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Abstract

This paper is concerned with the applicability of the finite sections method to opera-
tors belonging to the closed subalgebra of L(Lp(R)), 1 < p < ∞, generated by operators
of multiplication by piecewise continuous functions in Ṙ and operators of convolution
by piecewise continuous Fourier multipliers. For this, we introduce a larger algebra of
sequences, which contains the special sequences we are interested and the usual operator
algebra generated by the operators of multiplication and convolution. There is a direct
relationship between the applicability of the finite section method for a given operator
and invertibility of the corresponding sequence in this algebra. Exploring this relationship
and using local principles, we construct locally equivalent representations that allow to
derive invertibility criteria.

1 Introduction

From a formal point of view, to solve an operator equation Au = v numerically by a direct
method, one specifies a sequence of (in a certain sense) simple operators Aτ which converge
strongly to A, and replaces the equation Au = v by the sequence of the (simpler) equations
Aτuτ = v. The crucial question is if this method applies, i.e. if the equations Aτuτ = v
possess unique solutions for every right-hand side v and for every sufficiently large τ , say
for τ ≥ τ0, and if the sequence (uτ )τ≥τ0 converges to the solution u of the original equation
Au = v. The applicability of the method is equivalent to the stability of the sequence (Aτ ),
i.e. to the invertibility of the operators Aτ for τ being large enough and to the uniform
boundedness of the norms of their inverses.

In the present paper, we are interested in operators which are constituted by operators of
multiplication by piecewise continuous functions and operators of convolution by piecewise
continuous Fourier multipliers. These operators are considered on Lp-spaces over the real line
R, and simpler means in that context that we replace the operator A by its compressions to
the compact intervals [−τ, τ ] with τ ∈ (0,∞). These compressions are also called the finite
sections of A, whence the name finite sections method for this kind of approximate solution.

The stability of a sequence of operators is equivalent to an invertibility problem in the
algebra of all bounded sequences of operators, factored by the ideal of all sequences converging
to zero in the norm, as observed by Kozak [6] in 1973. Kozak’s observation led to a whole
new field of research, by inserting algebraic methods into numerical analysis. But there was
still an obstacle: usually, the algebraic tools one wants to employ require to work in a much
smaller algebra than the algebra of all bounded sequences factored by zero sequences. This
problem was solved by one of the authors of the present paper in [11] where he examined
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the applicability of the finite sections method to one-dimensional Toeplitz operators with
piecewise continuous coefficients by employing a local principle. It was a crucial step in [11]
to introduce an algebra of sequences (smaller than the algebra of all bounded sequences) and
an ideal of that algebra (larger than the ideal of all zero sequences) such that the resulting
quotient algebra is, on the one hand, small enough to apply algebraic tools (such as local
principles) and, on the other hand, large enough to contain all (cosets of) sequences one is
actually interested in. This approach has proved extremely useful since.

As we have tried to indicate, the algebraic approach to study stability typically involves
algebras of extremely different sizes: a very large algebra (where invertibility in that algebra
is equivalent to stability) and a relatively small one (where the algebraic tools work). The
passage from the large algebra to the small one rises the so-called inverse closedness problem:
Does the invertibility of a sequence in the large algebra (i.e. stability) imply its invertibility
in the small one (which hopefully can be studied by algebraic tools)? Note that this passage is
not a problem if one only deals with operators on Hilbert spaces and C∗-algebras of sequences:
C∗-subalgebras of C∗-algebras are always inverse closed.

In case p = 2, the results of the present paper extend the results from [7, 8] only slightly:
the sequence algebra considered here is somewhat larger, since we include here all constant
sequences of operators and the sequence (Pτ ) of finite sections projections separately. But
in case p 6= 2, a serious inverse closedness problems arises. This situation was not fully
recognized until recently, and it is a main goal of the paper to offer a way to deal with the
inverse closedness problem by constructing suitable intermediate algebras.

The paper is organized as follows. In Section 2 we present technical background material.
In particular we introduce some families of strong limits which are later used to identify local
algebras, and which also appear in the formulation of our main (stability) result. In Section
3 we recall some basic facts from [9] where Allan’s local principle is applied to study the
Fredholm property in the algebra generated by operators of multiplication and convolution
by piecewise continuous functions. This repetition is for three reasons: first, the operator
algebra examined in [9] is a subalgebra of our sequence algebra, and the approach from
[9] strongly motivates and supports the approach of the present paper, second, we were
able to simplify some proofs, and third, we are aware of the fact that the booklet [9] not
well accessible. The main part of the present paper is Section 4, where the criteria for the
applicability of the finite section method are derived. The concluding section is devoted to
some examples.

2 Notation and basic results

Throughout this paper, 1 < p < ∞. We will exclusively work on the Lebesgue space Lp(R).
Given a subinterval Γ of the real axis, we consider Lp(Γ) as a closed subspace of Lp(R) in the
natural way. In particular, we identify the identity operator on Lp(Γ) with the operator χΓI
of multiplication by the characteristic function χΓ of the interval Γ, acting on Lp(R). More
general, each bounded linear operator A on Lp(Γ) is identified with the operator χΓAχΓI
acting on Lp(R). These identifications will be used without further comment.

We write the Fourier transform F on the Schwartz space of rapidly decreasing infinite
differentiable functions as

(Fu)(y) =
∫ +∞

−∞
e−2πiyxu(x) dx, y ∈ R. (1)

2



Then its inverse is given by

(F−1v)(x) =
∫ +∞

−∞
e2πixyv(y) dy, x ∈ R. (2)

It is well known that the operators F and F−1 can be extended continuously to bounded and
unitary operators on the Hilbert space L2(R) and that F extends continuously to a bounded
operator from Lp(R) to Lq(R) where q := p/(p − 1) if 1 < p ≤ 2 (see, for instance, [12,
Theorem 74]).

Let Mp denote the set of all Fourier multipliers, i.e., the set of all functions a ∈ L∞(R)
with the following property: if u ∈ L2(R) ∩ Lp(R), then F−1aFu ∈ Lp(R), and there is a
constant cp independent of u such that ‖F−1aFu‖p ≤ cp‖u‖p. If a ∈ Mp, then the operator
F−1aF : (L2(R) ∩ Lp(R)) → Lp(R) extends continuously to a bounded operator on Lp(R).
This extension is called a (Fourier) convolution operator , and we denote it by W 0(a). The
function a is also called the generating function (or the symbol or presymbol) of W 0(a). In
particular, the convolution operator W 0(sgn) can be identified the singular integral operator
of Cauchy type,

(SRu)(t) :=
1
πi

∫
R

u(s)
s− t

ds, t ∈ R.

We denote the associated projections by PR := (I + SR)/2 and QR := I − PR. We denote
the characteristic functions of the positive and negative half axis by χ+ and χ− , respectively.
Given a ∈ Mp, the restriction of the operator χ+W 0(a)χ+I onto Lp(R+) is a Wiener-Hopf
operator and will be denoted by W (a).

The set Mp of all Fourier multipliers forms a Banach algebra when equipped with the
operations inherited from L∞(R) and the norm

‖a‖Mp := ‖W 0(a)‖L(Lp(R)). (3)

We call a function a ∈ L∞(R) piecewise constant (resp. piecewise linear) if there is a
partition −∞ = t0 < t1 < . . . < tn = +∞ of the real line such that a is constant (resp.
linear) on each interval [tk, tk+1]. Stetchkin’s inequality (see for instance [2]) entails that the
multiplier algebra Mp contains the (non-closed) algebras C0 of all continuous and piecewise
linear functions on Ṙ and PC0 of all piecewise constant functions on R. Let Cp and PCp

denote the closures of C0 and PC0 in Mp, respectively.
In the remainder of this section, we are going to define several types of “shift” operators

and to introduce several strong limits associated to these shifts. These strong limits will be
our main tool to identify local algebras in the following sections.

For s, t ∈ R and τ ∈ (0,∞), consider the operators

Us : Lp(R) 7→ Lp(R), (Usu)(x) = e−2πixsu(x), (4)
Vt : Lp(R) 7→ Lp(R), (Vtu)(x) = u(x− t), (5)

Zτ : Lp(R) 7→ Lp(R), (Zτu)(x) := τ−1/pu(x/τ). (6)

Clearly, U−1
s = U−s, V −1

t = V−t, and Z−1
τ = Zτ−1 , and these operators have norm 1. The

following lemma is easy to check.

Lemma 2.1. If a ∈ Mp and s ∈ R, then U−sW
0(a)Us = W 0(VsaV−s) and VsW

0(a)V−s =
W 0(a). Moreover, if p = 2 then

UsF
−1 = F−1V−s, FUs = V−sF, VsF

−1 = F−1Us, FVsu = UsF.
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Lemma 2.2. (a) The operators Vt converge weakly to zero as t → ±∞.
(b) The operators Z±1

τ converge weakly to zero as τ →∞.

Proof. We will prove assertion (b) only. Let u := χ
[a,b]

and v := χ
[c,d]

be characteristic
functions of intervals in R. Then

〈v, Zτu〉 =
∫ d

c
τ−1/pχ

[aτ,bτ ]
(x) dx ≤ τ−1/p(d− c) → 0

as τ → ∞. This implies that 〈ṽ, Zτ ũ〉 → 0 for arbitrary piecewise constant functions ũ ∈
Lp(R) and ṽ ∈ Lq(R) = (Lp(R))∗ with q = (p− 1)/p. As these functions are dense in Lp(R)
and Lq(R), the assertion for Zτ follows. For Z−1

τ and characteristic functions u and v as
above one has

〈v, Z−1
τ u〉 =

∫ d

c
τ1/pχ

[ a
τ , b

τ ]
(x) dx ≤ τ1/p(

b

τ
− a

τ
) → 0,

and one can argue as before.

Let A ∈ L(Lp(R)). If the strong limit

s-lim
τ→+∞

ZτV−sAVsZ
−1
τ (7)

exists for some s ∈ R, we denote it by Hs,∞(A). Analogously, if the strong limit

s-lim
τ→+∞

Z−1
τ U−tAUtZτ (8)

exists for some t ∈ R, we denote it by H∞,t(A). It is easy to see the set of all operators for
which the strong limit Hs,∞(A) (resp. H∞,t(A)) exists forms a Banach algebra, that

‖Hs,∞(A)‖L(Lp(R)) ≤ ‖A‖L(Lp(R)) (9)

resp.
‖H∞,t(A)‖L(Lp(R)) ≤ ‖A‖L(Lp(R)) (10)

for all operators in this algebra and that, hence, the operators Hs,∞ and H∞,t act as bounded
algebra homomorphisms.

For x ∈ R, let b(x±) denote the right/left one-sided limit of the piecewise continuous
function b at x. The following results appeared for the first time in [9] (Propositions 13.1 and
13.2).

Proposition 2.3. Let t ∈ R, and let a ∈ PC(R), b ∈ PCp and K a compact operator. Then

(i) H∞,t(aI) = a(−∞)χ− + a(+∞)χ+,

(ii) H∞,t(W 0(b)) = b(t−)QR + b(t+)PR,

(iii) H∞,t(K) = 0.

Proof. (i) Since U−taUt = aI, it is sufficient to check the assertion for t = 0. Taking into
account that (Z−1

τ aZτu)(x) = a(τx)u(x), we have

‖(a(+∞)χ+ − Z−1
τ aZτ )u‖p =

∫ +∞

0
|(a(+∞)− a(τx))u(x)|p dx.
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Given ε > 0, choose xε ∈ R+ such that |a(+∞)−a(x)|p‖u‖p < εp

2 for x ≥ xε. For some τ > 1,
we write the above integral as the sum∫ xε

τ

0
(|a(+∞)− a(τx)| |u(x)|)p dx +

∫ +∞

xε
τ

(|a(+∞)− a(τx)| |u(x)|)p dx

which is not greater than

max
0<x<xε

|a(+∞)− a(x)|
∫ xε

τ

0
|u(x)|p dx +

εp

2
.

For sufficiently large τ , the first term of this sum becomes as small as desired. Thus,
H∞,0(a) = a(∞)χ+ .

(ii) Since U−sW
0(b)Us = W 0(VsbV−s) and the shifted function VsbV−s belongs to PCp, it

is again sufficient to prove the assertion for s = 0. Write b as b(0−)χ− + b(t+)χ+ + b0 where
the function b0 ∈ PCp is continuous at 0 and takes the value 0 there. Since

W 0
(
b(0−)χ− + b(t+)χ+

)
= b(0−)QR + b(0+)PR

and the operators PR and QR commute with Zτ , it remains to show that Z−1
τ W 0(b0)Zτ → 0

strongly as τ → ∞. Since PCp is continuously embedded into L∞ and thus into PC, we
can approximate the function b0 in the multiplier norm as closely as desired by a piecewise
constant function b00 which is zero in an open neighborhood U of 0. It is thus sufficient to
show that Z−1

τ W 0(b00)Zτ → 0 strongly as τ →∞. Since the operators on the left hand side
are uniformly bounded with respect to τ , it is finally sufficient to show that

Z−1
τ W 0(b00)Zτu → 0

for all functions u in a certain dense subset of Lp(R). For consider the set of all functions u
in the Schwartz space S of the rapidly decreasing infinitely differentiable function the Fourier
transform Fu of which has a compact support. This space is indeed dense in Lp(R) since the
space D of the compactly supported infinitely differentiable functions is dense in S, since F
is a continuous bijection on S, and since S is dense in Lp(R) (see [10], Theorem 7.10). If u
is a function with these properties, then

Z−1
τ W 0(b00)Zτu = F−1Zτ b00Z

−1
τ Fu. (11)

If τ is sufficiently large, then the support of Fu is contained in U ; hence, the function on the
right hand side of (11) is the zero function.

(iii) If K is compact, then U−tKUt is compact, and the assertion follows immediately
from the weak convergence of Zτ to zero.

Let Qt denote the characteristic function of the interval R \ [−t, t]. We let M̄p refer to
the set of all multipliers a ∈ Mp for which there are numbers a(−∞) and a(+∞) such that

lim
t→∞

‖Qt(a− a(−∞)χ− − a(+∞)χ+)‖Mp = 0. (12)

Notice that this definition makes sense since, by the Stetchkin inequality, the characteristic
functions Qt, χ+ and χ− of R \ [−t, t], R+ and R−, respectively, belong to Mp. Also notice
that the numbers a(−∞) and a(+∞) are uniquely determined by a. Further, let Ṁp denote
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the class of all multipliers a ∈ M̄p such that a(−∞) = a(+∞). Via [9, Proposition 12.2] one
easily gets that

PCp ⊆ M̄p and Cp ⊆ Ṁp.

The assertions of the following lemma are either taken directly from the preceding proposition
or they follow by repeating some arguments of its proof.

Lemma 2.4. (i) If a ∈ PC, then V−τaVτ → a(±∞)I as τ → ±∞.

(ii) If b ∈ M̄p, then U−τW
0(b)Uτ → b(±∞)I as τ → ±∞.

The following is the analogue of Propositon 2.3 for the other family of strong limits.
Its proof follows along the same lines, taking into account that (V−saVs)(t) = a(t + s) and
V−sW

0(b)Vs = W 0(b).

Proposition 2.5. Let s ∈ R, and let a ∈ PC, b ∈ M̄p, and K a compact operator. Then

(i) Hs,∞(aI) = a(s−)χ− + a(s+)χ+,

(ii) Hs,∞(W 0(b)) = b(−∞)QR + b(+∞)PR,

(iii) Hs,∞(K) = 0.

Finally, for A ∈ L(Lp(R)), we consider the strong limits

H±±(A) := s-lim
t→±∞

s-lim
s→±∞

U−tV−sAVsUt. (13)

Here, by convention, the first superscript in H±± refers to the strong limit with respect to
s → ±∞ and the second one to t → ±∞. It is again easy to see that the mappings H±± act
as bounded algebra homomorphisms on the Banach algebra of all operators A for which the
strong limits (13) exist.

Proposition 2.6. Let a ∈ PC, b ∈ M̄p, and K a compact operator. Then

(i) H+±(aI) = a(+∞)I, H−±(aI) = a(−∞)I,

(ii) H±+(W 0(b)) = b(−∞)I, H±−(W 0(b)) = b(+∞)I,

(iii) H±±(K) = 0.

3 The Fredholm property

In this section we recall some results on the Fredholm property of operators in the smallest
closed subalgebra A

(
PC(R), PCp

)
of L(Lp(R)) which contains all operators aI of multipli-

cation by a function a ∈ PC and all operators of convolution W 0(b) where b ∈ PCp. These
results appeared for the first time in their present form in [9]. We write AK

(
PC(R), PCp

)
for the image of the algebra A

(
PC(R), PCp

)
in the Calkin algebra and Φ for the canonical

homomorphism
A

(
PC(R), PCp

)
→ AK

(
PC(R), PCp

)
.

Analogously, we define the algebras A
(
C(Ṙ), Cp

)
and AK

(
C(Ṙ), Cp

)
. The following is proved

in [9, Proposition 12.6].
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Lemma 3.1. The algebra AK
(
C(Ṙ), Cp

)
lies in the center of the algebra AK

(
PC(R), PCp

)
,

and its maximal ideal space is homeomorphic to the subset (Ṙ × {∞}) ∪ ({∞} × Ṙ) of the
torus Ṙ × Ṙ, with the point (s, t) ∈ (Ṙ × {∞}) ∪ ({∞} × Ṙ) corresponding to the maximal
ideal

{
Φ

(
fW 0(g)

)
: f ∈ C(Ṙ), g ∈ Cp and f(s) = g(t) = 0

}
.

This lemma offers the way to employ Allan’s local principle (see for instance [5, The-
orem 4.8]) to localize the algebra AK

(
PC(R), PCp

)
with respect to its central subalgebra

AK
(
C(Ṙ), Cp

)
.

Given (s, t) ∈ (Ṙ × {∞}) ∪ ({∞} × Ṙ), let Is,t denote the smallest closed ideal of the
Banach algebra AK

(
PC(R), PCp

)
which contains the point (s, t), and let ΦKs,t refer to the

canonical homomorphism from A
(
PC(R), PCp

)
to the local quotient algebra

AKs,t := AK
(
PC(R), PCp

)
/Is,t.

Theorem 3.2 ([9], Theorem 15.1). Let A ∈ A
(
PC(R), PCp

)
.

(i) The coset A+K(Lp(R)) is invertible in AK
(
PC(R), PCp

)
if and only if the coset ΦKs,t(A)

is invertible in AKs,t for each (s, t) ∈ (Ṙ× {∞}) ∪ ({∞} × Ṙ).

(ii) For s ∈ R, the local algebra AKs,∞ is isometrically isomorphic to the closed subalgebra
alg{I, χ+ , SR} of L(Lp(R)), and the isomorphism is given by

ΦKs,∞(A) 7→ Hs,∞(A) (14)

for each operator A ∈ A
(
PC(R), PCp

)
.

(iii) For t ∈ R, the local algebra AK∞,t is isometrically isomorphic to the closed subalgebra
alg{I, χ+ , SR} of L(Lp(R)), and the isomorphism is given by

ΦK∞,t(A) 7→ H∞,t(A) (15)

for each operator A ∈ A
(
PC(R), PCp

)
.

(iv) The local algebra AK∞,∞ is generated by the four idempotent elements

ΦK∞,∞(W (χ−)χ−), ΦK∞,∞(W (χ−)χ+), ΦK∞,∞(W (χ+)χ−), ΦK∞,∞(W (χ+)χ+),

and the coset ΦK∞,∞(A) is invertible if and only if the four operators

H±±(A),

which are complex multiples of the identity operator, are invertible.

For the proof of (ii), given in [9], one shows that the operators Hs,∞(A) depend on the
coset ΦKs,∞(A) only and that the kernel of the homomorphism (14) is just the local ideal
Is,∞. Assertions (iii) and (iv) follow similarly, and (i) is then a consequence of (ii) – (iv) and
Allan’s local principle.

Corollary 3.3. The algebra AK
(
PC(R), PCp

)
is inverse-closed in the Calkin algebra of

Lp(R).
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Proof. Consider the smallest non-closed subalgebra A0 of A
(
PC(R), PCp

)
, which contains

all operators of multiplication and convolution by piecewise constant functions. Applying
Theorem 3.2 to an operator A ∈ A0, we find that the spectrum of the coset A + K(Lp(R))
in AK

(
PC(R), PCp,

)
is a thin subset (i.e., a set with empty interior) of the complex plane.

Since A0 is dense in A
(
PC(R), PCp,

)
, the assertion follows via [3, Remark 2].

Corollary 3.4. An operator A ∈ A
(
PC(R), PCp

)
is Fredholm if and only if the operators

Hs,∞(A), H∞,t(A) and H±±(A) are invertible for all s, t ∈ R.

To illustrate the previous results, we consider paired convolution operators. These are
operators of the form

A = a1W
0(b1) + a2W

0(b2) (16)

with a1, a2 ∈ PC(Ṙ) and b1, b2 ∈ PCp. The following result is an immediate consequence of
Corollary 3.4.

Theorem 3.5. The operator A in (16) is Fredholm on Lp(R) if and only if

(i) the operator c+PR + c−QR with

c±(s) :=
(
a1(s−)b1(±∞) + a2(s−)b2(±∞)

)
χ−

+
(
a1(s+)b1(±∞) + a2(s+)b2(±∞)

)
χ+

is invertible on Lp(R) for each s ∈ R,

(ii) the operator d+PR + d−QR with

d±(t) :=
(
a1(−∞)b1(t±) + a2(−∞)b2(t±)

)
χ−

+
(
a1(+∞)b1(t±) + a2(+∞)b2(t±)

)
χ+

is invertible on Lp(R) for each t ∈ R,

(iii) none of the numbers

a1(+∞)b1(±∞) + a2(+∞)b2(±∞), a1(−∞)b1(±∞) + a2(−∞)b2(±∞)

is zero.

Of particular interest are paired operators of the form

A = a1W
0(χ+) + a2W

0(χ−) = a1PR + a2QR (17)

with a1, a2 ∈ PC(Ṙ), which can also be written as the singular integral operator

a1 + a2

2
I +

a1 − a2

2
SR.

For these operators, Corollary 3.4 implies the following.

Corollary 3.6. Let a1, a2 ∈ PC(Ṙ). The singular integral operator a1PR +a2QR is Fredholm
on Lp(R) if and only if

(i) the operator (a1(s−)χ− + a1(s+)χ+)PR + (a2(s−)χ− + a2(s+)χ+)QR is invertible on
Lp(R) for each s ∈ R and

(ii) the operator (a1(−∞)χ− + a1(+∞)χ+)PR + (a2(−∞)χ− + a2(+∞)χ+)QR is invertible
on Lp(R).
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4 Stability of the finite sections method

We consider finite sections PτAPτ of operators A ∈ L(Lp(R)) with respect to the projections
Pτ , τ > 0, given by

Pτ : Lp(R) → Lp(R), (Pτu)(t) :=
{

u(t) if |t| ≤ τ,
0 if |t| > τ.

It will prove to be convenient to consider the extended finite sections PτAPτ + Qτ with
Qτ := I −Pτ instead of the usual PτAPτ . The passage from finite sections to extended finite
sections does not involve any complications since, of course, both sequences (PτAPτ +Qτ )τ>0

and (PτAPτ )τ>0 are simultaneously stable or not. One technical advantage of using extended
finite sections is that the operator A and its extended finite sections act on the same space.

Our approach to analyze the stability of the finite sections method will follow a general
scheme to treat approximation problems, which can be summarized as follows. Suppose we
are interested in the stability of sequences in a set A.

1. Algebraization: Find a unital Banach algebra E which contains A and a closed ideal
G ⊂ E such that the original stability problem becomes equivalent to an invertibility
problem in the quotient algebra E/G.

2. Essentialization: Find a unital subalgebra F of E which contains A and a closed ideal
J of F which contains G, such that J can be lifted. The latter means that one has full
control about the difference between the invertibility of a coset of a sequence (Aτ ) ∈ F
in the algebra E/G and the invertibility of the coset of the same sequence in F/J . This
control is usually guaranteed by a lifting theorem; see below.

3. Localization: Find a unital subalgebra F0 of F which contains A and J such that
F0/F is inverse closed in F/J and such that the quotient algebra F0/J has a large
center. Use a local principle to translate the invertibility problem in the algebra F0/J
to a family of simpler invertibility problems in local algebras.

4. Identification: Find necessary and sufficient conditions for the invertibility of the
cosets of sequences in A in the local algebras.

The first (algebraization) step is simple. We let E stand for the Banach algebra of all
bounded sequences (Aτ )τ>0 of operators Aτ ∈ L(Lp(R)) and write G for the closed ideal
of E which consists of all sequences tending to zero in the norm. A standard Neumann
series argument shows that then a sequence in E is stable if and only if its coset modulo
G is invertible in the quotient algebra E/G. The sequences we are interested in belong to
the smallest closed subalgebra A = A

(
PC(Ṙ), PCp, (Pτ )

)
of E which contains all constant

sequences (aI) of operators of multiplication by a function a ∈ PC(Ṙ), all constant sequences
(W 0(b)) of operators of convolution by a multiplier b ∈ PCp, the sequence (Pτ )τ>0, and the
ideal G. This algebra can be seen as an extension of the algebra A

(
PC(Ṙ), PCp

)
, studied in

the previous section, with the addition of the non-constant sequence (Pτ ).

4.1 Essentialization

Let F denote the set of all sequences A := (Aτ ) ∈ E which have the following properties (all
limits are considered with respect to the strong convergence as τ →∞):
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• there is an operator W0(A) such that Aτ → W0(A) and A∗τ → W0(A)∗;

• there are operators W±1(A) such that

V−τAτVτ → W1(A) and (V−τAτVτ )∗ → W1(A)∗

and
VτAτV−τ → W−1(A) and (VτAτV−τ )∗ → W−1(A)∗;

• for each y ∈ R, there is an operator H∞,y(A) such that

Z−1
τ UyAτU−yZτ → H∞,y(A) and (Z−1

τ UyAτU−yZτ )∗ → H∞,y(A)∗;

• for each x ∈ R, there is an operator Hx,∞(A) such that

ZτV−xAτVxZ−1
τ → Hx,∞(A) and (ZτV−xAτVxZ−1

τ )∗ → Hx,∞(A)∗.

Proposition 4.1. (i) The set F is a unital closed subalgebra of E. The mappings Wi with
i ∈ {−1, 0, 1}, H∞,y with y ∈ R, and Hx,∞ with x ∈ R act as bounded homomorphisms on F ,
and the ideal G of F lies in the kernel of each these homomorphisms.

(ii) The algebra F is inverse-closed in E, and the algebra F/G is inverse-closed in E/G.

Proof. (i) The only assertion which is not completely trivial is the closedness of F in E . To
prove it, let (Ak)k∈N with Ak := (A(k)

τ )τ>0 be a sequence in F which converges to a sequence
A := (Aτ )τ>0 in E . Since (Ak)k∈N is a Cauchy sequence and ‖W0(B)‖ ≤ ‖B‖ for every
sequence B ∈ F , we conclude that (W0(Ak))k∈N is a Cauchy sequence in L (Lp(R)). Let A0

denote its limit. We show that A0 is the strong limit of the sequence A. For let u ∈ Lp(R).
For every ε > 0, there exist a τ0 > 0 and a k0 ∈ N such that, for τ > τ0,

‖(A0 −Aτ )u‖ ≤ ‖(A0 −A(k0)
τ )u‖+ ‖A(k0)

τ −Aτ‖‖u‖
≤ ‖(A0 −A(k0)

τ )u‖+ ‖A−Ak0‖‖u‖ < ε,

which establishes the existence of the strong limit W0(A). In a similar way, the existence
of the strong limits W±1(A), Hx,∞(A) and H∞,y(A) follows. Thus, A ∈ F , whence the
closedness of F .

For assertion (ii), let A := (Aτ ) ∈ F , and suppose that A+G ∈ F/G is invertible in E/G.
Then there exist a sequence B := (Bτ ) ∈ E and a sequence (Gτ ) ∈ G such that BτAτ = I+Gτ

for every τ > 0. Let u ∈ Lp(R). Then

‖u‖ = ‖(BτAτ −Gτ )u‖ ≤ c‖Aτu‖+ ‖Gτu‖

with a constant c := ‖B‖ > 0. Taking the limit as τ →∞ we obtain

‖u‖ ≤ c‖W0(A)u‖,

which implies that the kernel of W0(A) is {0} and the range of W0(A) is closed. Applying
the same argument to the adjoint sequence we find that the kernel of W0(A∗) = W0(A)∗ is
{0}, too. Hence, W0(A) is invertible. Further, for u ∈ Lp(R), we have

‖Bτu−W0(A)−1u‖
= ‖Bτu− (BτAτ −Gτ + Qτ )W0(A)−1u‖
≤ ‖Bτ‖‖u−AτW0(A)−1u‖+ ‖(−Gτ + Qτ )W0(A)−1u‖
= ‖Bτ‖‖W0(A)v −Aτv‖+ ‖(−Gτ + Qτ )W0(A)−1u‖
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with v = W0(A)−1u. Since the right-hand side of this estimate tends 0 zero as τ → ∞, the
inverse sequence B is strongly convergent, too. Similarly, one shows the strong convergence
of the adjoint sequence B∗. Further, from

V−τBτVτ V−τAτVτ = V−τBτAτVτ = V−τIVτ + V−τGτVτ = I + G′
τ

with (G′
τ ) ∈ G one concludes that the sequence (V−τAτVτ ) is invertible in E/G. As above,

one shows that the strong limit W1(A) is invertible and that the sequences (V−τBτVτ ) and
(V−τBτVτ )∗ are strongly convergent. A similar reasoning yields the strong convergence of
the sequences (VτBτV−τ ), (Z−1

τ UyBτU−yZτ ), (ZτV−xBτVxZ−1
τ ) and of their adjoints. Thus,

the sequence B belongs to F , whence the inverse-closedness of F/G. The inverse-closedness
of F in E is an obvious consequence of the previous result.

The W-homomorphisms and the H-homomorphisms will play different roles in what fol-
lows. Whereas the W-homomorphisms are needed to define an ideal of F which is subject
to the lifting theorem and for which the quotient algebra has a center which is useful for
applying Allan’s local principle, the family of the H-homomorphisms will be used to identify
the corresponding local algebras (of a suitable subalgebra of F).

Let us turn to the lifting theorem. Let K denote the ideal of the compact operators on
Lp(R), and set

J := {(VτK1V−τ ) + (K0) + (V−τK−1Vτ ) + (Gτ ) : K−1,K0,K1 ∈ K, (Gτ ) ∈ G}.

Proposition 4.2. J is a closed ideal of F .

Proof. We will only prove that J is a subset of F . Once this is clear, the remainder of the
proof will run completely parallel to the proof of Proposition 1.7 in [5].

In order to show that J ⊂ F , we have to show that all strong limits required in the
definition of F exist for the sequences (K0), (V−τK−1Vτ ) and (VτK1V−τ ) with compact
operators Ki. This is evident for the W-homomorphisms: One clearly has

W−1(V−τK−1Vτ ) = K−1, W0(K0) = K0, W1(VτK1V−τ ) = K1, (18)

whereas all other W-homomorphisms give 0 when applied to these sequences since the se-
quences (V−τ ) and (Vτ ) are uniformly bounded and tend weakly to zero as τ tends to +∞.

We claim that the H-homomorphisms applied to a sequence in J also give zero. This will
follow once we have checked that the sequences

(U−yZτ ), (VτU−yZτ ), (V−τU−yZτ ) and (VxZ−1
τ ), (VτVxZ−1

τ ), (V−τVxZ−1
τ )

are uniformly bounded and converge weakly to zero as τ → +∞ for every choice of x, y ∈ R.
Since the operators U−y and Vx are independent of τ and since Vx commutes with Vτ , it is
sufficient to check these assertions for the sequences

(Zτ ), (VτU−yZτ ), (V−τU−yZτ ) and (Z−1
τ ), (VτZ

−1
τ ), (V−τZ

−1
τ ).

For the sequences (Z±1
τ ), this is the assertion of Lemma 2.2. For the other sequences, the

uniform boundedness is evident, and for their weak convergence to zero we can argue similarly
as in the proof of that lemma. For let Bτ denote any of the operators VτU−y and V−τU−y

with y ∈ R. Then
|(Bτχ[τa,τb]

)(x)| ≤ 1 and |(B∗
τχ

[c,d]
)(x)| ≤ 1

11



for every possible choice of a, b, c, d, τ, s and x. Hence,

|〈χ
[c,d]

, BτZτχ[a,b]
〉| =

∣∣∣∣ 1
τ1/p

〈χ
[c,d]

, Bτχ[τa,τb]
〉
∣∣∣∣

=
1

τ1/p

∣∣∣∣∫ d

c
(Bτχ[τa,τb]

)(x) dx

∣∣∣∣ ≤ 1
τ1/p

(d− c) → 0

and

|〈χ
[c,d]

, BτZ
−1
τ χ

[a,b]
〉| = |τ1/p〈B∗

τχ
[c,d]

, χ
[ a
τ , b

τ ]
〉|

= τ1/p

∣∣∣∣∣
∫ b

τ

a
τ

(B∗
τχ

[c,d]
)(x) dx

∣∣∣∣∣ ≤ τ1/p(
b

τ
− a

τ
) → 0.

The claimed weak convergence follows since the linear combinations of functions of the form
χ

[c,d]
lie dense in Lp(R) and in its dual space.

Now one can apply the Lifting Theorem [5, Theorem 1.8] to obtain the following. Note
that the stability of a sequence (Aτ ) in F is equivalent to the invertibility of the coset (Aτ )+G
in the quotient algebra F/G due to the inverse-closedness of F/G in E/G by Proposition 4.1.

Theorem 4.3. Let A := (Aτ ) ∈ F . The sequence A is stable if and only if the operators
W−1(A), W0(A) and W1(A) are invertible in L(Lp(R)) and if the coset A + J is invertible
in the quotient algebra F/J .

In that sense, the operators W−1(A), W0(A) and W1(A) control the difference between
the invertibility in E/G and F/J .

The goal of the following lemmas is to show that all strong limits required in the definition
of the algebra F exist for the generating sequences of the algebra A = A

(
PC(Ṙ), PCp, (Pτ )

)
,

which implies that A is a closed subalgebra of F .

Lemma 4.4. Let a ∈ PC(Ṙ) and b ∈ PCp. Then the strong limit, W0(Aτ ), 1 W−1(Aτ ) and
W1(Aτ ) exist for the following sequences in A:

(i) W0(Pτ ) = I, W0(aI) = aI, W0(W 0(b)) = W 0(b);

(ii) W−1(Pτ ) = χ+I, W−1(aI) = a(−∞)I, W−1(W 0(b)) = W 0(b);

(iii) W1(Pτ ) = χ−I, W1(aI) = a(+∞)I, W1(W 0(b)) = W 0(b).

For the constant sequences (aI), these assertions are shown in Lemma 2.4, and the re-
maining assertions are evident. For the H-homomorphisms one has the following.

Lemma 4.5. Let y ∈ R. The strong limit H∞,y(Aτ ) exists for the following sequences in A:

(i) H∞,y(Pτ ) = P1;

(ii) H∞,y(aI) = a(−∞)χ−I + a(+∞)χ+I for a ∈ PC(Ṙ);

(iii) H∞,y(W 0(b)) = b(y−)W 0(χ−) + b(y+)W 0(χ+) for b ∈ PCp.

1We write W0(Aτ ) and not W0((Aτ )) to make the notation less heavy, but remember that all homomor-
phisms act on sequences, and not on particular operators.
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Lemma 4.6. Let x ∈ R. The strong limit Hx,∞(Aτ ) exists for the following sequences in A:

(i) Hx,∞(Pτ ) = I;

(ii) Hx,∞(aI) = a(x−)χ−I + a(x+)χ+I for a ∈ PC(Ṙ);

(iii) Hx,∞(W 0(b)) = b(−∞)W 0(χ−) + b(+∞)W 0(χ+) for b ∈ PCp.

Indeed, these assertions are easy to check for the sequence (Pτ ), and they were shown in
Propositions 2.3 and 2.5 for the other sequences.

Corollary 4.7. A
(
PC(Ṙ), PCp, (Pτ )

)
is a closed subalgebra of the algebra F .

Let us emphasize that for a pure finite sections sequence (Aτ ) = (PτAPτ + Qτ ) with (A)
a constant sequence in F , the strong limits are given by

W−1(Aτ ) = χ+W−1(A)χ+I + χ−I, W0(Aτ ) = A, W1(Aτ ) = χ−W1(A)χ−I + χ+I

and
H∞,y(Aτ ) = P1H∞,y(A)P1 + Q1, Hx,∞(Aτ ) = Hx,∞(A)

for all x, y ∈ R.
In the following sections, it will be convenient to be able to take the strong limits W±1

and H0,∞ subsequently. For that reason we consider

F ′ := {A ∈ F : (W±1(A)) ∈ F}.

It is not difficult to see that F ′ is a closed and inverse-closed subalgebra of F which contains
the ideal J (compare the proof of Proposition 4.2), that F ′/G is an inverse-closed subalgebra
of F/G (see below), and that F ′ contains the algebra A

(
PC(Ṙ), PCp, (Pτ )

)
(see the lemmas

before Corollary 4.7). So, F ′ is the real outcome of the essentialization step.
We would like to add a general argument which yields the inverse-closedness of F ′/G

in F/G as a special case. Note that it is in general not true that if B is an inverse-closed
subalgebra of an algebra C and if I ⊂ B is an ideal of B and C, then B/I is inverse-closed in
C/I.

Proposition 4.8. Let B be a closed and inverse closed subalgebra of F which contains the
ideal G of the zero sequences. Then B/G is inverse closed in F/G.

Proof. Let (An) be a sequence in B for which (An) + G is invertible in F/G. Thus, there
are sequences (Bn) and (Cn) in F and (Gn) and (Hn) in G such that BnAn = I − Gn and
AnCn = I − Hn for all n ≥ 1. Choose n0 such that ‖Gn‖ < 1/2 and ‖Hn‖ < 1/2 for all
n ≥ n0. Set A′n := An if n ≥ n0 and A′n := I if n < n0, and define B′

n and C ′
n in the same

way. Further, set G′
n = Gn if n ≥ n0 and G′

n := 0 if n < n0, and define H ′
n analogously.

Then
B′

nA′n = I −G′
n and A′nC ′

n = I −H ′
n for all n ≥ 1,

with ‖(G′
n)‖ < 1/2 and ‖(H ′

n)‖ < 1/2. By a Neumann series argument, we conclude that the
sequences (I −G′

n) and (I −H ′
n) are invertible in F and that their inverses are of the form

(I −G′′
n) and (I −H ′′

n) with sequences (G′′
n) and (H ′′

n) in G, respectively. Hence,

(I −G′′
n)B′

nA′n = I and A′nC ′
n(I −H ′′

n) = I

for all n ≥ 1. This shows that the sequence (A′n) is invertible in F . But the sequence
(A′n) differs from the sequence (An) only by a sequence in G. Thus, (A′n) is in B, and the
inverse-closedness of B in F entails that (A′n) is invertible in B. Hence, the coset (A′n) + G is
invertible in B/G, which implies the assertion, since (A′n) + G = (An) + G.
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4.2 Localization

Since the algebra F ′/J has a trivial center, Allan’s local principle is not helpful at this
point. So next we are going to look for a subalgebra F0 of F ′ for which F0/G is still inverse-
closed in F ′/G, which contains the ideal J , and which owns the property that the center of
F0/J includes all cosets (fI) + J and (W 0(g)) + J with f ∈ C(Ṙ) and g ∈ Cp. Note that
the inverse-closedness of F0/G in F ′/G and, thus, in E/G is needed to guarantee that the
invertibility in F0/G is still equivalent to the stability.

The following construction will provide us with an algebra with the desired properties.
Let F0 denote the set of all sequences in F ′ which commute with all constant sequences (fI)
and (W 0(g)) where f ∈ C(Ṙ) and g ∈ Cp modulo sequences in the ideal J . The proof of the
following proposition is straightforward. Note that, for each subset B of a unital algebra C,
the commutator {c ∈ C : bc = cb for each b ∈ B} is an inverse-closed subalgebra of C.

Proposition 4.9. (i) The set F0 is a closed subalgebra of F ′ and contains the ideal J .

(ii) The mappings Wi with i ∈ {−1, 0, 1}, H∞,y with y ∈ R, and Hx,∞ with x ∈ R act as
bounded homomorphisms on F0. The ideal G of F lies in the kernel of each these homomor-
phisms, and the ideal J lies in the kernel of each of the H-homomorphisms.

(iii) The algebra F0 is inverse-closed in E, and the algebra F0/G is inverse-closed in E/G.

By assertion (i), the lifting theorem applies to study invertibility in F0/G.

Theorem 4.10. Let A = (Aτ ) ∈ F0. The sequence A is stable if and only if the operators
W−1(A), W0(A) and W1(A) are invertible in L(Lp(R)) and if the coset A + J is invertible
in the quotient algebra FJ0 := F0/J .

The algebra F0 is still large enough to contain all sequences that interest us.

Proposition 4.11. A
(
PC(Ṙ), PCp, (Pτ )

)
is a closed subalgebra of F0.

Proof. We have to show that the generators (aI) with a ∈ PC(Ṙ), (W 0(b)) with b ∈ PCp,
and (Pτ ) ofA

(
PC(Ṙ), PCp, (Pτ )

)
commute with the constant sequences (fI) where f ∈ C(Ṙ)

and (W 0(g)) where g ∈ Cp modulo sequences in J . For the generators which are constant
sequences this follows immediately from Lemma 3.1. For instance, one has

(fI)(W 0(b))− (W 0(b))(fI) = (fW 0(b)−W 0(b)fI),

which is a constant sequence with a compact entry by the lemma. Hence, this sequence is in
J . It is further evident that (Pτ ) commutes with (cI), and so it remains to verify that the
commutator

(Pτ )(W 0(g))− (W 0(g))(Pτ )

belongs to J for every multiplier g ∈ Cp. Write

(PτW
0(g)−W 0(g)Pτ ) = (PτW

0(g)Qτ −QτW
0(g)Pτ )

= (Pτχ+W 0(g)χ+Qτ −Qτχ+W 0(g)χ+Pτ )
+ (Pτχ+W 0(g)χ−Qτ −Qτχ+W 0(g)χ−Pτ )
+ (Pτχ−W 0(g)χ+Qτ −Qτχ−W 0(g)χ+Pτ )
+ (Pτχ−W 0(g)χ−Qτ −Qτχ−W 0(g)χ−Pτ ).
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The sequences in the second and third line of the right-hand side of this equation belong to
the ideal G since the operators χ±W 0(g)χ∓I are compact by Proposition [9, Proposition 12.6
(ii)] and since the Qτ converge strongly to zero. The sequence in last line can be treated in
a similar way as the sequence in the first line. So we are left on verifying that

(Pτχ+W 0(g)χ+Qτ −Qτχ+W 0(g)χ+Pτ ) ∈ J .

Write this sequence as

(χ
[0,τ ]

W 0(g)χ
[τ,∞)

I − χ
[τ,∞)

W 0(g)χ
[0,τ ]

I)

= (Vτ (V−τ (χ[0,τ ]
W 0(g)χ

[τ,∞)
I − χ

[τ,∞)
W 0(g)χ

[0,τ ]
I)Vτ )V−τ )

= (Vτ (χ[−τ,0]
W 0(g)χ

[0,∞)
I − χ

[0,∞)
W 0(g)χ

[−τ,0]
I)V−τ )

= (Vτ (χ[−τ,0]
χ−W 0(g)χ+I − χ+W 0(g)χ−χ

[−τ,0]
I)V−τ ).

Since the operators χ±W 0(g)χ∓I are compact and χ
[−τ,0]

I → χ−I strongly as τ → ∞, we
conclude that the sequence in the last line of this equality is of the form (VτKV−τ ) + (Gτ )
with K compact and (Gτ ) ∈ G. Hence, this sequence is in J .

We proceed with localization. One can easily check that the commutative algebra gen-
erated by the cosets of constant sequences (fI) + J and (W 0(g)) + J with f ∈ C(Ṙ) and
g ∈ Cp is isomorphic to the subalgebra of the Calkin algebra which is generated by fI + K
and W 0(g) +K. By Lemma 3.1, the maximal ideal space of the latter algebra (and, thus, of
our present central subalgebra) is homeomorphic to the subset (Ṙ×{∞})∪ ({∞}× Ṙ) of the
torus Ṙ× Ṙ.

Given (s, t) ∈ (Ṙ × {∞}) ∪ ({∞} × Ṙ), let Is,t denote the smallest closed two-sided
ideal of the quotient algebra F0/J which contains the maximal ideal corresponding to the
point (s, t), and let ΦJs,t refer to the canonical homomorphism from F0/J onto the quotient
algebra FJs,t := (F0/J )/Is,t. In order not to burden the notation, we write ΦJs,t(Aτ ) instead
of ΦJs,t((Aτ ) + J ) for every sequence (Aτ ) ∈ F0.

Let (s, t) ∈ (Ṙ × {∞}) ∪ ({∞} × Ṙ). One cannot expect that the local algebra FJs,t can
be identified completely. But we will be able to identify the smallest closed subalgebra AJs,t
of FJs,t which contains all cosets (Pτ ) + Is,t, (aI) + Is,t with a ∈ PC(Ṙ) and (W 0(b)) + Is,t

with b ∈ PCp, and this identification will be sufficient for our purposes. We will identify
the algebras AJs,t by means of the family of the H-homomorphisms. Note that, by assertion
(ii) of Proposition 4.9, the operators H∞,y(A) and Hx,∞(A) depend only on the coset of the
sequence A modulo J . Thus, the quotient homomorphisms

A + J 7→ H∞,y(A) and A + J 7→ Hx,∞(A)

are well defined. We denote them again by H∞,y and Hx,∞, respectively.

4.3 Identification of the local algebras

We start with describing the local algebras AJs,∞.

Theorem 4.12. Let s ∈ R. The algebra AJs,∞ is isometrically isomorphic to the subalgebra
alg{I, χ+I, W 0(χ+)} of L (Lp(R)), and the isomorphism is given by

ΦJs,∞(A) 7→ Hs,∞(A). (19)
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Proof. By definition, Is,∞ is the smallest two-sided ideal of FJ0 which contains the cosets
(fW 0(g)) + J with f(s) = 0 and g(∞) = 0. From Lemma 4.6 we infer that Hs,∞(Is,∞) = 0.
Thus, the homomorphism Hs,∞ is well defined on the quotient algebra AJs,∞. The same lemma
also implies that Hs,∞ maps AJs,∞ to alg{I, χ+I, W 0(χ+)}.

We claim that the homomorphism Hs,∞ : AJs,∞ → alg{I, χ+I,W 0(χ+)} is an isometry.
This will follow once we have shown that the identity

ΦJs,∞(A) = ΦJs,∞(VsHs,∞(A)V−s) (20)

holds for all generators of the algebra A
(
PC(Ṙ), PCp, (Pτ )

)
in place of the sequence A. Note

that the right-hand side of (20) makes sense since the constant sequence (VsHs,∞(A)V−s)
belongs to the algebra F0 by Proposition 4.11.

For the generators (aI) and (W 0(b)) with a ∈ PC(Ṙ) and b ∈ PCp of the algebra
A

(
PC(Ṙ), PCp, (Pτ )

)
, the identity (20) was already established in the proof of Theorem

14.2 in [9]. For the generating sequence (Pτ ) in place of A, the right-hand side of (20) is
the identity element. So we have to show that ΦJs,∞(Pτ ) is the identity element of the local
algebra.

Choose y ∈ R greater than |s|, and let fs be a continuous function supported on the
interval (−y, y) such that fs(s) = 1. Since ΦJs,∞(fsI) is the identity in the local algebra, we
have

ΦJs,∞(Qτ ) = ΦJs,∞(fsI)ΦJs,∞(Qτ ) = ΦJs,∞(fxQτ ).

But fsQτ = 0 for τ sufficiently large. Thus, the sequence (fsQτ )τ>0 belongs to the ideal G,
whence ΦJs,∞(Qτ ) = 0. Hence, ΦJs,∞(Pτ ) = ΦJs,∞(I −Qτ ) is the identity element.

The previous theorem implies that, for sequences A ∈ A
(
PC(Ṙ), PCp, (Pτ )

)
, the coset

ΦJs,∞(A) is invertible in the local algebra AJs,∞ if and only if the operator Hs,∞(A) is invertible
in alg{I, χ+I,W 0(χ+)}. Of course, one would prefer to check the invertiblity of the operator
Hs,∞(A) in L(Lp(R)), not in alg{I, χ+I, W 0(χ+)}. In the present setting, this causes no
problem since the algebra alg{I, χ+I,W 0(χ+)} is known to be inverse-closed in L(Lp(R)).
The following proposition and its proof show how the desired invertibility condition can be
derived without any a priori information on the inverse-closedness of the local algebras.

Proposition 4.13. Let A ∈ A
(
PC(Ṙ), PCp, (Pτ )

)
. Then the coset ΦJs,∞(A) is invertible in

the local algebra FJs,∞ if and only if the operator Hs,∞(A) is invertible in L(Lp(R)).

Proof. For s ∈ R, let Ds,∞ denote the set of all operators A ∈ L(Lp(R)) with the property
that the constant sequence (VsAV−s) belongs to the algebra F0. One easily checks that Ds,∞
is a closed subalgebra of L(Lp(R)). Moreover, Ds,∞ is inverse-closed in L(Lp(R)), which can
be seen as follows.

Let A ∈ Ds,∞ be invertible in L(Lp(R)). The constant sequence (VsAV−s) is invertible
in the algebra E of all bounded sequences, and its inverse is the sequence (VsA

−1V−s). Since
(VsAV−s) ∈ F0 by hypothesis, and since F0 is inverse-closed in E by Proposition 4.9 (iii), we
conclude that (VsA

−1V−s) ∈ F0. Hence, A−1 ∈ Ds,∞.
Let now A ∈ A

(
PC(Ṙ), PCp, (Pτ )

)
. If the coset ΦJs,∞(A) is invertible in FJs,∞, then

Hs,∞(A) is invertible in L(Lp(R)), since Hs,∞ acts as a homomorphism on that local algebra.
Conversely, let Hs,∞(A) be invertible in L(Lp(R)). We know already that Hs,∞(A) belongs
to the algebra alg{I, χ+I,W 0(χ+)}, and one easily checks that this algebra is contained in
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Ds,∞. By the inverse-closedness of Ds,∞, the operator Hs,∞(A) possesses an inverse in Ds,∞.
Let B denote this inverse. From BHs,∞(A) = I we get

(VsBV−s)(VsHs,∞(A)V−s) = (I). (21)

Note that the sequences in (21) are constant. Since the operators B and Hs,∞(A) belong to
Ds,∞, it is also clear that the sequences in (21) belong to F0. Hence, one can apply the local
homomorphism ΦJs,∞ to both sides of (21), which gives

ΦJs,∞(VsBV−s)ΦJs,∞(VsHs,∞(A)V−s) = ΦJs,∞(I).

From (20) we conclude that ΦJs,∞(A) is invertible in FJs,∞.

The following is an immediate consequence of Theorem 4.12, Proposition 4.13 and the
well known inverse-closedness of the algebra alg{I, χ+I,W 0(χ+)} in L(Lp(R)).

Corollary 4.14. The local algebra AJs,∞ is inverse-closed in FJs,∞.

Next we are going to examine the local algebras AJ∞,t.

Theorem 4.15. Let t ∈ R. The algebra AJ∞,t is isometrically isomorphic to the subalgebra
alg{I, χ+I, P1,W

0(χ+)} of L (Lp(R)), and the isomorphism is given by

ΦJ∞,t(A) 7→ H∞,t(A). (22)

Proof. It follows from Lemma 4.5, that the operator H∞,t(A) belongs to the algebra
alg{I, χ+I, P1,W

0(χ+)} and that this operator depends on the coset ΦJ∞,t(A) of the sequence
A only. Thus, there is a well defined homomorphism

AJ∞,y → alg{I, χ+I, P1,W
0(χ+)}, ΦJ∞,t(A) 7→ H∞,t(A)

which we denote by H∞,y again. It will follow that this homomorphism is an isometry once
we have verified the identity

ΦJ∞,t(A) = ΦJ∞,t(UtZτH∞,t(A)Z−1
τ U−t) (23)

for all sequences A in A
(
PC(Ṙ), PCp, (Pτ )

)
. This is again done in the proof of Theorem

14.2 in [9] for the constant generating sequences of A
(
PC(Ṙ), PCp, (Pτ )

)
, and it is evident

for the sequence (Pτ ).

The previous theorem can be completed as follows.

Proposition 4.16. Let A ∈ A
(
PC(Ṙ), PCp, (Pτ )

)
. Then the coset ΦJ∞,t(A) is invertible in

the local algebra FJ∞,t if and only if the operator H∞,t(A) is invertible in L(Lp(R)).

Proof. The proof proceeds as that of Proposition 4.13. For t ∈ R, introduce the algebra
D∞,t of all operators A ∈ L(Lp(R)) with the property that the sequence (UtZτAZ−1

τ U−t)τ>0

belongs to the algebra F0. Again one checks easily checks that D∞,t is an inverse-closed
subalgebra of L(Lp(R)) and that the algebra alg{I, χ+I, P1,W

0(χ+)} is contained in D∞,t.
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Corollary 4.17. The local algebra AJ∞,t is inverse-closed in FJ∞,t if and only if the algebra
alg{I, χ+I, P1,W

0(χ+)} is inverse-closed in L(Lp(R)).

Our final goal is the local algebra AJ∞,∞. It is easy to see that this algebra is gener-
ated by the identity element and by the three projections ΦJ∞,∞(χ+I), ΦJ∞,∞(W 0(χ+)), and
ΦJ∞,∞(Pτ ). The following proposition shows that this algebra has a non-trivial center.

Proposition 4.18. The projection ΦJ∞,∞(χ+I) belongs to the center of AJ∞,∞.

Proof. One only has to check the relation

ΦJ∞,∞(W 0(χ+)χ+I) = ΦJ∞,∞(χ+W 0(χ+)). (24)

Choose a continuous and monotonically increasing function χ′
+

which takes the values 0 at
−∞ and 1 at +∞. Then, clearly,

ΦJ∞,∞(χ+I) = ΦJ∞,∞(χ′
+
I) and ΦJ∞,∞(W 0(χ+)) = ΦJ∞,∞(W 0(χ′

+
)).

Since the commutator W 0(χ′
+
)χ′

+
I − χ′

+
W 0(χ′

+
) is compact by [9, Proposition 12.6 (ii)], the

equality (24) follows.

Proposition 4.18 implies that the local algebra AJ∞,∞ splits into the direct sum

AJ∞,∞ = A+
∞,∞ +A−∞,∞

where A±∞,∞ := ΦJ∞,∞(χ±I)AJ∞,∞ΦJ∞,∞(χ±I). The algebras A±∞,∞ are unital, and the cosets
ΦJ∞,∞(χ±I) can be considered as their identity elements. It is evident that the invertibility
of the coset ΦJ∞,∞(A) in AJ∞,∞ for A = (Aτ ) ∈ A is equivalent to the invertibility of the two
cosets ΦJ∞,∞(χ±Aτχ±I) in the algebras A±∞,∞, respectively. Note that one obtains the same
result by localizing the algebra AJ∞,∞ over its central subalgebra described in Proposition
4.18.

Consider the algebraA+
∞,∞. It is another consequence of Proposition 4.18 that this algebra

is generated by the two idempotent elements p := ΦJ∞,∞(Pτχ+I) and r := ΦJ∞,∞(W 0(χ+)χ+I)
and by the identity element e := ΦJ∞,∞(χ+I). Thus, the local algebra A+

∞,∞ is subject to the
two projections theorem (see, for instance [3]). To apply this theorem, we have to determine
the spectrum of the element

X := prp + (e− p)(e− r)(e− p) = ΦJ∞,∞
(
PτW

0(χ+)Pτχ+I + QτW
0(χ−)Qτχ+I

)
in the local algebra A+

∞,∞. We will first determine the spectrum of X in FJ∞,∞. The following
simple lemma will be useful. Let H denote the smallest closed subalgebra of E which contains
the sequence (Pτ ) and all constant sequences of homogeneous operators in L(Lp(R)).

Lemma 4.19. Let (Bτ ) ∈ H. Then (Bτ ) is invertible in E if and only if B1 is invertible in
L(Lp(R)).

Indeed, one has Z−1
τ BτZτ = B1 for every τ > 0.

Let I be the closed interval between p and p/(p− 1). For α ∈ I, set

Cα := {(1 + coth((z + iα)π))/2 : z ∈ R} ∪ {0, 1}

and Ωp := ∪α∈ICα.
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0 1

Figure 1: The lense Ωp for p = 3 (or p = 3/2). If p = 2 it would be just the straight line
between the points 0 and 1.

Proposition 4.20. The spectrum of the element X in FJ∞,∞ is Ωp.

Proof. It is elementary to check that σ(X) = Ωp if and only if σ(prp) = Ωp. By Lemma
4.19, the spectrum of the coset (

Pτχ+W 0(χ+)χ+Pτ

)
+ G (25)

in E/G is equal to the spectrum of the operator

P1χ+W 0(χ+)χ+P1 = χ[0,1]W (χ+)χ[0,1]I = χ[0,1]M
0(c)χ[0,1]I

on Lp ([0, 1]), where M0(c) stands for the operator of Mellin convolution by the function
c(y) := coth ((y + i/p)π). The spectrum of the operator χ[0,1]M

0(c)χ[0,1]I coincides with the
spectrum of the Wiener-Hopf operator W (c), and the latter can be shown to be the lentiform
domain Ωp (see [1], Prop. 9.15).

Since F0/G is inverse-closed in E/G by Proposition 4.9 (iii), the spectrum of (25) is also
Ωp, which implies that the spectrum of prp (and, hence, that of X) in FJ∞,∞ is contained in
Ωp.

To get the reverse inclusion Ωp ⊆ σ(prp), let λ /∈ σ(prp). Then prp − λΦJ∞,∞(I) is
invertible in FJ∞,∞ and there are sequences B ∈ F0 and J ∈ J∞,∞ := J + I∞,∞ such that(

Pτχ+W 0(χ+)χ+Pτ − λI
)
B = I− J,

with I referring to the identity sequence. Without loss of generality, one can assume that J
belongs to a dense subset of J∞,∞, say that there are sequences Ci,Di,Ej and Fj in F0 and
functions fi ∈ C(Ṙ) and gj ∈ Cp with fi(∞) = 0 and gj(∞) = 0 such that

(
Pτχ+W 0(χ+)χ+Pτ − λI

)
B = I−

M∑
i=1

CifiDi −
N∑

j=1

EjW
0(gj)Fj − J′,

with J′ ∈ J . Applying the homomorphism W1 to both sides of this equality we obtain the
operator equality

(
χ−W 0(χ+)χ−I − λI

)
W1(B) = I −

N∑
j=1

W1(Ej)W 0(gj)W1(Fj)−K

(recall Lemma 4.4), where K is a compact operator. Applying then the homomorphism
H0,∞ to both sides of this equality (which we can consider as an equality between constant
sequences; note that this is the place where the passage to the algebra F ′ becomes important),
we find (

χ−W 0(χ+)χ−I − λI
)
H0,∞(W1(B)) = I.
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Thus, the operator χ−W 0(χ+)χ−I − λI is invertible from the right-hand side. Analo-
gously, the invertibility of this operator from the left-hand side follows. Thus, the operator
χ−W 0(χ+)χ−I − λχ−I is invertible as an operator on Lp(R−). Let J : Lp(R) → Lp(R) be
the flip operator defined by (Jf)(x) := f(−x). Then, as one easily checks,

J
(
χ−W 0(χ+)χ−I − λχ−I

)
J = χ+W 0(χ−)χ+I − λχ+ ,

which implies that λ is not in the spectrum of the Wiener-Hopf operator W (χ−) on Lp(R+).
Since the spectrum of this operator is the lense Ωp (see again [1], Prop. 9.15), we conclude
that λ /∈ Ωp. Hence, Ωp ⊆ σ(prp).

Note that the lense Ωp is simply connected in C. Hence, the spectrum of X in FJ∞,∞
coincides with the spectrum of X in AJ∞,∞ and also with its spectrum in A+

∞,∞.
The following proposition summarizes the results obtained for the case (s, t) = (∞,∞).

Note that the occurring 4×4 matrices have a 2×2-block diagonal structure, which reflects the
decomposing property of the local algebra at (∞,∞). Define functions P̂ , p̂, r̂ : Ωp → C4×4

by

P̂ : x 7→


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , p̂ : x 7→


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


and

r̂ : x 7→


x

√
x(1− x) 0 0√

x(1− x) 1− x 0 0
0 0 x

√
x(1− x)

0 0
√

x(1− x) 1− x

 .

Here
√

x(1− x) stands for any complex number c with c2 = x(1− x).

Proposition 4.21. (i) The mapping Ψ which sends the cosets ΦJ∞,∞(χ+I), ΦJ∞,∞(Pτ ) and
ΦJ∞,∞(W 0(χ+)) to the functions P̂ , p̂ and r̂ extends to a homomorphism from the algebra
AJ∞,∞ into the algebra of all bounded 4× 4-matrix valued functions on Ωp.

(ii) Let A ∈ A
(
PC(Ṙ), PCp, (Pτ )

)
. Then the coset ΦJ∞,∞(A) is invertible in FJ∞,∞ if and

only if the associated function Ψ(ΦJs,∞) is invertible.

Note that the intersection of each of the intervals (−∞, 0) and (1,∞) with the lense Ωp

is empty. Hence, the values of the function x 7→ x(1 − x) on Ωp do not meet the negative
real axis (−∞, 0). One can therefore choose the square roots

√
x(1− x) in such a way that

r̂ becomes a continuous function on Ωp, and Ψ becomes a homomorphism into C(Ωp, C4×4).

4.4 The main result

Having identified all local algebras, we can now state our main result. Write H∞,∞(A) for the
function Ψ(ΦJs,∞). Recall also the definition of the algebra A := A(PC(Ṙ), PCp, (Pτ )

)
as the

smallest closed subalgebra of E which contains the constant sequences (aI) with a ∈ PC(Ṙ)
and (W 0(b)) with b ∈ PCp, and the sequence (Pτ ).

Theorem 4.22. A sequence A ∈ A is stable if and only if the operators W−1(A), W0(A)
and W1(A) and the operators Hs,∞(A) and H∞,t(A) with s, t ∈ R are invertible in L(Lp(R))
and if the matrix function H∞,∞(A) is invertible.
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Specifying Theorem 4.22 to the case when (Aτ ) is a sequence of finite sections yields the
following.

Theorem 4.23. Let A be an operator in the smallest subalgebra of L(Lp(R)) which contains
the operators aI with a ∈ PC(Ṙ) and W 0(b) with b ∈ PCp. Then the finite sections method

(PτAPτ + Qτ )uτ = f (26)

applies to the operator A if and only if the operators

χ+W−1(A)χ+I + χ−I, A, and χ−W1(A)χ−I + χ+I

and the operators

Hs,∞(A) and P1H∞,t(A)P1 + Q1 with s, t ∈ R

are invertible on Lp(R), and if the function H∞,∞(PτAPτ + Qτ ) is invertible.

Formally, we proved Theorem 4.22 for the scalar case. For matrix-valued functions
a ∈ [PC(Ṙ)]n×n and b ∈ [PCp]n×n, the proof remains essentially the same. This covers,
for example, systems of singular integral equations and systems of Wiener-Hopf operators.
Obviously, the operators resulting from the homomorphisms then will have matrix coeffi-
cients, and it can prove difficult to study the invertibility of these operators. Note that a
non-scalar version of the two-projections theorem was proved in [3].

5 Some examples

Finally, we are going to examine two simple settings where Theorem 4.23 works. Consider
the singular integral operator

A := cW 0(χ+) + dW 0(χ−) = cPR + dQR (27)

with coefficients c, d ∈ PC(Ṙ). A criterion for the Fredholmness of this operator is stated in
Corollary 3.6.

Theorem 5.1. The finite sections method (26) applies to the singular integral operator A in
(27) if and only if the operator A is invertible on Lp(R) and the operator

P1

(
(c(−∞)χ− + c(+∞)χ+)W 0(χ+) + (d(−∞)χ− + d(+∞)χ+)W 0(χ−)

)
P1

is invertible on Lp([−1, 1]).

Proof. Let A := (PτAPτ + (I − Pτ ))τ>0. By Theorem 4.23, the sequence A is stable
and, hence, the finite sections method applies to A, if and only if the following operators are
invertible:

(i) W0(A) = cW 0(χ+) + dW 0(χ−);

(ii) W−1(A) = χ+

(
c(−∞)W 0(χ+) + d(−∞)W 0(χ−)

)
χ+I + χ−I;

(iii) W1(A) = χ−
(
c(+∞)W 0(χ+) + d(+∞)W 0(χ−)

)
χ−I + χ+I;
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(iv) Hs,∞(A) = (c(s−)χ− + c(s+)χ+)W 0(χ+) + (d(s−)χ− + d(s+)χ+)W 0(χ−)

for s ∈ R;

(v) H∞,0(A) = Q1 +

P1

(
(c(−∞)χ− + c(+∞)χ+)W 0(χ+) + (d(−∞)χ− + d(+∞)χ+)W 0(χ−)

)
P1;

(vi) H∞,t(A) = P1(c(−∞)χ− + c(+∞)χ+)P1 + Q1 for t > 0;

H∞,t(A) = P1(d(−∞)χ− + d(+∞)χ+)P1 + Q1 for t < 0;

(vii) (H∞,∞(A))(z) =


c(+∞)z + d(+∞)(1− z) 0 0 0

0 1 0 0
0 0 c(−∞)z + d(−∞)(1− z) 0
0 0 0 1


for z ∈ Ωp.

Thus, the conditions stated in the theorem are necessary: the operators quoted there are
W0(A) and H∞,0(A), respectively. To prove the sufficiency, we have to show that the in-
vertibility of W0(A) and H∞,0(A) implies the invertibility of all other operators in (i) –
(vii).

Let s ∈ R. Since Hs,∞(A) = Hs,∞(A) by Lemma 4.6, the invertibility of A implies that
of Hs,∞(A). Further, if H∞,0(A) is invertible then the sequence

B := (Pτ ((c(−∞)χ− + c(+∞)χ+)W 0(χ+)
+ (d(−∞)χ− + d(+∞)χ+)W 0(χ−))Pτ + Qτ )

is stable by Lemma 4.19. Since W−1(A) = W−1(B) and W1(A) = W1(B) by Lemma 4.4, the
operators W−1(A) and W1(A) are then invertible.

Similarly, if t ∈ R \ {0}, then H∞,t(A) = H∞,t(B) by Lemma 4.5, which verifies the
invertibility of the operators H∞,t(A). Finally, condition (vii) is satisfied if and only if the
point 0 does not belong to the lentiform domains

1 +
(

c(+∞)
d(+∞)

− 1
)

Ωp and 1 +
(

c(−∞)
d(−∞)

− 1
)

Ωp.

That the invertibility of W0(A) and H∞,0(A) also implies this condition follows again by
employing the invertibility criterion for singular integral operators in [4].

To compare the spectrum of the initial operator A with that of the finite section method
(26) let d ≡ 1. We consider two cases. The first case is when c is continuous at ∞. In this
case the spectrum of the method is the spectrum of the operator plus a lens connecting the
point c(∞) with the point 1 (see Figure 5 - note that the point 1 also belongs to the spectrum
of A, but it is not shown in the first image).

The case when c is discontinuous at ∞ involves the spectrum of the operator and the
convex hull of three lenses, connecting the points 1, c(−∞), c(+∞). These lenses colapse
to straight lines when p = 2. In that case, it is possible to reformulate Theorem 5.1 in the
following geometric terms.

Corollary 5.2. Let p = 2. The finite sections method (26) applies to the singular integral
operator A in (27) if and only if the operator A is invertible on L2(R) and if the point 0 is
not contained in the convex hull of the points 1, c(−∞)

d(−∞) and c(+∞)
d(+∞) .
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(a) The spectrum of an operator A

0 1

c(∞)

(b) the spectrum of the corresponding fsm

For a second illustration of Theorem 4.23, let a, b ∈ PCp and consider the paired operator

A := W 0(a)χ+I + W 0(b)χ−I. (28)

Theorem 5.3. The finite sections method (26) applies to the paired operator A in (28) if
and only if the the operator A is invertible on Lp(R), the Wiener-Hopf operators W (b) and
W (ã) are invertible on Lp(R+), the operator

P1

(
(a(t−)W 0(χ−) + a(t+)W 0(χ+))χ+I + (b(t−)W 0(χ−) + b(t+)W 0(χ+))χ−I

)
P1

is invertible on Lp([−1, 1]) for every t ∈ R, and the point 0 does not belong to the lentiform
domains

a(−∞) + (a(+∞)− a(−∞))Ωp and b(+∞) + (b(−∞)− b(+∞))Ωp.

Proof. Let again A := (PτAPτ +(I−Pτ ))τ>0. Theorem 4.23 implies that the finite sections
method for the operator A is stable if and only if the following operators are invertible:

(i) W0(A) = A;

(ii) W−1(A) = χ+W 0(b)χ+I + χ−I;

(iii) W1(A) = χ−W 0(a)χ−I + χ+I;

(iv) H0,∞(A) =
(
a(−∞)W 0(χ−) + a(+∞)W 0(χ+)

)
χ+I

+
(
b(−∞)W 0(χ−) + b(+∞)W 0(χ+)

)
χ−I;

(v) Hs,∞(A) = a(−∞)W 0(χ−) + a(+∞)W 0(χ+) if s > 0;
Hs,∞(A) = b(−∞)W 0(χ−) + b(+∞)W 0(χ+) if s < 0;

(vi) H∞,t(A) = Q1 + P1((a(t−)W 0(χ−) + a(t+)W 0(χ+))χ+I

+(b(t−)W 0(χ−) + b(t+)W 0(χ+))χ−I)P1 for t ∈ R;

(vii) (H∞,∞(A))(z) =


a(−∞)(1− z) + a(+∞)z 0 0 0

0 1 0 0
0 0 b(−∞)z + b(+∞)(1− z) 0
0 0 0 1

,

for z ∈ Ωp.
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The invertibility of the operators W−1(A) and W1(A) is equivalent to the invertibility
of the Wiener-Hopf operators W (b) and W (ã), respectively. Thus, the conditions of the
theorem are necessary. We show that, conversely, the invertibility of the operator A implies
the invertibility of the operators in (iv) and (v). This fact follows immediately from Lemma
4.6, where it is shown that Hs,∞(A) = Hs,∞(A) for every s ∈ R.

Corollary 5.4. Let p = 2. The finite sections method (26) applies to the paired operator A
in (28) if and only if the operator A is invertible on L2(R), the Wiener-Hopf operators W (b)
and W (ã) are invertible on L2(R+) and if, for every t ∈ R, the point 0 is not contained in
the convex hull of the points 1, a(t−)

a(t+)
and b(t−)

b(t+)
.
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