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Abstract

We derive Sobolev-type inner products with respect to which hat

functions on arbitrary triangulations of domains in R
d are orthogo-

nal. Compared with linear interpolation, the resulting approximation

schemes yield superior accuracy at little extra cost.

1 Introduction

Piecewise linear approximation of functions is a basic procedure in many nu-
merical algorithms: It is used for rendering curves and surfaces in Computer
Graphics, for visualizing and assessing scientific data, and for discretizing
boundaries in FEM applications, to name just a few. In most cases, an ap-
proximation is determined by interpolating the given function at the vertices
of a triangulation of the domain. The approximation error has the optimal
order O(h2) for simplices of size h. However, in general, constants are subop-
timal. Figure 1 shows a simple univariate example, the approximation of the
function f(x) = sin(πx) on the interval [−1, 1] using seven equally spaced
knots. Standard linear interpolation (left) systematically overestimates the
convex parts and underestimates the concave parts of the function. By con-
trast, the L2-fit (middle) yields a smaller error, but in order to determine
the coefficients, a linear system has to be solved. This overprices the ap-
proach for adaptive refinement or large data sets. Best approximation with
respect to a suitably weighted Sobolev inner product (right) according to the
results presented in Section 3 of this paper combines the simplicity of linear
interpolation with improved accuracy.

The idea presented here goes back to [5, 4], where Sobolev type inner
products are constructed with respect to which uniform univariate B-splines
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Figure 1: Linear interpolation (left), L2-approximation (middle), and orthog-
onal approximation (right) of f(x) = sin(πx). The error (bottom) of linear
interpolation is larger than the other two.

of arbitrary degree are orthonormal. We are going to construct an inner
product involving function values and first derivatives with the property
that d-variate hat functions, which are the canonical basis of the space of
piecewise linear functions on a given triangulation, become orthogonal. Best
approximation with respect to this inner product is

• reasonable by simultaneously minimizing the deviation of function val-
ues and gradients,

• explicit by avoiding the solution of a possibly large linear system.

The examples given in the last section show that, in typical 2d and 3d appli-
cations, linear interpolation requires about 50% more coefficients to comply
with a given error maximum. Even though the methods do not differ by
orders of magnitude, these potential savings might still be significant with
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respect to requested memory and speed of processing, in particular for large
data sets.

The paper is organized as follows: After introducing basic concepts and
notations in the next section, we specify weight matrices providing orthog-
onality of hat functions in R

d. In Section 4, discrete variants of the inner
product are derived. They avoid the possibly tedious integration of functions
and gradients by resorting to polynomial interpolants for which all necessary
data can be precomputed. A particularly convenient scheme is obtained when
using quadratic interpolation. Here, the determination of coefficients of the
best approximation boils down to forming linear combination of function
values at the vertices and edge midpoints of the simplices. The numerical
results given in the last section illustrate the potential benefits of the new
method.

2 Preliminaries

Vectors, and in particular gradients, are always understood as column-vectors,
components are indexed by superscripts, rows are separated by semi-colons,
and the Euclidean inner product is denoted by parenthesis,

x =







x1

...
xd






= [x1; . . . ; xd], ∇f(x) =







∂x1f(x)
...

∂xdf(x)






, (x, y) :=

d
∑

i=1

xiyi.

The bilinear form induced by a symmetric matrix A with elements ai,j is
denoted by

A(x, y) := (x,Ay) =
∑

i,j

xi ai,j yj.

Let T be a finite triangulation of a compact set Ω ⊂ R
d consisting of simplices

Ti, i ∈ I, and vertices vj, j ∈ J . We assume that the simplices are not
degenerate, i.e., the unsigned volume |Ti| of Ti is positive for all i. The
simplices sharing a vertex, and the vertices of a simplex are characterized by
the index sets

Ij := {i ∈ I : vj ∈ Ti}, j ∈ J ,

Ji := {j ∈ J : vj ∈ Ti}, i ∈ I,
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respectively. The number ωj := #Ij of elements of Ij is called the order of
vj, while always #Ji = d + 1. Obviously, i ∈ Ij if and only if j ∈ Ji.

The space L of piecewise linear functions on T consists of all continuous
functions on Ω which are linear on each simplex Ti. To each vertex vj we
associate a hat function bj ∈ L which is defined by

bj(vk) = δj,k, j, k ∈ J .

The set of hat functions is a basis of L, and

supp bj =
⋃

i∈Ij

Ti. (1)

The piecewise linear interpolant to a function f on Ω is defined by

Lf :=
∑

j∈J

f(vj)bj.

Given a (weakly) differentiable function f , we denote by

f := [f ; ∇f ] =

[

f
∇f

]

(2)

the vector consisting of the function and its gradient. The standard Sobolev
inner product of first order on Ω is given by

〈f, g〉1 :=

∫

Ω

(f ,g) =
∑

i∈I

〈f, g〉Ti
, 〈f, g〉Ti

:=

∫

Ti

(f ,g),

see, e.g., [1]. The space of all functions with finite norm ‖f‖1 :=
√

〈f, f〉1 is
denoted by H1(Ω).

Now we generalize the concept in the following way: Let W := (Wi)i∈I

be a sequence of symmetric positive definite (d+1)× (d+1)-matrices. Then
we define the weighted Sobolev inner product

〈f, g〉T ,W :=
∑

i∈I

〈f, g〉Ti,Wi
, 〈f, g〉Ti,Wi

:=

∫

Ti

Wi(f ,g),

and the corresponding weighted Sobolev norm

‖f‖T ,W :=
√

〈f, f〉T ,W .
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The standard Sobolev norm ‖ · ‖1 and the weighted Sobolev norm ‖ · ‖T ,W

are equivalent,

√

λmin ‖f‖1 ≤ ‖f‖T ,W ≤
√

λmax ‖f‖1,

where λmin, λmax are bounds on the eigenvalues of all matrices Wi.
Given a function f ∈ H1(Ω), the best approximation

Qf =
∑

j∈J

qjbj

in the space L of piecewise linear functions with respect to the weighted
Sobolev norm is given by the solution (qk)k∈J of the Gramian system

∑

k∈J

qk〈bj, bk〉T ,W = 〈bj, f〉T ,W , j ∈ J .

Solving this linear system becomes trivial if the hat functions happen to be
orthogonal with respect to the inner product: if

〈bj, bk〉T ,W = 0 for j 6= k,

then

qj =
〈bj, f〉T ,W

〈bj, bj〉T ,W

, j ∈ J .

3 Orthogonality

In this section, we specify matrices Wi such that hat functions become orthog-
onal. The key idea is to require orthogonality on each simplex individually.
More precisely, we demand

〈bj, bk〉Ti,Wi
= δj,k for all j, k ∈ Ji and i ∈ I. (3)

The scaling 〈bj, bj〉Ti,Wi
= 1 is chosen for the sake of simplicity, and by no

means necessary. In particular, it might make sense to set 〈bj, bj〉Ti,Wi
= ci

with a constant ci depending on the volume |Ti|. The generalization of the
subsequent arguments, which yields similar but slightly more involved results,
is left to the reader.
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Exploiting (1), we find

〈bj, bk〉T ,W =
∑

i∈I

〈bj, bk〉Ti,Wi
=

∑

i∈Ij∩Ik

〈bj, bk〉Ti,Wi
.

We have i ∈ Ij ∩ Ik if and only if j, k ∈ Ji. Hence, if (3) is satisfied, we
obtain

〈bj, bk〉T ,W =
∑

i∈Ij∩Ik

δj,k = ωjδj,k,

showing that the hat functions are orthogonal with respect to the weighted
Sobolev inner product, and the norm of a hat function is given by the square
root of the order of the corresponding vertex.

Given i ∈ I, (3) provides
(

d+2
2

)

linear conditions for the entries of Wi.
Since Wi is assumed to be symmetric, the number of conditions coincides
with the number of degrees of freedom suggesting that the problem to find
an appropriate matrix Wi is well posed. We start with considering the or-
thogonality conditions on the unit simplex

T := {x ∈ [0, 1]d : (x, e) ≤ 1},

where e := [1; . . . ; 1] is the vector of ones. The vertices of T are the origin e0

and the unit vectors e1, . . . , ed. The hat functions to the vertices e0, . . . , ed

restricted to T are the linear Lagrange polynomials

lj(x) :=

{

1 − (x, e) for j = 0

xj for j = 1, . . . , d.
(4)

The corresponding vectors lj according to (2) are given by

lj := [lj; ∇lj] =

{

[1 − (x, e); −e] for j = 0

[xj; ej] for j = 1, . . . , d.
(5)

Now, a symmetric matrix W with

〈lj, lk〉T,W =

∫

T

W (lj, lk) = δj,k, j, k = 0, . . . , d, (6)
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is sought. In the univariate case d = 1, an elementary computation shows
that (6) is satisfied if we choose

W :=

[

2 0
0 1/3

]

.

This results coincides with the more general findings in [5]. In the multivari-
ate case d ≥ 2, symmetry suggests to treat all d coordinates in an equal way.
That is, we assume that W has the form

W :=















w0 w3 w3 · · · w3

w3 w1 w2 · · · w2

w3 w2 w1 · · · w2
...

...
. . .

...
w3 w2 w2 · · · w1















.

With this setting, we have

〈l0, l1〉T,W = 〈l0, lj〉T,W

〈l1, l1〉T,W = 〈lj, lj〉T,W

〈l1, l2〉T,W = 〈lj, lk〉T,W

for all j, k = 1, . . . , d with j 6= k. Hence, (3) is equivalent to the four
equations

〈l0, l0〉T,W = 〈l1, l1〉T,W = 1, 〈l0, l1〉T,W = 〈l1, l2〉T,W = 0

for the four unknowns w0, . . . , w3. To evaluate the integrals 〈lj, lk〉T,W =
∫

T
W (lj, lk), we use the formula

∫

T

lα0

0 · · · lαd

d =
α0! · · ·αd!

(d + α0 + · · · + αd)!
, (7)

which can be found as Equation (2.3) in [3], and obtain the conditions

〈l0, l0〉T,W =
2w0

(d + 2)!
+

w1

(d − 1)!
+

w2

(d − 2)!
−

2dw3

(d + 1)!
= 1

〈l1, l1〉T,W =
2w0

(d + 2)!
+

w1

d!
+

2w3

(d + 1)!
= 1

〈l0, l1〉T,W =
w0

(d + 2)!
−

w1

d!
−

(d − 1)w2

d!
−

(d − 1)w3

(d + 1)!
= 0

〈l1, l2〉T,W =
w0

(d + 2)!
+

w2

d!
+

2w3

(d + 1)!
= 0.
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Solving this system for w0, . . . , w3, we obtain the following result, which also
comprises the univariate case d = 1:

Lemma 1 For d ∈ N, the functions l0, . . . , ld according to (4) satisfy

〈lj, lk〉T,W = δj,k, j, k = 0, . . . , d,

if

W :=















w0 0 0 · · · 0
0 w1 w2 · · · w2

0 w2 w1 · · · w2
...

...
. . .

...
0 w2 w2 · · · w1















,

with

w0 := (d + 1)!, w1 :=
d!d

d + 2
, w2 :=

−d!

d + 2
.

In particular, we obtain

W =
1

2





12 0 0
0 2 −1
0 −1 2



 , W =
1

5









120 0 0 0
0 18 −6 −6
0 −6 18 −6
0 −6 −6 18









for the bi- and trivariate case, respectively. For all d ∈ N, the matrix W
as defined above is strictly diagonally dominant and hence positive definite,
making sure that W defines an inner product. Since w3 = 0, this inner
product can also be written in the form

〈f, g〉T,W =

∫

T

w0fg + W̃ (∇f,∇g) (8)

where

W̃ := w2

(

Ed − (d + 1)Id

)

is a (d × d)-matrix defined in terms of the identity Id and the matrix Ed of
ones in R

d×d.
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The result on the unit simplex T can be transferred to an arbitrary sim-
plex Ti by a change of variables. Let Ji = {`0, . . . , `d} be the indices of
the vertices of Ti. Then there exists an affine map Ai : x 7→ Aix + ai with
Ai(ej) = v`j

, j = 0, . . . , d, so that Ai(T ) = Ti. The functions lj on T and b`j

on Ti are related by lj(x) = b`j
(y) and ∇lj(x) = At

i∇b`j
(y), where y = Ai(x).

Together,

lj(x) = Mi b`j
(y), Mi :=

[

1 0
0 At

i

]

.

By assumption, the volume |Ti| = | det Ai| of Ti is positive so that the matrix

Wi :=
1

|Ti|
M t

i WMi (9)

is well defined. Since W is strictly diagonally dominant and Mi is invertible,
Wi is positive definite. Now, using dy = | det Ai| dx, we find

〈b`j
, b`k

〉Ti,Wi
=

∫

Ti

Wi

(

b`j
(y),b`k

(y)
)

dy =

∫

T

W
(

lj(x), lk(x)
)

dx = δj,k

for all `j, `k ∈ Ji. That is, the matrices Wi provide orthonormality according
to (3). We summarize our results as follows:

Theorem 2 Let W := (Wi)i∈I be a sequence of matrices according to (9).
Then

〈f, g〉T ,W :=
∑

i∈I

∫

Ti

Wi(f ,g)

defines a weighted Sobolev inner product with respect to which the hat func-
tions are orthogonal,

〈bj, bk〉T ,W = ωjδj,k.

The best approximation of a function f ∈ H1(Ω) with respect to the associated
norm in the space L of piecewise linear functions is given by

Qf =
∑

j∈J

qjbj, qj =
〈bj, f〉T ,W

ωj

. (10)

9



In view of (8), the weighted inner product on Ti can also be written in the
form

〈f, g〉Ti,Wi
=

1

|Ti|

∫

Ti

w0fg + W̃i(∇f,∇g), W̃i := AiW̃At
i. (11)

Of course, the affine map Ai is not uniquely determined because the cor-
respondence of vertices of T and Ti used to define Ai admits permutation.
However, we will now show that the resulting matrix Wi is independent of
the labelling of indices in Ji = {`0, . . . , `d}. Let Vi = [v`0 , . . . , v`d

] denote the
corresponding matrix of vertices of Ti. Then Ai(x) = Aix + ai is given by

ai := v`0 , Ai := ViK, K :=

[

−et

Id

]

,

where, as before, e is the vector of ones, and Id is the identity in R
d. Hence,

W̃i = ViKW̃KtV t
i .

A straightforward computation shows that

KW̃Kt = w2

(

Ed+1 − (d + 1)Id+1

)

is a (d+1)× (d+1)-matrix with the same structure as W̃ . Now, we consider
a permutation of indices of the vertices of Ti. Then the corresponding matrix
V ′

i is related to Vi by a permutation of columns, i.e.,

V ′
i = ViΠ

for some permutation matrix Π. Since ΠEd+1Π
t = Ed+1 and ΠId+1Π

t = Id+1,
we obtain

W̃ ′
i = ViΠKW̃KtΠtV t

i = W̃i.

That is, the matrices W̃i and W̃ ′
i corresponding to Vi and V ′

i coincide. Fur-
ther, also the scaling factor 1/|Ti| appearing in (11) is independent of the
labelling of vertices, showing that the inner product 〈·, ·〉Ti,Wi

, and hence also
〈·, ·〉T ,W depends only on the geometry of the triangulation.

10



4 Discrete Variants

The orthogonal expansion (10) avoids the solution of a possibly large linear
system, but compared with the standard interpolation technique, it is more
expensive since it requires the integration of expressions depending on values
and gradients of the given function f . To further increase efficiency, we
now derive discrete variants of the weighted Sobolev inner product, which
equally provide orthogonality. The idea is to replace the functions f, g by
some polynomial interpolants pi, qi of degree n before computing the inner
product 〈f, g〉Ti,Wi

on the simplex Ti.
Given n ∈ N, we denote by P

d
n the space of all polynomials of degree ≤ n

in d variables. The dimension of P
d
n is m :=

(

n+d

n

)

. Let U = [u1, . . . , um] be a
sequence of pairwise different points uµ ∈ T in the unit simplex, and denote
by ϕ(U) := [ϕ(u1); . . . ; ϕ(um)] the corresponding vector of values of a given
function ϕ. Further, let us assume that U is chosen such that for any ϕ the
interpolation problem

p(U) = ϕ(U)

has a unique solution p ∈ P
d
n, see e.g. [6] for details on the solvability of

multivariate interpolation problems. With Ln := [ln1 ; . . . ; lnm] the vector of
associated Lagrange polynomials, we have

p =
m

∑

µ=1

lnµ ϕ(uµ) =
(

Ln, ϕ(U)
)

.

Accordingly, for a simplex Ti = Ai(T ), let

Ui := [ui,1, . . . , ui,m], ui,µ := Ai(uµ)

Ln
i := [lni,1; . . . ; l

n
i,m], lni,µ(y) := lnµ(x), y = Ai(x),

denote the transformed interpolation points and associated Lagrange poly-
nomials, respectively. Let ϕ(x) = ϕi(y). Then ϕ(U) = ϕi(Ui), and the
polynomial

pi :=
(

Ln
i , ϕi(Ui)

)

solves the interpolation problem pi(Ui) = ϕi(Ui). Moreover,

p(x) = pi(y), ∇p(x) = At
i ∇pi(y).
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Now, we define the discrete inner product with respect to the points U :=
(Ui)i∈I and degree n by

[f, g]T ,W :=
∑

i∈I

[f, g]Ti,Wi
, [f, g]Ti,Wi

:= 〈Ln
i f(Ui), L

n
i g(Ui)〉Ti,Wi

.

That is, on each simplex, the given functions are replaced by their polynomial
interpolants before the formerly defined weighted Sobolev inner product is
computed. In this way, [f, g]T ,W depends only on the function values at the
points in U . Of course, positive definiteness has to be understood in the
sense that [f, f ]T ,W = 0 only if f does vanish on all points in U .

We observe the following: First, the hat functions are orthogonal also
with respect to the discrete inner product,

[bj, bk]T ,W = ωjδj,k. (12)

This follows immediately from the fact that the bj are linear on each simplex
and, by assumption, n ≥ 1 so that

bj(y) =
(

Ln
i (y), bj(Ui)

)

, y ∈ Ti.

Second, using (11) and ∇lnµ(x) = At
i ∇lni,µ(y), we find

[f, g]Ti,Wi
=

m
∑

ν,µ=1

f(ui,µ)g(ui,ν)

∫

Ti

Wi

(

lni,µ(y), lni,ν(y)
)

dy

=
m

∑

ν,µ=1

f(ui,µ)g(ui,ν)

∫

T

W
(

lnµ(x), lnν (x)
)

dx

= Gn
(

f(Ui), g(Ui)
)

,

where the (m × m)-matrix Gn, defined by

Gn
µ,ν := 〈lnµ, lnν 〉T,W =

∫

T

W (lnµ, l
n
ν ),

is the Gramian of the Lagrange polynomials with respect to the weighted
Sobolev inner product on the unit simplex. Notably, this matrix representing
the discrete inner product on the simplex Ti in terms of the function values
at the points Ui is independent of the geometry of Ti.
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Third, to compute the best approximation

Qnf =
∑

j∈J

qn
j bj, qn

j :=
[bj, f ]T ,W

ωj

, (13)

of a function f with respect to the discrete inner product, we proceed as
follows: Given an index j ∈ J and a simplex Ti in the support of bj, we
choose the affine map Aj

i : T → Ti such that Aj
i (e0) = vj. This implies

that the linear Lagrange polynomial l0 on the unit simplex according to (4)
corresponds to the hat function bj on Ti,

l0(x) = bj(y), x ∈ T, y = Aj
i (x) ∈ Ti.

The transformed interpolation points are denoted by U j
i := Aj

i (U). Then we
obtain

[bj, f ]T ,W =
∑

i∈Ij

Gn
(

bj(U
j
i ), f(U j

i )
)

=
∑

i∈Ij

(

Rn, f(U j
i )

)

,

where the vector

Rn := Gn l0(U) = Gn bj(U
j
i )

is independent of Ti. Together with (12), we obtain the following result.

Theorem 3 The best approximation Qnf =
∑

j qn
j bj of a function f with

respect to the discrete inner product [·, ·]T ,W is given by the coefficients

qn
j :=

1

ωj

∑

i∈Ij

(

Rn, f(U j
i )

)

,

where ωj is the order of the vertex vj, f(U j
i ) are the function values at the

points U j
i in Ti, and Rn is a fixed vector of weights as defined above.

We note that for a given set U of interpolation points the vector Rn =
[rn

1 ; . . . ; rn
m] can be pre-computed conveniently using the representation

rn
µ =

m
∑

ν=1

〈lnµ, lnν 〉T,W l0(uν) =
〈

lnµ,

m
∑

ν=1

lnν l0(uν)
〉

T,W
= 〈lnµ, l0〉T,W

= w0

∫

T

lnν l0 + w2

∫

T

(∇lnν , e), (14)
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where, as before, e is the vector of ones.
In the linear case n = 1, the natural choice of interpolation points is

the set of vertices, U := [e0, . . . , ed]. Here, it is easily shown that R1 =
[1; 0; . . . ; 0]. That is, best approximation with respect to the discrete inner
product boils down to standard linear interpolation. The quadratic case
n = 2, which is more promising and in fact recommended for applications, is
now discussed in some detail. Here, the natural choice of interpolation points
is the set of vertices and edge midpoints. It is convenient to use double indices
for the points in U ,

U := [uj,k]0≤j≤k≤d, uj,k := (ej + ek)/2.

Accordingly, the components of the vectors L2 and R2 are now labelled l2j,k
and r2

j,k, respectively. The Lagrange polynomials for the vertices and the
edge midpoints are given by

l2j,k =

{

lj(2lj − 1) if j = k

4 ljlk if j < k,
(15)

respectively. We distinguish four different types of points: the origin ( ), the
remaining vertices ( ), the midpoints of edges containing the origin ( ), and
the remaining midpoints ( ). Here and below, the symbols in parenthesis
correspond to the markers used in Figures 2, 4, and 7. For symmetry reasons,
the weights r2

j,k coincide for all points within the same class. Application of
the formulas (7), (14), and (15) yields

r2
j,k =































r2 := (3−d)(d2+5d+2)
(d+1)(d+2)(d+3)

if 0 = j = k

r2 := −8
(d+1)(d+2)(d+3)

if 0 < j = k

r2 := 4(d2+4d−1)
(d+1)(d+2)(d+3)

if 0 = j < k

r2 := −4(d+5)
(d+1)(d+2)(d+3)

if 0 < j < k.

(16)

The quadratic case n = 2 as described above has the advantage that it uses
only function values at the vertices and the edge midpoints of the triangula-
tion. Typically, these (and possibly further) data are also used for estimating
the error maximum, say when computing an adaptively refined linear inter-
polant with prescribed accuracy. Hence, no extra function evaluations are
required. Further, for a fine triangulation with simplices of size h and a
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smooth function f , let us compare the original approximation Qf according
to (10) and the discrete approximation Q2f according to (13). It is easily
shown that the coefficients qj and q2

j differ by terms of order O(h3), and thus
also ‖Qf − Q2f‖∞ = O(h3). Compared with the error ‖f − Qf‖∞ = O(h2)
of the approximation itself, this difference is small. In particular, for small
h, no substantial gain in accuracy can be expected when using cubic or even
higher degree interpolation. Summarizing, we conclude that Q2f is not more
expensive than linear interpolation Lf and not less accurate than Qf .

5 Examples

In this section, we consider the piecewise linear approximation of univari-
ate, bivariate, and trivariate functions using the discrete variant based on
quadratic interpolation according to (16). Below, Nint and Napp denote the
number of vertices used for linear interpolation and orthogonal approxima-
tion, respectively. The corresponding maximum errors, estimated by evalua-
tion at the vertices, edge midpoints, and centers of the simplices, are denoted
by ∆int := ‖f − Lf‖∞ and ∆app := ‖f − Q2f‖∞. Throughout, solid lines
are used for orthogonal approximation, while broken lines are used for linear
interpolation.

5.1 Univariate case d = 1
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Figure 2: Unit interval with weights of discrete orthogonal approximation
based on quadratic interpolation.

Figure 2 shows the weights used for orthogonal approximation in the uni-
variate case. We consider the function f(x) = sin(πx) appearing already in
the introduction. Figure 3 shows the results for equidistant knots. Asymp-
totically, the maximal error of linear interpolation is ≈ 50% larger than the
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maximal error of orthogonal approximation, and accordingly, ≈ 23% more
coefficients are required to achieve a given maximal error.
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Figure 3: Univariate case. Errors ∆int, ∆app (left) and ratio ∆int/∆app (mid-
dle) as a function of the number of vertices; ratio Nint/Napp as a function of
maximal error (right).

5.2 Bivariate case d = 2
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Figure 4: Unit triangle with weights of discrete orthogonal approximation
based on quadratic interpolation (left) and Franke function (right).

Figure 4 (left) shows the weights used for orthogonal approximation in the
bivariate case. We consider the Franke function [2] on the domain [−1, 1]2,
see Figure 4 (right). Figure 5 shows the results for a uniform partition, where
the domain is split into pairs of right triangles, combining to squares of equal
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size. Asymptotically, the maximal error of linear interpolation is ≈ 50%
larger than the maximal error of orthogonal approximation, and accordingly,
≈50% more coefficients are required to achieve a given maximal error.
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Figure 5: Bivariate case, uniform partition. Errors ∆int, ∆app (left) and ratio
∆int/∆app (middle) as a function of the number of vertices; ratio Nint/Napp

as a function of maximal error (right).

Figure 6 shows the results for adaptive refinement, where insufficient tri-
angles are split at the midpoint of the longest edge. The pattern is less clear
than in the uniform case, but also here, the potential savings are significant.
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tio ∆int/∆app (middle) as a function of the number of vertices; ratio Nint/Napp

as a function of maximal error (right).
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5.3 Trivariate case d = 3
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Figure 7: Unit tetrahedron with weights of discrete orthogonal approximation
based on quadratic interpolation.

Figure 7 shows the weights used for orthogonal approximation in the trivari-
ate case. We consider the function f(x) = exp(x2−y2−2z2). Figure 8 shows
the results for a type-4-partition [7] of a uniform hexahedral grid. Asymp-
totically, the maximal error of linear interpolation is ≈ 28% larger than the
maximal error of orthogonal approximation, and accordingly, ≈ 45% more
coefficients are required to achieve a given maximal error.
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Figure 8: Trivariate case. Errors ∆int, ∆app (left) and ratio ∆int/∆app (mid-
dle) as a function of the number of vertices; ratio Nint/Napp as a function of
maximal error (right).
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