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Abstract

We provide estimates for the maximum error of polynomial ten-

sor product interpolation on regular grids in R
d. The set of partial

derivatives required to form these bounds depends on the clustering

of interpolation nodes. Also bounds on the partial derivatives of the

error are derived.

1 Introduction

In our long term effort to clarify approximation properties of tensor product
splines on domains, we encountered the problem to estimate the error of
polynomial tensor product interpolation on regular grids in R

d. This issue
is also of some practical importance since tensor product interpolation on
regular grids is a very efficient way to compute a polynomial approximation
of a given d-variate function f . The point is that the solution of the problem
in the space P

n of polynomials of coordinate order n = (n1, . . . , nd) can
be factorized into the consecutive solution of d univariate problems of size
n1, . . . , nd.

Amazingly, the literature on that fundamental topic seems to be acutely
fragmented. To the best of our knowledge, the most (and perhaps the only)
substantial contribution is due to de Boor [3], who provides a representation
of the interpolation error in terms of suitably adapted divided differences.
However, we were not able to derive bounds on the maximal error, say in
terms of the partial derivatives of the given function, from this result.
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In this paper, we consider the problem in some detail, and our results
show a subtle relation between the clustering of interpolation nodes and the
set of partial derivatives required to bound the error. In the next section, we
consider nodes in general position. Here, the bound involves certain partial
derivatives up to ∂n1

1 · · · ∂nd

d f . In the case of simple nodes, as studied in
Section 3, the pure partial derivatives ∂n1

1 f, . . . , ∂nd

d f are sufficient. However,
the constants depend on the relative spacing of nodes. Particularly small
constants are obtained when choosing Chebyshev nodes for interpolation. In
Section 4, the results are generalized by considering partially clustered sets
of nodes which still admit bounds depending on the pure partial derivatives
alone. Finally, in Section 5, we provide estimates of the partial derivatives
of the interpolation error for the general case and the case of simple nodes.

2 Nodes in General Position

Throughout, the space dimension d ≥ 2 is assumed to be fixed. Given a
point h = (h1, . . . , hd) ∈ R

d with positive components, we define the closed
box

H := H1 × · · · × Hd, Hr := [0, hr], r = 1, . . . , d.

Let G = G1 × · · · × Gd ⊂ H be a d-dimensional regular grid of dimension
n = (n1, . . . , nd) ∈ N

d, defined by sets Gr := {γ1
r , . . . , γ

nr

r } ⊂ Hr of not
necessarily different interpolation nodes

γ1
r ≤ γ2

r ≤ · · · ≤ γnr

r , r = 1, . . . , d.

For each coordinate direction r = 1, . . . , d, we denote by Ir : W nr

∞ (Hr) →
P

nr the univariate interpolation operator mapping a function f with an es-
sentially bounded weak nr-th derivative to the unique polynomial pr = Irfr

of order nr interpolating fr on Gr. As usual, multiple nodes indicate Hermite
interpolation. More precisely, if

νi
r := max{j ∈ N0 : γi+j

r = γi
r}

is the number of equal successors of γi
r, then

p(νi
r)

r (γi
r) = f (νi

r)
r (γi

r), i = 1, . . . , nr.
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In particular, if all nodes coincide, pr is the Taylor polynomial of fr at that
point. With the Lagrange polynomials `1

r, . . . , `
nr

r , we have

pr =
nr

∑

i=1

f (νi
r)(γi

r) `i
r.

The error operator corresponding to Ir is

Er :=
� − Ir.

Denoting the sup-norm on Hr by ‖ · ‖r, let

wr :=
‖(· − γ1

r ) · · · (· − γnr

r )‖r

hnr

r nr!
.

Then the well-known error estimate for polynomial interpolation can be writ-
ten in the form

‖Erfr‖r ≤ wrh
nr

r ‖f (nr)
r ‖r. (1)

Now, we adapt the operators defined above to the multivariate setting.
In the following, ‖ · ‖ is the sup-norm on H. For α ∈ N

d
0,

∂αf := ∂α1

1 · · · ∂αd

d f, hα := hα1

1 · · ·hαd

d , (2)

denote multivariate derivatives and powers, respectively, and W n
∞(H) is the

Sobolev space of all functions f with essentially bounded weak derivatives
∂αf of all orders α ≤ n on H. With er the r-th unit vector, let xr := x−xrer

be the projection of any point x ∈ H to the hyper-plane xr = 0. We extend
Ir to an operator Ir : W n

∞(H) → W n
∞(H) by stipulating that Ir is acting only

on the r-th argument of a given d-variate function f ; all other arguments are
treated as constants. That is,

Irf(x) =
nr

∑

i=1

∂νi
r

r f(xr + γi
rer)`

i
r(xr), x ∈ H.

The corresponding extension of the operator Er preserves the relation Er =
� − Ir. Differentiating the last display with respect to xs and using ∂s∂

νi
r

r =

∂
νi

r

r ∂s, we obtain

Ir∂s = ∂sIr and Er∂s = ∂sEr if s 6= r. (3)
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Further, we conclude from (1)

‖Erf‖ ≤ wrh
nr

r ‖∂nr

r f‖ (4)

for any f ∈ W n
∞(H).

Concatenating the operators I1, . . . , Id, we obtain the tensor product in-
terpolation operator

I := Id · · · I1 : W n
∞(H) → P

n,

where P
n denotes the set of all polynomials of coordinate order n. Clearly,

p := If = Id · · · I1f is the unique polynomial in P
n which interpolates f on

G. The error operator

E :=
� − I =

� − (
� − Ed) · · · (

� − E1)

can be written as

E = −
∑

‖α‖=1

(−Ed)
αd · · · (−E1)

α1 , (5)

where α ∈ N
d
0 is a multi-index with maximal component ‖α‖ := maxi αi = 1.

Repeatedly applying (4) and (3), we obtain

‖Ef‖ ≤
∑

‖α‖=1

‖Eαd

d · · ·Eα1

1 f‖ ≤
∑

‖α‖=1

wαd

d hαdnd

d ‖∂αdnd

d E
αd−1

d−1 · · ·Eα1

1 f‖

=
∑

‖α‖=1

wαd

d hαdnd

d ‖Eαd−1

d−1 · · ·Eα1

1 ∂αdnd

d f‖ ≤ · · · ≤

≤
∑

‖α‖=1

wα1

1 · · ·wαd

d hα1n1

1 · · ·hαdnd

d ‖∂α1n1

1 · · · ∂αdnd

d f‖.

With w := (w1, . . . , wd), αn := (α1n1, . . . , αdnd), and the multi-index nota-
tion introduced in (2), we can summarize our findings as follows:

Theorem 2.1 For f ∈ W n
∞(H), the tensor product interpolation error on

the box H = [0, h] is bounded by

‖f − If‖ ≤
∑

‖α‖=1

wαhαn ‖∂αnf‖.

Example 1: Let d = 2 and n = (2, 3). With wr ≤ 1/nr!, we obtain the
estimate

‖f − If‖ ≤ h2
1‖∂2

1f‖
2

+
h3

2‖∂3
2f‖

6
+

h2
1h

3
2‖∂2

1∂
3
2f‖

12
.
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3 Simple Nodes

In this section, we consider the non-Hermitian case of pairwise different
nodes. That is, νi

r = 0 for all r and i. Let

`r :=
nr

∑

i=1

|`i
r|

denote the Lebesgue function of the nodes Gr. Then the interpolation oper-
ator Ir is bounded by

‖Ir‖ := sup
fr

‖Irfr‖r

‖fr‖r

= ‖`r‖r. (6)

We note that ‖`r‖r is diverging if the distance between any two nodes tends
to 0. Defining the ratio

%r := min
i6=j

hr

|γi
r − γj

r |
,

an upper bound is given by ‖`r‖r ≤ nr%
nr−1
r .

Let Ŵ n
∞(H) denote the anisotropic Sobolev space of continuous functions

f for which the pure partial derivatives ∂n1

1 f, . . . , ∂nd

d f are bounded on H.

Theorem 3.1 For f ∈ Ŵ n
∞(H) and simple nodes, the interpolation error on

the box H = [0, h] is bounded by

‖f − If‖ ≤
d

∑

r=1

Ld
r hnr

r ‖∂nr

r f‖,

where Ld
r := wr ‖`r+1‖r+1 · · · ‖`d‖d.

Proof: The proof is by induction on d, starting from the univariate case
d = 1, which is just (1). With

I∗ := Id−1 · · · I1, E∗ :=
� − I∗,

we write E = Ed + IdE∗ to obtain

‖Ef‖ ≤ ‖Edf‖ + ‖Id‖ ‖E∗f‖.
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Assuming that the assertion is correct for d − 1, we find using (1) and (6)

‖Ef‖ ≤ wdh
nd

d ‖∂nd

d f‖ + ‖`d‖d

d−1
∑

r=1

Ld−1
r hnr

r ‖∂nr

r f‖

= wdh
nd

d ‖∂nd

d f‖ +
d−1
∑

r=1

Ld
rh

nr

r ‖∂nr

r f‖ =
d

∑

r=1

Ld
rh

nr

r ‖∂nr

r f‖,

and the proof is complete. �

Example 2: As in Example 1, let n = (2, 3). For simple nodes, we obtain the
estimate

‖f − If‖ ≤ ‖`2‖2 h2
1 ‖∂2

1f‖
2

+
h3

2 ‖∂3
2f‖

6
.

Since the interpolation process is invariant under a permutation of the coor-
dinates, any such permutation yields a valid bound. Here, we may exchange
the roles of the first and second coordinate to obtain

‖f − If‖ ≤ ‖`1‖1 h3
2 ‖∂3

2f‖
6

+
h2

1 ‖∂2
1f‖

2
.

When considering the constants Ld
r appearing in the theorem, we see that

the norm ‖`1‖ depending on the ratio %1 of the first coordinate direction does
not enter the bound, while a large value of any other %r yields large values for
the constants L1, . . . , Lr−1. The following example shows that, in fact, the
interpolation error can become arbitrarily large if the pure partial derivatives
are bounded, but some nodes are getting close.

Example 3: Let d = 2, n = (5, 5), and H = [0, 1]2. We consider the interpo-
lation problem

f(x) := 32 (x1 + x2)
11/2, G1 := G2 := {0, ε, 2ε, 3ε, 1}

depending on the parameter ε ∈ (0, 1/4]. The pure partial derivatives

∂5
1f(x) = ∂5

2f(x) = 10395
√

x1 + x2

are bounded on H. The interpolant can be calculated explicitly using a com-
puter algebra system, and evaluation of the error at the point x = (3/4, 3/4)
shows that

‖f − If‖ ≥ 1√
2ε

for ε ≤ 1/6.
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When seeking a good polynomial approximation of a given function f on
the box H, nodes are sought for which the constants Ld

r appearing in the
theorem are as small as possible. While optimal positions may be hard to
determine, the Chebyshev nodes

γ̂i
r := hr cos2

((2i − 1)π

4nr

)

, i = 1, . . . , nr,

provide a reasonable choice. The corresponding values

ŵr =
2

nr! 4nr

and ‖ˆ̀
r‖r ≤ 1 +

2

π
log(nr + 1)

are known to be minimal and nearly minimal, respectively, among all choices
of nodes, see [5, 6, 2]. In particular, in the estimate

‖f − Îf‖ ≤
d

∑

r=1

L̂d
rh

nr

r ‖∂nr

r f‖ (7)

for the interpolation error corresponding to the Chebyshev nodes, the con-
stants L̂d

r := ŵr ‖ˆ̀
r+1‖r+1 · · · ‖ˆ̀

d‖d depend only on nr. Existence of a poly-
nomial p ∈ P

n satisfying an estimate of that type was already observed in [4]
Corollary 2.1, and possibly before, but the result above is constructive, and
it provides specific and meaningful values for the constants.

Example 4: For practical purposes, we may assume nr ≤ 100. In this case,
using ‖ˆ̀

r‖r ≤ 4, we find the simplified estimate

‖f − Îf‖ ≤ 4d

d
∑

r=1

2

nr!4nr+r
hnr

r ‖∂nr

r f‖, ‖n‖ ≤ 100.

Example 5: For n = (5, 5), H = [0, 1]2 and f(x) = 32
√

x1 + x2 as in Exam-
ple 3, the estimate (7) for interpolation at the Chebyshev nodes yields the
a priori bound

‖f − Îf‖ ≤ 0.72.

On the left hand side, Figure 1 shows the error function, which attains the
maximal value

‖f − Îf‖ ≈ 0.43,

indicating that (7) is not unduly pessimistic.
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4 Partially Clustered Nodes

In the last section, we observed that the ratio %1 of the nodes in the first
coordinate direction does not enter the error bound. In fact, these nodes
might be multiple as well. In this section, we elaborate on the problem of
clustered nodes when the error bound is assumed to involve only pure partial
derivatives. In the following, C denotes a generic constant depending on the
dimension d and the order n, which may change its value at every occurrence.
Any other dependency is indicated explicitly.

Let us assume that no node in Gr has more than mr equal successors,
i.e., νi

r ≤ mr for all i. Then the mr-ratio

%mr

r := max
i

hr

γi+mr+1
r − γi

r

of Gr is well defined. We start with two lemmas, where the first one is a
special case of Theorem 10.2 in [1] and hence stated without proof.

Lemma 4.1 Let

Λ(n) :=
{

α ∈ N
d
0 :

d
∑

r=1

αr

nr

< 1
}

denote the set of all multi-indices lying below the hyper-plane spanned by the
points n1e1, . . . , nded, and let H = [0, 1]d. There exists a constant C such
that for any α ∈ Λ(n) and f ∈ Ŵ n

∞(H),

‖∂αf‖ ≤ C(‖f‖ + |f |n), |f |n :=
n

∑

r=1

‖∂nr

r f‖.

Lemma 4.2 Let Hr = [0, 1]. There exists a constant C(%mr

r ) such that

‖Irfr‖r ≤ C(%mr

r )
(

‖fr‖r + ‖f (mr)
r ‖r

)

for any fr ∈ W nr

∞ (Hr).

Proof: Writing the interpolating polynomial Irfr in Newton form with di-
vided differences [γ1

r , . . . , γ
i
r]fr, and taking into account that Hr = [0, 1], we

see that

‖Irfr‖r ≤
nr

∑

i=1

∣

∣[γ1
r , . . . , γ

i
r]fr

∣

∣.
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To show that every summand is bounded in the requested way, we distinguish
two cases: First, let i ∈ {1, . . . ,mr}. By the mean value theorem, divided
differences are bounded by

∣

∣[γ1
r , . . . , γ

i
r]fr

∣

∣ ≤ 1

(i − 1)!
‖f (i−1)

r ‖r.

The standard norm
∑mr

j=0 ‖f
(j)
r ‖r on Wmr

∞ (Hr) is equivalent to the norm

‖fr‖r + ‖f (mr)
r ‖r. Hence, there exists a constant C such that

∣

∣[γ1
r , . . . , γ

i
r]fr

∣

∣ ≤ C
(

‖fr‖r + ‖f (mr)
r ‖r

)

.

Second, let i ∈ {mr + 1, . . . , nr}. The mean value theorem and the recursion
for divided differences imply the existence of a constant C(%mr

r ) such that

∣

∣[γ1
r , . . . , γ

i
r]fr

∣

∣ ≤ C(%mr

r )
∣

∣[γ1
r , . . . , γ

mr+1
r ]fr

∣

∣ ≤ C(%
mr)
r

mr!
‖f (mr)

r ‖.

�

With the help of these lemmas and the findings of the preceding section,
we can prove the following result for tensor product interpolation on grids
with partially clustered nodes:

Theorem 4.3 Let m ∈ Λ(n). There exists a constant C(%m) depending on
%m := (%m1

1 , . . . , %md

d ) such that

‖f − If‖ ≤ C(%m)
d

∑

r=1

hnr

r ‖∂nr

r f‖

for any f ∈ Ŵ n
∞(H).

Proof: The inequality is invariant under a scaling of the coordinates so
that we may assume h1 = · · · = hd = 1 without loss of generality. With Î
the interpolation operator corresponding to the Chebyshev nodes, let ∆ :=
f − Îf . By Lemma 4.2,

‖I∆‖ ≤ C(%md

d )
(

‖Id−1 · · · I1∆‖ + ‖Id−1 · · · I1∂
md

d ∆‖
)

.

Repeated application of the argument to all summands eventually yields

‖I∆‖ ≤ C(%m)
∑

‖α‖≤1

‖∂αm∆‖,
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where C(%m) := C(%m1

1 ) · · ·C(%md

d ), and αm := (α1m1, . . . , αdmd) as before.
Clearly, αm ∈ Λ(n) for ‖α‖ ≤ 1 and m ∈ Λ(n). Thus, by Lemma 4.1,

‖∂αm∆‖ ≤ C(‖∆‖ + |∆|n), ‖α‖ ≤ 1.

Combining the last two displays, we obtain

‖∆ − I∆‖ ≤ ‖∆‖ + ‖I∆‖ ≤ C(%m)(‖∆‖ + |∆|n).

Following (7), we have ‖∆‖ = ‖f − Îf‖ ≤ C |f |n. Further, |∆|n = |f |n since
∂nr

r ∆ = ∂nr

r f , and hence

‖f − If‖ = ‖∆ − I∆‖ ≤ C(%m)|f |n,

as stated. �

Example 6: Let us consider the interpolation problem posed in Example 3,
again. Divergence of the interpolation error as ε → 0 is not in conflict with
Theorem 4.3:

• Choosing m = (3, 3), we obtain bounded 3-ratios %m1

1 = %m2

2 = 1, but
the theorem does not apply since m1/n1 + m2/n2 = 6/5 > 1.

• Choosing m = (2, 2), we have m1/n1 + m2/n2 = 4/5 < 1, but the
2-ratios %m1

1 = %m2

2 = 1/(3ε) are not bounded as ε → 0.

Example 7: Let us modify the problem of Example 3 by choosing nodes
G1 := {0, ε, 2ε, 3ε, 1} as before, but G2 := {0, ε, 1/2, 1/2 + ε, 1}. For m =
(3, 1), we obtain bounded ratios %m1

1 = 1 and %m2

2 = 2. Further, m1/n1 +
m2/n2 = 4/5 < 1 so that, by Theorem 4.3, the interpolation error f − If is
uniformly bounded for ε ∈ [0, 1/4]. On the right hand side, Figure 1 shows
the error of Hermite interpolation in the limit case G1 = {0, 0, 0, 0, 1}, G2 =
{0, 0, 1/2, 1/2, 1}. It is relatively large, but finite.

Example 8: The following example shows that, in general, the error of Taylor
polynomials cannot be bounded by pure partials and a uniform constant, even
for smooth functions. For k ∈ N and H := [0, 1]2, let

f(x, y) :=
√

k x2y2
(

1 − e−k(x2+y2)
)

.
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Figure 1: Interpolation error for f(x) = 32 (x1 + x2)
11/2 using 5 × 5

Chebyshev nodes (left) and partially clustered nodes G = {0, 0, 0, 0, 1} ×
{0, 0, 1/2, 1/2, 1} (right).

Then the biquadratic Taylor polynomial If , obtained for n = (3, 3) and
G1 = G2 = {0, 0, 0}, vanishes. Using the substitutions x̃ := kx2, ỹ := ky2,
one can see see that

|∂3
xf(x, y)| =

∣

∣4
√

x̃ỹ (6 − 9x̃ + 2x̃2)e−(x̃+ỹ)
∣

∣ ≤ 3, (x, y) ∈ H.

Hence, by symmetry, ‖∂3
xf‖ = ‖∂3

yf‖ ≤ 3 for all k ∈ N, while ‖f − If‖ =

‖f‖ ≥ f(1, 1) ≥
√

k/2.

5 Derivatives of the Error

In this section, we are going to estimate derivatives of the error function. In
the univariate case, we know that there exists a constant C(kr) such that

‖∂kr

r Erf‖ ≤ C(kr) hnr−kr‖∂nr

r f‖, kr ≤ nr. (8)

In the general case according to Section 2, we obtain the following result:

Theorem 5.1 Let k = (k1, . . . , kd) ∈ N
d
0 and k ≤ n. There exists a constant

C(k) such that the k-th derivative of the interpolation error is bounded by

‖∂k(f − If)‖ ≤ C(k)
∑

‖α‖=1

hα(n−k)‖∂α(n−k)∂kf‖
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for any f ∈ W n
∞(H).

Proof: By (5) and (3),

∂kE = −
∑

‖α‖=1

(−∂kd

d Eαd

d ) · · · (−∂k1

1 Eα1

1 ).

Using (8) and (3), we obtain

‖∂kEf‖ ≤
∑

‖α‖=1

‖(∂kd

d Eαd

d ) · · · (∂k1

1 Eα1

1 )f‖

≤ C(kd)
∑

‖α‖=1

h
αd(nd−kd)
d ‖(∂kd−1

d−1 E
αd−1

d−1 ) · · · (∂k1

1 Eα1

1 )∂
αd(nd−kd)+kd

d f‖,

where the exponent αd(nd − kd) + kd of ∂d justly assumes the value kd if
αd = 0, and the value nk if αd = 1. Repeatedly applying the same argument,
we end up with

‖∂kEf‖ ≤ C(k)
∑

‖α‖=1

h
α1(n1−k1)
1 · · ·hαd(nd−kd)

d ‖∂α1(n1−k1)+k1

1 · · · ∂αd(nd−kd)+kd

d f‖

= C(k)
∑

‖α‖=1

hα(n−k)‖∂α(n−k)∂kf‖,

as stated. �

Example 8: For n = (2, 3) as in Example 1 and k = (0, 2), we obtain

‖∂2
2(f − If)‖ ≤ C(k)

(

h2‖∂3
2f‖ + h2

1‖∂2
1∂

2
2f‖ + h2

1h2‖∂2
1∂

3
2f‖

)

.

In the case of simple nodes with ratios % = (%1, . . . , %d), the following
bound applies:

Theorem 5.2 Let k ≤ n and all nodes be simple. There exists a constant
C(k, %) such that the k-th derivative of the interpolation error is bounded by

‖∂k(f − If)‖ ≤ C(k, %)
d

∑

r=1

hnr−kr

r ‖∂nr−kr

r ∂kf‖

for any f ∈ W n
∞(H).
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Proof: The proof is by induction on d, starting from the univariate case
d = 1, which is just (8). With k∗ := (k1, . . . , kd−1), ∂k∗

∗ := ∂k1

1 · · · ∂kd−1

d−1 , and
xd := x − xded, we define the integral operator ∂−1

d by

∂−1
d f(xd + xded) :=

∫ xd

0

f(xd + τed) dτ.

Then, with E = Ed + IdE∗ as in the proof of Theorem 3.1,

∂kE = ∂kd

d Ed∂
k∗

∗ + ∂kd

d Id∂
k∗

∗ E∗ = ∂kd

d Ed∂
k∗

∗ + (∂kd

d Id∂
−kd

d )(∂k∗

∗ E∗∂
kd

d ).

There exists a constant C(kd, %d) such that

‖∂kd

d Id∂
−kd

d f‖ ≤ C(kd, %d)‖f‖.

To show this, we note that this estimate is invariant under a scaling of the
d-th coordinate. Thus, assuming hd = 1 without loss of generality, we have
‖∂−kd

d f‖ ≤ ‖f‖. Further, the kd-th derivative of the Lagrange polynomials
`1
d, . . . , `

nd

d is bounded by a constant depending only on kd and %d so that the
claim follows. Hence,

‖∂kEf‖ ≤ ‖∂kd

d Ed∂
k∗

∗ f‖ + C(kd, %d)‖∂k∗

∗ E∗∂
kd

d f‖.

By (8), the first norm on the right hand side is bounded by

‖∂kd

d Ed∂
k∗

∗ f‖ ≤ C(kd)h
nd−kd‖∂nd

d ∂k∗

∗ f‖ = C(kd)h
nd−kd‖∂nd−kd

d ∂kf‖.

Assuming that the assertion is correct for d − 1, we obtain for the second
norm on the right hand side

‖∂k∗

∗ E∗∂
kd

d f‖ ≤ C(k∗, %∗)
d−1
∑

r=1

hnr−kr

r ‖∂nr−kr

r ∂k∗

∗ ∂kd

d f‖

= C(k∗, %∗)
d−1
∑

r=1

hnr−kr

r ‖∂nr−kr

r ∂kf‖.

Combining the latter two displays verifies the assertion for d. �

Example 9: For n = (2, 3) and k = (0, 2) as in Example 8, we obtain

‖∂2
2(f − If)‖ ≤ C(k, %)

(

h2
1‖∂2

1∂
2
2f‖ + h2‖∂3

2f‖
)

.

13



6 Conclusion

The examples considered in the course of the discussion indicate that the
error bounds provided here give little leeway for qualitative improvement. It
should be noted that our results do not apply if the domain H is not a box.
At least, it has to be expected that the error bounds will depend not only
on the size, but also on the shape of H. This and other related questions,
like error bounds for polynomial L2-approximation, are topics of ongoing
research.

Acknowledgement: We would like to thank Carl de Boor for fruitful dis-
cussions.
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