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1. Introduction. We study the existence of solutions of quasi-static initial-
boundary value problems arising in gradient viscoplasticity. The models we study use
rate-dependent constitutive equations with internal variables to describe the deforma-
tion behavior of metals at small strain. While gradient plasticity is of high current in-
terest [13, 14, 10, 9], mathematical studies of the time-continuous higher gradient plas-
ticity problem are still rather scarce. Reddy, Ebobisse, and McBride [20] treats a geo-
metrically linear model of Gurtin and Anand [8], different from the model we consider.

Our model has been derived in [15]. Contrary to more classical approaches, the
model features a nonsymmetric plastic distortion field p ∈ M3, a dislocation based
energy storage based on |Curl p| and second gradients of the plastic distortion in the
form of CurlCurl p acting as dislocation based kinematical backstresses. Uniqueness
of classical solutions for rate-independent and rate-dependent formulations is shown
in [19]. The existence question for the rate-independent model in terms of a weak re-
formulation is addressed in [15]. The rate-independent model with isotropic hardening
is treated in [6]. First numerical results for a simplified rate-independent irrotational
formulation (no plastic spin, symmetric plastic distortion p) are presented in [17].
While p is nonsymmetric, a distinguishing feature of our model is that similar to
classical approaches, only the symmetric part εp := sym p of the plastic distortion ap-
pears in the local Cauchy stress σ, while the higher order stresses are nonsymmetric.
For more on the basic invariance questions related to this issue dictating this type of
behavior, see [25, 18].

It is well known that classical viscoplasticity (without gradient effects) gives rise
to a well-posed problem. We extend this result to our formulation of rate-dependent
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gradient plasticity. We allow our model both to include (C1 > 0) or not to include
(C1 = 0) classical linear kinematic hardening. The presence of the nonlocal gradient
term is always related to C2 > 0.

Setting of the problem. Let Ω ⊂ R3 be an open bounded set, the set of
material points of the solid body, with a C1-boundary. By Te we denote a positive
number (time of existence), which can be chosen arbitrarily large, and for 0 < t ≤ Te

Ωt = Ω× (0, t).

The sets M3 and S3 denote the sets of all 3× 3 matrices and of all symmetric 3× 3
matrices, respectively. Unknown in our small strain formulation are the displacement
u(x, t) ∈ R3 of the material point x at time t and the nonsymmetric infinitesimal
plastic distortion p(x, t) ∈ M3.

The model equations of the problem are

− divx σ(x, t) = b(x, t),(1)

σ(x, t) = C(sym(∇xu(x, t)− p(x, t))),(2)

∂tp(x, t) ∈ g
(
Σlin(x, t)

)
, Σlin = Σlin

e +Σlin
sh +Σlin

curl,(3)

Σlin
e = σ, Σlin

sh = −C1 dev sym p, Σlin
curl = −C2 CurlCurl p,

which must be satisfied in Ω× [0, Te). Here, C1, C2 ≥ 0 are given material constants
and Σlin is the infinitesimal Eshelby stress tensor driving the evolution of the plastic
distortion p. The initial condition and Dirichlet boundary condition are

p(x, 0) = p(0)(x), x ∈ Ω,(4)

Curl p(x, t)× τ(x) = 0, (x, t) ∈ ∂Ω× [0, Te),(5)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, Te),(6)

where τ is a normal vector on the boundary ∂Ω. For simplicity we consider only the
homogeneous boundary condition. The elasticity tensor C : S3 → S3 is a linear, sym-
metric, positive definite mapping. Classical linear kinematic hardening is included for
C1 > 0. Here, the nonlocal backstress contribution is given by the dislocation den-
sity motivated term Σlin

curl = −C2 CurlCurl p together with corresponding Neumann
conditions.

For the model we require that the nonlinear constitutive mapping g : M3 → 2M
3

is monotone,1 i.e., it satisfies

0 ∈ g(0),(7)

0 ≤ (v1 − v2) · (v∗1 − v∗2)(8)

for all vi ∈ R3×3, v∗i ∈ g(vi), i = 1, 2. Later on we restrict our attention to the
subdifferential case g = ∂φ. The case of monotone functions g, not necessarily having
the subdifferential structure, will be treated separately in [16]. Given are the volume
force b(x, t) ∈ R

3 and the initial datum p(0)(x) ∈ M3.

1Here 2M
3
denotes the power set of M3.
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Notation. Throughout the work we choose the numbers q, q∗ satisfying the con-
ditions

1 < q, q∗ < ∞ and 1/q + 1/q∗ = 1,

and | · | denotes a norm in Rk, k ∈ N. Moreover, the following notation is used
in this work. The space Wm,q(Ω,Rk) with q ∈ [1,∞] consists of all functions
in Lq(Ω,Rk) with weak derivatives in Lq(Ω,Rk) up to order m. If m is not in-
teger, then Wm,q(Ω,Rk) denotes the corresponding Sobolev–Slobodecki space. We
set Hm(Ω,Rk) = Wm,2(Ω,Rk). The norm in Wm,q(Ω,Rk) is denoted by ‖ · ‖m,q,Ω

(‖ · ‖q := ‖ · ‖0,q,Ω). The operator Γ0 defined by

Γ0 : W 1,q(Ω,Rk) → W 1−1/q,q(∂Ω,Rk)

denotes the usual trace operator. The space Wm,q
0 (Ω,Rk) with q ∈ [1,∞] consists of

all functions v in Wm,q(Ω,Rk) with Γ0v = 0. One can define the bilinear form on the
product space Lq(Ω,M3)×Lq∗(Ω,M3) by

(ξ, ζ)Ω =

∫
Ω

ξ(x) · ζ(x)dx.

On Lq(Ω,S3)×Lq∗(Ω,S3) we define another bilinear form involving the elasticity ten-
sor C by

[ξ, ζ]Ω = (Cξ, ζ)Ω.

The space

LqCurl(Ω,M3) = {v ∈ Lq(Ω,M3) | Curl v ∈ Lq(Ω,M3)}
is a Banach space with respect to the norm

‖v‖q,Curl = ‖v‖q + ‖Curl v‖q.
The well known result on the generalized trace operator can be easily adapted to the
functions with values in M3 (see [24, section II.1.2]). Then, according to this result,
there is a bounded operator Γτ on LqCurl(Ω,M3)

Γτ : LqCurl(Ω,M3) → (
W 1−1/q∗,q∗(∂Ω,M3)

)∗
with

Γτv = v × τ
∣∣
∂Ω

if v ∈ C1(Ω̄,M3),

where X∗ denotes the dual of a Banach space X . Moreover, analogically to the
derivation of the generalized Green formula in [24, section II.1.2] one can obtain that
the generalized Stokes formula(

v,Curlφ
)
Ω
=
(
Curl v, φ

)
Ω
+
(
Γτv,Γ0φ

)
∂Ω

(9)

holds for all v ∈ LqCurl(Ω,M3) and φ ∈ W 1,q∗(Ω,M3). Here (·, ·)∂Ω denotes the

duality pairing between W 1−1/q∗,q∗(∂Ω,M3) and
(
W 1−1/q∗,q∗(∂Ω,M3)

)∗
. Next,

LqCurl,0(Ω,M3) = {w ∈ LqCurl(Ω,M3) | Γτ (w) = 0}.
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Let us define a space V q(Ω,Rk) by

V q(Ω,M3) = {v ∈ Lq(Ω,M3) | div v,Curl v ∈ Lq(Ω,M3),Γτv = 0},

which is a Banach space with respect to the norm

‖v‖V q = ‖v‖q + ‖Curl v‖q + ‖ div v‖q.

According to [12, Theorem 2]2 the space V q(Ω,M3) is continuously embedded into
W 1,q(Ω,M3). In the case of a bounded domain Ω with a connected smooth boundary
the embedding holds with the estimate [12, Theorem 2]

‖v‖q + ‖∇v‖q ≤ C(‖Curl v‖q + ‖ div v‖q),(10)

where C = C(Ω, q) (see the appendix). We also define the space V q
Curl(Ω,M3) by

V q
Curl(Ω,M3) = {v ∈ Lq(Ω,M3) | Curl v ∈ V q(Ω,M3)},

which is a Banach space with respect to the norm

‖v‖V q
Curl

= ‖v‖V q + ‖CurlCurl v‖q.

For functions v defined on Ω × [0,∞) we denote by v(t) the mapping x �→ v(x, t),
which is defined on Ω. The space Lq(0, Te;X) denotes the Banach space of all Bochner-
measurable functions u : [0, Te) → X such that t �→ ‖u(t)‖qX is integrable on [0, Te).
Finally, we frequently use the spaces Wm,q(0, Te;X), which consist of Bochner mea-
surable functions having q-integrable weak derivatives up to order m.

Main result. In this work we restrict our attention to monotone functions g
which are given by the subdifferential of a proper convex lower semicontinuous func-
tion, i.e.,

g = ∂φ,

where φ : M3 → R̄ (R̄ := R∪{∞}) is a proper convex lower semicontinuous function.
(See section 3 for basics on convex analysis.) We also require that the function φ
satisfy the two-sided estimate

a0|v|q − b0 ≤ φ(v) ≤ a1|v|q + b1(11)

for positive a0 and a1, some b0 and b1, and any v ∈ M3. The last condition on φ
implies that

φ∗(v) ≥ c|v|q∗ − d

for positive c, some d, and any v ∈ M3, where φ∗ is the Legendre–Fenchel conjugate
of φ. Note that q = 1 is excluded in assumption (11); it would correspond to a
rate-independent model.

Next, we present some intuitive ideas which lead to the definition of weak solutions
for the initial boundary value problem (1)–(6). Let us assume that the functions

2This theorem has to be applied to each row of a function with values in M3 to obtain the
desired result.
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(u, σ, p) have the regularities

(u, σ) ∈ W 1,1(0, Te;H
1
0 (Ω,R

3)× L2(Ω,S3)),

p ∈ W 1,1(0, Te;V
2
Curl(Ω,M3)), Σlin ∈ Lq(ΩTe ,M3);

for every t ∈ [0, Te] the function (u(t), σ(t)) is a weak solution of the boundary value
problem formed by (1)–(2) and (6) with the given sym p(t), and the equations (3)–(5)
are satisfied for a.e. (x, t), and b is smooth enough. Then, since the inclusion (3) holds
pointwise, from the Young–Fenchel inequality (17), which is just equality in our case,
we have that

φ∗(∂tp(x, t)) + φ(Σlin(x, t)) = Σlin(x, t) · ∂tp(x, t).

Integrating the last relation over Ω and taking into account (2) then yield for all t∫
Ω

(
φ∗(∂tp(x, t)) + φ(Σlin(x, t))

)
dx =

∫
Ω

(
σ · (∂t sym(∇xu)− ∂tC

−1σ
)

− ∂tp ·
(
C1 dev sym p+ C2 CurlCurl p

))
dx.(12)

If we now test (1) with the function ∂tu, we obtain that for all t(
σ(t), ∂t sym(∇xu(t))

)
Ω
= (b(t), ∂tu(t))Ω .

Then inserting the last identity into (12), using the boundary condition (5), and
integrating the result over (0, t) with t ∈ (0, Te) gives the inequality

1

2

∫
Ω

C
−1σ(x, t) · σ(x, t)dx + C1‖ dev sym p(t)‖22 + C2‖Curl p(t)‖22

+

∫ t

0

∫
Ω

(
φ∗(∂sp(x, s)) + φ(Σlin(x, s))

)
dxds ≤

∫ t

0

(b(s), ∂su(s))Ω ds(13)

+
1

2

∫
Ω

C
−1σ(0)(x) · σ(0)(x)dx + C1‖ dev sym p(0)‖22 + C2‖Curl p(0)‖22,

which is satisfied for all t ∈ (0, Te). Here, the function σ(0) ∈ L2(Ω,S3) is determined
by (1)–(2) and (6) for given p(0) and b(0). Obviously, σ(0) = σ(0).

Conversely, it can be shown that if the functions (u, σ, p), which enjoy the in-
equality (13) with appropriately chosen σ(0), are such that the function (u(t), σ(t))
is a weak solution of the boundary value problem (14)–(16) for every t ∈ [0, Te] with

ε̂p = sym p(t), b̂ = b(t), and have the above regularities and the initial value of p is
equal to p(0), then these functions are a solution of the initial boundary value prob-
lem (1)–(6). Indeed, if σ(0) is taken as the solution of the elliptic problem formed
by (1)–(2) and (6) for given p(0) and b(0), we get that σ(0) = σ(0) and the following
identities hold:

(
C

−1σ(t), σ(t)
)
Ω
− (C−1σ(0), σ(0)

)
Ω
=

∫
Ωt

∂

∂s

(
C

−1σ(x, s) · σ(x, s)) dsdx,
∥∥ dev sym p(t)

∥∥2
2
− ∥∥ dev sym p(0)

∥∥2
2
=

∫ t

0

∂

∂s
‖ dev sym p(s)‖22ds,
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and

∥∥Curl p(t)∥∥2
2
− ∥∥Curl p(0)∥∥2

2
=

∫ t

0

∂

∂s
‖Curl p(s)‖22ds.

Then, the inequality (13) can be rewritten as follows:∫
Ωt

(
C

−1∂sσ · σ + dev sym p · ∂sp+ C2(Curl ∂sp · Curl p)

+ φ∗(∂sp(x, s)) + φ(Σlin(x, s))
)
dsdx ≤

∫
Ωt

b · (∂su)dsdx.

Handling (1)–(2) as above we obtain that the last inequality takes the form∫
Ωt

(
dev sym p · ∂sp+ C2(CurlCurl p · ∂sp) + φ∗(∂sp(x, s)) + φ(Σlin(x, s))

)
dsdx

≤
∫
Ωt

σ(x, s) · ∂sp(x, s)dsdx

or, equivalently,∫
Ωt

(
φ∗(∂sp(x, s)) + φ(Σlin(x, s))

)
dsdx ≤

∫
Ωt

Σlin(x, s) · ∂sp(x, s)dsdx.

Therefore, by the equivalence result for convex integrands in section 3 we may conclude
that the inclusion (3) is satisfied pointwise. The pointwise meaning of (4) and (5)
follows from the assumed regularity of (u, σ, p).

We note that the inequality (13) has a pointwise meaning under less regularity
assumptions on functions (u, σ, p) as in the above computations, where we have shown
the equivalence between the pointwise inclusion (3) and the inequality (13) for a
certain class of functions. Therefore, the above computations suggest the following
notion of weak solutions for the initial boundary value problem (1)–(6).

Definition 1.1. A function (u, σ, p) such that

(u, σ) ∈ W 1,q∗(0, Te;W
1,q∗
0 (Ω,R3)× Lq

∗
(Ω,S3)), Σlin ∈ Lq(ΩTe ,M3),

p ∈ W 1,q∗(0, Te;L
q∗(Ω,M3)) ∩ Lq

∗
(0, Te;V

q∗
Curl(Ω,M3))

with

(σ, dev sym p,Curl p) ∈ L∞(0, Te;L
2(Ω,S3 ×M3 ×M3))

is called a weak solution of the initial boundary value problem (1)–(6) if for every
t ∈ [0, Te] the function (u(t), σ(t)) is a weak solution of the boundary value problem

(14)–(16) with ε̂p = sym p(t) and b̂ = b(t), the initial condition (4) is satisfied, and
the inequality (13) holds with the function σ(0) ∈ L2(Ω,S3) determined by (14)–(16)

for ε̂p = sym p(0) and b̂ = b(0).
Next, we state the main result of this work.
Theorem 1.2. Suppose that 1 < q∗ ≤ 2 ≤ q < ∞. Assume that Ω ⊂ R

3 is an
open bounded set with a C1-boundary. Let the functions b ∈ W 1,q(0, Te;L

q(Ω,R3))
and p(0) ∈ L2

Curl(Ω,M3) be given. Assume that the function φ : M3 → R̄ satisfies
condition (11). Then there exists a weak solution (u, σ, p) of the initial boundary value
problem (1)–(6).
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Remark 1.3. Viscoplasticity is typically included in the former conditions by
choosing the function g to be in Norton–Hoff form, i.e.,

g(Σ) = [|Σ| − σy]
r
+

Σ

|Σ| , Σ ∈ M3 ,

where σy is the flow stress and r is some parameter together with [x]+ := max(x, 0).
If g : M3 → S3, then the flow is called irrotational (no plastic spin).

2. The Helmholtz projection on tensor fields. In this section we present
some auxiliary material without proofs concerning projection operators to spaces of
tensor fields, which are symmetric gradients, and to spaces of tensor fields with van-
ishing divergence. For details see [2].

In the linear elasticity theory it is well known (see [7, Theorem 10.15]) that a
Dirichlet boundary value problem formed by the equations

− divx σ(x) = b̂(x), x ∈ Ω,(14)

σ(x) = C(sym (∇xu(x))− ε̂p(x)), x ∈ Ω,(15)

u(x) = 0, x ∈ ∂Ω,(16)

to given b̂ ∈ W−1,q(Ω,R3) and ε̂p ∈ Lq(Ω,S3) has a unique weak solution (u, σ) ∈
W 1,q

0 (Ω,R3)×Lq(Ω,S3) provided the open set Ω has a C1-boundary. Here the number

q satisfies 1 < q < ∞. For b̂ = 0 the solution of (14)–(16) satisfies the inequality

‖ sym(∇xu)‖q ≤ C‖ε̂p‖q
with some positive constant C.

Definition 2.1. For every ε̂p ∈ Lq(Ω,S3) we define a linear operator Pq :
Lq(Ω,S3) → Lq(Ω,S3) by

Pq ε̂p := sym(∇xu),

where u ∈ W 1,q
0 (Ω,R3) is the unique weak solution of (14)–(16) to the given function

ε̂p and b̂ = 0.
Next, a subset Gq of Lq(Ω,S3) is defined by

Gq = {sym(∇xu) | u ∈ W 1,q
0 (Ω,R3)}.

The main properties of Pq are stated in the following lemma.
Lemma 2.2. The operator Pq is a bounded projector onto the subset Gq of

Lq(Ω,S3). The projector (Pq)
∗ adjoint with respect to the bilinear form [ξ, ζ]Ω :=

(Cξ, ζ)Ω on Lq(Ω,S3)× Lq
∗
(Ω,S3) satisfies

(Pq)
∗ = Pq∗ .

This implies ker(Pq) = Hq
sol with

Hq
sol = {ξ ∈ Lq(Ω,S3) | [ξ, ζ]Ω = 0 for all ζ ∈ Gq∗}.

Since C is symmetric, the relation [ξ, ζ]Ω = 0 holds for all ζ ∈ Gq∗ iff

(Cξ,∇xv)Ω = (Cξ, sym(∇xv))Ω = [ξ, sym(∇xv)]Ω = 0
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for all v ∈ W 1,q∗
0 (Ω,R3). Consequently

Hq
sol = {ξ ∈ Lq(Ω,S3) | div(Cξ) = 0}.

Therefore, the projection operator

Qq = (I − Pq) : L
p(Ω,S3) → Lp(Ω,S3)

with Qq(L
q(Ω,S3)) = Hq

sol is a generalization of the classical Helmholtz projection.
Let L : S3 → S3 be the linear, positive semidefinite mapping given by

Lv = C1 dev v.

The next result is needed for the subsequent analysis.
Corollary 2.3. Let (CPq+L)

∗ be the operator adjoint to CPq+L : Lq(Ω,S3) →
Lq(Ω,S3) with respect to the bilinear form (ξ, ζ)Ω on the product space Lq(Ω,S3) ×
Lq

∗
(Ω,S3). Then (CPq + L)∗ = CPq∗ + L. Moreover, the operator CQ2 + L is

nonnegative and self-adjoint. For the proof of this result see [1].

3. Basic facts from convex analysis. In this section we briefly recall some
basic facts about convex functions, their subdifferentials, and the surjectivity results
for them.

Let V be a reflexive Banach space with the norm ‖ ·‖ and let V ∗ be its dual space
with the norm ‖ · ‖∗. The brackets 〈·, ·〉 denote the duality pairing between V and
V ∗. Throughout this section, by V we mean a reflexive Banach space.

For a function φ : V → R̄ the sets

dom(φ) = {v ∈ V | φ(v) < ∞}, epi(φ) = {(v, t) ∈ V × R | φ(v) ≤ t}
are called the effective domain and the epigraph of φ, respectively. One says that the
function φ is proper if dom(φ) �= ∅ and φ(v) > −∞ for every v ∈ V . The epigraph is
a nonempty closed convex set iff φ is a proper lower semicontinuous convex function
or, equivalently, iff φ is a proper weakly lower semicontinuous convex function (see
[26, Theorem 2.2.1]).

The Legendre–Fenchel conjugate of a proper convex lower semicontinuous func-
tion φ : V → R̄ is the function φ∗ defined for each v∗ ∈ V ∗ by

φ∗(v∗) = sup
v∈V

{〈v∗, v〉 − φ(v)}.

The Legendre–Fenchel conjugate φ∗ is convex, lower semicontinuous, and proper on
the dual space V ∗. Moreover, the Young–Fenchel inequality holds

∀v ∈ V, ∀v∗ ∈ V ∗ : φ∗(v∗) + φ(v) ≥ 〈v∗, v〉 ,(17)

and the inequality φ ≤ ψ implies ψ∗ ≤ φ∗ for any two proper convex lower semicon-
tinuous functions ψ, φ : V → R̄ (see [26, Theorem 2.3.1]).

Due to Proposition II.2.5 in [3] a proper convex lower semicontinuous function φ
satisfies the identity

int dom(φ) = int dom(∂φ),(18)

where ∂φ : V → 2V
∗
denotes the subdifferential of the function φ. We note that the

equality in (17) holds iff v∗ ∈ ∂φ(v).
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Remark 3.1. We recall that the subdifferential of a lower semicontinuous proper
and convex function is maximal monotone3 (see [3, Theorem II.2.1]).

The next surjectivity result on subdifferentials of convex functions is one of the
key tools in the proof of our main existence result.

Theorem 3.2. Let A := ∂φ, where φ : V → R̄ is a proper convex lower semi-
continuous function on V . Then the following conditions are equivalent:4

lim
‖v‖→∞

φ(v)

‖v‖ = ∞;(19)

R(A) = V ∗ and A−1 is bounded.(20)

Proof. See [3, Theorem II.2.6], for example.
To state our next result, we recall that the relation

∂φ+ ∂ψ = ∂(φ+ ψ)

holds for any two convex functions ψ and φ if there exists a point in dom(φ)∩dom(ψ),
where φ is continuous (see [23, Proposition II.7.7]). Then, since a proper convex
lower semicontinuous function is continuous on the interior of its domain [3, Proposi-
tion II.2.2], we get the following important result.

Proposition 3.3. Let φ be a proper convex lower semicontinuous function and
ψ be convex. Suppose that (

int dom(φ)
) ∩ dom(ψ) �= ∅.(21)

Then

∂φ+ ∂ψ = ∂(φ+ ψ).

Now we turn to some examples of convex functions which will show up in the
next section.

Convex integrands. For a proper convex lower semicontinuous function φ :
Rk → R̄ we define a functional Iφ on Lq(Ω,Rk) by

Iφ(v) =

{∫
Ω φ(v(x))dx, φ(v) ∈ L1(Ω,Rk),

+∞ otherwise,

where Ω is a bounded domain in RN with some N ∈ N. Due to Proposition II.8.1 in
[23] the functional Iφ is proper, convex, lower semicontinuous, and v∗ ∈ ∂Iφ(v) iff

v∗ ∈ Lq
∗
(Ω,Rk), v ∈ Lq(Ω,Rk), and v∗(x) ∈ ∂φ(v(x)) a.e.

Due to the result of Rockafellar in [21, Theorem 2] the Legendre–Fenchel conjugate
of Iφ is equal to Iφ∗ , i.e., (

Iφ
)∗

= Iφ∗ ,

where φ∗ is the Legendre–Fenchel conjugate of φ.

3A monotone mapping A : V → 2V
∗
is called maximal monotone iff the inequality

〈v∗ − u∗, v − u〉 ≥ 0 ∀ u ∈ V and u∗ ∈ A(u)

implies v∗ ∈ A(v).
4Here R(A) denotes the range of the operator A.
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Boundary value problems. Let Ω ⊂ R3 be an open bounded set with a
Lipschitz boundary. For every v ∈ L2(Ω,M3) we define a functional Ψ on L2(Ω,M3)
by

Ψ(v) =

{
1
2

∫
Ω |Curl v(x)|2dx, v ∈ L2

Curl(Ω,M3),

+∞ otherwise.

It is easy to check that Ψ is proper, convex, and lower semicontinuous. The next
lemma gives a precise description of the subdifferential ∂Ψ.

Lemma 3.4. We have that ∂Ψ = CurlCurl with

dom(∂Ψ) = V 2
Curl(Ω,M3).

Proof. Let A : L2(Ω,M3) → L2(Ω,M3) be the linear operator defined by

Av = Curl Curl v

and dom(A) = V 2
Curl(Ω,M3). Due to Lemma 4.1, the identity∫
Ω

CurlCurl v(x) · w(x)dx =

∫
Ω

Curl v(x) · Curlw(x)dx(22)

holds for any v, w ∈ V 2
Curl(Ω,M3). Therefore, using (22) we obtain∫

Ω

CurlCurl v · (w − v)dx =

∫
Ω

Curl v · (Curlw − Curl v)dx ≤ Ψ(w)−Ψ(v)

for every v, w ∈ dom(A). This shows that A ⊂ ∂Ψ. Since A is maximal monotone
(see Corollary 4.3) we conclude that A = ∂Ψ.

4. Some properties of the Curl Curl-operator. In this section we collect
some properties of the CurlCurl-operator, which are relevant to further investigations.

Lemma 4.1 (self-adjointness of Curl Curl). Let Ω ⊂ R3 be an open bounded set
with a Lipschitz boundary and A : L2(Ω,M3) → L2(Ω,M3) be the linear operator
defined by

Av = Curl Curl v

with dom(A) = L2
Curl(Ω,M3). The operator A is self-adjoint and nonnegative.

Proof. Indeed, let us consider first the following linear closed operator S :
L2(Ω,M3) → L2(Ω,M3) defined by

Sv = Curl v, v ∈ dom(S) = L2
Curl(Ω,M3).

It is easily seen that its adjoint is given by

S∗v = Curl v, v ∈ dom(S∗) = L2
Curl,0(Ω,M3).

Then, by Theorem V.3.24 in [11], the operator S∗S with

dom(S∗S) = {v ∈ dom(S) | Sv ∈ dom(S∗)},
which is exactly the operator A, is self-adjoint in L2(Ω,M3). The nonnegativity of
A follows from its representation by the operator S, i.e., A = S∗S, and the identity

(Av, u)Ω = (S∗Sv, u)Ω = (Sv, Su)Ω,

which holds for all v ∈ dom(A) and u ∈ dom(S).
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Remark 4.2. We note that the nonnegativity of A defined in Lemma 4.1 can
be shown directly by using the generalized Stokes formula (9) and the density of the
space C∞(Ω̄,M3) in L2

Curl(Ω,M3) (see [5, Lemma VII.4.1]).
Corollary 4.3. The operator A : L2(Ω,M3) → L2(Ω,M3) defined in Lemma 4.1

is maximal monotone.
Proof. According to the result of Brezis (see [4, Theorem 1]), a linear monotone

operator A is maximal monotone if it is a densely defined closed operator such that
its adjoint A∗ is monotone. The statement of the corollary then follows directly from
Lemma 4.1 and the result of Brezis.

In the following lemma we prove that the CurlCurl-operator is closed as an op-
erator acting from Lq(Ω,M3) into Lq(Ω,M3). This result is irrelevant to further
investigations and is stated here only for completeness. In contrast to Lemma 4.1,
where the closedness of the CurlCurl-operator as an operator from L2(Ω,M3) into
L2(Ω,M3) follows directly from its self-adjointness, to show the similar result for the
CurlCurl-operator as an operator from Lq(Ω,M3) into Lq(Ω,M3) we require some
additional regularity of the open bounded set Ω in order to apply the results in [12,
Theorem 2].

Lemma 4.4 (closedness of Curl Curl). Let Ω ⊂ R3 be a domain with a smooth
connected boundary. Then the operator A : dom(A) ⊂ Lq(Ω,M3) → Lq(Ω,M3) given
by

Av(x) := Curl Curl v(x) with dom(A) = V q
Curl(Ω,M3)

is closed.
Proof. Let vn ∈ D(A) be a sequence such that vn and Avn converge strongly

in Lq(Ω,M3) to v0 and y0, respectively. The function wn := Curl vn ∈ V q(Ω,M3)
solves the problem

Curlwn(x) = fn(x), x ∈ Ω,

divwn(x) = 0, x ∈ Ω,

Γτwn = 0,

where fn := Avn. Since the boundary ∂Ω is connected, by inequality (10) the function
wn ∈ V q(Ω,M3) satisfies the inequality

‖wn‖q + ‖∇wn‖q ≤ C(‖Curlwn‖q + ‖ divwn‖q) = C‖fn‖q(23)

with a constant C independent of wn. Inequality (23) yields that wn is a Cauchy
sequence in W 1,q(Ω,M3) with the limit denoted by w0. Therefore, w0 belongs to
V q(Ω,M3) and solves the following problem:

Curlw0(x) = y0(x), x ∈ Ω,(24)

divw0(x) = 0, x ∈ Ω,(25)

Γτw0 = 0.(26)

Since vn and wn converge strongly in Lq(Ω,M3) to v0 and w0, respectively, and
LqCurl(Ω,M3) is a Banach space with respect to the norm ‖ · ‖q,Curl, we conclude that

w0 = Curl v0.

Equations (24)–(26) yield that v0 ∈ V q
Curl(Ω,M3). The proof of Lemma 4.4 is com-

plete.
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5. Existence of weak solutions. In this section we prove the main existence re-
sult for (1)–(6). To show the existence of weak solutions a time-discretization method
is used in this work. In the first step, we prove the existence of the solutions of
the time-discretized problem in appropriate Hilbert spaces based on the Helmholtz
projection in L2(Ω,S3) (section 2) and the methods of convex analysis (section 3).
In the second step, we derive the uniform a priori estimates for the solutions of the
time-discretized problem using growth condition (11) and then we pass to the weak
limit in the equivalent formulation of the time-discretized problem employing the weak
lower semicontinuity of lower semicontinuous convex functions. We note that due to
the uniform a priori estimates obtained here based on growth condition (11), some
regularity of the solutions of the time-discretized problem is lost in the passage from
discrete to continuous time.

Proof of Theorem 1.2. Let us recall that 1 < q∗ ≤ 2 ≤ q < ∞. We show the
existence of weak solutions using the Rothe method (a time-discretization method;
see [22] for details). In order to introduce a time-discretized problem, let us fix any
m ∈ N and set

h :=
Te
2m

, p0m := p(0), bnm :=
1

h

∫ nh

(n−1)h

b(s)ds ∈ Lq(Ω,R3), n = 1, . . . , 2m.

Then we are looking for functions unm ∈ H1(Ω,R3), σnm ∈ L2(Ω,S3), and pnm ∈
V 2
Curl(Ω,M3) with

Σlin
n,m := σnm − C1 dev sym pnm − 1

m
pnm − C2 CurlCurl p

n
m ∈ Lq(Ω,M3)

solving the problem

− divx σ
n
m(x) = bnm(x),(27)

σnm(x) = C(sym(∇xu
n
m(x)− pnm(x))),(28)

pnm(x)− pn−1
m (x)

h
∈ ∂φ

(
Σlin
n,m(x)

)
,(29)

together with the boundary conditions

Curl pnm(x) × τ(x) = 0, x ∈ ∂Ω,(30)

unm(x) = 0, x ∈ ∂Ω.(31)

Next, we adopt the reduction technique proposed in [1] to the above equations. Let
(unm, σ

n
m, p

n
m) be a solution of the boundary value problem (27)–(31). The equations

(27)–(28), (31) form a boundary value problem for the solution (unm, σ
n
m) of the prob-

lem of linear elasticity. Due to linearity of this problem we can write these components
of the solution in the form

(unm, σ
n
m) = (ũnm, σ̃

n
m) + (v̂nm, σ̂

n
m)

with the solution (v̂nm, σ̂
n
m) of the Dirichlet boundary value problem (14)–(16) to the

data b̂ = bnm, ε̂p = 0, and with the solution (ũnm, σ̃
n
m) of the problem (14)–(16) to the

data b̂ = 0, ε̂p = sym(pnm). We thus obtain

sym(∇xu
n
m)− sym(pnm) = (P2 − I)sym(pnm) + sym(∇xv̂

n
m).
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We insert this equation into (28) and get that (29) can be rewritten in the form

pnm − pn−1
m

h
∈ ∂Iφ

(−Mmp
n
m − C2 Curl Curl p

n
m + σ̂nm

)
,(32)

Curl pnm(x) × τ(x) = 0, x ∈ ∂Ω,(33)

where

Mm := (CQ2 + L) sym+
1

m
I : L2(Ω,M3) → L2(Ω,M3)

with the Helmholtz projection Q2 and Iφ is given by

Iφ(v) =

{∫
Ω
φ(v(x))dx, φ(v) ∈ L1(Ω,R),

+∞ otherwise.

We recall that the functional Iφ is proper, convex, and lower semicontinuous (see
section 3). Since (Iφ)

∗ = Iφ∗ , the problem (32)–(33) reads

∂Ψ(pnm) � σ̂nm,(34)

where

Ψ(v) = Iφ∗

(
v − pn−1

m

h

)
+Φ1(v) + Φ2(v).

Here, the functional Φ1 : L2(Ω,M3) → R̄ and the functional Φ2 : L2(Ω,M3) → R̄

are given by

Φ1(v) :=
1

2
‖M1/2

m v‖22 and Φ2(v) :=

{
1
2

∫
Ω
|Curl v(x)|2dx, v ∈ L2

Curl(Ω,M3),

+∞ otherwise,

respectively. The facts that Φ2 is a proper convex lower semicontinuous functional
and that CurlCurl = ∂Φ2 are proved in section 3. To see that Φ1 has similar prop-
erties as well, we note first that Mm is a bounded and positive definite operator (see
Corollary 2.3 and the definition of Mm). Thus, it is maximal monotone by Theo-
rem II.1.3 in [3]. Since by Corollary 2.3 the operator Mm is also self-adjoint, one has
that Mm = ∂Φ1 by Proposition II.2.7 in [3]. All other properties of Φ1 follow from
its definition. The last thing we have to verify is whether the relation

∂Ψ = ∂Iφ∗ + ∂Φ1 + ∂Φ2

holds. By condition (11) and the definition of Φ1, we conclude that the domains
of Iφ∗ and Φ1 are equal to the whole space L2(Ω,M3). Therefore, condition (21)
is fulfilled and, since all functionals are proper, convex, and lower semicontinuous,
Proposition 3.3 gives the desired result. With the relation (18) in hand, the last
observation implies that

dom(∂Ψ) = dom(∂Φ2) := V 2
Curl(Ω,M3).

Since Φ1 is coercive in L2(Ω,M3), which obviously yields the coercivity of Ψ, the
operator A = ∂Ψ is surjective by Theorem 3.2. Thus, we conclude that (34) as well
as the problem (32)–(33) have the solutions with the required regularity, i.e., pnm ∈
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V 2
Curl(Ω,M3). By the constructions this implies that the boundary value problem

(27)–(31) is solvable as well (for more detail see [1]).
Rothe approximation functions. For any family {ξnm}n=0,...,m of functions in a

reflexive Banach space X , we define the piecewise affine interpolant ξm ∈ C([0, Te], X)
by

ξm(t) :=

(
t

h
− (n− 1)

)
ξnm +

(
n− t

h

)
ξn−1
m for (n− 1)h ≤ t ≤ nh(35)

and the piecewise constant interpolant ξ̄m ∈ L∞(0, Te;X) by

ξ̄m(t) := ξnm for (n− 1)h < t ≤ nh, n = 1, . . . , 2m, and ξ̄m(0) := ξ0m.(36)

For further analysis we recall the following property of ξ̄m and ξm:

‖ξm‖Lq(0,Te;X) ≤ ‖ξ̄m‖Lq(−h,Te;X) ≤
(
h‖ξ0m‖qX + ‖ξ̄m‖qLq(0,Te;X)

)1/q
,(37)

where ξ̄m is formally extended to t ≤ 0 by ξ0m and 1 ≤ q ≤ ∞ (see [22]).
A priori estimates. Multiplying (27) by (unm − un−1

m )/h and then integrating
over Ω we get(

σnm, sym(∇x(u
n
m − un−1

m )/h)
)
Ω
=
(
bnm, (u

n
m − un−1

m )/h
)
Ω
.

The Fenchel property and (28), (29) yield for a.e. x ∈ Ω

σnm ·
(
sym(∇x(u

n
m − un−1

m )/h)− C
−1(σnm − σn−1

m )/h
)

− pnm − pn−1
m

h
·
(
C1 dev sym pnm +

1

m
pnm + C2 Curl Curl p

n
m

)

= φ∗
(
pnm − pn−1

m

h

)
+ φ

(
Σlin
n,m

)
.

After integrating the last identity over Ω, the above computations imply

1

h

(
C

−1σnm, σ
n
m − σn−1

m

)
Ω
+ C1

1

h

(
dev sym(pnm − pn−1

m ), dev sym pnm

)
Ω

+
1

m

1

h

(
pnm − pn−1

m , pnm

)
Ω
+ C2

1

h

(
Curl(pnm − pn−1

m ),Curl pnm

)
Ω

+

∫
Ω

φ∗
(
pnm − pn−1

m

h

)
dx+

∫
Ω

φ(Σlin
n,m)dx =

1

h

(
bnm, u

n
m − un−1

m

)
Ω
.

Multiplying by h and summing the obtained relation for n = 1, . . . , l for any fixed
l ∈ [1, 2m] we derive the inequality (here B := C−1)

1

2

(
‖B1/2σlm‖22 + C1‖ dev sym plm‖22 +

1

m
‖plm‖22 + C2‖Curl plm‖22

)

+ h
l∑

n=1

∫
Ω

φ∗
(
pnm − pn−1

m

h

)
dx+ h

l∑
n=1

∫
Ω

φ
(
Σlin
n,m

)
dx(38)

≤ C(0) + h

l∑
n=1

(
bnm,

unm − un−1
m

h

)
Ω

,
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where5

2C(0) := ‖B1/2σ(0)‖22 + C1‖ dev sym p(0)‖22 +
1

m
‖p(0)‖22 + C2‖Curl p(0)‖22.

We estimate now the right-hand side of the previous inequality. Since unm is a solu-
tion of the linear elliptic problem formed by (27)–(28) and (31), it satisfies (see [7,
Theorem 10.15]) the inequality

‖unm‖1,q∗,Ω ≤ C
(‖bnm‖q∗ + ‖pnm‖q∗

)
,(39)

where C is a positive constant independent of n and m. Therefore, using the linear-
ity of the problem formed by (27)–(28) and (31), the inequality (39), and Young’s
inequality with ε > 0 we get that

(
bnm,

unm − un−1
m

h

)
Ω

≤ ‖bnm‖q‖(unm − un−1
m )/h‖1,q∗,Ω ≤ CCε‖bnm‖qq

+ Cε‖(bnm − bn−1
m )/h‖q∗q∗ + Cε‖(pnm − pn−1

m )/h‖q∗q∗ ,(40)

where Cε is a positive constant appearing in the Young inequality. Combining the
inequalities (38) and (40), applying the condition (11), and choosing an appropriate
value for ε > 0 we obtain the estimate

1

2

(
‖B1/2σlm‖22 + C1‖ dev sym plm‖22 +

1

m
‖plm‖22 + C2‖Curl plm‖22

)

+ hĈε

l∑
n=1

∫
Ω

∣∣∣∣pnm − pn−1
m

h

∣∣∣∣
q∗

dx+ hC̃
l∑

n=1

∫
Ω

|Σlin
n,m|qdx(41)

≤ C(0) + hC̃ε

l∑
n=1

(
‖bnm‖qq + ‖(bnm − bn−1

m )/h‖q∗q∗
)
,

where C̃, C̃ε, and Ĉε are some positive constants. Now, taking Remark 8.15 in [22]
and the definition of Rothe’s approximation functions into account we rewrite (41) as
follows:

‖B1/2σ̄m(t)‖22 + C1‖ dev sym p̄m(t)‖22 +
1

m
‖p̄m(t)‖22 + C2‖Curl p̄m(t)‖22

+ 2Ĉε

∫ Te

0

∫
Ω

|∂tpm(x, t)|q∗ dxdt+ 2C̃

∫ Te

0

∫
Ω

|Σ̄lin
m (x, t)|qdxdt(42)

≤ 2C(0) + 2C̃ε‖b‖qW 1,q(0,Te;Lq(Ω,R3)).

5Here we use the inequality

l∑
n=1

(φn
m − φn−1

m , φn
m)Ω =

1

2

l∑
n=1

(
‖φn

m‖22 − ‖φn−1
m ‖22

)

+
1

2

l∑
n=1

‖φn
m − φn−1

m ‖22 ≥ 1

2
‖φl

m‖22 − 1

2
‖φ0m‖22

for any family of functions φ0m, φ1m, . . . , φm
m.
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Altogether, from estimate (42) we then get that

{pm}m is uniformly bounded in W 1,q∗(0, Te;L
q∗(Ω,M3)),(43)

{dev sym p̄m}m is uniformly bounded in L∞(0, Te;L
2(Ω,M3)),(44)

{σ̄m}m, is uniformly bounded in L∞(0, Te;L
2(Ω,S3)),(45)

{Curl p̄m}m is uniformly bounded in L∞(0, Te;L
2(Ω,M3)),(46) {

1√
m
p̄m

}
m

is uniformly bounded in L∞(0, Te;L
2(Ω,M3)),(47)

{
Σ̄lin
m

}
m

is uniformly bounded in Lq(0, Te;L
q(Ω,M3)).(48)

In particular, the uniform boundedness of the sequences in (43)–(48) yields

{um}m is uniformly bounded in W 1,q∗(0, Te;W
1,q∗
0 (Ω,R3)),(49)

{CurlCurl p̄m}m is uniformly bounded in L2(0, Te;L
2(Ω,M3)).(50)

Employing (37), the estimates (43)–(48) further imply that the sequences {σm}m,
{dev sym pm}m, {Curl pm}m, {pm/√m}m, {Σlin

m }m, and {CurlCurl pm}m are also
uniformly bounded in the corresponding spaces. As a result, we have

{pm}m is uniformly bounded in Lq
∗
(0, Te;V

q∗
Curl(Ω,M3)).(51)

Moreover, due to (43) and the obvious relation

plm = p0m + h

l∑
n=1

(
pnm − pn−1

m

h

)
,

we conclude that {p̄m}m is uniformly bounded in Lq
∗
(0, Te;L

q∗(Ω,M3)).
Existence of weak solutions. By estimates (43)–(51) and at the expense of

extracting a subsequence, we have that the sequences in (43)–(51) converge with
respect to weak and weak-star topologies in corresponding spaces, respectively. Next,
we claim that weak limits of {p̄m}m and {pm}m coincide. Indeed, using (43) this can
be shown as

‖pm − p̄m‖q∗q∗,ΩTe
=

m∑
n=1

∫ nh

(n−1)h

∥∥∥∥(pnm − pn−1
m )

t− nh

h

∥∥∥∥
q∗

q∗
dt

=
hq

∗+1

q∗ + 1

m∑
n=1

∥∥∥∥pnm − pn−1
m

h

∥∥∥∥
q∗

q∗
=

hq
∗

q∗ + 1

∥∥∥∥dpmdt
∥∥∥∥
q∗

q∗,ΩTe

,

which implies that p̄m− pm converges strongly to 0 in Lq
∗
(ΩTe ,M3). The proof that

the difference σ̄m−σm converges weakly to 0 in L2(ΩTe ,S3) can be performed as in [22,
p. 210]. For the reader’s convenience we reproduce here the reasoning from that work.
Let us choose some appropriate number d ∈ N and then fix any integer n0 ∈ [1, 2d].
Let h0 = Te/2

n0 . Consider functions I[h0(n0−1),h0n0]v with v ∈ L2(Ω,S3), where IK
denotes the indicator function of a set K. We note that according to [22, Proposition
1.36], the linear combinations of all such functions are dense in L2(ΩTe ,S3). Then for
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any h ≤ h0
6

(
σm − σ̄m, I[h0(n0−1),h0n0]v

)
ΩTe

=

∫ h0n0

h0(n0−1)

(σm(t)− σ̄m(t), v)Ω dt

=

h0n0/h∑
n=h0(n0−1)/h+1

∫ nh

(n−1)h

(
(σnm − σn−1

m )
t− nh

h
, v

)
Ω

dt

= −h

2

(
σh0n0/h
m − σh0(n0−1)/h

m , v
)
Ω
= −h

2
(σ̄m(h0n0)− σ̄m(h0(n0 − 1)), v)Ω .

Employing (45) we get that σ̄m − σm converges weakly to 0 in L2(ΩTe ,S3). Next, by
(47) the sequence {pm/m}m converges strongly to 0 in L2(ΩTe ,M3). Summarizing all
observations made above we may conclude that the limit functions denoted by u, σ, p,
and Σlin have the properties

u ∈ W 1,q∗(0, Te;W
1,q∗
0 (Ω,R3)), σ ∈ L∞(0, Te;L

2(Ω,S3)),

p ∈ Lq
∗
(0, Te;V

q∗
Curl(Ω,M3)) ∩W 1,q∗(0, Te;L

q∗(Ω,M3))

with

(dev sym p,Curl p) ∈ L∞(0, Te;L
2(Ω,M3 ×M3))

and

Σlin = σ − C1 dev sym p− C2 Curl Curl p ∈ Lq(ΩTe ,M3).

Before passing to the weak limit, we note that the Rothe approximation functions
satisfy the equations

− divx σ̄m(x, t) = b̄m(x, t),(52)

σm(x, t) = C(sym(∇xum(x, t)− pm(x, t))),(53)

∂tpm(x, t) ∈ ∂φ
(
Σ̄lin
m (x, t)

)
,(54)

together with the initial and boundary conditions

pm(x, 0) = p(0)(x), x ∈ Ω,(55)

Curl pm(x, t)× τ(x) = 0, x ∈ ∂Ω,(56)

um(x, t) = 0, x ∈ ∂Ω .(57)

Repeating the arguments at the beginning of this section we arrive at the inequality

1

2

(
‖B1/2σ̄m(t)‖22 + C1‖ dev sym p̄m(t)‖22 +

1

m
‖p̄m(t)‖22 + C2‖Curl p̄m(t)‖22

)

+

∫ t

0

∫
Ω

(
φ∗(∂tpm(x, s)) + φ(Σ̄lin

m (x, s))
)
dxds ≤ (b̄m, ∂tum)Ωt

(58)

+
1

2

(
‖B1/2σ(0)‖22 + C1‖ dev sym p(0)‖22 +

1

m
‖p(0)‖22 + C2‖Curl p(0)‖22

)

6We recall that h is chosen to be equal to Te/2m for some m ∈ N.
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which is satisfied for a.e. t ∈ (0, Te].
7 Now, passing to the weak limit in (52), (53)

and to the weak limit inferior in (58), respectively, we obtain the desired inequality
(13) and that (u, σ, p) is a weak solution of (1)–(6).

This completes the proof of Theorem 1.2.

6. Appendix. In this section we make some comments on the inequality (10).
Suppose that Ω is a bounded domain with C∞-boundary ∂Ω.
We define a space V q

σ (Ω,R
3) by

V q
σ (Ω,R

3) := {v ∈ V q(Ω,R3) | div v = 0}

and denote by V q
har(Ω,R

3) the Lq-space of harmonic functions on Ω as

V q
har(Ω,R

3) := {v ∈ V q
σ (Ω,R

3) | Curl v = 0}.

Then, as shown in [12, Theorem 1], the space V q
har(Ω,R

3) for every fixed q, 1 < q < ∞,
coincides with the space Vhar(Ω,R

3) given by

Vhar(Ω,R
3) = {v ∈ C∞(Ω̄,R3) | div v = 0,Curlv = 0 with v × τ = 0 on ∂Ω}.

The space Vhar(Ω,R
3) is a finite dimensional vector space [12, Theorem 1].

If now L denotes the dimension of Vhar(Ω,R
3), i.e., dimVhar(Ω,R

3) = L, and
{φ1, . . . , φL} is a basis of Vhar(Ω,R

3), then it holds that V q(Ω,R3) ⊂ W 1,q(Ω,R3)
with the estimate

‖v‖q + ‖∇v‖q ≤ C

(
‖Curl v‖q + ‖ div v‖q +

L∑
i=1

|(v, φi)|
)

(59)

for all v ∈ V q(Ω,R3), where C = C(Ω, q) [12, Theorem 2]. The proof of the inequality

(59) with
∑L

i=1 |(v, φi)| replaced by ‖v‖q is performed in [12, Lemma 4.5]. (For q = 2
it can be found in [5, Theorem VII.6.1].)

If we assume that the boundary ∂Ω has L + 1 smooth connected components
Γ0,Γ1, . . . ,ΓL such that Γ1, . . . ,ΓL lie inside Γ0 with Γi ∩ Γj = ∅ for i �= j and

∂Ω = ∪Li=0Γi,

then it holds that [12, Appendix]

dimVhar(Ω,R
3) = L.

Therefore, if we suppose that the boundary ∂Ω has only one smooth connected com-
ponent, i.e., L = 0, we obtain from (59) the inequality (10).

Acknowledgment. The second author is grateful to W. Ruess (Essen) for crit-
ical remarks on a preliminary version of the paper.

7We have used again the inequality

l∑
n=1

(φn
m − φn−1

m , φn
m)Ω ≥ 1

2
‖φl

m‖22 − 1

2
‖φ0m‖22,

where φ0m, φ1m, . . . , φm
m is any family of functions.
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