
Stability of Tensor Product B-Splines on

Domains
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Abstract

We construct a uniformly stable family of bases for tensor prod-

uct spline approximation on domains in R
d. These bases are derived

from the standard B-spline basis by normalization with respect to the

L
p-norm and a selection process relying on refined estimates for the

de Boor-Fix functionals.

1 Introduction

Uniform stability of tensor product B-spline bases in R
d is a well known

fact [2] and one of the many favorable properties of this class of functions.
However, when approximating functions on a domain Ω ⊂ R

d, stability is
typically lost because of B-splines with only small parts of their support
lying inside the domain. This problem was observed in [6], and probably
also much earlier, and taken for granted ever since.

In [9, 8, 7], an extension procedure is suggested to stabilize B-spline bases.
There, outer B-splines supported near the boundary of the domain are suit-
ably coupled with inner ones, and it can be shown that the resulting basis
combines stability with full approximation power, despite its reduced cardi-
nality.

In this paper, we revisit the stability problem and suggest a “skip-and-
scale” strategy to form uniformly stable subsequences of normalized B-splines,
which are still useful for approximation. In the next section, we briefly re-
call the standard estimates for stability on R

d and explain possible sources
of instability on bounded domains. In Section 3, we define proper B-splines
in terms of geometric conditions on the intersection of the domain and the
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support, and show that the sequence of all such B-splines is uniformly sta-
ble. Further, we provide a sufficient analytic condition for properness. In
Section 4, we consider approximation properties of spline spaces spanned by
proper B-splines. For bounded domains with sufficiently smooth boundary,
we can show that the Lp-approximation order is optimal for p ≤ 2, and
modestly reduced for larger exponents. Finally, in Section 5, we discuss gen-
eralizations of the concept and define even larger classes of B-splines leading
to uniformly stable sequences.

2 Preliminaries

For an open set Ω ⊂ R
d, an index set I ⊂ Z

d, and 1 ≤ p ≤ ∞, let B =
(bi)i∈I be a sequence of functions bi ∈ Lp(Ω). Linear combinations with real
coefficients F = (fi)i∈I in `p(I) are denoted by

f := BF :=
∑

i∈I

fibi,

whenever the sum is convergent in Lp(Ω). B is a Riesz sequence if the con-
stants

c := inf{‖BF‖p,Ω : ‖F‖p = 1}, C := sup{‖BF‖p,Ω : ‖F‖p = 1} (1)

are positive and finite. In this case, the ratio condpB := C/c is called the
condition number of B with respect to the p-norm.

In the univariate setting, let T = (τi)i∈Z be a monotone increasing bi-
infinite knot sequence for a spline space of degree n. The corresponding
order is denoted by n := n+ 1. The B-splines (bi,n)i∈Z have supports

Si,n := supp bi,n = [τi, τi+n], |Si,n| := τi+n − τi,

and satisfy Marsden’s identity

(t− τ)n =
∑

i∈Z

bi,n(t)ψi,n(τ), ψi,n(τ) :=
n

∏

j=1

(τi+j − τ) (2)

for all τ ∈ R and t ∈ ⋃

i∈Z
[τi, τi+1). The function ψi,n is a polynomial of

degree n with zeros located at the inner knots τi+1, . . . , τi+n of the B-spline
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bi,n. For 0 ≤ ν ≤ n, the νth derivative of ψi,n can be written as

Dνψi,n(τ) = (−1)ν n!

(n− ν)!

n−ν
∏

j=1

(τ ν
i,j − τ). (3)

By Rolle’s theorem, the zeros τ ν
i,j are all real and lie in the interval Si,n.

Hence, for τ ∈ Si,n, we have

|Dνψi,n(τ)| ≤ n! |Si,n|n−ν , 0 ≤ ν ≤ n. (4)

To prove stability properties of B-splines, we use the de Boor-Fix functionals
[3] given by

λi,n(u) :=
1

n!

n
∑

ν=0

(−1)n−νDn−νψi,n(ξi)D
νu(ξi),

where ξi is an arbitrary point with bi,n(ξi) > 0. The basic duality property is

λi,n(bj,n) = δij, i, j ∈ Z. (5)

In the multivariate setting, points p ∈ R
d are understood as row-vectors,

and their components are indexed by superscripts, p = (p1, . . . , pd). The
component-wise product of two points p, q ∈ R

d is denoted by

p ∗ q := (p1q1, . . . , pdqd) ∈ R
d.

If p ≤ q component-wise, then the two points define the closed rectangular
box

P := [p, q] := [p1, q1] × · · · × [pd, qd] ⊂ R
d.

The vector of edge lengths, also called the size of P , is denoted by

|P | := q − p ∈ R
d.

The univariate knot sequences T 1, . . . , T d define a multivariate knot grid T :=
T 1×· · ·×T d with knots τi := (τ 1

i1 , . . . , τ
d
id
) and grid cells Ti := [τi, τi+1], i ∈ Z

d.
The basis functions of the tensor product spline space of coordinate degree
n = (n1, . . . , nd) ∈ N

d
0 with knots T are products of univariate B-splines, i.e.,

bi,n(x) := bi1,n1(x1) · · · bid,nd(xd), i ∈ Z
d.
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Denoting the order of the spline space again by n := n + (1, . . . , 1), their
supports are the boxes

Si,n := supp bi,n = [τi, τi+n].

With the usual multi-index notation, we denote partial differentiation by
∂n := ∂n1

1 · · · ∂nd

d , and factorials by n! = n1! · · ·nd!. The multivariate de Boor-
Fix functionals are given by

λi,n(u) =
1

n!

∑

ν≤n

(−1)n−ν∂n−νψi,n(ξi)∂
νu(ξi), (6)

where ψi,n(ξ) := ψi1,n1(ξ1) · · ·ψid,nd(ξd), and ξi is chosen such that bi,n(ξi) > 0.
To simplify notation throughout, we fix the degree n ∈ N

d
0 and drop the

corresponding subscript.
In what follows, we study stability properties of sequences B = (bi)i∈I of

tensor product B-splines on a domain Ω ⊂ R
d. For a given knot grid T , a

natural choice of B is to select all relevant B-splines, i.e., all B-splines that
do not vanish on Ω, i.e.,

B = (bi|Ω)i∈I , I := {i ∈ Z
d : Si ∩ Ω 6= ∅}. (7)

The restricted support of a relevant B-spline bi is defined by

SΩ

i := supp bi|Ω = Si ∩ Ω.

Typically, the results to be derived later are invariant with respect to axis-
aligned affine maps, or briefly a3-maps in R

d. Such maps have the form

A : R
d 3 x 7→ (as ∗ x+ at)Ap ∈ R

d,

where Ap ∈ {0, 1}d×d is a permutation matrix, as ∈ (R 6=0)
d is a scaling vector,

and at ∈ R
d defines a translation. A is called isometric if all components

of the scaling vector have modulus 1. The set of all a3-maps is a subgroup
of the affine group. The relevance of this subgroup in the context of tensor
product splines is due to the fact that it operates on the set of knot grids.
Other affine transformations, like shearings, destroy the special structure.
Transformed objects in R

d are denoted by

x̃ := A(x), Ω̃ := A(Ω), T̃ := A(T ), ñ := nAp,
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and so on. Equally, for functions u : R
d → R we write

ũ := u ◦ A−1.

With this notation, we observe that the transformed B-spline b̃i equals the
B-spline of degree ñ with knots T̃ and support S̃i, since for example the corre-
sponding de Boor-Fix functional satisfies λ̃i(ũ) = λi(u). Formally speaking,
the group of all a3-maps is generating equivalence classes of spline spaces. We
say that a property of objects related to a spline space is a3-invariant if it is
shared by the corresponding objects for all members of the equivalence class.
For instance, duality of B-splines and de Boor-Fix functionals is a3-invariant,

λj(bi) = λ̃j(b̃i) = δi,j .

Also the condition number condp(B) = C/c of B is a3-invariant, while the
values of c and C are not, unless p = ∞. When proving a statement which
is a3-invariant, it is sufficient to consider only a single representative whose
characteristics can be geared to simplify the argument. For example, to prove
the a3-invariant statement c|fi| ≤ ‖BF‖∞,Rd , we may assume Si = [0, 1]d.

For Ω = R
d, the classical result on the uniform stability of B-splines [2]

states that cond∞B is bounded by a constant M depending only on the
degree n and the dimension d, but not on the choice of knots. A similar
result holds for p-norms, 1 ≤ p < ∞, if the B-splines are normalized in a
suitable way. Notably, cond∞B can be arbitrarily large for general Ω.

Let us illustrate this phenomenon by a simple univariate example. For

PSfrag replacements

b0

Ω
ε−2 −1 0 1

τ−1 τ0 τ1 τ2 τ3

Figure 1: B-spline basis with large condition number .

0 < ε < 1, we consider splines of degree n = 1 with knots τi = i − 2 + ε on
the domain Ω = (0, 1). Figure 1 shows the spline BF = b0 corresponding
to the coefficients fi = δi,0. From ‖b0‖∞,Ω = ε, we conclude that the lower
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bound in (1) is c ≤ ε, while the upper bound is obviously C = 1. Hence,
cond∞B ≥ 1/ε is not uniformly bounded.

To understand the differences between this case and the well known uni-
form stability on R, let us briefly review the classical proof. For Ω = R and
B = (bi)i∈Z, consider the estimate

c‖F‖∞ ≤ ‖BF‖∞,R ≤ C‖F‖∞, F ∈ `∞(Z).

By partition of unity, the upper estimate holds with the optimal constant
C = 1. For the lower estimate, we note, as mentioned above, that the
statement c|fi| ≤ ‖f‖∞,R is a3-invariant. Hence we can assume Si = [0, 1].
By (5),

|fi| = |λi(f)| =
1

n!

∣

∣

∣

∣

∣

n
∑

ν=0

(−1)n−νDn−νψi(ξi)D
νf(ξi)

∣

∣

∣

∣

∣

≤ 1

n!
max
ν≤n

∣

∣Dνψi(ξi)
∣

∣

n
∑

ν=0

∣

∣Dνf(ξi)
∣

∣.

With Si = [0, 1], (4) yields |Dνψi(ξ)| ≤ n! for all ν. Further, there exists an
interval Qi ⊂ Si = [0, 1] of length 1/n which does not contain a knot. Hence,
f|Qi

∈ Pn(Qi), i.e., the restriction of f to Qi is a polynomial of degree ≤ n.
With ξi the center of Qi, the sum in the above estimate is a norm on the
space Pn(Qi). By equivalence of norms on finite-dimensional vector spaces,
this norm is bounded from above by the L∞-norm on Qi with a constant Cn

depending only on n. We obtain

|fi| ≤
n

∑

ν=0

|Dνf(ξi)| ≤ Cn‖f|Qi
‖∞,Qi

≤ Cn‖f‖∞,R

for all i ∈ Z showing that C−1
n ‖F‖∞ ≤ ‖BF‖∞,R for all F ∈ `∞(Z). Hence,

cond∞B ≤ M := Cn is bounded independently of the knot sequence. It
should be noted that, typically, the value of the constant M obtained that
way largely over-estimates the actual condition number, which may be hard
to determine [4].

For arbitrary domains Ω ⊂ R, the above argument can fail since it might
be impossible to find an interval Qi of length 1/n in Si ∩ Ω, if this set is
small. The counterexample given above is based exactly on this observation.
Of course, that problem is readily removed by adapting the knot sequence
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appropriately, for instance by setting T = [0, 0, ε, 1, 1]. In this way, the
instability is removed without changing the spline space on Ω. Unfortunately,
this method does not work in general for domains in higher dimensions.

3 Stability

As shown above, the sequence B considered in (7) is not necessarily stable.
A trivial way to circumvent this problem is to discard those B-splines for
which a suitable box Qi does not exist. For instance, if the knot sequence is
uniform, these are exactly those B-splines which do not have a complete grid
cell of their support in Ω. Although in this way only relatively few B-splines
near the boundary of Ω are ruled out, it is easily shown that the resulting
spline space reveals a substantial loss of approximation power. A much more
appropriate solution is based on the concept of extension as introduced in
[9]. There, the outer B-splines causing instability were suitably attached to
inner ones so that a uniformly stable basis with full approximation power
was obtained. In what follows, we suggest an even simpler approach to the
problem which is based on normalization of B-splines with respect to the
Lp-norm. More precisely, for a given domain Ω ⊂ R

d and 1 ≤ p ≤ ∞, we
define the normalized B-splines

bpi :=
bi

‖bi‖p,Ω

, i ∈ I,

where I is the index set of relevant B-splines introduced in (7) so that the
denominator is positive. In Definition 3.2 we introduce a subsequence of
normalized B-splines which, in Theorem 3.3, is shown to be uniformly stable
with respect to the knot grid. This result is essentially based on the following
estimate for univariate B-splines:

Lemma 3.1 Let bi be a univariate B-spline of degree n with τi = 0, and let
P := [0, 1]. Then

‖bi‖∞,P ‖Dνψi‖∞,P ≤ n!

for all ν = 0, . . . , n.

Proof: The proof is by induction on ν, proceeding backwards from ν = n.
For ν = n, the estimate follows immediately from ‖bi‖∞,P ≤ 1 and (4). Now,
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we assume that the estimate holds for ν + 1. If Dνψi has a zero in [0, 1],
then, by the mean value theorem, ‖Dνψi‖∞,P ≤ ‖Dν+1ψi‖∞,P , implying that
the estimate holds also for ν. Otherwise, all zeros of Dνψi are greater than
1. In this case, |Dνψi| is monotone decreasing on P = [0, 1]. Hence,

‖bi‖∞,P ‖Dνψi‖∞,P = ‖bi‖∞,P |Dνψi(0)|.

Further, τi+n > 1 so that Marsden’s identity is valid for t ∈ P . Since bi and
ψi depend only on the knots τi, . . . , τi+n, we can assume τj = τi = 0 for all
j ≤ i without loss of generality. Differentiating (2) with respect to τ , we
obtain for τ = 0

∑

j∈Z

bj(t)D
νψj(0) = (−1)ν n!

(n− ν)!
tn−ν , t ∈ P.

By the special choice of knots, all zeros τ ν
j,l of Dνψj are non-negative. Thus,

(3) yields Dνψj(0) = (−1)ν |Dνψj(0)|, and we obtain

bi(t)|Dνψi(0)| ≤
∑

j∈Z

bj(t)|Dνψj(0)| =
n!

(n− ν)!
tn−ν , t ∈ P.

Finally,

‖bi‖∞,P |Dνψi(0)| ≤
n!

(n− ν)!
≤ n!,

and the proof is complete. �

When establishing stability properties, it is evident that the degenerate
case of vanishing B-splines has to be exluded, i.e., we require

|Si| = τi+n − τi > 0, i ∈ Z
d.

Further, to facilitate approximation on the whole domain Ω, it must be
covered by the union of grid cells Ti = [τi, τi+1], i.e.,

Ω ⊂
⋃

i∈Zd

Ti.

In the following, these two properties are taken for granted without further
notice. The next definition introduces a subset of B-splines which can be
stabilized by normalization.
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Definition 3.2 Let Ω ⊂ R
d be an open domain, and I the set of relevant

indices of the given spline space according to (7). A B-spline bi, i ∈ I, with
support Si and restricted support SΩ

i = Si ∩ Ω is called proper, if there exist
boxes Pi, Ri with the following properties:

a) Ri ⊂ SΩ

i ⊂ Pi

b) The sizes of Ri and Pi are related by 2d |Ri| = |Pi|.

c) The boxes Pi and Si have one corner in common.

For p ∈ [1,∞], the sequence Bp
• of normalized proper B-splines is defined by

Bp
• := (bpi )i∈I• , I• := {i ∈ I : bi is proper }.

Let us briefly discuss the concept. The property of being proper is a3-
invariant since so are all three conditions. That is, if bi is proper with respect
to T, n,Ω, then b̃i is proper with respect to T̃ , ñ, Ω̃ for any a3-map. Another
important fact is that the sizes of the boxes Pi, Ri are not related to the size
of the support Si. Hence, even B-splines with an arbitrarily small restricted
support may be proper.

When searching for a pair of boxes Ri, Pi to establish properness of a
B-spline bi, one observes the following: If SΩ

i ⊂ Pi ⊂ P ′
i for some boxes

Pi, P
′
i having one corner in common with Si, it is advantageous to choose the

smaller one, Pi, because this alleviates the problem of finding a corresponding
box Ri inside SΩ

i . If SΩ

i contains a corner of Si, this implies that the optimal
choice for Pi is the bounding box of SΩ

i . Otherwise, one may restrict the
search for Pi to the finitely many bounding boxes of sets of the form SΩ

i ∪ ci,
where ci is a corner of Si. In any case, we may assume Pi ⊂ Si without loss
of generality.

Obviously, all B-splines with Si ⊂ Ω are proper. This guarantees that the
set of proper B-splines is not empty if the knot sequence is sufficiently fine.
Throughout, we exclude the degenerate case I• = ∅ without further notice.
Now, we focus on boundary B-splines which are characterized by i ∈ I and
Si 6⊂ Ω. Figure 2 shows a few typical cases. On the left hand side, the domain
Ω is locally bounded by a hyperplane. We choose Pi =: pi + [0, hi] as the
bounding box of SΩ

i , and note that the dashed box pi + [0, hi/d] is contained
in SΩ

i . Hence, we can choose the even smaller box Ri := pi + [0, hi/(2d)]
to show that bi is proper. Due to the margin provided by Ri in the linear
case, this construction typically remains valid for small perturbations of the
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boundary, as they arise for a smooth boundary and a relatively fine knot
grid. This situation is depicted in the middle of the figure. The argument
can fail in the following situation: if the boundary is a small perturbation of
a hyperplane which is close to a face of Si, then the maximal permitted size
of Ri may be arbitrarily small, while Pi is still required to be relatively large.
Such a situation is depicted on the right hand side of the figure. However,
we see that in this case the measure of SΩ

i is very small so that discarding
the corresponding B-spline seems to be reasonable. The heuristics suggested
here will be made precise in Theorems 3.5 and 4.1.

PSfrag replacements Pi

Ri

Si

PSfrag replacements Pi

Ri

Si

PSfrag replacements

PiRi

Si

Figure 2: Proper (left, middle) and non-proper (right) B-splines.

Theorem 3.3 The condition number of the sequence Bp
• of normalized proper

B-splines is bounded by

condpB
p
• ≤M,

where the constant M depends on n, d, p, but neither on T nor on Ω.

Proof: We determine constants c′, C ′ > 0 such that

c′‖F‖p ≤ ‖Bp
•F‖p,Ω ≤ C ′‖F‖p

for all F ∈ `p(I•). The upper bound follows from locality of B-splines. On
every grid cell Tj, there are N := n1 · · ·nd non-vanishing basis functions.
With ‖bpi ‖p,Ω = 1, standard arguments show that C ′ := N 1/q is a valid
constant, where p and q are related by 1/p+ 1/q = 1.

To prove the lower estimate, we consider a proper B-spline bi and the
boxes Pi, Ri according to Definition 3.2. Being a subset of Si, the box Ri
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is partitioned into at most n1 × · · · × nd boxes by the knot grid T . Hence,
there exists a box Qi ⊂ Ri with n∗ |Qi| = |Ri| which is completely contained
in a grid cell. Like the conditions on Pi, Qi, Ri, the lower estimate c′‖F‖p ≤
‖Bp

•F‖p,Ω is also a3-invariant, i.e.,

‖Bp
•F‖p,Ω = ‖B̃p

•F‖p,Ω̃.

Hence, when estimating the coefficient fi, we can assume Pi = [0, 1]d, and
that the common corner of Pi and Si is the origin.

Applying the de Boor-Fix functional (6) to the spline f = Bp
•F , we obtain

the estimate

|fi|
‖bi‖p,Ω

= |λi(f)| ≤ 1

n!

∑

ν≤n

|∂n−νψi(ξi)| |∂νf(ξi)|

≤ 1

n!

(

max
ν≤n

|∂νψi(ξi)|
)

∑

ν≤n

|∂νf(ξi)|, (8)

where ξi is the center of Qi. Since Qi is contained in a grid cell, f restricted
to Qi is a polynomial of order n. The sum in (8) is a norm on the space
Pn(Qi) of polynomials of degree ≤ n on Qi. Therefore, by equivalence of
norms on finite-dimensional vector spaces, this norm is bounded from above
by the p-norm on Qi times a constant Cn,d,p. This constant depends only
on n, d, p because the size of Qi is fixed by 2dn ∗ |Qi| = 2d |Ri| = (1, . . . , 1).
From SΩ

i ⊂ Pi = [0, 1]d, there follows the estimate

‖bi‖p,Ω ≤ ‖bi‖∞,Pi
. (9)

Hence, using ξi ∈ Qi ⊂ Pi, we obtain

|fi| ≤
Cn,d,p

n!
‖f‖p,Qi

‖bi‖∞,Pi
max
ν≤n

‖∂νψi‖∞,Pi
.

We apply Lemma 3.1 to all univariate factors of bi and ∂νψi and find

|fi| ≤ Cn,d,p‖f‖p,Qi
.

In view of the fact that at most N := n1 · · ·nd of the boxes Qi can overlap,
a standard argument finally yields

‖F‖p
p =

∑

i∈I•

|fi|p ≤ Cp
n,d,p

∑

i∈I•

‖f‖p
p,Qi

≤ NCp
n,d,p‖f‖p

p,Ω,
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and thus, c′ = (N 1/pCn,d,p)
−1 is a valid constant for the lower estimate.

Together, the condition number is bounded by

condpB
p
• ≤M :=

C ′

c′
= Cn,d,pN

1/p+1/q = Cn,d,pN.

�

With the help of this result, we can easily derive a condition for the
univariate case d = 1, saying that a B-spline can be non-proper only if its
support contains the domain, and the domain is relatively small.

Theorem 3.4 Let Ω ⊂ R be an open interval. Then a relevant B-spline bi

with support Si is proper if

Ω 6⊂ Si or 3|Ω| > |Si|.

Proof: The case Ω = R is trivial. Otherwise, let us assume that the condition
is not satisfied. By a3-invariance, we can assume Si = [0, 1], and further that
the center of Ω = (a, b) is not greater than the center of Si,

(a+ b)/2 ≤ 1/2.

Here, also the case Ω = (−∞, b) is formally covered by permitting a = −∞.
If Ω 6⊂ Si, then τi = 0 ∈ (a, b), and with hi := min(1, b) we set

Pi := SΩ

i = [0, hi], Ri := [0, hi/2].

Otherwise, if Ω ⊂ Si and 3(b− a) > |Si| = 1, it is a < b/2, and we set

Pi := [0, b], Ri := [b/2, b].

In both cases, the intervals Pi, Ri satisfy the conditions of Definition 3.2. �

As an example, we consider the uniform knot sequence T := 2Z and the
domain Ω := (1, 1 + δ), δ > 0. Figure 3 shows L2-condition numbers of
the standard basis (bi)i∈I (left) and the normalized basis (b2i )i∈I (right) as a
function of δ for degrees n = 1, . . . , 4. As explained already in Section 2, the
standard basis is ill-conditioned if it contains B-splines with small support in
Ω. Indeed, we observe large condition numbers if δ is either small or slightly
larger than an odd integer. For normalized B-splines, the figure confirms
uniform stability according to Theorem 3.4 for δ beyond the marked value
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Figure 3: L2-condition number of standard B-splines (left) and normalized
B-splines (right).

2n/3 = |Si|/3, for which all relevant B-splines are proper. It is apparent (and
provable) that the condition numbers grow unboundedly as δ → 0, showing
that the lower bound on the size of the domain is indispensable.

Now, we focus on the less trivial multivariate case, and assume d ≥ 2
for the remainder of this section without further notice. While the concep-
tual design of proper B-splines is relatively simple, the geometric conditions
of Definition 3.2 are inconvenient for verification, say, by a computer pro-
gram. They are also not suitable for an analysis of approximation properties.
Therefore, we are going to provide sufficient analytic conditions for proper
B-splines which can be verified by estimating values and gradients of local
parametrizations of the boundary of the domain.

To this end, we introduce the following notational convention. The first
(d− 1) components of a point p or a box P = [p, q] in R

d are marked with a
superscript star,

p = (p∗, pd), p∗ := (p1, . . . , pd−1),

P = P ∗ × P d, P ∗ = [p∗, q∗], P d = [pd, qd].

Now, we consider a relevant B-spline bi with support Si intersecting the
boundary ∂Ω of Ω. If ∂Ω is smooth and Si is sufficiently small, then ∂Ω can
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be represented locally as the graph of a smooth function over a hyperplane
which is perpendicular to one of the coordinate axes. More precisely, we
say that ∂Ω is projectable on Si if there exists a box Ui = [0, ui] ⊂ R

d, a
C1-function ϕi : U

∗
i → R, and an isometric a3-map Ii so that the restricted

support of bi is given by

SΩ

i = Ii(U
Ω

i ), UΩ

i := {x ∈ Ui : xd ≤ ϕi(x
∗)}. (10)

Extrema of values and gradients of ϕi are denoted by

vd
i := max

x∗∈U∗

i

ϕi(x
∗), wi := min

x∗∈U∗

i

∇ϕi(x
∗), wi := max

x∗∈U∗

i

∇ϕi(x
∗),

where min/max of ∇ϕi are understood component-wise, i.e., wi, wi ∈ R
d−1.

The two drawings on the left hand side of Figure 4 illustrate the setting.
Of course, the representation is not unique. First, SΩ

i can be projectable
with respect to different coordinate directions. This leads to qualitatively
different parametrizations of the boundary, and the condition (11) provided
below might be satisfied for one of them, but not for the other. Second,
even when fixing the direction of projection, the choice of Ii is not unique.
It can be replaced by Ii ◦ Î with the isometric a3-map Î defined as follows:
Disregarding permutations of the components, which are trivially possible,
we choose an index set K ⊂ {1, . . . , d− 1} specifying directions in which the
given representation is to be reflected, and set

Î(x) := y, yk :=

{

uk
i − xk for k ∈ K

xk else.

Further, the function ϕ̂i : U
∗
i → R is defined by ϕ̂i(x

∗) := ϕi(y
∗). Then

Ui = Î(Ui) and

SΩ

i = Ii(Î(ÛΩ

i )), ÛΩ

i = {x ∈ Ui : xd ≤ ϕ̂i(x
∗)},

see the third drawing in Figure 4. Hence, any choice of Î yields another
valid representation of the restricted support. We note that the maximal
value v̂d

i = vd
i and the difference ŵi − ŵi = wi − wi are independent of Î,

despite the fact that the components of ∇ϕi and ∇ϕ̂i with index k ∈ K have
opposite sign. The following theorem provides a sufficient condition for a
B-spline to be proper.
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Figure 4: Variants on the representation of the restricted support SΩ

i .

Theorem 3.5 Let ∂Ω be projectable on the support Si of the boundary B-
spline bi. Then, with the notation introduced above, bi is proper if

d

d− 1
vd

i ≥ u∗i ∗ (wi − wi), (11)

where the inequality is understood component-wise.

Proof: Throughout the proof, we drop the subscript i to simplify notation,
i.e., S = Si, S

Ω = SΩ

i , and so on. The definition of a proper B-spline as well
as the conditions given in the theorem are a3-invariant. To show this, we
consider any a3-map A : x 7→ (as ∗ x + at)Ap. Let I : x 7→ (is ∗ x + it)Ip
be the isometry used in (10). With bs := |as|I−1

p , the a3-map B : x 7→ bs ∗ x
is a scaling with positive factors so that Ũ := B(U) is a box of the form
Ũ = [0, ũ]. Further, if we define the isometric a3-map Ĩ := A ◦ I ◦ B−1, and
the function ϕ̃ : Ũ∗ → R via the relation

ϕ̃
(

b∗s ∗ x∗
)

= bds ϕ
(

x∗
)

, x∗ ∈ U ∗,

then the restricted support S̃Ω = A(SΩ) is given by

S̃Ω = Ĩ(ŨΩ), ŨΩ := {x̃ ∈ Ũ : x̃d ≤ ϕ̃(x̃∗)}.

The rightmost drawing in Figure 4 illustrates the effect of scaling. The
transformation rules for the quantities appearing in (11) are

ṽd = bdsv
d, ũ∗ = b∗s ∗ u∗, b∗s ∗ (w̃ − w̃) = bds (w − w).

Hence, all scaling factors cancel out, showing that the validity of (11) is
independent of the application of A.
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As a consequence of a3-invariance, we can assume that I is the identity,
and that S = U = [0, 1]d, i.e., u∗ = (1, . . . , 1), ud = 1.

Let v∗ ∈ [0, 1]d−1 denote a point where ϕ attains its maximum,

vd = ϕ(v∗).

Of course, vd > 0 since SΩ 6= ∅. We assume that the corner of U ∗ closest
to v∗ is the origin, i.e., v∗ ∈ [0, 1/2]d−1. Otherwise, as described above, we
replace I by I ◦ Î, where Î is the isometric a3-map corresponding to the
set of indices K := {k : (v∗)k > 1/2} not conforming to the condition.
Consequently, ∇ϕ(v∗) ≤ 0 so that w ≤ 0. We define the box P := [0, p] by

pk :=











1 if k < d and − wk ≤ vd

−vd/wk if k < d and − wk > vd

min{1, vd} if k = d,

and with r := p/(2d) the box

R := (v∗, 0) + [0, r] = [v∗, v∗ + r∗] × [0, rd].

Now, we show that P = Pi and R = Ri satisfy the assumptions of Defini-
tion 3.2.

First, we have 2d |R| = |P |, and the origin is the common corner of S and
P .

Second, we prove that R ⊂ SΩ = UΩ. To this end, let x = (x∗, xd) ∈ R.
The first component can be written in the form

x∗ = v∗ + η ∗ r∗, η ∈ [0, 1]d−1.

We have 0 ≤ v∗ ≤ 1/2 and η ∗ r∗ ≤ p∗/(2d) ≤ 1/4. Hence, x∗ ∈ [0, 1]d−1, and
it remains to show that

rd ≤ ϕ(v∗ + η ∗ r∗) for all η ∈ [0, 1]d−1,

i.e., that the upper face of R lies below the graph of ϕ. Obeying w ≤ 0, we
estimate the function value at x∗ by

ϕ(x∗) ≥ ϕ(v∗) +
d−1
∑

k=1

wkηkrk ≥ vd +
1

2d

d−1
∑

k=1

wkpk. (12)

16



To estimate wkpk we have to distinguish the following two cases: For −wk ≤
vd we have pk = 1 and get from (11)

d

d− 1
vd ≥ wk − wk ≥ −vd − wk,

hence

wkpk = wk ≥
(

− d

d− 1
− 1

)

vd =
1 − 2d

d− 1
vd.

On the other hand, if −wk > vd, we have pk = −vd/wk and get from (11)

−wk ≤ d

d− 1
vd − wk ≤ − d

d− 1
wk − wk =

1 − 2d

d− 1
wk.

Finally, using wk < −vd < 0, we find

wkpk = −wk v
d

wk
≥ 1 − 2d

d− 1
vd,

as in the first case. Applying this estimate to (12) we obtain

ϕ(x∗) ≥ vd

(

1 +
(1 − 2d)(d− 1)

2d(d− 1)

)

=
vd

2d
≥ pd

2d
= rd.

Third, to prove the inclusion SΩ = UΩ ⊂ P , let (x∗, xd) ∈ UΩ. Then the
last coordinate satisfies 0 ≤ xd ≤ min{1, vd} = pd, i.e.,

xd ∈ [0, pd].

It remains to show that xk ∈ [0, pk] for all indices k < d. If pk = 1, nothing
has to be shown. Otherwise, if −wk > vd, we obtain

0 ≤ ϕ(x∗) ≤ ϕ(x∗ − xkek) + wkxk ≤ vd + wkxk,

where ek denotes the kth unit vector. With wk < 0, we finally get the desired
estimate

xk ≤ −vd/wk = pk.

�
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If the boundary ∂Ω is locally planar, then wi = wi so that condition (11)
is always satisfied. In fact, the term u∗i ∗ (wi − wi) on the right hand side of
(11) can be regarded as a measure for the local deviation of the boundary
from a plane. If we assume that the size |Si| of the support is of order h,
and that the boundary of Ω is C1,1, then wi − wi is also of order h. Hence,
the condition is satisfied unless the maximal value vd

i of ϕi is small of order
h2. That is, as h → 0, only B-splines with a smaller and smaller fraction
of their support in Ω may be non-proper. In the next section, this fact will
be exploited to show that the additional approximation error related to the
reduction of the basis is reasonably small.

But first, we consider a simple example to illustrate the concepts devel-
oped so far. Let Ω ⊂ R

2 be the unit circle, and T = hZ×hZ a uniform knot
grid for bicubic B-splines. The knot spacing is given by h = (m + δ)−1 for
some m ∈ N,m ≥ 5, and δ ∈ [0, 1). The support of bi is Si = ih + [0, 4h]2,
and we consider only B-splines with the center of their support lying in the
first quadrant above the bisector. For the index i = (i1, i2), this means
−2 ≤ i1 ≤ i2 ≤ m. All other cases are similar. Now, three cases of boundary
B-splines bi are distinguished:

• If i1 ≥ 0, then, locally, the boundary is monotone decreasing and con-
vex. Hence, when choosing Pi = ih+ [0, hi] as the bounding box of SΩ

i ,
the box Ri := ih+ [0, hi/4] is contained in SΩ

i so that bi is proper.

• If i1 ∈ {−2,−1} and i2 < m, then we choose Pi := [i1h, (i1 + 4)h] ×
[i2h, 1] and Ri := [−h/2, h/2] × [i2h, (3i2h+ 1)/4]. The inclusion Ri ⊂
SΩ

i is verified by inspection, showing that bi is proper, too.

• If i1 ∈ {−2,−1} and i2 = m, we use the condition given in Theorem 3.5.
The maximal value of the function ϕi is vd

i = 1 − mh = δ/(m + δ).
The gradient ϕ′(t) = −t/

√
1 − t2 is monotone decreasing. Hence, using

some elementary estimates, wi−wi = ϕ′(i1h)−ϕ(i1h+4h) ≤ 5h. With
u∗i = 4h, (11) yields the sufficient condition δ ≥ 10

m+δ
, which is satisfied

if δ ≥ 10/m.

Summarizing, there are at most 8× 2 = 16 non-proper B-splines. Moreover,
for a fine knot sequence (corresponding to a large value of m), only values
of h for which h−1 is slightly larger than an integer may lead to non-proper
B-splines at all. More precisely, I = I• unless h−1 ∈ (m,m+ 10/m).
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4 Approximation

Because the focus of this paper is on stability issues, the following discussion
of approximation properties is not aimed at full generality. We want to esti-
mate the additional Lp-error introduced by discarding parts of the complete
basis B with the goal to show that “skip and scale” is a reasonable concept.

Our results rely on approximation properties of complete tensor product
spline spaces, which are far from being fully understood. For instance, the
classical results in [6] are based on quite restrictive conditions on the geome-
try of the domain, and those in [7] are geared to splines with equal degree in
all coordinate directions. Both results have in common that the constants in
the error estimates depend on the aspect ratio of the knot grid, and thus can
grow unboundedly if, for instance, the knot sequence in one coordinate di-
rection is repeatedly refined, while the other ones remain fixed. Presumably,
this counterintuitive behavior is due to technical limitations in the proofs,
and not to the actual nature of spline approximation on grids with largely
differing knot spacings in the coordinate directions.

To keep things as simple as possible, let us assume that the degree of the
spline space is equal in all directions, i.e.,

ν := n1 = · · · = nd, ν := ν + 1.

Further, we define the global fineness and the global mesh ratio of the knot
sequence T by

h := max
1≤j≤d

max
i∈Z

(

τ j
i+1 − τ j

i

)

, % := h−1 min
1≤j≤d

min
i∈Z

(

τ j
i+1 − τ j

i

)

,

respectively. To exclude multiple knots, we require % > 0. Further, Ω is
assumed to be a bounded C1,1-graph domain. This means that there exists
a finite index set J , a family of C1,1-functions

ψj : V ∗
j → R, j ∈ J,

defined on open boxes V ∗
j = (0, v∗j ) ⊂ R

d−1, and isometric a3-maps Jj such
that the boundary ∂Ω is covered by the images of the graphs Gj of ψj under
Jj, i.e.,

∂Ω =
⋃

j∈J

Jj(Gj), Gj := {(x∗, ψj(x
∗)) ∈ R

d : x∗ ∈ V ∗
j }.

Omitting the technical details, we note that such domains have the following
properties:
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• Because Ω is bounded and ∂Ω is compact, there exists h0 > 0 such that
for any box S with size |S| < h0 the intersection S ∩ ∂Ω is contained
in one of the images Jj(Gj). Hence, for a knot grid T with fineness
h < h0, the boundary is projectable on every support Si intersecting
the boundary. With [pi, qi] := J −1

j (Si), it is easily verified that

Ui := [0, qi − pi], Iix := Jj(x+ pi), ϕi(x
∗) := ψj(x

∗ + p∗i ) − pd
i ,

yields a representation of the restricted support SΩ

i according to (10).

• By the last equation, Lipschitz constants of the gradients ∇ϕi are
bounded by those of the finitely many ∇ψj. Hence, there exists a
constant L depending only on Ω via the functions ψj so that for all i
in question

|∇ϕi(x
∗
1) −∇ϕi(x

∗
2)| ≤ L |x∗1 − x∗2|, x∗1, x

∗
2 ∈ U ∗

i , (13)

where the absolute value is understood component-wise.

• The size of the grid cells is bounded from below by |Ti| ≥ %h. Hence,
as a consequence of compactness and smoothness of ∂Ω, the number
of grid cells intersecting the boundary is bounded by #{i : Ti ∩ ∂Ω 6=
∅} ≤ C ′h1−d, where C ′ depends only on Ω and %. The support of a
non-proper B-spline must contain one of these cells, and each cell can
be shared by at most νd B-splines so that the number of non-proper
B-splines is bounded by

#(I\I•) ≤ C ′νd h1−d =: Ch1−d. (14)

Here and in the following,

C = C(ν, d, p,Ω, %), % > 0,

denotes a generic constant depending only on the specified data, which may
take different values at each occurrence. Now, we consider the approximation
of a given spline BF by its reduced counterpart

B•F• :=
∑

i∈I•

fibi.
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Theorem 4.1 Let Ω ⊂ R
d be a bounded C1,1-graph domain, and T a knot

grid with fineness h < h0 and mesh ratio % > 0. Then there exists a constant
C with

‖BF −B•F•‖p,Ω ≤ C‖F‖∞hν+2/p.

Proof: Using Hölder’s inequality and the fact that at most νd B-splines
cover a given grid cell, a standard argument yields

‖BF −B•F•‖p
p,Ω =

∥

∥

∥

∑

i∈I\I•

fibi

∥

∥

∥

p

p,Ω
≤ νdp/q‖F‖p

∞

∑

i∈I\I•

‖bi‖p
p,Ω,

where 1/p+ 1/q = 1. Further, estimating the number of summands by (14),

‖BF −B•F•‖p,Ω ≤ C‖F‖∞h(1−d)/p max
i∈I\I•

‖bi‖p,Ω (15)

so that it remains to consider the Lp-norm of any non-proper B-spline bi. If
bi is non-proper then, by Theorem 3.5, there exists an index j < d such that

vd
i < (1 − 1/d)uj

i (w
j
i − wj

i ).

By Lipschitz continuity according to (13), we have wj
i − wj

i ≤ Luj
i . Further,

uj
i ≤ νh so that

vd
i < (1 − 1/d)Lν2 h2 =: Ch2.

Assuming without loss of generality that the isometric a3-map Ii appearing
in (10) is the identity, we obtain the inclusion

SΩ

i ⊂ [0, νh]d−1 × [0, Ch2]

for the restricted support of bi. Hence,

‖bi‖p
p,Ω ≤ Chd−1

∫ Ch2

0

(

bid(t)
)p
dt.

For τ = 0, Marsden’s identity (2) for the dth coordinate yields

ψid(0)bid(t) ≤
∑

j≥id

ψj(0)bj(t) = tν , t ≥ 0,
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because ψj(0) = 0 for id − n ≤ j < id and ψj(0) ≥ 0 for j ≥ id. Since the
mesh ratio % is assumed to be positive, we have ψid(0) =

∏ν
j=1 τid+j ≥ ν!(%h)ν

and obtain bid(t) ≤ C (t/h)ν . Hence,

‖bi‖p
p,Ω ≤ C hd−1

∫ Ch2

0

(t/h)νp dt ≤ C hνp+d+1.

Substituting this estimate into (15), we obtain the desired result. �

With the help of the theorem, we can relate approximation properties of
complete to reduced spline spaces. If f is a sufficiently smooth function and
BF is a suitable approximating spline, we expect an error estimate of the
form

‖f −BF‖p,Ω ≤ C|f |hν , (16)

where |f | is a semi-norm involving certain higher order partial derivatives.
If so, the error of approximation by the reduced spline B•F• is bounded by

‖f−B•F•‖p,Ω ≤ ‖f−BF‖p,Ω+‖BF−B•F•‖p,Ω ≤ Chν(|f |+h2/p−1‖F‖∞).

Typically, BF is constructed by quasi-interpolation [1, 6, 10],

BF := Λ(f) =
∑

i∈I

λi(f)bi,

where the λi are a family of uniformly bounded functionals,

‖λi‖p ≤ C, i ∈ I. (17)

For instance, such functionals can be defined as Hahn-Banach extensions of
the de Boor-Fix functionals from the space of polynomials to Lp(Ω). Hence,
‖F‖∞ ≤ C‖f‖p,Ω, and

‖f −B•F•‖p,Ω ≤ Chν(|f | + h2/p−1‖f‖p,Ω).

This estimate shows that we can expect the optimal approximation order
O(hν) in the reduced spline space with respect to the Lp-norm for p ≤ 2.
For larger values of p, the order is diminished. The worst case appears for
p = ∞, where the approximation order is reduced by 1 to O(hν).

We emphasize that the estimates (16), (17) must not be taken for granted.
Known approaches to the problem include the following:
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• In [6], the estimates (16) and (17) are derived for domains Ω which
are coordinate-wise convex and satisfy other technical conditions. The
important point here is that the semi-norm |f | involves only pure partial
derivatives,

|f | :=
d

∑

k=1

‖∂ν
kf‖p,Ω.

In general, for degree n = (n1, . . . , nd), the error estimates read

‖f −BF‖ ≤ C

d
∑

k=1

hnk ‖∂nk

k f‖p,Ω

and (omitting the proof)

‖f −B•F•‖ ≤ C
d

∑

k=1

hnk (

‖∂nk

k f‖p,Ω + h2/p−1‖f‖p,Ω

)

.

This type of estimate is natural for approximation in tensor product
spaces, see also [5].

• In [7], the estimates (16) and (17) are derived for web-spline approxima-
tion on domains Ω with Lipschitz boundary. Here an extension operator
due to Stein, see [11], is used to map f to a function with compara-
ble norm defined on an enclosing box. The semi-norm |f | involves all
partial derivatives of order ν,

|f | :=
∑

|α|=ν

‖∂αf‖p,Ω.

Unlike above, there is no natural generalization to the case of unequal
degrees n = (n1, . . . , nd), and one has to resort to setting ν := maxk n

k.

As mentioned above, in all known estimates the constant C in (16) depends
on the mesh ratio %.

5 Generalizations

The theory developed so far can be generalized in several ways. Obviously,
the constant 2d in Definition 3.2 is fixed more or less arbitrarily. Given any
α ≥ 1, we can replace condition b) by
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b’) The sizes of Ri and Pi are related by α|Ri| = |Pi|.

B-splines satisfying this condition are called α-proper. The central The-
orem 3.3 remains valid with the constant M now depending also on α.
The changes in the proof are marginal: the size of the box Qi satisfies
αn ∗ |Qi| = (1, . . . , 1) so that the constant Cn,d,p depends also on α.

When choosing α = d, B-splines are d-proper if the boundary is locally
planar. However, slight perturbations may always result in a violation of
the condition. The relevance of this critical value becomes also apparent if
we consider the generalization of Theorem 3.5: a sufficient condition for a
B-spline to be α-proper is obtained if (11) is replaced by

α− d

d− 1
vd

i ≥ u∗i ∗ (wi − wi), (11’)

which makes sense only when requiring α > d. In the proof, the definition
r := p/(2d) has to be replaced by r := p/α. Then the subsequent arguments
can be carried over almost verbatim. Concerning approximation properties,
Theorem 4.1 remains valid when assuming α > d and taking into account
that the constant C now depends also on α. In the proof, only the inequality
on vd has to be adapted, vd < (d− 1)/(α− d)Lh2 =: Ch2.

The choice of α can be used to trade stability for approximation proper-
ties: A larger value of α yields a larger set of proper B-splines. This results
in a larger bound on the condition number, but fewer B-splines are lost for
approximation. For α ≤ d, potential improvements of the condition number
might be thwarted by a substantial loss of approximation power.

A careful analysis of the proof of Theorem 3.3 reveals more sources for
generalization: First, the box Ri is only used to find another box Qi with
αn ∗ |Qi| = |Pi| which is contained in a grid cell. Second, the property
SΩ

i ⊂ Pi of the box Pi is only used to derive the estimate (9), which can
be satisfied also if SΩ

i 6⊂ Pi. Further, this inequality can be generalized by
introducing another constant β. If Pi is no longer required to contain SΩ

i , it
has to be ensured that there exists a point ξi ∈ Qi ∩ Pi for evaluation of the
de Boor-Fix functionals. This leads us to the following definition:

Definition 5.1 Let Ω ⊂ R
d be an open domain, and I the set of relevant

indices of the given spline space according to (7). A B-spline bi, i ∈ I, with
support Si is called (α, β, p)-proper, if there exist boxes Pi, Qi with the fol-
lowing properties:
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a’) Qi is contained in an interior grid cell, i.e., Qi ⊂ Tj ∩ SΩ

i for some
j ∈ Z

d. Further, Qi ∩ Pi 6= ∅, and ‖bi‖p,Ω ≤ β ‖bi‖p,Pi
.

b”) The sizes of Qi and Pi are related by αn ∗ |Qi| = |Pi|.

c) The boxes Pi and Si have one corner in common.

For p ∈ [1,∞], the sequence of normalized (α, β, p)-proper B-splines is defined
by

Bp
α,β := (bpi )i∈Ip

α,β
, Ip

α,β := {i ∈ I : bi is (α, β, p)-proper}.

Also this generalized notion of properness yields uniform stability:

Theorem 5.2 The condition number of the sequence Bp
α,β of normalized

(α, β, p)-proper B-splines is bounded by

condpB
p
α,β ≤M,

where the constant M depends on n, d, p, α, β, but neither on T nor on Ω.

The transcription of the proof is straightforward. Increasing the value of
α or β weakens the conditions in Definition 5.1 and thus enlarges the set of
(α, β, p)-proper B-splines at the cost of increasing the bound on the condition
number.

To illustrate the generalized definition, we consider a non-convex C1,1-
graph domain Ω ⊂ R

2. Even for an arbitrarily fine knot grid, there may exist
a B-spline bi with disconnected restricted support SΩ

i , see Figure 5. Given
α, the B-spline bi is not α-proper if the two components SΩ

i,1 and SΩ

i,2 of SΩ

are small and the gap between them is sufficiently large since Pi is required
to contain both components, while Ri must be contained in one of them.
On the other hand, for fixed p, consider, e.g., the case ‖bi‖p,SΩ

i,1
≥ ‖bi‖p,SΩ

i,2
.

We choose Pi as the bounding box of SΩ

i,1 so that ‖bi‖p,Ω ≤ 21/p ‖bi‖p,Pi
. If

the boundary is smooth and |Si| is sufficiently small, then there exists a box
Ri ⊂ SΩ

i,1 with 4|Ri| = |Pi|. Since Ri ⊂ Si, and Si is subdivided into n1 × n2

grid cells, there exists a box Qi ⊂ Ri with n ∗ |Qi| = |Ri| which is contained
in a grid cell. Hence, bi is (4, 21/p, p)-proper, independently of the size of the
the two components or the gap between them.
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Figure 5: B-spline which is (4, 21/p, p)-proper (left) but not proper (right).
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Méhauté, C. Rabut, and L.L. Schumaker (eds), Vanderbilt University
Press, Nashville (1997), 35–50.

[6] W. Dahmen, R. DeVore, and K. Scherer: Multi-Dimensional Spline Ap-
proximation, SIAM Journal on Numerical Analysis, Vol. 17, No 3 (1980),
380-402.

26
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