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1. Introduction

We study the existence of solutions of quasistatic initial-boundary value problems aris-

ing in gradient plasticity with isotropic hardening. The models we study use constitutive

equations with internal variables to describe the deformation behaviour of metals at small
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strain [2, 14, 27, 3]. While gradient plasticity is of high current interest especially for de-

scribing novel effects at very small length scales [16, 11, 13, 12, 1, 28, 4], mathematical

studies of the time continuous higher gradient plasticity problem are still rather scarce.

Recently Reddy [26] (see also Ebobisse [8]) treats a geometrically linear model introduced

by Gurtin [11], essentially different from the model we consider here. We mention also

the very successful energetic approach of Mielke [19, 18] which led to existence results in

both small strain and finite strain models.

Our model has been introduced in Neff et al. [22]. The model features a non-symmetric

plastic distortion p ∈ sl(3) and second spatial gradients of the plastic distortion D2p acting

as dislocation based kinematical backstresses which are directly related to the geometri-

cally necessary dislocations (GND) which induce a long-range interaction. Furthermore,

local kinematical hardening is incorporated as well. Uniqueness of classical solutions for

rate-independent and rate-dependent formulations of this model is shown in [21]. The

more difficult existence question for the rate-independent model in terms of a weak re-

formulation is addressed in [22]. First numerical results for a simplified rate-independent

irrotational formulation (no plastic spin, i.e., symmetric plastic distortion p) are presented

in [23]. A distinguishing feature of this model with kinematical hardening is that, similar

to classical approaches, only the symmetric part εp := sym p of the plastic distortion

appears in the local part of the Eshelby stress tensor σ−h+ sym p, while the higher order

stresses are the only source of non-symmetry. Here, σ is the symmetric Cauchy stress ten-

sor and h+ is the local kinematical hardening modulus. For more on the basic invariance

questions related to this issue, see [29, 20].

Here, we modify the previous model. On one hand we skip the local kinematical

hardening i.e. we put h+ = 0. On the other hand we augment the model with classical

isotropic hardening based on the equivalent plastic strain concept which we understand

to be related to statistically stored dislocations (SSD).1 Thus both different physical

mechanisms related to GND’s and SSD’s contribute in their specific way to the hardening

regime.

The related viscoplastic formulation of dislocation based gradient plasticity with kine-

matical hardening is treated in [24].

Note that equivalent (or accumulated) plastic strain, classically means that a measure

of the total plastic strain, i.e. γ(t) =
∫ t

0

√
2
3
|ε̇p| dt is driving the increase of the yield limit

σy = σ0
y + k γ and thus leads to isotropic hardening. This is tantamount to prescribe the

plastic dissipation to be related to |ε̇p| =
√
|ε̇p|2. In our case, where the plastic distortion

1The isotropic increase of the yield surface will depend only on local measures of equivalent plastic
strain γ. Nonlocal extensions have been discussed in [1, 9, 5, 6, 7].
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p is not necessarily symmetric, the generalization of the former is not unique. Therefore,

we introduce a parameter 0 ≤ α ≤ ∞ and weight the contribution to the dissipation

according to
√
| sym ṗ|2 + α | skew ṗ|2.

If we had chosen, instead, to use the concept of equivalent plastic work, i.e. γ̃(t) =∫ t
0

√
2
3
〈σ, ε̇p〉 dt as a measure of plastic work is driving the increase of the yield limit

σy, then the generalization to nonsymmetric plastic distortions is unique since γ̃(t) =∫ t
0

√
2
3
〈σ, ṗ〉 dt =

∫ t
0

√
2
3
〈σ, sym ṗ+α skew ṗ〉 dt =

∫ t
0

√
2
3
〈σ, sym ṗ〉 dt because the Cauchy

stress tensor σ is symmetric. Therefore, from a modelling point of view, in order to have

both concepts of equivalent plastic strain and equivalent plastic work being based on the

same primitive variable, the parameter value α = 0 would suggest itself. However, we are

presently unable to include a full analysis for α = 0.

The outline of this contribution is as follows: first, we shortly motivate the model

and derive the strong form of equations based on a Cahn-Allen type energetic approach.

Then we reformulate the model in a weak sense as a variational inequality. Existence and

uniqueness is shown in a suitable Hilbert-space.

2. Strong formulation

2.1. The balance equation. The conventional macroscopic force balance leads to the

equation of equilibrium

(2.1) div σ + f = 0

in which σ is the infinitesimal symmetric Cauchy stress tensor and f is the body force.

2.2. Constitutive relations. The constitutive equations are obtained from a free en-

ergy imbalance together with a flow law that characterizes plastic behaviour. Since the

model under study involves plastic spin, we consider an additive decomposition of the

displacement gradient ∇u into elastic and plastic distortions e and p, so that

(2.2) ∇u = e+ p , (∇u)ij =
∂ui
∂xj

,

with the nonsymmetric plastic distortion p incapable of sustaining volumetric changes;

that is,

(2.3) tr p = 0 ⇔ p ∈ sl(3) .

We define εe := sym e = sym(∇u− p) as the infinitesimal elastic strain and εp := sym p is

the plastic strain while ε := sym∇u = (∇u +∇uT )/2 is the total strain. Equation (2.2)
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induces the well known additive decomposition of strains as follows

ε = εe + εp .(2.4)

We consider here a quadratic free energy given in the additively decoupled format

(2.5)

Ψ(∇u, p,Curl p, γ) := Ψlin
e (εe)︸ ︷︷ ︸

elastic energy

+ Ψlin
curl(Curl p)︸ ︷︷ ︸

defect energy (GND)

+ Ψiso(γ)︸ ︷︷ ︸
hardening energy (SSD)

,

where

Ψlin
e (εe) :=

1

2
〈εe,C.εe〉, Ψlin

curl(Curl p) =
µL2

c

2
|Curl p|2, Ψiso(γ) =

1

2
k|γ|2 .

Lc is an energetic intrinsic length scale and k is the positive isotropic hardening con-

stant. The defect energy is related to geometrically necessary dislocations (GND’s) present

through the dislocation density tensor Curl p [25, 15, 10], where the operator Curl is acting

on the rows of any second order tensor X such that Curl∇u = 0. The isotropic hardening

energy is relatede to statistically stored dislocations (SSD’s) phenomenologically through

a measure of equivalent plastic strain γ.

For isotropic media the fourth order elasticity tensor C is given by

(2.6) C.X = 2µX + λ tr(X)I

for any symmetric second-order tensor X, where λ and µ are the Lamé moduli supposed

to satisfy

µ > 0 and 3λ+ 2µ > 0 .

These conditions suffice for pointwise ellipticity of the elasticity tensor in the sense that

there exists a constant m0 > 0 such that for any symmetric second order tensor we have

(2.7) 〈X,C.X〉 ≥ m0|X|2 ,

the magnitude of any second-order tensor X being given by the Frobenius-matrix norm

|X| = 〈X,X〉1/2. The anisotropic case is included by allowing a general C to satisfy (2.7).2

The local free-energy imbalance states that

Ψ̇− 〈σ,∇ut〉 ≤ 0 ⇔ Ψ̇− 〈σ, ė+ ṗ〉 ≤ 0 ⇔ Ψ̇− 〈σ, ε̇e〉 − 〈σ, ṗ〉 ≤ 0 .(2.8)

Now we expand Ψ̇, substitute (2.5) and get

(2.9) 〈C.εe − σ, ε̇e〉 − 〈σ, ṗ〉+ µL2
c〈Curlp,Curlṗ〉+ kγγ̇ ≤ 0 ,

2The defect energy may also be more general, as long as an estimate Ψlin
curl(Curl p) ≥ c+ |Curl p|2 is

satisfied.
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which, using arguments from thermodynamics,3 implies on the one hand the elasticity

relation

(2.10) σ = C.εe = 2µ sym(∇u− p) + λ tr(∇u− p) I

and the reduced dissipation inequality

(2.11) −〈σ, ṗ〉+ µL2
c〈Curl p,Curl ṗ〉+ kγ γ̇ ≤ 0.

Now we integrate (2.11) over Ω and get

0 ≥
∫

Ω

[
−〈σ, ṗ〉+ µL2

c〈Curl p,Curl ṗ〉+ kγγ̇
]
dV

= −
∫

Ω

[
〈σ, ṗ〉+ µL2

c〈Curl Curl p, ṗ〉+
3∑
i=1

div

(
µL2

c

d

dt
pi × (Curl p)i

)
+ kγγ̇

]
dV .

Using the divergence theorem we obtain

(2.12)∫
Ω

[
〈−σ + µL2

c Curl Curl p, ṗ〉+ kγγ̇
]
dV +

3∑
i=1

∫
∂Ω

µL2
c〈
d

dt
pi × (Curl p)i, ~n〉dS ≤ 0 ,

where ~n is the unit outward normal on ∂Ω.

In order to obtain a dissipation inequality in the spirit of classical plasticity, we as-

sume that the infinitesimal plastic distortion p satisfies the so-called linearized insulation

condition

(2.13)
3∑
i=1

∫
∂Ω

µL2
c 〈
d

dt
pi × (Curl p)i, ~n〉dS = 0

In order for the insulation condition to be satisfied we will impose the following boundary

conditions on the plastic distortion:

(2.14) p(x, t) · τ = p(x, 0) · τ on ΓD and Curl p · τ = 0 on ∂Ω \ ΓD ,

where ΓD ⊂ ∂Ω is that part of the boundary where zero Dirichlet conditions on the

displacements u are prescribed.

Under (2.13), we then obtain the dissipation inequality

(2.15)

∫
Ω

[〈σ + Σlin
curl, ṗ〉+ gγ̇]dV ≥ 0 ,

where

Σlin
curl := −µL2

c Curl Curl p and g = −kγ .(2.16)

3The rate ε̇e can be chosen arbitrarily.
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For further use we define the non-symmetric stress tensor

ΣE := σ + Σlin
curl ,(2.17)

the non-symmetry being only related to the nonlocal term Σlin
curl.

2.3. The plastic flow law: dual formulation. The classical yield function for isotropic

hardening von Mises plasticity is given by

φ∞(Σp
∞) := | dev σ|+ g − σy

for the generalized stress Σp
∞ = (σ, g).

Here, given a parameter α ∈ [0,+∞], we consider a yield function φ1/α defined for every

generalized stress Σp = (ΣE, g) by

(2.18) φ1/α(Σp) :=



√
| dev sym ΣE|2 + 1

α
| dev skew ΣE|2 + g − σ0

y if α > 0, | dev ΣE|+ g − σ0
y if ΣE ∈M3×3

sym,

+∞ otherwise
if α = 0,

| dev sym ΣE|+ g − σ0
y if α = +∞ .

Here, σ0
y is the initial yield stress of the material. So the set of admissible (elastic)

generalized stresses is

(2.19) Kα :=
{

Σp = (ΣE, g): φ1/α(Σp) ≤ 0
}
.

If we let Γp = (p, γ) then the maximum dissipation principle gives the normality law

(2.20) Γ̇p ∈ NKα(Σp) ,

where NKα(Σp) denotes the normal cone to Kα at Σp, which is the set of generalised strain

rates Γ̇p that satisfy

(2.21) 〈Σ− Σp, Γ̇p〉 ≤ 0 for all Σ ∈ Kα .

2.4. The plastic flow law: primal formulation. Using convex analysis (Legendre

transformation) the relation (2.20) can be inverted and we find that

(2.22) Γ̇p ∈ NKα(Σp) ⇔ Σp ∈ ∂Dα(Γ̇p) ,

where Dα is the one-homogeneous dissipation function for rate-independent processes

which in this case is defined by

(2.23) Dα(q, β) = sup
{
〈ΣE, q〉+ gβ | φ1/α(ΣE, g) ≤ 0, g ≤ 0

}
.
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α ∈ [0,∞] Dα(q, β) =

α ∈ (0,∞)

 σy

√
| sym q|2 + α | skew q|2 if

√
| sym q|2 + α | skew q|2 ≤ β,

∞ otherwise

α = 0

 σy| sym q| if |sym q| ≤ β,

∞ otherwise

α =∞

 σy|q| if q ∈M3×3
sym and |q| ≤ β,

∞ otherwise

Table 1. The dissipation function Dα(q, β) for α ∈ [0,∞]

By easy calculations, we get the expressions of the dissipation function Dα given in Table

1 below.

Such a case distinction for the dissipation function has been introduced in Mielke [17]

for finite plasticity.

In (2.22), ∂Dα(Γ̇p) denotes the subdifferential of Dα evaluated at Γ̇p. That is,

Σp ∈ ∂Dα(Γ̇p) means that

(2.24) Dα(M) ≥ Dα(Γ̇p) + 〈Σp,M − Γ̇p〉 for any M.

That is,

(2.25) Dα(q, β) ≥ Dα(ṗ, γ̇) + 〈σ + Σlin
curl, q − ṗ〉+ g(β − γ̇) for any (q, β) .

We refer to α = ∞ as irrotational (p is symmetric), α = 1 as equal spin and α = 0 as

free spin case.

2.5. Strong formulation of the model. To summarize, we have obtained the follow-

ing strong formulation for the model of infinitesimal gradient plasticity with isotropic

hardening and plastic spin: Find

(i) the displacement u ∈ H1(0, T ;H1
0 (Ω,ΓD,R3)) satisfying zero Dirichlet conditions

on ΓD,

(ii) the infinitesimal plastic distortion p ∈ H1(0, T ;L2(Ω, sl(3))) for the case α > 0

(while only sym p ∈ H1(0, T ;L2(Ω, sl(3))) for the case α = 0 and p symmetric
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Equilibrium equation: divσ + f = 0 in Ω× [0, T ]

Elasticity relation: σ = C. sym(∇u− p)

Constitutive relation: (σ + Σlin
curl, g) ∈ ∂Dα(ṗ, γ̇) where

Σlin
curl = −µL2

c Curl Curl p and

Dα is defined in (2.23)

Boundary conditions:

 u(x, t) = 0 on ΓD,
p(x, t) · τ = p(x, 0) · τ on ΓD,
Curl p · τ = 0 on ∂Ω \ ΓD

Initial conditions:

 u(x, 0) = u0(x) ,
p(x, 0) = p0(x) ,
γ(x, 0) = γ0(x).

Table 2. Strong primal formulation of the model

and p ∈ H1(0, T ;L2(Ω, sl(3))) for α = +∞) with Curl p(t) ∈ L2(Ω,M3×3) and

Curl Curl p(t) ∈ L2(Ω,M3×3),

(iii) the isotropic hardening variable (the equivalent plastic strain) γ ∈ H1(0, T ;L2(Ω))

such that

3. Weak formulation of the model

Assume that the problem in Section 2.5 has a solution (u, p, γ). Let v ∈ H1(Ω,R3)

with v|ΓD = 0 in the sense of traces. Multiply the equilibrium equation with v − u̇ and

integrate in space to get

(3.1)

∫
Ω

〈σ,∇v −∇u̇〉dV =

∫
Ω

f(v − u̇)dV .

Using the symmetry of σ and the elasticity relation we get

(3.2)

∫
Ω

〈C. sym(∇u− p), sym(∇v −∇u̇)〉dV =

∫
Ω

f(v − u̇)dV .

Now, for any q ∈ C∞(Ω, sl(3)) such that q · τ = 0 on ΓD and any β ∈ L2(Ω), we integrate

(2.25) over Ω, integrate by parts the term with Curl Curl using the boundary conditions

(q − ṗ) · τ = 0 on ΓD, Curl p · τ = 0 on ∂Ω \ ΓD
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and get∫
Ω

Dα(q, β)dV ≥
∫

Ω

Dα(ṗ, γ̇)dV +

∫
Ω

[
(〈σ + Σlin

curl, q − ṗ〉+ g(β − γ̇)
]
dV(3.3)

≥
∫

Ω

Dα(ṗ, γ̇)dV +

∫
Ω

〈C. sym(∇u− p), sym(q − ṗ)〉dV

−µL2
c

∫
Ω

〈Curl Curl p, q − ṗ〉dV −
∫

Ω

kγ(β − γ̇)dV

≥
∫

Ω

Dα(ṗ, γ̇)dV +

∫
Ω

〈C. sym(∇u− p), sym(q − ṗ)〉dV

−µL2
c

∫
Ω

〈Curl p,Curl(q − ṗ)〉dV −
∫

Ω

kγ(β − γ̇)dV .

Now adding up (3.2) and (3.3) we arrive at the following weak formulation of the problem

in Section 2.5 in the form of a variational inequality:∫
Ω

[
〈C. sym(∇u− p), sym(∇v − q)− sym(∇u̇− ṗ)〉+ µL2

c〈Curl p,Curl(q − ṗ)〉

+kγ(β − γ̇)
]
dV +

∫
Ω

Dα(q, β)dV −
∫

Ω

Dα(ṗ, γ̇)dV ≥
∫

Ω

f(v − u̇)dV(3.4)

forall (v, q, β).

4. Existence and uniqueness

4.1. The case α > 0 (with spin). To prove the existence and uniqueness of a solution

of the variational inequality (3.4) for α > 0, we introduce the following function spaces:

V := H1
0 (Ω,ΓD,R3) = {v ∈ H1(Ω,R3): v|ΓD = 0},(4.1)

Qα :=
{
q : Ω→ sl(3): q ∈ Hcurl(Ω,M

3×3), q|ΓD · τ = 0
}
,(4.2)

Λ := L2(Ω),(4.3)

Zα := V ×Qα × Λ,(4.4)

Wα := {z = (v, q, β) ∈ Zα:
√
|sym q|2 + α| skew q|2 ≤ β a.e. in Ω}(4.5)

equipped with the norms

‖v‖V := ‖∇v‖L2 , ‖q‖2
Qα

:= ‖q‖2
L2 + ‖Curl q‖2

L2 ,(4.6)

‖z‖2
Zα

:= ‖v‖2
V + ‖q‖2

Qα
+ ‖β‖2

L2 for z = (v, q, β) ∈ Zα ,(4.7)

and the functionals:
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a(w, z) :=

∫
Ω

[
〈C. sym(∇u− p), sym(∇v − q)〉+ µL2

c〈Curl p,Curl q〉+ kγβ
]
dV(4.8)

jα(z) :=


∫

Ω

Dα(q, β)dV if
√
|sym q|2 + α|skew q|2 ≤ β a.e. in Ω,

+∞ otherwise
(4.9)

〈`, z〉 :=

∫
Ω

f v dV ,(4.10)

for w = (u, p, γ) and z = (v, q, β).

Thus assuming for instance that the model is initially unstressed and undeformed and

this corresponds to f(x, 0) = 0 and u0 = 0, p0 = 0 and γ0 = 0, the weak formulation of

the model in the case α > 0 reads as follows: find w = (u, p, γ) ∈ H1(0, T ;Zα) such that

w(0) = 0, ẇ(t) ∈ Wα for a.e. t ∈ [0, T ] and the variational inequality

(4.11) a(ẇ, z − w) + jα(z)− jα(ẇ) ≥ 〈`, z − ẇ〉 for every z ∈ Wa and for a.e. t ∈ [0, T ]

The existence and uniqueness of the solution of (4.11) is obtained from the following

abstract result by Han-Reddy [14].

Theorem 4.1. Let H be a Hilbert space; K ⊂ H a nonempty, closed, convex cone; a:

H × H → R a bilinear form that is symmetric, bounded on H and coercive on K; ` ∈
H1(0, T ;H ′) with `(0) = 0; and j : H → R nonnegative, convex, positively homogeneous,

and Lipschitz continuous on K. Then there exists a unique solution w ∈ H1(0, T ;H) of

the problem

(4.12) a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t)) ≥ 〈`(t), z − ẇ(t)〉 ∀ z ∈ K ,

satisfying w(0) = 0 and ẇ(t) ∈ K.

While it is easy to see that the set Wα, the functionals jα and ` satisfy the assumptions

of Theorem 4.1 and that the bilinear form a is continuous on Zα, let us show that a is
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coercive on Wα. Let therefore z = (v, q, β) ∈ Wα. Then

a(z, z) ≥ m0 ‖sym(∇v)− sym q‖2
2 + µL2

c ‖Curl q‖2
2 + k ‖β‖2

2 (m0 > 0 is from (2.7))

= m0

[
‖sym(∇v)‖2

2 + ‖sym q‖2
2 − 2〈sym(∇v), sym p〉

]
+ µL2

c ‖Curl q‖2
2 + k ‖β‖2

2

≥ m0

[
‖sym(∇v)‖2

2 + ‖sym q‖2
2 − θ ‖sym(∇v)‖2

2 −
1

θ
‖sym q‖2

2

]
+µL2

c ‖Curl q‖2
2 +

1

2
k ‖sym q‖2

2 +
α

2
k ‖skew q‖2

2 +
1

2
k ‖β‖2

2

(using Young’s inequality and | sym q|2 + α| skew q|2 ≤ β2 from Wα)

= m0(1− θ) ‖sym(∇v)‖2
2 +

[
m0(1− 1

θ
) +

1

2
k

]
‖sym q‖2

2 +
α

2
k ‖skew q‖2

2

+µL2
c ‖Curl q‖2

2 +
1

2
k ‖β‖2

2 .

So, choosing θ such that
1

1 + k
2m0

≤ θ < 1, and using Korn’s first inequality, there exist

two positive constants C1(m0, µ, k, Lc,Ω) > 0, C2(m0, µ, k, Lc, α,Ω) > 0 such that

a(z, z) ≥ C1

[
‖v‖2

V + ‖sym q‖2
2 + α ‖skew q‖2

2 + ‖Curl q‖2
2 + ‖β‖2

2

]
≥ C2

[
‖v‖2

V + ‖q‖2
2 + ‖Curl q‖2

2 + ‖β‖2
2

]
= C2 ‖z‖2

Zα
∀z = (v, q, β) ∈ Wα .(4.13)

Remark that the pointwise control of the skewsymmetric part of q is coming from α > 0

here. In addition, for α > 0 we could as well treat the completely ”microfree case”, i.e.,

the boundary condition for the plastic distortion Curl p · τ = 0 on ∂Ω.

4.2. The case α =∞ (irrotational, no spin). To prove the existence and uniqueness

of the solution of the variational inequality (3.4) for α =∞ is, in fact, quite easy. We only

have to remark that necessarily the plastic distortions p remain symmetric throughout and

have to adapt the Hilbert-space framework accordingly. An irrotational model with linear

kinematic hardening in the spirit of the present approach has been dealt with in [22, 23].

For another irrotational model see [26] and [8], where the full gradient of the plastic strain

is involved in the primal formulation of the flow law, leading to the space H1(Ω,M3×3
sym)

as the appropriate space for infinitesimal plastic strains. Another irrotational gradient

plasticity model has been considered in [6, 7], where gradient effects appear only through

a dependence of the yield limit on spatial gradients of the equivalent plastic strain γ, i.e.

σy = σ0
y + k γ − k3∆γ. This amounts to use Ψiso(γ,∇γ) = 1

2
k|γ|2 + 1

2
k3|∇γ|2 and to set

Lc = 0.
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5. Open problem: The case α = 0 (free spin)

We have seen that for α > 0 the precise form of the defect energy did not really matter.

We could also replace the defect energy by a full gradient term Ψlin
∇ (∇p) = µL2

c

2
‖∇p‖2

without affecting the mathematical development at all.

This changes completely for the free spin case α = 0, in which the form of the defect

energy matters. The interplay between, on one hand, a pointwise control of the symmetric

part of the plastic distortion sym p and on the other hand only a nonlocal control of the

skewsymmetric part skew p by the Curl p-contribution provides for challenging questions.

In order to prove the existence and uniqueness of the solution of the variational in-

equality (3.4) for α = 0, the first task is to provide a suitable Hilbert space environment

where one is able to apply Theorem 4.1. For α = 0 we infer from (4.13) the estimate

a(z, z) ≥ C1

[
‖v‖2

V + ‖sym q‖2
2 + ‖Curl q‖2

2 + ‖β‖2
2

]
.(5.1)

Thus, taking into account the structure of the bilinear form a and the set W0, a natural

attempt for the space of infinitesimal plastic distortions, is to consider the completion

Hsym
curl (Ω,ΓD;M3×3) of the linear space

{q ∈ C∞(Ω,M3×3): tr q = 0, q · τ = 0 on ΓD}

with respect to the norm

(5.2) ‖q‖2
sym, curl := ‖sym q‖2

2 + ‖Curl q‖2
2 .

Despite appearance, this quadratic form indeed defines a norm as shown in [22]. Thus

Theorem 4.1 carries over by replacing Qα with Hsym
curl (Ω,ΓD;M3×3) and using the norm

(5.2). However, in this space it is not immediately obvious how to define a linear bounded

tangential trace operator. We will investigate the detailed properties of this Hilbert space

and the regularity of the obtained solution in a future contribution.
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