RVF, then |X|? =
XXyl = tr(XX ") where X" is the transpose of X.

If w is a bounded function from some set Q' C 600 into either R, RM, or the space of N x P matrices, we set

wlo=sup |w(t,y)l
(t,y)eQ’

Furthermore, for 6 € (0,1], we set

wls= sup T WEI = o+ (w]
5= 5= Wi 5-
(0Gsy) (X =yl + ]t —s|/2)?

Let C,(Q’) and ¢*°(Q’), & € (0,1], denote respectively the space of bounded continuous functions on Q' and the subset
of C,(Q’) in which the norm |- |5 is finite. Note in particular the choices Q' = Q; and Q' = RY. In the following we always
suppress the domain Q" when writing norms.

For simplicity, we will use the following assumptions on the data of (1.1)-(1.2):

(A1) Forany a € Aand 8 € B, a*f = 20“Po®F T for some N x P matrix o®F. Moreover, there is a constant K independent
of a, 8 such that

gl +10%Ply +1b%P ]y + 1P|y +f Pl < K.




These assumptions are standard and ensure comparison and well-posedness of (1.1)—(1.2) in the class of bounded x-
Lipschitz functions.

Proposition 2.1. Assume that (Al) holds. Then there exists a unique solution u of (1.1)-(1.2) and a constant C only
depending on T and K from (A1) such that

lul; =C.
Furthermore, if u; and u, are sub- and supersolutions of (1.1) satisfying u;(0,-) < u,(0,-), then u; < u,.
The proof is standard. Assumption (A1) can be relaxed in many ways, e.g. using weighted norms, Hoélder or uniform

continuity, etc. But in doing so, solutions can become unbounded and less smooth, and the analysis becomes harder and
less transparent. Therefore we will not consider such extensions in this paper.

By solutions in this paper we always mean viscosity solutions, see e. g. [11, 25].

3 Definition of SL schemes

In this section we propose a class of monotone approximation schemes for (1.1)—(1.2) which we call Semi-Lagrangian or
SL schemes. This class includes (parabolic versions of) the “control schemes” of Menaldi [19] and Camilli and Falcone
[7] and the monotone schemes of Crandall and Lions [12]. It also includes SL schemes for first order Bellman equations
[9, 16], and it allows for more effective versions of these schemes as discussed in Section 5. For a motivation for the
name, we refer to Remark 7.2. For the time discretization we propose a generalized mid-point rule that includes explicit,
implicit, and a second order Crank-Nicolson like approximation. Note that the equation is non-smooth in general, so the
usual way of defining a Crank-Nicolson scheme would only give a first order scheme in time.

The schemes will be defined on a possibly unstructured family of grids {G,, A, } with

G=Garax = {(tmxi)}neNo,ieN = {tn}neNo X X axs
for At,Ax >0. Here 0 =t, < t; <+ < t, < t, ., satisfy

max At, < At where At, =t, — t,_1,
n

and X, = {x;};ey is the set of vertices or nodes for a non-degenerate polyhedral subdivision 74 = {TJ,AX }ien of RY. For
some p € (0,1) the polyhedrons T; = TJ.AX satisfy
int(T;NT;) =0, U T;=R", pAx <sup{diamB;} <sup{diamT;} < Ax,
i#j jon jeN ’ jEN

where diam is the diameter of the set and By is the greatest ball contained in T;.

To motivate the numerical schemes, we write o = (01,04, ..., py, -.., Op) Where o, is the m-th column of o and observe
that for k > 0 and smooth functions ¢,
P

%tr[aaTchp(x)] = % Z tr[amU;qub(x)]

=1

_ i 1¢(x+kon) —2¢(x) +¢(x — ko)
2
m=1

2 +0(k?),
25y _
27y 2
:%¢(x+k b) 2<;ll>{(2x)+¢(x+k D), o)

These approximations are monotone (of positive type) and the errors are bounded by 4i8P|a|‘0‘|D4¢ lok? and %|b|§|D2¢ lok?
respectively. To relate these approximations to a grid G, we replace ¢ by its interpolant Z¢> on that grid and obtain

1 P 1 ko, ) —2 o
Etr[UUTDzdv(x)] ~ n; : (Z¢)(x + ko) (Ifz)(X) +(Z¢)(x —ko )’




If the interpolation is monotone (positive) then the full discretization is still monotone and represents a typical example
of the discretizations we consider below.

To construct the general scheme, we generalize the above construction. We now consider general finite difference
approximations of the differential operator L*?[¢] in (1.1) defined as

Bt x +y P, x)) = 2006, 1) + ¢, x + v P76, x))

L [91(e,x) = ; e 3.1)
for k > 0 and some M > 1, where for all smooth functions ¢,
L 191 = L (9] < CUDly + -+ +ID o)k, 3.2)
This approximation and interpolation yield a semi-discrete approximation of (1.1),
U, — égf Zl;g{L ﬁ[IU](t x) 4+ c®P(t,)U + f*P(t, x)} in (0,T)XXn,,
and the final scheme can then be found after discretizing in time using a parameter 6 € [0,1],
Sac, Ul —égf Zlég{L Pz i 6 4 ¢ aﬁn 1+@U.e’” +fl.a’ﬁ’"_1+9} (3.3)
in G, where U™ = U(t,,, x;), f*P" % = f*P(t,_ + 0 At,, x)), ... for (t,,x;) €G,
Sand(t,x) = 2T~ Z(tt TALY) L nd @9 = (1-0)gr 1 + 09,
As initial conditions we take
Ul=g(x;) in Xa,. B4

Remark 3.1. For the choices 6 = 0,1, and 1/2 the time discretization corresponds to respectively explicit Euler, implicit
Euler and midpoint rule. For 6 = 1/2, the full scheme can be seen as generalized Crank-Nicolson type discretizations.

4 Analysis of SL schemes

In this section we prove that the SL scheme (3.3) is consistent and monotone, and we present L*-stability, existence,
uniqueness, and convergence results for these schemes. In Section 8 we also give error estimates when 3 is a singleton
and equation (1.1) is convex.

For the approximation LZ’ﬁ and interpolation Z we will assume that

z:[yc‘ﬁJr + ¥ @71 = ok2p®F 4+ O(k*),

Z[yk’ﬁ+®-yk’ﬁ++yklﬁ ®ya/5, ] :kza”’ﬁo“’ﬁT+O(k4),
5 (YD)
Z[®, Y @y = ok,

Z[ 1y:1ﬁ++®4 1yk1 “1=00h.
i=1

There are K > 0,r € N such that |[(Z¢p) — ¢|y < K|DPp|,AxP for (I
all N> p < r and all smooth functions ¢.
There is a non-negative basis of functions {w;(x)}; such that (12)

ZP)(x)= Zd)(xj)wj(x), w;(x;)=6;;, and w;(x)=0 foralli,jeN.
J




Under assumption (Y1), a Taylor expansion shows that LZ’ﬁ is a second order consistent approximation satisfying (3.2).
If we assume also (I1) , it then follows that L,‘f’ﬁ [Z¢] is a consistent approximation of L*#[¢] if Ak—’g” — 0. Indeed

ILEP 121 —L%P [P < ILEP (2] — LEP 911+ ILEP (9] - L4P 1],

where |LZ’ﬁ [¢] — L¥P[¢]| is estimated in (3.2), and by (I1),

r

ILP(2¢] — L[] < CID" blg
k k — 0 k2

Remark 4.1. Assumption (Y1) is similar to the local consistency conditions used in [18]. The O(k*) terms insure that the
method is second order accurate as k — 0. Convergence will still be achieved if we relax O(k*) to o(k?) as k — 0.

Remark 4.2. An interpolation satisfying (I2) is said to be positive or monotone and preserves monotonicity of the data.
Note that such an interpolation Z¢ does not use (exact) derivatives to reconstruct the function ¢. Typically Z will be
constant, linear, or multi-linear interpolation (i.e. r < 2 in (I1)) since higher order interpolation is not monotone in
general. For later use we note that from (I1) and (12) it follows that

r> 1:>Zwi(x)5 1 and r22=>2xiwi(x)5x. (4.1)

Now we prove that the scheme (3.3)-(3.4) is consistent and monotone. The scheme is said to be monotone if it can be
written as

aﬁnn n aﬁnn n aﬁnn 1 -1 a,f.n| _
sup 1nf{ U ;B U; ZB - F } =0 4.2)
7]

in G, where B Frm >0 and F;"’ﬁ’” does not depend on U.
Lemma 4.1. Assume (11), (I2), and (Y1) hold.

(a) The consistency error of the scheme (3.3) is bounded by

11— 26

——lbuloAe+C (Atz (I eclo+ 1B eeclo + 1D eclo + 1D2beclo)

r

A
+1D" ¢l S+ (Dlo+ - +|D4¢|o)k2)

(b) The scheme (3.3) is monotone if the following CFL condition holds,

M
(1- Q)At[kz ?ﬁ’”_lw] <1 and OAt c“ﬁ " <1 for all a, B, n, i. (4.3)

Remark 4.3. By parabolic regularity D?> ~ 3, which means that e.g. |D?¢,,|, is proportional to |¢,,.|,. When 6 = 1/2
(“Crank-Nicolson”), the scheme (3.3) is second order accurate in time.

Proof. It is immediate that the scheme (3.3) is consistent with (1.1) with a truncation error bounded by

2 _
g|¢“|OAt+ |¢ttt|0At + Sup{lLaﬁ[¢9n] aﬁ[I¢'9’n]|o}

+ sup {|La,[5 [¢n—1+9 _ ¢0,n]|0 + |ca,ﬁ,n—1+9(¢n—1+9 _ (ﬁe,n)|0}
a,f,n

for smooth ¢. By (11) and (3.2), |L*#[¢%"] — L*P[Z$%"]| can be bounded by

r

. Ax
CID o

e +C(IDplo+ -+ D% o)k,




while [L%P[p""1+0 — $91]| is bounded by

AE0(1 = 0)suplL*P [y = CACO0 = O){IDgiclo + D7l )

Finally, |c®fn—1+0(pn-1+0 qge’”)| <CO(1—0)At?|¢,,|o. Hence part (a) follows.

To prove part (b), we note that since ). w; = 1 we have

LeP T (6, M (Err, ) = 2L [, %) — 98, x))],

ieN
where

,B8,+ >8,—
[Bn=1+6 _ u Wi(xj+y;:,1ﬁ (tn—1+9’xj))+wi(xj+y]zlﬁ (tn-1+05%;))
Jot - Z 2k2 :

=1

This quantity is non-negative by (12), and ), lz;ﬁ’”_lw = ¥ by (11), (12), and 3, w; = 1. Therefore the only non-zero
coefficients in (4.2) at (tn,x;) are

a,f,n—1+6 Ca,ﬁ,n—1+9

a,B.nn _ M _
B _1+9Atn(k—2 ljj : ),

J»J

Ba,ﬁ,n,n—l —1-(1— G)Atn(% _ la,ﬁ,n—1+9 _ Cq,ﬁ,n—1+0)

o Jj j ’
B;;ﬁ,n,n — GAtnlz;ﬁ,nflJrQ’ B;Jj,i[o’,n,nfl — (1 _ Q)Atnl;;ﬁ’n71+9,
where j # i. These coefficients are positive if (4.3) holds. O

Existence, uniqueness, stability, and convergence results are given below. In the following, we denote by ¢*f* the
positive part of ¢,

Theorem 4.2. Assume (Al), (I1), (I12), (Y1), and (4.3).
(a) There exists a unique bounded solution U, of (3.3)-(3.4).

(b) The solution Uy, of (3.3)-(3.4) is L*™-stable when 20 At sup,, g [c®PF |y <1

a,f,+
071y < e2res 0t gl + 5up1f 1l |
a,

(¢) Uy, converges uniformly to the solution u of (1.1)-(1.2) as At,k, Ak—ﬁr — 0.

Proof. Existence and uniqueness of bounded solutions follow by induction. Let t = t, and assume U"! is a known
bounded function. For ¢ > 0 we define the operator T by

TU} =Uj — ¢ - (left hand side of (4.2))  forall je ™.

Note that the fixed point equation U" = TU" is equivalent to equation (3.3). By the definition and sign of the B-
coefficients we see that

TU} - Tff;“
< sup { [1 —e(1+ AL, 002 — cj‘ﬁ’”‘“e))] U7 07+ eAt, 0% [Un ~ U.“|O}
a,p
<(1-¢[1—At,0suplc*PT| DU — 0",
a,p




if € is so small that 1 — g(1 + At@(f’—2 — c}’.l’ﬁ’”*Hg)) >0 and £(1 — At,0sup, g |c*PT|y) < 1 for all j,n,a,. Taking the
supremum over all j and interchanging the role of U and U proves that T is a contraction on the Banach space of bounded
functions on X, under the sup-norm. Existence and uniqueness then follows from the fixed point theorem (for U") and
for all of U by induction since U° = g is bounded.

A similar argument using (4.2) proves L*-stability for 6 At sup, g [c®PFy <

1
2

1+(1—-6)Atsup,s lc%P-F,
1—0Atsup, glc®Fr],

0o < ( )10+ acysupire
a,

< ¢25UPap et [|g|0 +t, sup Ifa’ﬁ|o] .
ap

In view of this estimate, convergence of U, to the solution u of (1.1)-(1.2) follows from the Barles-Souganidis result in
[31. O

5 Examples of SL schemes

5.1 Examples of approximations LZ"ﬁ

We present several examples of approximations of the term L%?[¢] of the form Lg’ﬁ [¢], including previous approxima-
tions that have appeared in [16, 19, 7, 12] plus more computational efficient variants.

1. The approximation of Falcone [16] (see also [9]),

Zp(x +hb*P) —Zp(x)
n ,

b*PD¢p ~

corresponds to our L,‘f’ﬁ if k=vh, y; P = g2pak,

2. The approximation of Crandall-Lions [13],

1 P Th(x + ko) = 27¢(x) + Z¢(x — ka®P)
_ af ;BT D2 47 Ay J J
2tr[o c*P ' D]~ j; 272 ,

corresponds to our LZ’/j if y,‘:’jﬁ’i = ika;"ﬁ and M =P.

3. The corrected version of the approximation of Camilli-Falcone [7] (see also [19]),

1
Etr[a""ﬁa”"/j D241+ b*FDgp
I¢(x + VRo (P + Lb*P) — 276 (x) + ¢ (x — VhoF + Lb*P)

NZ 2h Bl

j=1

corresponds to our L*” if k = VA, ylf"jﬁ’i = :I:ka;.’"ﬁ + %zb“’ﬁ and M =P.

4. The new approximation obtained by combining approximations 1 and 2,

1
Etr[aa’ﬂa""ﬁ D2¢]+b*FD¢p

_I$(x+ K2b4P) —Tp(x) o ZIp(x+ ka;l’ﬁ) —27¢(x)+Zp(x — ka?’ﬁ)
- k2 +; 2k2 ’

corresponds to our L,‘f’ﬁ if y,ﬁ"f’i = :I:ka}”ﬁ for j <P, y,‘j‘ffl =k?>b%F and M =P +1.




5. The new, more efficient version of approximation 3,

1
Etr[a""ﬁa""/j D241+ b*FDgp
PATh(x + ko P) = 22¢(x) + I (x —ko(P)

NZ 2k2

)

-

L Totet ko +12b*P) — 27¢(x) + T (x — kowf + k2p%F)
2k? ’

o.B.E
k,P

a.f,x

Py = :I:ko;;"ﬁ +k2b%f and M = P.

corresponds to our L* if y = ika?’ﬁ forj<P,y
Approximation 5 is always more efficient than 3 in the sense that it requires fewer arithmetic operations. The most

efficient of approximations 3, 4, and 5, is 4 when o*# does not depend on a, 8 but b*# does, and 5 in the other cases.

5.2 Linear interpolation SL scheme (LISL)

To keep the scheme (3.3) monotone, linear or multi-linear interpolation is the most accurate interpolation one can use in
general. In this typical case we call the full scheme (3.3)-(3.4) the LISL scheme, and we will now summarize the results
of Section 4 for this special case.

Corollary 5.1. Assume that (A1) and (Y1) hold.
(a) The LISL scheme is monotone if the CFL conditions (4.3) hold.

(b) The consistency error of the LISL scheme is O(|1 — 20|At + At? + k2 + A—’gz), and hence it is first order accurate when
3
k =0(Ax"?) and At = O(Ax) for 6 # % or At = O(Ax/?) for 6 = %

(c) If 20 Atsup, g [c®*PF|, < 1 and (4.3) hold, then there exists a unique bounded and L®-stable solution Uy of the LISL
scheme converging uniformly to the solution u of (1.1)-(1.2) as At,k, % — 0.

From this result it follows that the scheme is at most first order accurate, has wide and increasing stencil and a good CFL
condition. From the consistency error and the definition of LZ’ﬁ the stencil is wide since the scheme is consistent only if
Ax/k — 0 as Ax — 0 and has stencil length proportional to

B~ B+

e e IV

[ .= ~— —00 as Ax—0.
Ax AXx

Here we have used that if (A1) holds and o # 0, then typically y,f"iﬁ’i ~ k. Also note that if k = Ax'/2, then [ ~ Ax~Y/2,

Finally, in the case 6 # 1 the CFL condition for (3.3) is At < Ck? ~ Ax when k = O(Ax'/?), and it is much less restrictive
than the usual parabolic CFL condition, At = O(Ax?).

6 A second order SL scheme for monotone solutions

In this section we introduce new second order SL schemes of the form (3.3)-(3.4) for non-degenerate grids of tensor
product type. These schemes are based on monotone cubic Hermite interpolation [17, 15], and are consistent for
monotone solutions of the scheme. We will call these schemes monotone cubic interpolation SL schemes or MCSL
schemes in short.

To define monotone cubic Hermite interpolation, we start by considering a 1D function ¢. For each sub-interval [x;, x; 1],
i € Z, we construct a cubic Hermite interpolant

(Z)(x) = co+¢1(x — x;) + cy(x — x;)* + ¢3(x — x;)?
fulfilling

(ZP)(x;)) = ¢y, (I¢)/(Xi) =d,,
(ZTo)(xi11) = Div1s (Ze) (xi41) = dig1,




where ¢; = ¢(x;) and d, is an estimate of the derivative of ¢ at x;. It follows that

Co = ¢i’ C = di! (6.1a)
_ 30 —diyy — 24, 2A; —diy — d

Ca
AXx ’ Ax?

) (6.1b)

C3 =

where A; = d’*Al—_‘b To obtain a fourth order accurate interpolant, ¢; must be at least third order accurate. We will use

the symmetric fourth order approximation

q = i —8¢;i_1+8¢i 11— diso
! 12Ax ’

i€Z. (6.2)

However, the resulting interpolation is not monotone. Necessary and sufficient conditions for monotonicity were found
by Fritsch and Carlson [17] (see also [24]): If A; = 0, then monotonicity follows if and only if d; = d;,; =0, and if

dit1
a: = — and [)’ =—,
! YA

then monotonicity for A; # 0 follows if and only if (a;, 8;) € M = M, U M, where

M, ={(a,f): (a=1P+(a-1)(B-1)+ (-1 -3(a+p-2) <0},
My={(a,8): 0<a<3,0<p <3}

Eisenstat, Jackson and Lewis [15] give an algorithm that modifies the derivative approximation d; such that the above
conditions are fulfilled, and for monotone data the resulting interpolant is a C! fourth order approximation. We will only
consider C° interpolants, and in that case their algorithm simplifies to:

Step 1 Compute the initial d; using (6.2).
Step 2 Compute A;. If A; # 0 compute a; and S;, else set a; = f8; = 1.
Step 3 Set a; := max{a;,0} and f3; := max{$;, 0}.

Step 4 If (a;, B;) € M, modify (a;, 3;) as follows:
. Ifal Z3and/§'l 23, Setai:[ji::';,
* elseif §; > 3 and a; + f; > 4, decrease f3; such that (a;, 5;) € I M,

* else if B; > 3 and a; + f; < 4, increase «; such that (a;, ;) € M or a; = 4 — f3;, in the last case
subsequently decrease f; until (a;, 5;) € M,

* elseif a; >3 and a; + f; > 4, decrease «; such that (a;, ;) € I M,

* else if a; > 3 and «a; + B; < 4, increase fB; such that (a;, ;) € 0M or B; = 4 — qa;, in the last case
subsequently decrease ; until (a;, 3;) € M.

In each sub-interval [x;,x;,,], we replace d; by a;A; and d;,; by f;4A; in (6.1). Multidimensional interpolation oper-
ators are obtained as tensor products of one-dimensional interpolation operators, i.e. by interpolating dimension by
dimension.

Lemma 6.1. The above monotone cubic interpolation is always monotone and satisfies (12). If the interpolated function is
strictly monotone between grid points, then (I1) holds with r = 4 and the method is fourth order accurate.

Proof. Assumption (12) holds by construction. The error estimate follows from [15], since the above algorithm coincides
with the two sweep algorithm given there when n = 1 interval is considered. In [15] it is proved that this algorithm gives
third order accurate approximations to the exact derivatives and hence the cubic Hermite polynomial constructed using
this approximation is fourth order accurate. O

Remark 6.1. Carlson and Fritsch [10] constructed an alternative monotone bicubic interpolation algorithm for R?. We
are not aware of any work on high order monotone interpolation on unstructured grids.

By the Lemma 6.1 and the results in Section 4 we have the following result:
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Corollary 6.2. Assume that (Al), (Y1) hold, and that for all h € (0,1), there exists a bounded solution Uj, of the MCSL
scheme such that TUj, is strictly x-monotone between points in the x-grid X .

(a) The MCSL scheme is monotone if the CFL condition (4.3) hold.

(b) The consistency error of the MCSL scheme is O(|]1—20|At+At?+k2+ %), and hence the scheme is second order accurate
when k = O(Ax) and At = O(Ax?) for 6 # % or At = O(Ax) for 6 = %

(0) If 20 At sup, g [c*F|, < 1, then the solution U, is unique, L®-stable, and converges uniformly to the solution u of (1.1)—

(1.2) as At,k, 85 —0.

Remark 6.2. The MCSL scheme is always monotone, but for non-monotone solutions the scheme is not consistent when
k = O(Ax) since the consistency error then is O(At + k + Ak—f). Moreover, it is easy to see that the MCSL scheme has
strictly monotone solutions (between grid points) whenever the collocation equation (7.1) (see Section 7) has strictly
monotone solutions (between grid points). To prove such type of results one can use comparison principle arguments,
and we refer to Appendix A for results concerning equation (1.1). Since (7.1) satisfies the comparison principle (the
proof is essentially a simplified version of the proof in Appendix B), the argument proving Lemma A.1 shows that its
solutions are monotone under assumption (A2) in Appendix A. Under this assumption, existence of a monotone solution
follows from Theorem 4.2 in Section 4.

Remark 6.3. It is well known that consistent monotone methods for first order equations are at most first order accurate
in general. However, the MCSL scheme is an example showing that second order consistent monotone schemes are
possible if the solutions have special structure: When o*f = 0, the MCSL scheme is a monotone second order scheme
for a first order equation when solutions are monotone. Experts we have talked to seem to be surprised by this fact.

7 Discussion

7.1 Comparison with the scheme of Bonnans-Zidani (BZ)

In the paper [5] (see also [4, 6]) Bonnans and Zidani suggest an alternative approach to discretize non-linear degenerate
diffusion equations. Their idea is to approximate the diffusion matrix a®? by a nicer matrix a:’ﬁ which admits monotone
finite difference approximations. For every k € N they find a stencil

ScC{E= (& En) €2V : O <max|E| <k, i=1,...,N}

and positive numbers az’f such that

a®P ~ aZ’/j = Z a,‘jfggT.

gesy

This new diffusion matrix a,‘:’ﬁ gives a diffusion term that can be decomposed into a linear combination of directional
derivatives and these are again approximated by central difference approximations,

tr[a®PD%¢p] ~ tr[aZ’ﬁDzd)] = Z ai’fD§¢ ~ Z af{‘,’fA5¢,
£eS; £eS;

where Dg =tr[£ETD?] = (£-D)? and

Agw(x) = {w(x + EAX) — 2w(x) +w(x — EAX)}.

1
€[> Ax?

B

This approximation is monotone by construction and respects the grid. In two space dimensions, a,”” can be chosen such

that |a®f — a,‘f’ﬁ | = 0(k™2) (cf. [4]), and then it is easy to see that the consistency error is

O(k™2 4+ k2Ax?).

When b*P = 0, the BZ scheme can be obtained from (3.3) by replacing our LZ’ﬁ by the above Bonnans-Zidani diffusion
approximation. This scheme shares many properties with the LISL scheme, it is at most first order accurate (take k ~

1



Ax~1/2), it has a similar wide and increasing stencil, and it has a similar good CFL condition At < Ck?Ax? (~ Ax when
k ~ Ax~/?). To understand why the stencil is wide, simply note that k by definition is the stencil length and that the
scheme is consistent only if k — oo and kAx — 0. The typical stencil length is k ~ Ax~'/2, just as it was for the LISL
scheme.

The main drawback of this method is that it is costly since we must compute the matrix a,‘:’ﬁ for every x,t,a, 8 in the
grid. The LISL scheme is easier to understand and implement and runs faster. Later we will see numerical indications
that LISL runs at least 10 times faster than the BZ scheme on some test problems. The BZ scheme has the advantage that
it is easy to modify to prevent it from leaving the domain (accuracy is then reduced or monotonicity is lost). It is less
natural to do this for the LISL scheme. However, in many problems it is not necessary to do any modification near the
boundary as we will see below.

The MCSL scheme in the typical case when k = Ax, is a second order accurate and compact stencil scheme having the
usual (not so good) CFL conditions for parabolic problems At ~ k? = Ax2. It is far more efficient than the other two
schemes as can be seen in Section 10, but it is only guaranteed to converge when the computed solutions are essentially
monotone. The other two schemes “always” converge. We have summarized our findings in the table below.

id bound -
order CFL s‘t/:nceil coollldnitiecl);ys convergence efficiency
BZ 1 At ~ Ax yes OK always worst
LISL 1 At ~ Ax yes special always
treatment
t
MCSL | 2 At~Ax*>  no OK monotone best
solutions

Table 1: Comparison between the BZ, LISL, and MCSL schemes.

7.2 Boundary conditions

When solving PDEs on bounded domains, the SL schemes (and the BZ schemes) may exceed the domain if they are not
modified near the boundary. The reason is of course the wide stencil. This may or may not be a problem depending on
the equation and the type of boundary condition: (i) For Dirichlet conditions the scheme needs to be modified near the
boundary or boundary conditions must be extrapolated. This may result in a loss of accuracy or monotonicity near the
boundary. (ii) Homogeneous Neumann conditions can be implemented exactly by extending in the normal direction the
values of the solution on the boundary to the exterior. (iii) If the boundary has no regular points, no boundary conditions
can be imposed. In this case the SL schemes may not leave the domain because the normal diffusion tends to zero fast
enough when the boundary is approached. Typical examples are Black-Scholes type of equations.

7.3 Interpretation as a collocation method

The scheme (3.3)-(3.4) can be interpreted as a collocation method for a derivative free equation, this is essentially the
approach of Falcone et al. [16, 7]. The idea is that if

WA2X(Q) = {u: u is a function on Q; satisfying u = Zu in Q}

denotes the interpolant space associated to the interpolation Z, equation (3.3) can be stated in the following equivalent
way: Find U € W2¥(Qy) solving

. P — Bn—1+0 0, Bn-140) .
5AtnUi”=;2£;22{Lzﬁ[U9’”]? WO cppni0ghn y pabnoit }m G. (7.1)

In general W2* can be any space of approximations which is interpolating on the grid X,,, e. g. a space of splines. We
do not consider this case here.

7.4 Stochastic game/control interpretation

In general the scheme (3.3)-(3.4) can be interpreted as the dynamical programming equation of a discrete stochastic
differential game. We will now try to explain this in the less technical case when B is a singleton and the game simplifies
to an optimal stochastic control problem.

12



Assume that (A1) holds, and for simplicity, that c*(t,x) = 0 and the other coefficients are independent of t. Then it is
well-known (cf. [25]) that the (viscosity) solution u of equation (1.1)-(1.2) is the value function of the stochastic control
problem:

T
w(T — t,x) = min E[J FUO(x,)ds + g(XT)}, (7.2)
a(-)eA ¢

where A is a set of admissible .4-valued controls and the diffusion process X, = X S"X’a(') is constrained to satisfy the SDE

X,=x and  dX,=0"OX,)dW,+b*)ds for s>t. (7.3)

This result is a consequence of dynamical programming (DP) and (1.1) is called the DP equation of the control problem
(7.2)-(7.3). Similarly, the schemes (3.3)-(3.4) are DP equations (at least in the explicit case) of suitably chosen discrete
time and space control problems approximating (7.2)—(7.3). We refer to [18] for more details.

We take the slightly different approach explored in [9, 16, 19, 7] to show the relation to control theory. The idea is to
write the SL scheme in collocation form (7.1) and show that (7.1) is the DP equation of a discrete time continuous space
optimal control problem. We illustrate this approach by deriving an explicit scheme involving L{ as defined in part 4
Section 5.1. Let {t, = 0,tq,...,t); = T} be discrete times and consider the discrete time approximation of (7.2)-(7.3)
given by

M-1
(T =ty x) = ggE[;fam)mm + )], (7.4)
X,=x, X,=X,_1+0*X,_ )k, &, + b“”()zn_l)kﬁ Ny, N>, (7.5)

where k, = /(P + 1)At,, Ay C A is an appropriate subset of piecewise constant controls, and &, = (§,1,...,&,p)" and
7, are mutually independent sequences of i.i. d. random variables satisfying

1 o
P((En,p---,fn,m”fln) = iej) =P+ D) ifjell,...,P},
1
p ((gn,lx ERE) gn,P’ nn) = eP+1) = P_+1’
(e; denotes the j-th unit vector) and all other values of (&, 1,...,&,p,n,) have probability zero. Here we have used a

weak Euler approximation of the SDE coupled with a quadrature approximation of the integral. Note that X ~ X and
it ~ u when At is small. By DP

n—1
@(T ~ t, x) = min [ > FE&) Aty +a(T — tn,;?n)] forall n>m,
M
k=m

and taking n =m+1, spy_p = T — ty, ASp = Sy — Sm—1, Kk = kyr—m, and evaluating the expectation using (7.5), we see
that

U(Spr—m,X) =
ic2
. M-m-1 - .
min {fa(x)AsM_m+ P~|—m1 LZMfmfl [u](sM_m_l,x)+u(sM_m_1,x)},

72
where L} is as in Section 5.1 part 4. If we subtract fi(sy;_,,_1, X) from both sides and divide by Asy,_,, = k“; -, we find
(7.1) with 6 =0.

In [7], a similar argument is given in the stationary case for schemes involving the L of part 3 Section 5.1. In fact it is
possible to identify all L{’s appearing in Section 5.1 with DP equations of suitably chosen discrete time continuous space
control problems. However assumption (Y1) is not strong enough for this approach to work for the general L} defined
in Sections 3 and 4.

Remark 7.1. A DP approach naturally leads to explicit methods for time dependent PDEs. But implicit methods can also
be derived using a trick. Discretize the PDE in time by backward Euler to find a (sequence of) stationary PDEs and use
the DP approach on each stationary PDE. For stationary problems the DP equation is always implicit, so the result is an
implicit iteration scheme.

13



Remark 7.2. By the definition of L and (Y1), x + yf,’(i can be seen as a short time approximation of (7.3). Hence the
scheme (3.3) tracks particle paths approximately. In fact by the above discussion we might say that the scheme follows
particles in the mean because of the expectation. For first order PDEs, schemes defined in this way are called SL schemes
by e. g. Falcone. Moreover, in this case our schemes will coincide with the SL schemes of Falcone [16] in the explicit case.
This explains why we choose to call these schemes SL schemes also in the general case.

8 Error estimates in the convex case

We will derive error bounds in the case when B is a singleton and (1.1) is convex. It is not known how to prove such
results in the general case. Here and in the following, we do not indicate the trivial f dependence any more. For simplicity
we also take a uniform time-grid, letting G = At {0,1,...,N;} X X, in this section. Let Q.1 := At{0,1,...,N;} x RV
and consider the intermediate equation

OacV"(x)= 8.1
ggg{L,‘j[\_/e’"](t,x)+c°‘(t,x)\79’"(x)+f“(t,x)}t:t in Qaers
V(0,x)= g(x) in RV, (8.2)

The first step is now to find a bound on |U — V.

Lemma 8.1. Assume that (I1), (I12) and the CFL condition (4.3) hold and that sup, |V"|; < Cy. If V solves (8.1)-(8.2) and
U solves (3.3)-(3.4), then

Ax |
|U—V|SCF in G.

Proof. Let W = U — V and subtract the equation for V from the one for U to find
W' < W+ At sup {L,‘f[IW_G’"]?’HQ NN VA
acA
+ LO[ZV O — \797”]?—1”} in G.

Assuming V" has p bounded derivatives, we rearrange the equation and use (I1) to see that

M
(1+9At(ﬁ_cgv}1+e))wi”
<wrligAa o(Lerzwnyn-1+e MW"
=i + tigﬁ k[I -]i +P i
+(1 - 0)(Lgrzwr g Ot )
rAp

2 in G

+2AtK sup [D"PV"|,
n

with ¢ 10w = sup, ci“’"_HeWi". By the CFL condition (4.3), the coefficients of the above inequality are all non-
negative. Hence since W" < |[W"|, := sup; |W/"|, we may replace W" by |[W"|, on the right hand side. Moreover, since
I|W"|y = [W"|, and L;[|[W"|,] = 0, the upper bound on the right hand side then reduces to

r/\p

M N
(1+At(1—9)C6)|W"_1|0+9AtPIW”IO+AtK o

where C, = max, |c*"|,. The same bound holds if we replace W by —W, and hence we can conclude that

M . 1 M . Ax™P
1+ At@(ﬁ —CNW", <1+ At(1-6)CHOIW™ |, + GAtP|W lo + AtK 2
Since W° =0 in X,,, an iteration then reveals that
CAXTY & 1+ A1 — 0)C \m L Ax™P
Wy < AR ( C) <tk 2Cetn,
W¥lo k2 mZ;, 1- AthC, T e
when At is small enough. Since V" is Lipschitz (p = 1), the lemma follows. O
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Next we want to estimate |V — u| when u solves (1.1)-(1.2). This can be done using the regularization method of
Krylov if we can find suitable continuity and continuous dependence results for the scheme. These results rely on the
following additional (covariance-type) assumptions: Whenever two sets of data o, b and &, b are given, the corresponding
approximations LY, y,fi’ii and L¢ y,j‘f in (3.1) satisfy

Z[ykl e = [T 5T < 2k - B,

1 Z[J’Z,f@ykl +ye ®y; 1+ ®5’;<xl++ykl ® i ] (Y2)

—[ykl ®5/;(11++5,Igl+®ykl +-ykl ®ykl +'ykl ®ykl:|

<2k*(0% = 69 (0* = 69T 4 2k*(b* — b*)(b* — b*)T,

when o, b,yki are evaluated at (t,x) and &, B,j/ki are evaluated at (t,y) for all t,x, y.

In Section 9 we will prove the following error estimate.

Theorem 8.2. Assume that B is a singleton, that (A1), (Y1), (Y2), and the CFL conditions (4.3) hold, and that k € (0,1)
and At < (2ky A 2ky)"L. If u and V are bounded solutions of (1.1)-(1.2) and (8.1)-(8.2), then

IV —ul <C(1-20|AtY4+ A +KY2) in Quer-

It also follows from the regularity results in Section 9 (see Proposition 9.4) that |V"|; < 2C;, so by Lemma 8.1 and
Theorem 8.2 we have the following result.

Corollary 8.3 (Error Bound). Under (I1), (12), and the assumptions of Theorem 8.2, if u solves (1.1)-(1.2) and U solves
(3.3)-(3.4), then

Ax .
k2) in G.

u—U|<|u—V|+|V-U|l<C(1-20]|AtY*+ At'/3 4 kM2 4
This error bound applies to both the LISL and MCSL schemes, and it also holds for unstructured grids. If the solutions are
more regular, it is possible to obtain better error estimates. But general and optimal results are not available. The best
estimate in our case is O(Ax'/%) which is achieved when k = O(Ax?/°) and At = O(k?). Note that the CFL conditions
(4.3) already imply that At = O(k?) if 8 < 1. Also note that the above bound does not show convergence when k is
optimal for the LISL scheme (k = O(Ax'/?)) or the MCSL scheme (k = O(Ax)).

Remark 8.1. These results are consistent with results for LISL type schemes for stationary Bellman equations. In fact if
all coefficients are independent of time and c*(x) < —c < 0, then by combining the results of [7] and [1], exactly the
same error estimate is obtained for the solution of a particular stationary LISL scheme and the unique stationary Lipschitz
solution of (1.1).

9 Proof of Theorem 8.2

We start by an existence and uniqueness result.

Lemma 9.1. Assume that (A1), (Y1), and the CFL conditions (4.3) hold. Then there exists a unique solution Uy, € C,(Qr )
of (8.1)-(8.2).

The proof is similar to (but simpler than) the proof of Theorem 4.2 with the modification that the fixed point is achieved
in the Banach space C,(RY) instead of the space of bounded functions on X, .

We will now give a result comparing subsolutions of (8.1) to supersolutions of

85, U"(x) = inf {IZ,‘?[U"’”](t,x) +&(e, x)TOn ~|—f“(t,x)}
acA =th-1+6

in RV, n>1, 9.1
U(0,x)=g(x) in RV,

where i,f is the operator defined in (3.1), (Y1), (Y2) when o¢, b® are replaced by ¢, be.
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Theorem 9.2. Assume that (Al), (Y2), (4.3) hold for both (8.1) and (9.1). If U € C(Qr.a,) is a bounded above subsolution
of (8.1) and U € C(Qqa;) a bounded below supersolution of (9.1), then for all k € (0,1), At < (ko Ak;)™!, x,y € RV,
ne{o,1,...,Ns},

U(tn’x) - U(tn’ y) S Rko(tn)|(U(0; ) - U(O; '))+|0
+Rko(tn)Rk1(tn)(L0 + tnL)lx - .)’|

+ty SUE UG =)o + Ry, (£, )([Ulo A 1To)le = Elo ]
ae
+ trll/22KT sup [|b— Dl +|o — &y ]
acA
where Ry (1) = 1/(1 — kAt)/2, K < Ry (T)Ry, (T)(Lo + TL),

Lo=Igh VIglh, L= VIE)UUl ATl +If* VIf,
ko =sup|c®*ly, k; =2sup{|c?]?+[b*|? +1}.
a a

Remark 9.1. The function R, (nAt) =1/(1 — kAt)" satisfies
6 ARk (tn) = kR (¢,),
R.(0) =1, and R,(t,) < e? when At < ﬁ
This is a key result in this paper, and the proof is given in Appendix B. In the stationary case, results of this type have

been obtained in [1, 8] for simpler schemes. The result is a joint uniqueness result (take (&, B,E, f ,&) = (o,b,c,f,g)),
continuous dependence result (take x = y), boundedness, and x-Lipschitz continuity result:

Corollary 9.3. Under the assumptions of Theorem 9.2, if k € (0,1) and At < (2kq A 2k;)7}, then any bounded solution
U € C,(Qra,) of (8.1) satisfies

(l) |U(tru )|O S eZkOtn|g|O + tn Supa |fa|0)
(D) |U(tn, x) = U(ty, y)| < eEH (Lo + ¢, L)|x — yl,

where the constants, which are defined in Theorem 9.2, are independent of k, At, Ax.

Proof. Part (i) follows from Theorem 9.2 and Remark 9.1 since U = 0 satisfies (9.1) with (6%, b%,&%, f*,§*) = (¢%, b*,c%,0,0).
Part (ii) follows by taking U = U and x # y. O

Now we extend the scheme (8.1) to the whole space Q. One way to do this and to obtain continuous in time solutions, is
to pose initial conditions on [0, At) by interpolating between g(x) and U(At, x) where U is the solution of (8.1)-(8.2).

5 V(t,X) = igg{L;j[\'/@(t, Y, ) + (e, x)VO (¢, x) +f"‘(t9,x)} (9.2)
in (At,T] xRV,
vieo= (1- i)g(x)+iu(m x) in [0,Af] x RY 9.3)
’ At At ’ ’ ’ ’

where V(t,x)=(1—-0)V(t — At,x)+0V(t,x) and t? =t — (1 — 6)At.

From the previous results for U the existence, uniqueness, and properties of V easily follow.

Proposition 9.4. Assume that (Al), (Y1), (Y2), and the CFL conditions (4.3) hold, and that k € (0,1) and At < (2ky A
2k, )7L

(a) There exists a unique solution V € C,(Qy) of (9.2)-(9.3).

(b) There is a constant Cr > 0 independent of k, At, Ax such that
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(i) |V]p <Cr,
(i) [V(t,x)=V(t,y)|<Crlx—y| forall te€[0,T], x,y,€R",
(i) |V(sy,x) = V(sy,x)| < Cplsy —s,|Y?  forall s,,s,€[0,T], x,eRV.

(c) Let V € C,(Qy) and V € C,(Q1) be sub- and supersolutions of (9.2)-(9.3) corresponding to coefficients (o%, b*,c%, f%, g)
and (6%, b%, &%, f*, §) respectively. Then there is a constant C; > 0 independent of k, At, Ax such that for all t € [0, T],

WV (e, )=V (e, < Cr(lg — &lo + tsup[(IUlo A 1Tlo)lc* = &0 + 1 * = Flo]

+t1/2 sup[|oc* — 6%y + |b* — i)”‘|0]).
a

Proof. First note that the initial data on [0, At] is uniformly bounded and Lipschitz continuous in x and t by construction
and Corollary 9.3.

(a) Existence of a bounded x-continuous solution follows from repeated use of Lemma 9.1 since we have initial conditions
on [0, At]. Continuity in time follows from Theorem 9.2 (with x = y) since the data is t-continuous.

(b) Part (i) and (ii) follow from Corollary 9.3 since the initial data is uniformly bounded and x-Lipschitz in [0, At]. To
prove part (iii) we assume s; <s, and let U(t, x) and U(t, x) solve (9.2) with data

(Ga(t +51,X), ba(t +sl}x); Ca(t +81,X),fa(t +51,X), V(sl’x)) and (0; 0: 0; 07 V(shx))

respectively. Note that for t € [0, T —s,], U(t,x) = V(s;,x) and U(t,x) = V(t +s,,x) where V is the unique solution of
(9.2)-(9.3). By part (c) we then get

IV(t+s1,-) = V(sy, o =1U(t,") = T(t, o
<Cr (0 + tsup[|f o + [Vlolc*lo] + t/*sup[|o®]o + |ba|o]) for t>0,
a a

and hence part (iii) follows.

(c) Note that by construction of the initial data and Theorem 9.2 with x = y, the result holds for t € [0, At], and then
the result holds for any ¢t > At by another application of Theorem 9.2 with x = y. O

Using Krylov’s method of shaking the coefficients, we will now find smooth subsolutions of (9.2). First we introduce the
auxiliary equation

5, VE(t,x)= inf {Lg[f,e\‘/eﬁ(t,-)](r+s,x+e) (9.4)
0<s<e?

le|<e

acA

+c(r+s,x+e)Vo0(t,x)+ f4(r+s,x +e)} , in (A, T] x R,
T

=t0—At—¢

£ t t £ : N
VE(t,x) = (1—E)g(x)+EV (At,x) in [0,At] xRY, (9.5)

where 7,¢(t,x) = ¢(t,x+e) and V(At, x) is obtained by first solving (9.4) for discrete times t,, = nAt. For this equation
to be well-defined for t € (At, T], the data and y,f"ii must be defined for t € (—At — ¢2, T + ¢2]. But this is ok since one
can easily extend these functions to t € [—r, T + r] for any r > 0 in such a way that (A1), (Y1), (Y2) still hold. Also note
that

M

_ 1 _
Lo ")+ s ke) = o B {7 x4y st e) (9.6)

—2V%0(t,x)+ Vo0 (¢, x + yz’i_(r +s,x+ e))},

and hence (9.4) is an equation of the same type as (9.2) (with different .4 and shifted coefficients) satisfying (A1), (Y1),
(Y2) whenever (9.2) does.




By Proposition 9.4 there is a unique solution V¢ of (9.4)-(9.5) in [0, T + At + 2] x RN, Let U¢(t, x) := Vé(t + At +¢%,x)
and define by convolution,

Ug(t,x)zj J Ub(t —s,x —e)p,(s,e)dsde, (9.7)
RN Jo

where € > 0, p,(t,x) = 5 p(5%), and

P EC®MRNT), p=>0, suppp c[0,1]x {|x| <1}, fp =1.

Note that U, is well defined on the time interval [—At, T]. By the next result it is the sought after smooth subsolution of
9.2).

Proposition 9.5. Under the assumptions of Proposition 9.4, the function U, defined in (9.7) satisfies
() U, e C®((—At, T)xRY), |U,|; <C, [D"3]'U,|, < Ce' ™™ " for n,m € N.
(ii) If V is the solution of (9.2)—(9.3), then |U, — V| < C(e + AtY?) in Q.
(iii) U, is a subsolution of (9.2) in Q.
Proof. The regularity estimates in (i) are immediate from properties of convolutions and the regularity of V¢. The bound
on U, — V (in [0, T]) in (ii) follows from Proposition 9.4 (c) and (A1) which imply

Ve — V], < C(e + AtY/?),
and regularity of V* along with properties of convolutions,

Ue = VElo S |U = Ul + V(- + At +2,) = VElo < [Vely(e + AL

To see that U, is a subsolution of (9.2), first note that from the definition of U® and (9.4) it follows that

S US(t,x) < L,‘f[f_eUE’e(t, (% +5s,x +e)
+c(t% +5,x +e)U0(t,x) + Fo(t% +5,x +e)

forall (t,x) € [—€%, T] xR", |e|,s® < ¢, and a € A. Now we change variables from (t +s, x +e) to (¢, x) to find that
6, U(t—s,x—e) < LZ[T_eUE’G(t —s,](t%, x)
+c%(t%, )00 (t —s,x —e) + F(t%, x)

for all (t,x) € [0,T] xRY, |e|,s®> < ¢, and a € A. Then we multiply by p.(s,e) and integrate w.r.t. (s,e). To see what the
result is, note that

1

M
WZ {Ug(t —s,x+y£’i+(r,x) —e)

i=

—2Uf(t —s,x —e)+ U(t —s,x +y. (r,x) — e)},

LZ[T—eUg(t =S, ')](r)x) =

and hence
J J Li[7_ U(t —s,)](r, x)p.(s,e)ds de = L*[U,(t, ) ](r, x).
For the whole equation we then have,

SacUe(t, ) S LELTO (£, )1(t%, x) + (%, )T (£, x) + £ (%, x)

for all (t,x) € Q; and a € A. Since this inequality holds for all a, it follows that U, is a subsolution of (9.2) in all of
Qr. O
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We are now in a position to prove the error estimate given in Theorem 8.2.

Proof of Theorem 8.2. Let U, be defined in (9.7). By Proposition 9.5 (i) and Lemma 4.1 (a),
3., = inf {17106, 2(¢%, x) + (¢, )T (6, ) + £ (¢, ) |
ae.
[1—20]
<
- 2
+ (DU, Iy + -+ +ID*U,l)K? |

|a[2U€|0At + C{(|a[2U€|0 + |af3U€|0 + |at2DU8|0 + |at2D2U8|O)At2

< C{|1 —20]e73At + e SALR + s*3k2}
in Q. Moreover, by Proposition 9.5 (ii),
g(x)=U(0,x) > U,(0,x) — C(e + At}/?).
It follows that there is a constant C > 0 such that
U, — CestPs 'C“‘of{s LAY 4y (|1 —20]e At + £ SAL + s—3k2) }

is a classical subsolution of (1.1)-(1.2). By the comparison principle

U, — CePe ‘Calot{e + A2+ t(ll —20le At + e AL2 + 8’31{2)} <u in Qr,
and hence by Proposition 9.5 (ii),

U-u=U-U)+ (U, —u)< C{e + A2 41 -20]e 2At +e A2+ s‘3k2}.

We minimize w.r. t. ¢ and find that

in Q.

C(AtY* + k12 if o #
u—U=<
C(AtP + k%) ifo=

N =N =

The lower bound on u — U follows with symmetric — but much easier — arguments where a smooth supersolution of the
equation (1.1) is constructed. Consistency and comparison for the scheme (9.2) is then used to conclude. In view of
Lemma 4.1, the lower bound is a direct consequence of Theorem 3.1 (a) in [2]. O

10 Numerical results

In the following, we apply the LISL and MCSL schemes to linear and convex test problems in two space-dimensions.
Hence all problems in this section are independent of 8. For the LISL scheme, we choose k = v Ax and a regular
triangular grid, whereas for the MCSL scheme we choose k = Ax and a regular rectangular grid. If not stated otherwise,
we use 6 = 0 (explicit methods), CFL condition At = k?, and approximation 5.1.5 for L*#. As error measure we will
always use the L*-norm, and the error rates are calculated as r; = Inllefizlnllesll_ ~ A1) calculations are done in Matlab,

In [ Ax;[|=In[Ax,_, | °
on an INTEL Core2 Duo Mobile T7700, 2.4Ghz Laptop.

10.1 Linear problem with smooth solution

Our first problem is taken from [4] and has exact solution u(t,x) = (2 — t)sin x; sin x,. The coefficients in (1.1) are given
by
Fo(t,x) =sinx; sinx,[(1+262)(2—-t)—1]

—2(2 — t) cos x; cos x, sin(x; + x5) cos(x; + x5),

(6,x)=0,  bt,x)=0, o%(t,x)=V32 (zglg‘(ll i’;g p g) .
We consider 32 = 0.1 and 8 = 0. Note that in the second case, the scheme considered in [4] is not consistent. Table 2
gives the (spatial) errors and rates obtained at ¢t = 1 applying the LISL and the MCSL scheme. As expected for smooth
solutions, in both cases we obtain order one for the LISL scheme and order two for the MCSL scheme. Here, we have
chosen the grid points such that the solution is monotone in between. Without this, we would still obtain order one for
the LISL scheme, but no convergence for the MCSL scheme. The reason is that for non-monotone data, the interpolation
error of monotone cubic interpolation reduces to second order, and so the choice k = Ax is not longer appropriate.
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p%=0.1 B=0

Ax LISL MCSL LISL MCSL
error rate error rate error rate error rate
3.93e-2 | 3.79e-2 0.86 | 1.03e-3 3.94e-2 0.87 | 1.03e-3

1.96e-2 | 1.93e-2 0.97 | 2.57e-4 2.00 | 1.98e-2 0.99 | 2.57e-4 2.00
9.82e-3 | 9.45e-3 1.03 | 6.42e-5 2.00 | 9.94e-3 0.99 | 6.43e-5 2.00
4.91e-3 | 4.50e-3 1.07 | 1.61le-5 2.00 | 4.70e-3 1.08 | 1.61e-5 2.00
2.45e-3 | 2.43e-3 0.89 | 4.0le-6 2.00 | 2.45e-3 0.94 | 4.02e-6 2.00

Table 2: Results for the smooth linear problem at t = 1 with 32 = 0.1 and 3 = 0, grid adapted to monotonicity

10.2 Linear problem with non-smooth solution

The second problem we test is a problem with non-smooth exact solution in [—, 7]? given by

. X1

. Xy |sint  for —m<x;<0

u(t,x)=(1+t)sin—< = 2 P
2 sin 2 for 0 < x; < m.

The coefficients in (1.1) are given by

. xl( 14+t i ) _
. Xy |sin=2 (14 ==(sin®x; +sin®x )) for —m<x;<0
fet,x)= sin =2 2 4 ! 2 !

2 sin’%(1+%(sin2x1+4sin2x2)) forO<x, <m

) ) Xy %cos% for —m<x;<0
—sinxsinxpcos —° 443, 2

o+ Cos forO<x;<m

c*(t,x) =0, be(t,x) =0, o, x) = ﬁ(sinxl) ’

sin x,

and we pose Dirichlet boundary conditions. This is a monotone non-smooth problem, and we obtain order one half
applying the LISL scheme and order one applying the MCSL scheme, i. e. reduced rates, see Table 3.

LISL MCSL
Ax error rate error rate
3.90e-2 | 8.75e-3 4.19e-3

1.96e-2 | 6.19e-3 0.50 | 2.20e-3 0.93
9.80e-3 | 4.38e-3 0.50 | 1.12e-3 0.97
4.90e-3 | 3.10e-3 0.50 | 5.69e-4 0.98
2.45e-3 | 2.19e-3 0.50 | 2.86e-4 0.99

Table 3: Results for the non-smooth linear problem at t =1

10.3 Optimal control problems with smooth solutions

a) We test an example from [4] with exact solution u(t, x,x,) = (% — t) sin x; sin x,. The corresponding coefficients and
control set in (1.1) are

1 3
fe= (E — t) sin x; sinx, + (E - t) [\/cos2 x; sin? x, + sin? x; cos? x,

— 2sin(x; + x,) cos(x; + x,) cos x; cos x2} ,

sin(x; + x5)

a __ Ol= a=
=0, bi=a, o ﬁ(cos(xl + x5)

), A={aeR?: af+a§=1}.

As o® does not depend on a but b* does, we choose approximation 5.1.4 for L%# and thus need only about half of
the number of interpolations we would need if we had chosen approximation 5.1.5.
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b) The next test problem has exact solution u(t, x;, x,) = (2 — t)sinx; sinx, and coefficients and control set given by
fet,x)=(1—t)sinx; sinxy — 2a;a5(2 — t) cos x; cos x5,

a

c*(t,x)=0, b*(t,x,a)=0, o“z«/ﬁ( ), AZ{aERzzaf—i-a%:l},

Ay

In both examples, the control is discretized on the unit circle by 47" grid points. The results at t = 0.5 are given in Table 4
, Where again the grid is adapted to monotonicity. As expected for smooth solutions, the LISL scheme yields a numerical
order of convergence of one, whereas the MCSL scheme yields order two.

a) b)
Ax LISL MCSL LISL MCSL
error  rate error  rate error  rate error  rate
3.93e-2 | 3.01e-2 8.40e-4 2.18e-2 5.14e-4

1.96e-2 | 1.61e-2 091 | 2.12e-4 1.98 | 1.07e-2 1.03 | 1.29e-4 2.00
9.82e-3 | 8.03e-3 1.00 | 5.30e-5 2.00 | 5.45e-3 0.97 | 3.21e-5 2.00
491e-3 | 3.94e-3 1.03 | 1.33e-5 2.00 | 2.55e-3 1.10 | 8.03e-6 2.00
2.45e-3 | 2.03e-3 0.96 | 3.32e-6 2.00 | 1.34e-3 0.92 | 2.0le-6 2.00

Table 4: Results for optimal control problems at t = 0.5, grid adapted to monotonicity

10.4 Convergence test for a super-replication problem

We consider a test problem from [6] which was used to test convergence rates for numerical approximations of a super-
replication problem from finance we will consider in Subsection 10.5. The corresponding PDE is

inf {afut(t,X) - %tr (a“(t,x)a”(t,x)pu(t,x))} =f(t,x), 0<x;,x,<3 (10.1)

2 2__
ajta;=1

with c%(t,x) = (0;1);1(‘;)(_)2) and n(x) = x(3 — x). We take u(t,x)=1+t2— e~ as exact solution as in [6], and then
2 2

f is forced to be

1 1, 1, 9
f(t,X) = 5 Uy — Ex1x2ux1x1 - EXZ(B _XZ) Uy, x,

1 1 2 2
_\/(_ut + Ex%x2ux1x1 - §X§(3 - XZ)ZUXZXZ) + (xlv X23(3 - XZ)uxlxz)

In [6] n(x) = x, while we take n(x) = x(3 — x) to prevent the LISL scheme from overstepping the boundaries. Note
that changing n does not change the solutions as long as 1 > 0 in the interior of the domain, see [6], and hence the
above equation is equivalent to the equation used in [6]. The initial values and Dirichlet boundary values at x; = 0 and
x5 = 0 are taken from the exact solution. As in [6], at x = 3 and y = 3 homogeneous Neumann boundary conditions are
implemented. To approximate the values of a;, a,, the Howard algorithm is used (see [6]), which requires an implicit
time discretization, so we choose 6 = 1. The minimization is done over a; ; +ia, = e2™*/?Nax k =1,...,N,,, where N,
is the number of space grid points, i.e. Ny, = 3/Ax.

The results at t = 1 are given in Table 5. Again, the numerical order of convergence is approximately one when the LISL
scheme is used and approximately two for the MCSL scheme. Note that compared to the results in [4], for comparable
accuracies the LISL scheme is about ten times faster, the MCSL scheme about 100 to 1000 times faster.

10.5 A super-replication problem

We apply our method to solve a problem from finance, the super-replication problem under gamma constraints considered
in [6]. It consists of solving equation (10.1) with f = 0, Neumann boundary conditions and ¢ as in Subsection 10.4,
and initial and Dirichlet conditions given by

u(t,x)=max(0,1—x;), t=0 or x;=0 or x,=0.
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(a) LISL (b) MCSL

Ax | error | rate | time in s Ax | error | rate | time in s
1.50e-1 | 2.01e-1 0.71 3.00e-1 | 8.21e-2 1.17
7.50e-2 | 9.49e-2 | 1.08 6.76 1.50e-1 | 1.83e-2 | 2.16 11.58

3.75e-2 | 4.29¢e-2 | 1.15 75.73 7.50e-2 | 5.03e-3 | 1.86 | 149.24
1.87e-2 | 1.94e-2 | 1.15 | 1115.39

Table 5: Results for the convergence test for the super-replication problem at t =1

Figure 1: Numerical solution of super-replication problem at t =1

The solution obtained with the LISL scheme is given in Figure 1 and coincides with the solution found in [6]. It gives the
price of a put option of strike and maturity 1, and x; and x, are respectively the price of the underlying and the price of
the forward variance swap on the underlying.

A Monotonicity of solutions of (1.1)

We will discuss a condition ensuring that the solution of (1.1)—(1.2) is monotone along some unit direction e € RV.

(A2) LetecRM,|e|=1.Forallx e RN, a€ A, BE€B,h>0

a®P(t,x +he)=a®P(t,x), b*P(t,x+he)=b*P(¢,x),
cP(t,x +he) > cP(t,x), fOP(t,x+he)>f*F(t,x),
g(x + he) = g(x).

Lemma A.1. Assume (Al) and (A2). If u is a viscosity solution of (1.1)—(1.2), then

u(t,x +he)—u(t,x)>0  forall h>0, (t,x)€Q;.
Proof. Assume that u > 0 and ¢®? < 0 and let v(t,x) = u(t,x + he). Since v(t,x) satisfies (1.1)-(1.2) at the point
(t,x + he), an application of (A2) shows that it also is a supersolution at the point (t,x). By the comparison principle
u < v and the theorem is proved. In the general case consider w = e~ "PusIclf(y + |u|,), and note that w > 0 and the

corresponding c*F-coefficient ¢ —sup,, 5 |c*”|, is non-positive. The first result then applies to w, and hence the theorem
holds for u. O

Remark A.1. This result is not so far from optimal when N > 1 and the solution u is non-smooth (e. g. only Lipschitz
continuous). To see that, we consider the linear case where v = u, := Du - e satisfies

v, = tr[aD*v] + bDv + cv + tr[a,D*u] + b,Du+c,u+f, in Qg

f(tx)
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with e-directional derivatives a,, b,, ¢, and f,. If (A1) holds we can conclude from the comparison principle that
u,=v>0 if f>0 and u,(0,x)>0.

If u is non-smooth, then f is well-defined only if a, = 0 = b,, and the condition that f > 0 is essentially equivalent to
assumption (A2). Of course, it is possible to relax (A2) if N = 1 or solutions are more regular.

Remark A.2. It is important to notice that the result of Lemma A.1 also holds for all PDEs that satisfy (A2) after (mono-
tone) coordinate transformations. In finance there are many such equations, e.g. the Black-Scholes equation for a
European option based on two stocks,

1 1
u, = Ea%xzuxx +p010,x YU, + Eagyzuyy +rlcu, +yu,)—ru, t,x,y >0,

u(0,x,y)=max(0,K —(x+y)), x,y=0.

After the change of variables (x, ¥) = (Inx,In y), this equation reduces to a constant coefficient equation. Since the initial
data is decreasing in x and y, the same is true for the solution u by Lemma A.1. Going back to (x, y) variables, we then
find that u is decreasing also in x and y. (Strictly speaking we must extend u(t,-,-) to R? in a suitable way to apply
Lemma A.1).

B The proof of Theorem 9.2

We will prove the result when k, = 0. The general case can be reduced to this case in a standard way by considering
U/Ry, and U/Rk0 instead of U and U. We use doubling of variables techniques similar to those used to prove this type of
results for equation (1.1). We take

my = |(U(07 ) - 0(07 '))+|0:
m = sup [I(£* = F*)*1o +(1Ulo ADIo)le™ &1, .

M?=4sup [|[o* — 5>+ |b* — B“Ig],
a
where ¢ denotes the positive part of ¢, and define

W(t,X,y) = U(t;x)_ ﬁ(f,)’),

1
o(t,x,y)=mg+tm+ ZKTtM2

1 1 2 2 2
+ SR (Lo + tL)(e + —lx = y ) + 5(1x " + [y,

w(taX,_Y) = W(t,X,J’)_ ¢(t,X,_Y)_7)(1+ t))
m= sup Y(t,x,y)=yP({,%,7),

teArN,

x,y€RN

for £,6,n > 0 and a maximum point (£, %, ¥). A maximum point exists because of the 5-terms in ¢. We will prove that
for any sequence 7; — 0, there is another sequence &, — 0 such that Y (;, %;, #;) < o(1) as Il — co. This implies Theorem
9.2 when k, = 0. To see this, fix t > 0, x, y and note that for any ¢ > 0,

N 1 1 1
U(t,x)—0(t,y) —my—tm — 2o Kr tM?2 — ERkl(t)(L0 +tL)(e + ;Ix -y

<P, %, 7D+ 5, (IxP+lyP+m(1+t)<o(1) as [—oo.

In this inequality we send | — oo and choose
e=|x—y|vt'/’M
to find that
U(t,x) = U(t,y) < mg+ tm+ t'?Kp M + Ry (t)(Lo + tL)|x — yl,

and hence Theorem 9.2 follows since t > 0,x,y were arbitrary. We will not be explicit about the form of the §-terms
below. Their role is only to guarantee that the maximum is attained at a (finite) point (Z, X, ¥), and their contribution
will always be o(1) as 6 — 0 (see also Section 3 in [1]).
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It is enough to prove that for every n > 0, Y (£,%,¥) < o(1) as § — 0. We proceed by contradiction assuming there is an
1 > 0 such that limgs_(f,%, ) > 0. By the definition of 1) we now have W(¢,%,¥) > 0 and > 0 for all 6 > 0 small
enough. The last statement is true since

. L. Lo 1
w(O,x,y)SmoJrLolx—yl—mo—3(8+;|x—y|2)—n<0~

The rest of the proof will aim at getting a contradiction for the case £ > 0. Even if we do not write it like that, what we
show below is that YEENWEALLI) < (1) _ ) as § — 0, and this is impossible since (f,%, 7) is a maximum point of

At
.
We proceed by defining the operator I1%,

M
MLt )02, 7) = 9 {6, x + ¥ (1,2), y + 5557 (1, 9)

i=1

—26(t,%,)+ Bt x + Y& (1x),y + 78 ()}
By the definition of L} and i,‘f and (4.1), it follows that
n (W, -, )10, x, ) = 262 LETU (e, )0 3) = EEL0(E, 91 1) -
We set A := % and subtract the inequalities defining U and U (see (8.1) and (9.1)) to find that
W(t,x,y) SW(t—At,x,y)

+sup {%H“[We(t,-, N x,3) + Ar (e, )W (e, x, ) |

+ AtLlx —y|+ Atm for (t,x),(t,y) €Qr,
where WO(t,x,y) = (1 - 0)W(t — At,x,y)+OW(t,x,y) and t® = t — (1 — 8)At. Note that this new “scheme” is still
monotone by the definition of I1* and the CFL condition. Hence we may replace W in the above inequality by any bigger
function coinciding with W at (t, x, y). By the definition of m,

W<¢+n(l+t)+m in AtNyxR¥ xRN,

and equality holds at (£, X, ). Therefore we find that

(L%, 7)+n(1+D < p(f-ALXF)+n(1+T-At) Q)

+sgp%l’[a[¢;9(f, 5 D1(E%, %, 7) + At L% — 7|+ Atm.

Here we also used the fact that [1*[n(1 + t) + m] = 0 and ¢* < 0. Moreover we can Taylor expand to see that

M

M0 (6,05 %, 3) = D { (V" +¥7) Do + (7 +¥7)- Dy

i=1
1 1
2 +y+T — 2 St o+T | G-p-T
+5ulD2 ¢ - (Y T+ Yy D]+ SulD2 ¢ - (7Y + 777 T)]
1 7 7 —_r— T — -
(D2 ¢ (T T Y T YT 7y,

where Y* = y»*(r,x) and ¥* = 72*(r, y). Note that YY" =Y ®Y for Y € R¥. Now we use (Y2) along with the definition

of ¢, to see that
1 -
L (e, )(rx, ¥) < —Ry, (O(Lo + tL){Zkz(b“(r,X) = b%(r,y)(x = y)
+ K2t (0%(r, %) = 60, Y (r,x) = 5901, ¥) |

+ ke (b%(r, ) = B, y (b1, x) = (1 ) | } +o(1),
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as & — 0. These considerations lead to the following simplification of (x),

¢(Z’)?:5/) - ¢(E - At,ff,f’)
At

1 . 5 1 5 1 R
< 0—Ry, (DL + EL(GM? + Sky|% — 71

n+

1 . } 1 1
+(1- e)szl(t —At)(Ly+(F— At)L)(EMZ + Eklpz -7
+ L|IX—F|+m+o0(1)

1 L1 1. o
< ;Rkl(t)(LO + tL)(EMZ + 5k1|x -7 +L|x— 7| +m+o0(1) :=RHS,

as & — 0. Now we proceed to calculate

(P(t,X,y)— ¢(t _At’xyy)
At ’

5A[¢(t’x’y) =

To do that we note that

Onrtwv) =(Oa )V +udpv — At(8p,u)(OaV).

Since 6 xRy, (t) = k1R (t) we then see that

O ac[Ry, (€)(Lo + tL)] = kqRy (£)(Lo + tL) + Ry, (£)L — AtLky Ry (£),

and hence

. 11 1 . . 1
Sacdp(E,%,7)=m+ EKT;MZ + ERk](t)[kl(Lo +EL)+ L — Atk L] (e + ;li - 71%.

All of this leads to

N <RHS — 65, ¢(£,%,7)<0(1) as &—0.

The last inequality follows from the bound on K;. We have our contradiction and the proof is complete.
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