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Abstract. It is shown that the compact open topology makes the au-

tomorphism group Aut g of a semisimple pro-Lie algebra g a topological

group in which the identity component (Aut g)0 is exactly the group Inn g
of inner automorphism and which has a totally disconnected supplement

∆ such that Aut g = (Inn g)∆ and Aut g/ Inn g ∼= Inn g/(Inn g∩∆) as

topological groups. The group Inn g is a product of a family of connected

simple centerfree Lie groups. These results are used to show that for

a pro-Lie group G which has a compact group of connected components

G/G0, there is a compact zero-dimensional, that is, profinite, subgroup D
such that G = G0D. There are sets I , J , a compact connected semisim-

ple group S, and a compact connected abelian group A such that G and

RI × (Z/2Z)J × S ×A are homeomorphic.
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1. Introduction

A pro-Lie group is a topological group which is a projective limit of a projective
system of finite dimensional real Lie groups. Equivalently, it is a topological group
that is isomorphic to a closed subgroup of a cartesian product of Lie groups.
The class of connected pro-Lie groups and its Lie theory and structure theory
was extensively discussed in [5]. The Lie theory of pro-Lie groups is an infinite
dimensional one; the way in which it overlaps differentiable Lie group theory based
on manifolds modelled on locally convex vector spaces was clarified in [6]. The
upshot of the structure theory of pro-Lie groups as published so far is that it is
largely determined by the structure of pro-Lie algebras, that is, projective limits of
finite dimensional Lie algebras on the one hand, and compact groups on the other.
The Lie theory of the connection between pro-Lie groups and Pro-Lie algebras can
only reach as far as the identity component. On the other hand, compact groups
reach out to compact extensions of connected pro-Lie groups, namely, those pro-
Lie groups G which are almost connected in the sense that G/G0 is compact. In
many instances, the structure theory of connected pro-Lie groups in [5] included
almost connected pro-Lie groups. However, so far it failed to produce one general
result which one might expect if one is guided by locally compact groups, namely,
the proposition that
an almost connected pro-Lie group G has a maximal compact subgroup M , all
maximal compact subgroups are conjugate, and G = G0M .
These results we discuss and prove below. Our detailed knowledge of compact
groups then lets us demonstrate that M contains a profinite subgroup D such
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that G = G0D and that the two groups G and G0 × G/G0 are homeomorphic.
From [5] we know that G0 is homeomorphic to RI × C for a set I and a compact
connected group C. From [4] we know that every profinite group is homeomorphic
to a product (Z/2Z)J for a set J , and that a compact connected group is a
semidirect product of a compact connected semisimple group S and a compact
connected abelian group A. Therefore we will be finally able to say that
an almost connected pro-Lie group is homeomorphic to a group of the form

RI × S ×A× (Z/2Z)J .

The topological structure of an almost connected pro-Lie group is therefore clar-
ified as explicitly as one could desire, notably in the light of the known structure
of the compact factors S and A (see [4]).

The crucial access to this new chapter of pro-Lie group theory is provided by a
careful analysis of the structure of the automorphism group of a semisimple pro-
Lie algebra which, of course, is also of independent interest. The relevance of
this information becomes clear at once if one recalls from [5] that a connected
pro-Lie group G possess a unique largest normal connected pro-solvable subgroup
R(G), where a pro-Lie group is prosolvable if all Lie group homomorphic images are
solvable. The factor group S def= G0/R(G) is a connected semisimple pro-Lie group,
whose Lie algebra s is semisimple. The group G acts via inner autimorphisms
on S and then via adjoint representation on s and that, after careful inspection
the details, gives us a representation f :G → Aut s. That Aut s is in need of
a natural topological group topology and that f is a morphism of topological
groups is established in the processe, but hardly any of the details is obvious.
The structure of Aut s turns out to emulate that of the automorphism group of
a finite dimensional semisimple Lie group, best known in the case of a compact
semisimple Lie algebra (see [4], Lemma 6.57ff. and Lemma 9.80ff.). The group
Inn s = 〈ead s〉 ⊆ Aut s of inner automorphisms is a product

∏
j∈J Sj of centerfree

simple real connected Lie groups, and it is the identity component of Aut s. An
essential ingredient is the result that it is nearly a semidirect factor; indeed there is
a totally disconnected cofactor ∆ such that Aut s = (Inn s)·∆, but for all we know
there may be a nontrivial intersection (Inn s) ∩ ∆. Here the theory is somewhat
hampered by a deficit in our knownledge of the classical theory of finite dimensional
real simple Lie algebras: If a simplie real Lie algebra is either compact or the
underlying real Lie algebra of a complex simple Lie algebra, then its automorphism
group is a semidirect product of the inner automorphism group and a suitable
finite (usually very small) cofactor. While for a number of special classes of real
Lie algebras beyond the ones mentioned this conclusion persists and one has no
counterexamples, it seems to be unknown whether it is true in general. At any
rate, in the cofactor ∆ is carefully analyzed, and we understand its structure
well. Unfortunately, as a topological group, it fails to be a prodiscrete group in
general. However, we do understand its compact subgroups and we see that any
almost connected closed subgroup G ⊆ Aut s containing Inn s does have the form
G = G0M with a maximal compact subgroup M of G.
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Our knowledge of the structure of Aut s then permits us to reduce our program
concerning the structure theory of almost connected pro-Lie groups G to the case
that G0 is prosolvable. This is a case that was already dealt with in [5] and in this
fashion our investigation is completed.

The general architecture of our text is as follows:

Section 0 Abstract.
Section 1 Introduction.
Section 2 The automorphism group of semisimple pro-Lie algebras.
Section 3 The automorphism group of semisimple pro-Lie groups.
Section 4 Topological groups with pro-Lie identity component.
Section 5 Almost connected pro-Lie groups.
Section 6 Maximal compact subgroups.
Section 7 The conjugacy of maximal compact subgroups.
Section 8 The structure of almost connected pro-Lie groups.
Section 9 References.

2. The automorphism group of semisimple pro-Lie algebras

Recall from [5], Theorem 10.29 p. 435 that a connected pro-Lie group G is semisim-
ple iff its Lie algebra g is semisimple iff (by [5], Corollary 7.29, p. 283) there is
a family {sj : j ∈ J} of finite dimensional simple real Lie algebras such that
g ∼=

∏
j∈J sj . Any automorphism α:G→ G yields an automorphism L(α): g → g,

and
α 7→ L(α) : AutG→ Aut g

is an injective morphism of groups. If for g ∈ G the function Ig:G → G is the
inner automorphism defined by Ig(x) = gxg−1, then g 7→ Ig : G → Aut(G) is
a morphism of groups whose kernel is the center Z(G) of G, and the composi-
tion G → Aut(G) → Aut(g) given by g 7→ L(Ig) is none other than the adjoint
representation Ad:G→ Aut(g) discussed in [5], pp. 131f.
So if one wants to talk about automorphisms of connected semisimple pro-Lie
groups one must necessarily focus on the automorphism group of semisimple pro-
Lie algebras.
In the following we assume that
j 7→ sj is a function from a set J into the class of simple finite dimensional real
Lie algebras and that

g =
∏
j∈J

sj .

and that Aut g is the group of all automorphisms of the topological Lie algebra g.

The Algebraic Theory of Aut g

For each k ∈ J define a function inck: sk → G by inck(X) = (Yjk)j∈J , where

Yjk =
{
X if j = k,
0j if j 6= k,
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and set
mk = inck(sk).

As usual, let prk: g → sk be the projection, given by prk((Xj)j∈J) = Xk. Then
prk ◦ inck = idsk

and inck ◦prk: g → g is an idempotent endomorphism of g with
image mk. For each k ∈ J , the subset mk is a minimal ideal of the Lie algebra g.

Lemma 2.1. Let m be a minimal ideal of g. Then there is a k ∈ J such that
m = mk.
Proof. If g = m, then g is simple and there is nothing to prove. Thus we may
assume that J has more than one element. Let 0 6= X ∈ m and denote with F
the set of finite subsets of J . For a subset I ⊆ J we identify the partial product∏

j∈J sj in an obvious way with an ideal of g. Since
⋂

F∈F
∏

j∈J\F sj = {0}, we
find an ideal (indeed partial product) n =

∏
j∈J\F sj for some F ∈ F such that

X /∈ n. Since m is a minimal ideal, m ∩ n = {0}, and so m + n is algebraically a
direct sum. (In fact, by [5], Theorem A2.12(c), m ⊕ n is also a topological direct
sum.) Now g/n ∼=

∏
j∈F sj is a finite direct sum of ideals (mj + n)/n, j ∈ F , and

(m + n)/n is an isomorphic copy of m and an ideal in g/n. Every vector subspace
containing n is of the form m′ ⊕ n for some vector subspace m′ of m. Now let
(m′ + n)/n, m′ ⊆ m, m′ 6= m, be a proper ideal of g/n contained in (m + n)/n. Let
X ∈ g and Y ∈ m′ ⊆ m, then [X,Y ] ∈ (m′+n)∩m = m′ by the modular law. Thus
m′ 6= m is an ideal of g and then m′ = {0} by the minimality of m. Thus (m+n)/n
is a minimal ideal of g/n. The minimal ideals of the finite dimensional semisimple
Lie algebra g/n are exactly the ideals (mj + n)/n, j ∈ F . Hence there is a unique
k ∈ F , depending on n, such that m⊕ n = mk ⊕ n. It follows that m ∼= mk

∼= sk. If
n′, the canonical image of

∏
j∈J\F ′ sj with F ⊆ F ′ ∈ F is an ideal contained in n,

then there is a unique k′ ∈ F ′ such that m⊕ n′ = mk′ ⊕ n′. This equation implies
m⊕ n = mk′ ⊕ n, and thus mk′ ⊕ n = mk ⊕ n and this equality entails k′ = k. Thus
we have m ⊆ m⊕ n′ = mk ⊕ n′ for all cofinite dimensional ideals n′ contained in n
and thus m ⊆

⋂
n′⊆n(mk ⊕ n′) = mk. Since the finite dimensional ideals m and mk

are isomorphic, m = mk follows which proves the Lemma. ut

Note that in the abelian pro-Lie algebra RN every one-dimensional vector subspace
is a minimal ideal and not only the subspaces

mk
def= {(rkn)n∈N ∈ RN : rkn = 0 if n 6= k}.

In fact the abelian Lie algebra R2 has more minimal ideals than just R× {0} and
{0} × R.

An automorphism α ∈ Aut g must permute the minimal ideals. Let P (J) denote
the group of all permutations of J . So there is an element σ(α) ∈ P (J) such that

(∀j ∈ J)α(mj) = mσ(α)−1(j).

Let S be a set containing exactly one specimen of each isomorphism class of finite
dimensional simple real Lie algebras. Then each semisimple pro-Lie algebra g is
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determined uniquely up to isomorphism by a partition of the index set J :

J =
⋃
s∈S

J(s)

into subsets J(s) = Jg(s) such that we may (and will) write

g =
∏
s∈S

sJ(s)

where we call the powers Fs
def= sJ(s) the isotypic factors.

Set PS(J) = {σ ∈ P (J) : σ(J(s)) = J(s)}, a subgroup of P (S). Notice that

(1) PS(J) ∼=
∏
s∈S

P (J(s)).

Each automorphism α must preserve the isotypic factor Fs and thus σ(α) ∈ PS(J).

Definition of σ, ψ, and ρ

Therefore we have defined a function

(∗) σ: Aut g → PS(J)

which is easily verified to be a morphism of groups by its definition. If τ ∈ PS(J),
define ψ(τ) ∈ Aut g by ψ(τ)((Xj)j∈J) = (Xτ−1(j))j∈J . Since sτ−1(j) = sj by the
definition of PS(J), this is a well defined automorphism satisfying ψ(τ)(mj) =
mτ−1(j). Hence σ(ψ(τ)) = τ . Thus σ: Aut g → Ps(J) is a homomorphic retraction
and is, in particular, surjective; the function

(∗∗) ψ:PS(J) → Aut g

is its right inverse.

Quite generally, let σ:A → H be a homomorphic retraction of groups and set
N = kerσ. Define ψ:H → A to be the coretraction satisfying σ ◦ ψ = idH . Then
there is a morphism γ:H → AutA defined by γ(h)(a) = ψ(h)aψ(h)−1, and the
function ρ:N×γH → A, ρ(n, h) = nψ(h) is an isomorphism with inverse given by
ρ−1(a) = (aψσ(a)−1, σ(a)). This is verified directly; homomorphic retractions are,
in this sense, an alternative manifestation of semidirect products.
We want to apply these arguments to the homomorphic retraction σ: Aut g →
PS(J). Firstly, an automorphism α of g is in the kernel of σ iff α(mj) = mj , that is,
iff there is an element (αj)j∈J ∈

∏
j∈J Aut sj such that α((Xj)j∈J) = (αj(Xj))j∈J .

(†) We shall henceforth identify kerσ with
∏

j∈J Aut sj ,
and conclude

Proposition 2.2. (Algebraic Gross Structure) The function

(∗∗∗) ρ :
∏
j∈J

Aut sj×γPS(J) → Aut g,
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defined by
ρ
(
(αj)j∈J , τ

)(
(Xj)j∈J

)
=

(
αj(Xτ−1(j))

)
j∈J

,

is an isomorphism of groups with inverse function

α 7→ (α·ψσ(α)−1, σ(α)). ut

Topologizing Aut g

We use the isomorphism in the Gross Structure Theorem to introduce a group
topology on Aut g. It is easy to consider the individual constituents

∏
j∈J Aut gj

and PS(J) of the formula for Aut g.
Firstly, for a simple finite dimensional Lie algebra s, the group Aut s, as a closed
subgroup of the full linear group Gl(s) is a Lie group0. Accordingly, Aut g =∏

j∈J Aut sj is a product of a family of finite dimensional Lie groups and is, there-
fore a pro-Lie group.
We record for later reference:

Lemma 2.3a. The groups
∏

j∈J Aut sj and all its closed subgroups are pro-Lie
groups. ut

Finally, we consider on the index set J the discrete topology. Then the function
semigroup JJ has a product topology which is nondiscrete if J is infinite. It
induces on the subgroup P (J) the topology of pointwise convergence which agrees
here with the compact open topology, making P (J) into a topological group. Since
the reader might prefer to have an independent recourse to this claim, we insert a
proof of this claim:
Lemma 2.3b. Let J a set and let P (J) ⊆ JJ the set of all permutations of
J with the topology of pointwise convergence, that is, the topology induced from
the product topology of JJ where J has the discrete topology. Then P (J) is a
topological group.
Proof. The function

(f, g) 7→ f ◦ g : P (J)× P (J) → P (J)

is continuous, since for fixed f, g ∈ P (J) and j ∈ J , the set

{(f ′, g′) ∈ P (J)× P (J) : f ′
(
g′(j)

)
= f(g(j))}

contains the open set

{f ′ ∈ P (J) : f ′
(
g(j)

)
= f

(
g(j)

)
} × {g′ ∈ P (J) : g′(j) = g(j)}.

Next we show that f 7→ f−1:P (J) → P (J) is continuous by showing that f 7→
f−1(j) : P (J) → J . But for fixed f ∈ P (J) and j ∈ J the set

{F ∈ P (J) : F−1(j) = f−1(j)} = {F ∈ P (J) : F
(
f−1(j)

)
= j}
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is open in P (J). This proves the Lemma. ut

If J is finite, P (J) is finite and has the alternating group as normal subgroup
of index 2; the alternating group is simple if card J ≥ 5. If J is infinite, in the
normal subgroup of all permutations leaving a cofinite subset of J elementwise
fixed is simple every element, like any permutation on finitely many elements, has
a signature “even or odd”; the subgroup of even permutations is an infinite simple
subgroup. The topological group P (J) is totally disconnected.
Remark 2.4. If J is infinite, then P (J) is not closed in JJ and fails to be
complete.

Proof. Since an infinite set contains a copy of N, it suffices to show that the
subgroup P (N) of NN is not closed in NN. We depict a function f ∈ NN by

f =
(

1 2 · · · n · · ·
f(1) f(2) · · · f(n) · · ·

)
.

Then the sequence

fn =
(

1 2 · · · n− 1 n · · ·
2 3 · · · n 1 · · ·

)
, n = 2, 3, . . .

converges to

f =
(

1 2 · · · n− 1 n · · ·
2 3 · · · n n+ 1 · · ·

)
.

Moreover, fn ∈ P (N) while f(m) 6= 1 for all m ∈ N and thus fails to be in P (N).
The sequence (fn)n∈N is a Cauchy sequence in the sense that for every identity
neighborhood U in P (N) there is an N ∈ N such that m,n ∈ N and m,n > N
implies fmf

−1
n ∈ U . Since it does not converge in P (N), the group P (N) fails to

be complete. ut

In particular, for infinite J , the group P (J) is not prodiscrete.

Let us discuss the compact subgroups K ⊆ P (J).

Proposition 2.5. (a) Let R be any equivalence relation on J , giving us a
partition J/R of J into finite cosets. Then the subgroup

CR
def= {τ ∈ P (J) : (∀j ∈ J) τ(R(j)) ⊆ R(j)}

is a compact subgroup of P (J) and is isomorphic to
∏

I∈J/R P (I).

(b) For a subgroup K ⊆ P (J) the following statements are equivalent:
(i) K is compact.
(ii) K is closed and has finite orbits K(j).
(iii) K is closed in JJ and there is an equivalence relation R of J such that the
cosets R(j) are finite and invariant under the action of K for all j ∈ J .
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(c) Let K be a compact subgroup of P (J) and let R be the equivalence relation with
the orbits K(j), j ∈ J as cosets. Then K ⊆ CR.

(d) If R and R′ are equivalence relations with finite cosets such that R ⊆ R′, then
CR ⊆ CR′ .

Proof. (a) Clearly, CR is a closed subgroup contained in
∏

j∈J R(j) ⊆ JJ

and is therefore compact. If τ ∈ CR, then for each I ∈ J/R, the permutation τ
induces a permutation τ |I : I → I. Then function

τ 7→ (τ |I)I∈J/R : CR →
∏

I∈J/R

P (I)

is readily seen to be an isomorphism of topological groups.

Next we prove (b).

(i)⇒(ii): Assume (i). Then K is a compact subset of JJ and is therefore con-
tained in a product

∏
j∈J Jj with finite subsets Jj ⊆ J . This implies that the

orbits K(j) ⊆ Jj are finite for all j ∈ J . Since K is compact, K is closed in P (J).

(ii) ⇒(iii): Let R be the equivalence relation whose cosets are the orbits of K.

(iii)⇒(i): We observe that K = K ⊆ CR which proves that K by the compact-
ness of CR according to (a).

(c) and (d) are straightforward. ut

The subgroup of P (N) consisting of all f ∈ P (N) satisfying f(2n − 1) = 2n,
f(2n) = 2n − 1 for finitely many n and fixing all other elements has finite orbits
but is not compact.

Remark. Every compact totally disconnected group G has a faithful continuous
representation π:G→ P (J) for a suitable set J .

Proof. Every totally disconnected compact group G is profinite. (See [4],
Theorem 1.34). In other words, if N is the filter basis of open normal subgroups N ,
then the natural morphism f :G →

∏
N∈N G/N is faithful. Let J =

⋃
N∈N G/N

and define π:G → P (J) by π(g)(hN) = ghN for h ∈ G, N ∈ N then π is the
required faithful representation. ut

Recall the morphisms of groups

σ : Aut g → PS(J), σ(mj) = mσ(α)−1(j),

ψ : PS(J) → Aut g, ψ(τ)((Xj)j∈J) = (Xτ−1(j))j∈J ,

satisfying σ ◦ ψ = id.

Lemma 2.6. (i) The group G def=
∏

j∈J Aut sj×PS(J) is a topological group.
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(ii) If all sets J(s) are finite,then PS(J) is compact and

G =
∏
s∈S

(
Aut sJ(s)×P (J(s))

)
is a pro-Lie group.
(iii) If there is an s ∈ S such that J(s) is infinite, then P (J(s)) and G are incom-
plete topological groups.

Proof. (i) In order to show that G is a topological group we have to show that
the automorphic action of PS(J) on

∏
j∈J Aut sj =

∏
s∈S(Aut s)J(s) is jointly

continuous. We write p = (αj)j∈J ∈
∏
j ∈ J Aut sj and we have to verify that

(π, p) 7→ ψ(π)(p) = (ατ−1(j))j∈J is a continuous function

PS(J)×
∏
j∈J

Aut sjto
∏
j∈J

Aut sj .

We recall that a function f :A→
∏

j∈J Bj from a topological space to a product of
topological spaces is continuous iff prj ◦f :A→ Bj is continuous for each j where
prj is the projection onto the factor Bj . Thus, if we fix k ∈ J we note that

(π, (αj)j∈J) 7→ ατ−1(k) : PS(J)×
∏
j∈J

Aut sj → Aut sτ−1(k)

is indeed continuous in view of the topology of pointwise convergence on P (J).
Thus G = (

∏
j∈J Aut sj)×PE(J) is a topological group.

(ii) The compactness of PS(J) ∼=
∏

s∈S P (J(is)) an immediate consequence of the
Remark we observed above preceding Proposition 2.5.
The group G is a pro-Lie group iff (Aut s)J(s)×P (J(s)) is a pro-Lie group for all
s ∈ S which is certainly the case if J(s) if finite for all s.
(iii) If J(s) is infinite for some s, then P (J(s)) and thus Aut sJ(s)×P (J(s)) and
incomplete by our Remark preceding Proposition 2.5. Hence neither of these group
is a pro-Lie group. ut

Let |g| be the underlying weakly complete topological vector space of the semisim-
ple pro-Lie algebra g.
Let 1 be the identity automorphism of g. For a subset K ⊆ g, and an open
0-neighborhood U ⊆ g we set
W (K,U) = {α ∈ Aut g : (∀k ∈ K)α(k)− k ∈ U}.
The compact-open topology of Aut g has a basis of sets W (K,U)·γ as K ranges
through the compact subsets of |g|, U through the zero neighborhoods of |g|, and
γ through Aut g).
It will be useful to focus on certain basic identity neighborhoods W (K ′, U ′) as
follows: let W (K,U) be a basic identity neighborhood of Aut g. Define K ′ =∏

j∈J Cj with a compact subset Cj = prj(K) of sj ; then K ⊆ K ′ and K ′ is
compact. Let U ′ =

∏
j∈J Vj where all Vj are zero neighborhoods of sj and where,

9



for a suitable finite subset F of J , we have Uj = sj for j ∈ J \ F so that U ′ ⊆ U .
Then W (K ′, U ′) ⊆ W (K,U) and we shall say that a basic identity neighborhood
W (K,U) is special with respect to a finite subset F ⊆ J if K and U are products
as K ′ and U ′ above, respectively; we shall then write g = g1 × g2, where

(2)

g1 =
∏
j∈F

sj ,

g2 =
∏

j∈J\F

sj .

Then the definition of K ′ implies K = K1 ×K2, where

(3)

K1 =
∏
j∈F

Cj ,

K2 =
∏

j∈J\F

Cj .

We also note U = U1 × g2, where

(4) U1 =
∏
j∈F

Vj .

We have observed that every identity neighborhood of Aut g contains a special
one.

The right translations α 7→ αγ : Aut g → Aut g are certainly homeomorphisms of
Aut g. If f :A → B is a morphism of groups between groups carrying a topology
such that all right translations of A, respectively, B are homeomorphisms, then f
is continuous iff f is continuous at the identity of A.

Lemma 2.7. If Aut g is given the compact open topology, then both

(∗) σ:
∏
j∈J

Aut sj → PS(J)

and

(∗∗) ψ:PS(J) →
∏
j∈J

Aut sj

are continuous.

Proof. Regarding σ: we need to establish continuity at 1. By the definition of
the topology of pointwise convergence of PS(J) a basic open neighborhood VF of
the identity in this group is given by a finite subset F ⊆ J so that

(5) VF = {τ ∈ PS(J) : (∀j ∈ F ) τ(j) = j}.
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We have to show that σ−1(V ) is an identity neighborhood. If we let Vj = {τ ∈
PS(J) : τ(j) = j}, then Vk =

⋂
j∈F Vj , and it suffices to show that σ−1(Vj) is an

identity neighborhood for each j ∈ F . So assume now that F = {k} and write
V = Vk. Then α ∈ Aut g is in σ−1(V ) iff α(mk) = mk. Let X 6= 0 in mk and h the
closed vector subspace {0k} ×

∏
j∈J\{k} sj . Then g = mk ⊕ h and X /∈ h. Now we

find a 0-neighborhood U of g so small that

(X + U) ∩ h = ∅.

Now W ({X}, U) is an identity neighborhood of Aut g. If α ∈ W ({X}, U), then
α(X) − X ∈ U , i.e. α(X) ∈ X + U . Thus (X + U) ∩ α(mk) 6= ∅. Now either
α(mk) = mk or α(mk) ⊆ h. The latter case would entail (X +U)∩h 6= ∅, contrary
to (X + U) ∩ h = ∅. Thus α(mk) = mk. Hence α ∈ σ−1(V ). We have shown
W ({X}, U) ⊆ σ−1(V ) and thus σ−1(V ) is an identity neighborhood.
Regarding ψ: let W (K,U) be a special basic identity–neighborhood of Aut g with
respect to F ⊆ J . We let W = {τ ∈ PS(J) : (∀j ∈ F ) τ(j) = j}. Then W
is an identity neighborhood of PS(J). If τ ∈ W , then by the definition of ψ
the automorphism ψ(τ) of g = g1 × g2 leaves g1 and g2 invariant and indeed g1

elementwise so. Now let X ∈ K, that is X = (X1, X2) with Xi ∈ Ki, i = 1, 2.
Then ψ(τ)(X) = (X1, X

′
2) for some X ′

2 ∈ g2. Thus ψ(τ)(X) − X = (0, X2 −
X ′

2) ∈ U1 × g2 = U . So W ⊆ ψ−1(W (K,U)), and this proves our claim, thereby
concluding the proof of the Lemma. ut

Lemmas 2.6 and 2.7 imply that the groups PS(J) and ψ(PS(J)) ⊆ Aut g are
isomorphic topological groups and prove the following

Lemma 2.8. The algebraic isomorphism

ρ−1: Aut g →
∏
j∈J

Aut sj×γPS(J), ρ−1(α) = (α ◦ ψσ(α), σ(α))

is continuous. ut

Lemma 2.9. The morphism

ρ:
∏
j∈J

Aut sj×γPS(J) → Aut g, ρ(α, τ) = α ◦ γ(τ)

is continuous.

Proof. It suffices again to prove continuity at the identity. Let W (K,U) be
a special identity neighborhood of Aut g with respect to F ⊆ J . Recall from (7)
and (8) the compact subset K1 of g1 and the zero neighborhood U1 of g1. Also
recall the zero neighborhood VF of PS(J) from(9). Then

W
def= (W (K1, U1)×

∏
j∈J\F

Aut sj)× VF
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is an identity neighborhood of
∏

j∈J Aut sj × PS(J). Now let

(α, τ) = (((αj)j∈F , (αj)j∈J\F ), τ) ∈W.

Then ρ(α, τ) = α ◦ ψ(τ). Let (Xj)j∈J = ((Xj)j∈F , (Xj)j∈J\F ) ∈ K = K1 ×K2.
Then ρ(α, τ)((Xj)j∈J)− (Xj)j∈J

= ((αj(Xj)−Xj)j∈F , (αj(Xτ−1(j))−Xj)j∈J\F ) ∈ U1 ×
∏

j∈J\F

sj = U

since (α, τ) ∈ W . This shows that ρ(W ) ⊆ W (K,U), establishing finally the
continuity of ρ. ut

The Topological Group Aut g.

For a pro-Lie algebra g, the inner automorphism group of g is the group

Inn g
def= 〈ead g〉,

algebrically generated by all automorphisms of the form ead X for X ∈ g. The
group Inn g is normal in Aut g; the factor group Aut g

Inn g is written Out g and is
called the outer automorphism group (somewhat of a misnomer!).
We are now ready for the first principal result of this section, recalling that a
topological group G is almost connected iff G/G0 is compact.

Main Theorem 2.10. Let g =
∏

j∈J sj be a semisimple pro-Lie algebra and
Aut g the group of all automorpisms of the topological Lie algebra g. Then the
compact open topology on the group Aut g makes it a topological group, and, in the
sense of topological groups, there is an isomorphism

ρ: Aut g →
∏
j∈J

Aut sj×γPS(J), ρ((αj)j∈J , τ)((Xj)j∈J) = (αj(Xτ−1(j)))j∈J .

Firstly, the group
PS(J) ∼=

∏
s∈S

P
(
J(s)

)
as defined in (1) is a permutation group endowed with the group topology of point-
wise convergence.
Secondly, the group

∏
j∈J Aut sj is an almost connected pro-Lie group and the

identity component (Aut g)0 of Aut g is the group Inn g of inner automophisms
corresponding via ρ to

∏
j∈J Inn sj

∼=
∏

s∈S(Inn s)J(s).

Proof. By Proposition 2.2, ρ is an algebraic isomorphism, and by Lemmas 2.8
and 2.9, ρ is a homeomorphism. By Lemma 2.6, the image of ρ is a topological
group. Thus the domain Aut g of ρ is a topological group as well, and ρ is an
isomorphism of topological groups. It remains to show that (Aut g)0 = Inn g and
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that
∏

j∈J sj is almost connected. We shall do this by considering the topological
group (

∏
j∈J Aut sj)×PS(J). The group PS(J) is totally disconnected. Hence we

may concentrate on
∏

j∈J Aut sj . It is well established that the identity component

(Aut sj)0 is the subgroup Inn(sj) of inner automorphisms and that Out sj
def=

Aut sj/ Inn sj is finite. (See e.g. Murakami [10] or [2].) For g =
∏

j∈J sj it follows
that (Aut g)0 = (

∏
j∈J Aut sj)0 =

∏
j∈J(Aut sj)0 =

∏
j∈J Inn sj = Inn g, since the

equation Inn g =
∏

j∈J Inn sj is immediate from the definitions. We conclude that∏
j∈J Aut sj

(
∏

j∈J Aut sj)0
∼=

∏
j∈J

Out sj

as a product of finite sets is compact totally disconnected. Thus
∏

j∈J Aut sj is
an almost connected pro-Lie group in view of Lemma 2.3a. ut

The Ingredient of Compactness in Aut g

We have seen
Now we recall some facts from the theory of automorphisms of a finite dimen-
sional simple Lie algebra s. Dong Hoon Lee’s Supplement Theorem ([9], Lemma
2.11) shows that for each s ∈ S there is a finite subgroup Es of Aut s such that
µ: Inn s×Es → Aut s, µ(α, ε) = α ◦ ε is a surjective morphism whose kernel is
isomorphic to Es ∩ Inn s.
For many simple real Lie algebras s, the morphism µ is known to be an isomor-
phism, but surprisingly this appears to be unknown in general. Nevertheless, we
shall get by with the weaker part of the information afforded by Lee’s Theorem.
Accordingly, the subgroup

∏
j∈J Aut sj of Aut g according to (∗) has the property

that, due to our convention on the isotypic factors Fs = sJ(s) for each s ∈ S we
have Aut sj = Aut sk for all j, k ∈ J(s), s ∈ S so that, in fact we can write

(6)

∏
j∈J

Aut sj =
∏
s∈S

(Aut s)J(s)

=
∏
s∈S

(Inn s · Es)J(s)

=
( ∏

s∈S
(Inn s)J(s)

)
·
( ∏

s∈S
E

J(s)
s

) .

It follows from this representation that the automorphic action of the group PS(J)
on

∏
j∈J Aut sj respects both the factors

∏
s∈S(Inn s)J(s) and

∏
s∈S E

J(s)
s . Let us

write Ej = Es for j ∈ J(s); then we may define

(7) E
def=

∏
j∈J

Ej =
∏
s∈S

E
J(s)
s .
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Since the group PS(J) acts on E as a group of automorphisms, the semidirect
product

(8) ∆ def= E×PS(J)

is a well-defined subgroup of (
∏

j∈J Aut s))×PS(J). Also we may write

(9) Inn g =
∏
j∈J

Inn sj =
∏
s∈S

(Inn s)J(s).

It is helpful to use the following convention on topological groups: Let G be a
topological group, N a closed normal subgroup and H a closed subgroup such
that G = NH. Now H acts automorphically on N via inner automorphisms, the
semidirect product N×H and the natural surjective morphism µ:N×H → G,
µ(n, h) = nh are well-defined; its kernel is K def= {(h−1, h) ∈ N×H : h ∈ N ∩H}
and the function h 7→ (h−1, h) : H → K is an isomorphism of topological groups.
Denote the natural bijective morphism (h(N ∩ H) 7→ hN : H/(N ∩ H) → G by
α and the the quotient maps g 7→ gN : G → G/N and h 7→ h(N ∩ H) : H →
H/(N ∩ H) by p, respectively, q. Note that α is an isomorphism of topological
groups if H/(N ∩H) is compact, and thus in particular if H is compact.
We say that a morphism f :A → B of topological groups has a cross-section
s:B → A if s is a continuous function such that f ◦ s = idB and s(1) = 1. If f
has a cross-section, then f is open, and a 7→ (as(f(a))−1, f(a)) : A→ ker f ×B is
a homeomorphism with inverse map (k, b) 7→ ks(b).

Lemma FIT. (On the First Isomorphism Theorem) The following conditions
are equivalent:
(i) q has a cross-section s:H/(N ∩H) → H, and α is an isomorphism of topo-

logical groups.
(ii) p has a cross section S:G/N → G with values in H.

(iii) There is an idempotent self-map P :G → G with image N and P−1(n) =
nP−1(1) ⊆ nH for n ∈ N .

These conditions imply
(iv) µ has a cross-section ν:G→ N ×H.

Proof. (i)⇒(ii): Let j:H → G be the inclusion map and define S by S =
j ◦ s ◦ α−1. This is a continuous function. Every element of G/N is of the form
Nh with a suitable h ∈ H and so S(Nh) = s(N ∩H)h) ∈ (N ∩H)h ∈ H ∩Nh.
(ii)⇒(i): We let S′:G → H denote the corestriction of S. Then α−1 = q ◦ S′:
indeed (N ∩ H)S(Nh) = α−1(Nh). Thus α−1 is continuous. Further define
s:H/(N ∩ H)toH by s((N ∩ H)h) = S(Nh), i.e., s = S′ ◦ α. Then q ◦ s =
q ◦ S′ ◦ α = α−1 ◦ α.
(ii)⇒(iii): Set P (g) = gS(p(g))−1. Write g = nS(p(g)) for a suitable element
n ∈ N ; then P (g) = n. If g = n ∈ N , then S(p(g)) = 1 and so P (g) = g.
Assume P (g) = 1, that is g = S(p(g)). Then g ∈ H by (ii). If P (g) = n, then
g = nS(p(g)) ∈ nP−1(1) ⊆ nH.
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(iii)⇒(ii): Define η(g) = P (g)−1g. Since P (g) ∈ N and g ∈ P (g)H we can write
g = P (g)h for some h ∈ H and thus η(g) = h ∈ H and therefore Ng = Nη(g) for
all g ∈ G. Consequently,
(i)⇒(iv): Assume s exists, then define φ:G→ H by φ = s◦α−1◦p. Let g = nh ∈ G
with n ∈ N and h ∈ H. Then we may write α−1(p(g)) = h(N ∩ H) and φ(g)
is an element h′ ∈ h(N ∩ H), whence gφ(g)−1 = nhh′−1 ∈ N(N ∩ H) = N ,
φ(1) = 1. Define ν:G → N×H by ν(g) = (gφ(g)−1, φ(g)). Then µ ◦ ν = idG,
ν(1) = (1, 1). Since α is assumed to be an isomorphism of topological groups, then
φ and therefore ν are continuous. ut

If the condition (i) of this lemma is satisfied, then we shall write G = N •H. This
then indicates, in particular that G is homeomorphic to N × (H/(N ∩H).
In our present situation, since Ej is finite for each j ∈ J , the conditions of Lemma
FIT(i) are satisfied for G =

∏
j∈J Aut sj , N =

∏
j∈J Inn sj , H =

∏
j∈J Ej .

With this notation we have the following refinement of the results obtained so far:

Theorem 2.11. (Refined Structure Theorem) For a semisimple pro-Lie alge-
bra g there are isomorphisms of topological groups

Inn g •∆ ∼= (Inn g • E)×PS(J) ∼= Aut g.

Proof. By Theorem 2.10 we have an isomorphism

ρ:
∏
j∈J

Aut sj×γPS(J) → Aut g.

By (6), (7), (9) and the Lemma above we have
∏

j∈J Aut sj = Innj∈J •E and
therefor an isomorphism

(Inn g • E)×PS(J) → Aut g.

Since E is left invariant under the action of PS(J), we have the identity

(Inn g • E)×PS(J) ∼= Inn g • (E×PS(J) = Inn g×∆

in view of (8). This proves the theorem. ut

The closed subgroup PS(J) is isomorphic to
∏

s∈S P (J(s)) and is therefore pro-
discrete if and only if all J(s) are finite.
The group ∆ = E×PS(J) has a unique maximal compact normal subgroup, name-
ly, M def= E ×

∏
card(J(s))<∞ P

(
s).

From the developments of Theorems 2.10 and 2.11. we obtain

Corollary 2.12. Let g =
∏

j∈J sj be a semisimple pro-Lie algebra. Then
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(a) The automorphism group Aut g of is isomorphic to Inn g•∆, where (Aut g)0 =
Inn g =

∏
j∈J Inn sj is a product of connected simple centerfree Lie groups and is,

accordingly, a connected pro-Lie group, and where ∆ is totally disconnected.
(b) ∆ = E×PS(J) is itself a semidirect product; here E is a product of finite
groups, and PS(J) is a closed subgroup of the totally disconnected full permutation
group P (J) of the index set J .
(c) The intersection ∆ ∩ Inn g is a compact totally disconnected subgroup.
(d) Suppose that H is a closed almost connected subgroup of Aut g containing
(Aut g)0. Then there is a compact totally disconnected subgroup C of ∆ such that
H = H0C.

Proof. The Statements (a), (b), (c) are summaries of what was shown above.
In order to prove (d) we let H be a closed subgroup with H0 = Inn g and H/H0

compact. Let C = ∆ ∩ H. Since ∆ is totally disconnected, C is totally discon-
nected. By the Modular Law, H = (Inn g)∆ = H0(H ∩∆) = H0C. By Theorem
2.11, the morphism

a(H0 ∩ C) 7→ aH0 : H/(H0 ∩ C) → H/H0

is an isomorphism of topological groups. Hence C/(H0 ∩ C) is compact. Since
H0 ∩ C = (Inn g) ∩∆ is compact by (c), the subgroup C is compact. ut

Corollary 2.13. The automorphism group Aut g is topologically a product
of its identity component (Aut g)0 = Inn g and the totally disconnected group

E
E∩Inn g×PS(J). If all automorphism groups Aut sj split over Inn sj, then the
product is a semidirect product of topological groups. ut

Automorphic Action of a Compact Group

First let us return to sJ for a set J and a simple Lie algebra s and assume that
Ω is a compact group acting automorphically on sJ , that is, there is a continuous
action

(ω, g) 7→ ω·g : Ω× sJ → sJ

such that g 7→ ω·g is in Aut(sJ) for all ω ∈ Ω.
By Proposition 2.5, every compact subgroup of P (J) is contained in a subgroup
of the form CR = {τ ∈ P (J) : (∀j ∈ J) τ(R(j)) ⊆ R(j)} for an equivalence
relation R on J with finite cosets. Consequently, if P (J) acts on sJ by τ ·(sj)j∈J =
(st−1(j))j∈J , then

sJ =
∏

ξ∈J/R

sξ

is a decomposition of sJ into a product of finite dimensional semisimple Lie alge-
bras which are invariant under the action of CR. Accordingly, if Ω is a compact
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group acting automorphically on sJ , then there is a morphism ω 7→ (ωj)j∈J : Ω →
(Aut s)J of topological groups and an action (ω, j) 7→ ω·j : Ω× J → J such that

ω·(sj)j∈J = (ωj(sω−1·j))j∈J

As a consequence, sJ =
∏

ξ∈J/Ω sξ is a decomposition of sJ into a product of finite
dimensional semisimple Lie algebras which are invariant under the action of Ω.
Continuing this notation, we shall obtain

Lemma 2.13. There is a maximal compactly embedded subalgebra k of sJ which
is invariant under Ω.

Proof. Let ξ ∈ J/R. Then there is an automorphic action of Ω on the finite
dimensional Lie algebra sξ. That is, there is a morphism of topological groups
π: Ω → Aut sξ. Since Ω is compact, L def= π(Ω) is a compact Lie subgroup of the
Lie group Aut sξ. We set

S
def= Γ(s).

Since there is natural isomorphism α 7→ L(α) : Aut s → AutS we have an auto-
morphic action of the compact Lie group L on the Lie group Γ(sξ) ∼= Sξ. We can
form the almost connected Lie group Sξ×L and its quotient

G
def= (S/Z(S))ξ×L ∼=

Sξ×L
Z(S)ξ × {1}

.

We abbreviate P def=
(
S/Z(S)

)ξ × {1}. Let K be a maximal compact subgroup of
the simple centerfree (adjoint) connected Lie group S/Z(S) Then K is connected
and N(K,S/Z(S)) = K (see [12], Lemma 1.1.3.7. on p. 28.). Set K1

def= Kξ ×{1}.
It follows that N(K1, P ) = K1, where N(K1, P ) as usual denotes the normalizer
of K1 in P .
Let us briefly pause for a recollection of the

Frattini Argument. Let Γ be a group acting on a set X and Σ ⊆ Γ a subgroup
acting transitively, then Γ = Σ·Γx where Γx is the isotropy group {γ : γ·x = x} at
any x ∈ X. ut

(See e.g. [4], Lemma preceding Corollary 6.35, p. 216.)
The inner automorphisms of G act transitively on the maximal compact subgroups
of P and so the Frattini Argument yields G = PN(K1, G) and P∩N(K1, G) = K1.
We note that N(K1, G)/K1 = N(K1, G)/

(
P ∩N(K1, G)

) ∼= G/P = L is compact,
and so N(K1, G) is compact. We claim that N(K1, G) is maximal compact in G.
We isolate this claim in the following

Lemma Max. Let M be a compact subgroup of G and P a normal subgroup
of G such that G = PM and M contains a maximal compact subgroup Q of P .
Then M is maximal compact in G.
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Proof. Let C∗ be a compact subgroup of G containing M , then Q ⊆ P ∩ C∗.
By the maximality of Q in P we have Q = P ∩C∗. But then C∗ = (P ∩C∗)M =
QM = M , as claimed. ut

It is known that in almost connected Lie groups the maximal compact subgroups
are conjugate (see [3], p. 380, Theorem 3.1). Consequently, there is a g ∈ G
such that {1} × L ⊆ gN(K1, G)g−1 = N(gK1g

−1, G). Let Ig ∈ Aut(P ) be the
automorphism induced by the inner automorphism implemented by g on P . Thus
the maximal compact subgroup Ig(K1) is L-invariant. Its Lie algebra kξ is a
maximal compactly embedded Ω-invariant subalgebra of sξ. Now we set k =∏

ξ∈J/Ω kξ ⊆
∏

ξ∈J/Ω sξ = sJ . Then k is maximally compactly embedded in s and
is Ω-invariant. ut

Proposition 2.14. Let a compact group Ω act automorphically on a semisimple
pro-Lie algebra g. Then there is a maximal compactly embedded subalgebra k ⊆ g
which is Ω-invariant.

Proof. We let
g =

∏
s∈S

Fs, Fs = sJ(s)

be the isotypic decomposition of g. Since Ω acts automorphically, it preserves
the factors sJ(s). On each of these, Ω acts automorphically and thus by Lemma
4.6, there is a maximal compactly embedded subalgebra ks ⊆ sJ(s) which is Ω-
invariant. Then k =

∏
s∈S ks is a maximal compactly embedded subalgebra that

is invariant under the action of Ω. ut

3. The automorphism groups of semisimple pro-Lie groups

In the spirit of Lie theory, from the information on the automorphism group of a
pro-Lie group g we draw conclusions on the automorphism group of a connected
semisimple Lie group G. Let L be the Lie algebra functor as detailed in [5],
Chapters 2, 3 and 4. For a pro-Lie group G, we denote by

LG: AutG→ Aut g the function implemented by LG(α) = L(α),

where α:G → G is an automorphism of G. Assume first that G is simply con-
nected. Then we may identify G with Γ(g) as in [5], Theorem 6.5., p. 253. By
Theorem 6.6(vii) on p. 256 of [5]), Γ ◦ L is naturally isomorphic to the identity
functor of the category of pro-Lie groups and L ◦ Γ is naturally isomorphic to the
identity functor of the category of pro-Lie algebras. Therefore, LG: AutG→ Aut g
is inverted by β 7→ Γ(β), So we conclude that LG: AutG → Aut g is an isomor-
phism of topological groups.

Proposition 3.1. Let G be a simply connected semisimple pro-Lie group. Then
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(i) AutG is the semidirect product of the normal subgroup
∏

j∈J Sj for a family
of simply connected simple real Lie groups Sj with simple Lie algebras, and
a subgroup isomorphic to PS(J).

(ii) AutG is a topological group with respect to the compact open topology.
(iii) The morphism LG: AutG→ Aut g is an isomorphism of topological groups.

Proof. In order to prove (i), we determine the structure of AutG in complete
analogy to that of Aut g; in the process we shall prove (ii) as well. By Theorem
10.29 on p. 435 of [5], G may be written as

∏
j∈J Sj with a family of simply

connected simple Lie groups Sj . Just as in Section 2, we may identify
∏

j∈J AutSj

with a subgroup of AutG. For each s ∈ PS(J) there is a simply connected simple
Lie group Ss such that L(Ss) = s. (In the terminology of [5], Ss = Γ(s)).) Again as
in Section 2 we may assume that two factors Sj and Sk which are isomorphic, are
in fact equal. Then the permutation group PS(J) acts on

∏
j∈J Sj via a morphism

γ:PS(J) → Aut(
∏

j∈J Sj) given by

γ(τ)((αj∈J))((sj)j∈J) = (αj(sτ−1(j))j∈J).

As in the case of pro-Lie algebras, this morphism is continuous as is the function
(τ, α) 7→ Ψ(τ)(α) for α abbreviating (αj)j∈J . Thus (

∏
j∈J AutSj)×γPS(J) is a

topological group. As in the proof of 2.10, the morphism

ρ:
∏
j∈J

AutSj×γPS(J) → AutG, ρ(α, τ) = α ◦ γ(τ)

is an isomorphism of groups and a homeomorphism if AutG is given the com-
pact open topology. This means that AutG is in fact a topological group. This
establishes (ii).
Proof of (iii). We notice that by construction, we have a commutative diagram∏

j∈J Aut sj×γPS(J)
ρ−−−−→ Aut g∏

j∈J
LSj

×idPS (J)

y
yLG∏

j∈J Sj×γPS(J)
ρ

−−−−→ AutG

From the theory of finite dimensional Lie groups we know that all maps
LSj

: AutSj → Aut sj

are isomorphisms of topological groups. Thus the left vertical map is a homeo-
morphism. The two horizontal maps are isomorphisms. It follows that the right
vertical map LG is an isomorphism as well. ut

Corollary 3.2. Let G be a connected centerfree semisimple pro-Lie group.
Then

(i) AutG is the semidirect product of the normal subgroup
∏

j∈J Sj for a fam-
ily of simply connected simple (and centerfree) real Lie groups Sj, and a
subgroup isomorphic to PS(J).
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(ii) AutG is a topological group with respect to the compact open topology.
(iii) The morphism LG: AutG→ Aut g is an isomorphism of topological groups.

Proof. Let G̃ be the universal group of G (see [5], paragraph following the end
of the proof of Theorem 6.6 on p. 259)which happens to be the universal covering
group (see [4], Definitions A.2.19 on p. 701 (2nd ed.)) of G as well. (Note in passing
that every pro-Lie group has a universal group, but not every pro-Lie group, not
even every compact one, has a universal covering group.) We invoke Theorem
10.29 on p. 435 of [5] and observe that we have natural isomorphisms

G ∼= G̃/Z(G̃) =

∏
j∈J S̃j∏

j∈J Z(S̃j)
∼=

∏
j∈J

Sj ,

for a famliy of centerfree adjoint simple connected Lie groups Sj
∼= S̃j/Z(S̃j).

Every morphism α of G̃ satisfies α(Z(G̃)) ⊆ Z(G̃) and thus induces a morphism
ζ(α) of G and this yields a morphism of groups ζ: Aut G̃→ AutG. The morphism

t: AutG→ Aut G̃, t(α) = α̃

obtained from the functoriality of G 7→ G̃ inverts ζ, and thus ζ is an isomorphism
of groups with ζ−1 = t. The isomorphism ζ maps

∏
j∈J Aut S̃j onto

∏
j∈J AutSj

and preserves the copies of PS(J) in Aut G̃, respectively, AutG, giving us a com-
mutative diagram ∏

j∈J Aut S̃j×γPS(J)
ρ

−−−−→ Aut G̃∏
j∈J

ζj×id

y
yζ∏

j∈J AutSj×γ′PS(J)
ρ′

−−−−→ AutG.

The left downmap is an isomorphism of topological groups; the morphism ρ we
know to be an isomorphism of topological groups. That ρ′ is an isomorphism of
groups is verified as in 3.1 (respectively, 2.10), and likewise that it is a homeomor-
phism, if AutG is given the compact open topology. Thus we know that AutG
is a topological group with respect to the compact open topology and that ρ′ is
an isomorphism. It follows from the commutativity of the diagram that the right
downmap ζ is an isomorphism as well. ut

We recall from [5], Chapter 2ff. that each pro-Lie algebra g determines functorially
a simply connected pro-Lie group Γ(g) such that g ∼= L

(
Γ(g)

)
. If g is semisimple, so

are Γ(g) and G def= Γ(g)/Z
(
Γ(g)

) ∼= Ad
(
Γ(g)

)
. The upshot of these supplementary

results is that all three of g, Γ(g) and G have “the same” topological group as
automorphism group. Theorem 2.10 gives additional details on the fine structure
of this automorphism group, notably on the fact that it splits over its identity
component.
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We now wish to extend the structure theory to connected semisimple pro-Lie
groups in general. We endow the automorphism group AutG of a pro-Lie group
with the compact-open topology without claiming that, in general, this will make
it a topological group. The subgroup of all inner automorphisms IG(g), IG(g)(x) =
gxg−1 will be denoted InnG ⊆ AutG. We shall denote the composition

G
IG−−−−→AutG LG−−−−→Aut g

by Ad:G→ Aut g, as is customary.

Lemma 3.3. Let G be a topological group then
(i) the function IG:G→ AutG is continuous if AutG is given the compact open

topology.
(ii) Let N be a characteristic closed subgroup of G and resN : AutG→ AutN the

function defined by resN (f)(n) = f(n), n ∈ N . Then resN is a continuous
function and a morphism of groups.

(iii) Let M and N ⊆ M be closed characteristic subgroups of G. Then the func-
tion f :G → AutM/N , f(g)(mN) = gmg−1N is a continuous morphism of
groups.

Proof. (i) Since translations are continuous in AutG, it suffices to observe
continuity of I at the origin. Thus let K be a compact subset of G and V and
identity neighborhood of G. Then W (K,V ) = {α ∈ AutG : (∀k ∈ K)α(k) ⊆ V k}
is a subbasic and indeed a basic identity neighborhood of AutG. For each k ∈ K
we now find an identity neighborhood Uk of G and a neighborhood Ck of k such
that [u, c] = ucu−1c−1 ∈ V for all u ∈ U and c ∈ Ck. By compactness of K, there
is a finite subset F ⊆ K such that K ⊆

⋃
k∈F Ck. Let U =

⋂
k∈F Uk. Then U

is an identity neighborhood satisfying [U,K] ⊆ V , and thus uku−1 ∈ V k for all
u ∈ U and k ∈ K. Thus IG(U) ⊆W (K,V ), proving the continuity of IG.
(ii) Restriction of automorphisms to a characteristic subgroup implements a mor-
phisms of groups. We must show continuity at the origin. A basic identity neigh-
borhood WN (C, V ) of AutN is given by a compact subset C ⊆ N and an open
identity neighborhood V ofN so that β ∈WN (C, V ) is given by β(c)c−1 ∈ V for all
c ∈ C. If we pick an open identity neighborhood U of G such that U∩N ⊆ V , then
WG(C,U) is an identity neighborhood of AutG and res

(
WG(C,U)

)
⊆WN (C, V ).

(iii) Let q:G → G/N be the quotient morphism. Then the function f is the
composition

G
q−−−−→G

N

IG/N−−−−→Aut
G

N

resM/N−−−−→ Aut
M

N
.

Clearly all maps in sight are group morphisms, q is continuous, IG/N is continuous
by (i) and resM/N is continuous by (ii). ut

For the following summary recall the notation N •H for a topological group with
a normal subgroup N and subgroup H: it means the existens of a continu map
ν:G→ N×H such that µ ◦ ν = idG, µ(n, h) = nh.

Main Theorem 3.4. Let G be a connected semisimple pro-Lie group. Then
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(i) the function Ad def= LG ◦IG : G→ Aut g implements an open morphism from
G onto Inn g and an isomorphism of topological groups G/Z(G) → Inn g. In
particular, G/Z(G) is a pro-Lie group.

(ii) The morphism LG: AutG→ Aut g is an embedding of topological groups.
(iii) AutG is a topological group with respect to the compact open topology.
(iv) AutG is the product (AutG)0•D of a normal subgroup (AutG)0 isomorphic

to Inn g ∼=
∏

j∈J Sj for a family of simply connected simple (and centerfree)
real Lie groups Sj, and a totally disconnected topological group D isomorphic
to a subgroup of ∆ = E×PS(J). The intersection (AutG)0 ∩D is compact
and totally disconnected.

Proof. (i) The groups G and Inn g are connected pro-Lie groups by hypothesis,
respectively, Corollary 2.11. Thus the Open Mapping Theorem for Pro-Lie Groups
[5], 9.60 on p. 409 applies to the morphism Ad:G→ Inn g and shows that it is open.
For g ∈ G we have (∀x ∈ g) Ad(g)(x) = x and thus g(expx)g−1 = expAd(g)(x) =
expx; since 〈exp g〉 is dense in G (see [5], Corollary 4.22(i)), this is the case if g
commutes with all y ∈ G, that is, y ∈ Z(G). Thus kerAd = Z(G). Therefore the
corestriction Ad:G → Inn g of Ad induces an embedding G/Z(G) → Inn g. Now
let α ∈ Inn g be an inner automorphism of the pro-Lie algebra g. We know that
we may write g =

∏
j∈J gj for simple real (finite dimensional) Lie algebras gj .

Accordingly, we may identitify Inn g with
∏

j∈J Inn gj . In that sense we can write
α = (αj)j∈J with αj ∈ Inn gj . Let G̃ = Γ(g) be the universal group of G with the
universal morphism πG: G̃→ G ([5], p. 259). We know G̃ =

∏
j∈J G̃j with simply

connected real simple Lie groups G̃j and that the exponential function decomposes
accordingly

exp
G̃

=
∏
j∈J

exp
G̃j

: g =
∏
j∈J

gj →
∏
j∈J

G̃j = G̃.

From the theory of finite dimensional Lie groups one knows that for each j there
is an element gj ∈ G̃j such that AdGj

(gj) = αj . Set g̃ = (gj)j∈J ∈ G̃. Then

Ad
G̃

(g̃) = α. Now set g def= πG(g̃) ∈ G. Then AdG(g) = α, as we deduce from our
identifying L(G̃) = g = L(G) and the commuting of the diagram

G̃
Ad

G̃−−−−→ Inn g

πG

y
yidG

G −−−−→
AdG

Inn g.

Therefore Inn g = AdG(G), and

gZ(G) 7→ Ad(g):G/Z(G) → Inn g

is an isomorphism of topological groups. Since Inn g is a pro-Lie group by Lemma
2.5, the factor group G/Z(G) is a pro-Lie group.
(ii) We abbreviate the center Z(G) of G by Z. Set G = G/Z. Then G is isomorphic
to the topological group Inn g by (i), a centerfree semisimple connected pro-Lie
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group and we know from 3.2(iii) that LG: AutG → Aut g is an isomorphism of
topological groups. It therefore suffices to guarantee that the morphism θAutG→
AutG, θ(α)(gZ) = α(g)Z is an embedding. Firstly, it is injective: θ(α) = idG

means ∀g ∈ G)α(g)Z = gZ, that is, (∀g ∈ G) g−1α(g) ∈ Z. But G is connected,
Z is totally disconnected and g 7→ g−1α(g) : G→ Z is continuous, hence constant.
It follows that α = idG. This proves that θ is injective. Secondly, we claim that θ
is continuous. Let q:G→ G, q(g) = gZ denote the quotient morphism.

Lemma. (a) For each compact set K in G there is a compact set C in G such
that K ⊆ q(C).
(b) For any compact subset C of G there is a compact connected subset C∗ of G
containing C.

Proof of the Lemma. (a) We may write G =
∏

j∈J Sj with a family of
connected, centerfree simple Lie groups Sj . Let Kj be the projection of K into
§j . Then K ⊆

∏
j∈J Kj and the right hand side is compact. Now let S̃j be the

simply connected covering group of Sj and let K̃j be a compact subset of S̃j such
that its image in Sj contains Kj . Let πG: G̃ =

∏
j∈J S̃j → G denote the universal

morphism of G. Set C = πG(
∏

j∈J K̃j). Then
q(C) = πG(

∏
j∈J K̃j) ⊇

∏
j∈J Kj ⊇ K.

(b) (This assertion does not depend on semisimplicity!) By [5], Theorem 12.81,
p.551, G is homeomorphic to RJ×M where J is a set and M a (maximal) compact
connected subgroup of G. If C ⊆ RJ ×M is compact, and Cj is the projction of C
into the j-th factor R of RJ , j ∈ J , then we find a connected compact subset C∗j
in that factor containing Cj . Then C∗

def= (
∏

j∈J C
∗
j ) ×M is compact, connected

and contains C. This finishes the proof of the Lemma.

Now the continuity of θ! Let W (K,V ) for a compact subset K of G and an
open identity neighborhood V of G be a basic open identity neighborhood of G
for the compact-open topology. By part (a) of the Lemma, we find a compact
subset C of G with q(C) ⊇ K and an open identity neighborhood U of G such
that q(U) ⊆ V . Now let α ∈ W (C,U) implies α(c)c−1 ∈ U for all c ∈ C; if
k ∈ K then by the choice of C there is c ∈ C such that k = q(c) = cZ, and thus
θ(α)(k)k−1 = α(c)c−1Z ∈ UZ/Z ⊆ V .

Thirdly, we show that the morphism θ is open onto its image. Let C be a compact
set in G, and U an open identity neighborhood in G. We must find a compact
subset K of G and an open identity neighborhood V of G, such that W (K,V ) ∩
im θ ⊆ W (C, V ), that is, such that for every α ∈ AutG with θ(α)(k)k−1 ∈ V for
all k ∈ K we have α(c)c−1 ∈ U for all c ∈ C. By Part (b) of the Lemma we pick a
compact connected subset C∗ of G containing C and choose K = q(C∗) = C∗Z/Z
and we propose to find a suitable open identity neighborhood U ′ of G and choose
V = q(U ′) = U ′Z/Z, so that whenever we assume that θ(α)(k)k−1 ∈ V for
all k ∈ K we shall be able to conclude α(c)c−1 ∈ U . Now let c ∈ C∗. Then
k

def= cZ ∈ K and thus α(c)c−1Z ∈ V = U ′Z/Z, that is, α(c)c−1 ∈ U ′Z; since
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the set {α(c)c−1 : c ∈ C∗} is connected we actually have α(c)c−1 ∈ (U ′Z)0, the
connected component of U ′Z containing the identity. Our task is to find U ′ in
such a fashion that this will imply α(c)c−1 ∈ U for all c ∈ C∗. This will be
accomplished whenever (U ′Z)0 ⊆ U .
Since G is a pro-Lie group, we find a closed normal subgroup N ⊆ U ⊆ G such that
G/N is a Lie group which, by the assumptions on G, is connected and semisim-
ple. By making U smaller, if necessary, we may assume that UN = U (see [5],
Proposition 3.26(iii), p. 150). We then let U ′ ⊆ U be an open subset of G con-
taining 1 such that NU ′ = U ′ and that U ′N/N is an open cell contained in U/N .
The quotient morphism G → G/N maps Z onto the finitely generated discrete
center ZN/N ∼= Z/(Z ∩ N). By making U ′ smaller, if necessary, we may as-
sume that U ′z1/N ∩ U ′z2/N 6= ∅ in G/N for z1, z2 ∈ Z implies z2z−1

1 ∈ N ∩ Z;
that is, U ′z1 ∩ U ′z2 6= ∅ in G for z1, z2 ∈ Z implies z2z−1

1 ∈ N ∩ Z. Thus
U ′Z = U ′∪ (U ′Z \U ′) is a disjoint union of open subsetes of U ′Z. In other words,
U ′ is open closed in U ′Z. Therefore (U ′Z)0 ⊆ U ′ ⊆ U , and this is what we had to
accomplish.
(iii) By (ii) above, AutG is algebraically and topologically isomorphic to a sub-
group of Aut g. By Theorem 2.10, Aut g is a topological group, and thus AutG is
a topological group with respect to the compact open topology.
(iv) From (ii) we know that AutG is isomorphic as a topological group to a sub-
group A of Aut g which contains Inn g. From Theorem 2.11 and Corollary 2.12 we
know that Aut g = (Inn g) • ∆ with a totally disconnected group ∆ ∼= E×PS(J)
(see Section 2) such that (α, β) 7→ αβ : Inn g×∆ → Aut g is a quotient morphism
of topological groups. Now let D def= ∆ ∩ A. Then A = (Inn g)D and D ∩ Inn g
is compact totally disconnected. The group A is a quotient of Inn g×D modulo a
compact totally disconnected normal subgroup. ut

We notice that D = E×PS(J) if G is simply connected or centerfree by 3.1 and
3.2.
If G is a pro-Lie group and N a closed normal subgroup, then G/N sometimes
fails to be a pro-Lie group due to the possible lack of completeness ([5], Corollary
4.11, p. 179). If G is connected, then [5], Theorem 4.28 on p. 202 gives sufficient
conditions for G/N to be a pro-Lie group: such as N being almost connected, or
first countable, or locally compact. None of these apply to Z(G) for a semisimple
connected pro-Lie groups G. It is therefore not a priori obvious that G/Z(G) is a
pro-Lie group. It does however satisfy condition (iv) of Theorem 4.28 = Corollary
9.57 of [5] by our Main Theorem 3.4(i).

For examples of connected semisimple pro-Lie groups we refer to [5], p. 608ff.

Compact Automorphic Actions on Semisimple Pro-Lie Groups

Recall that we say that a topological group Ω acts automorphically on a topological
group G if there is a continuous action (ω, g) 7→ ω·g : Ω×G→ G such that g 7→ ω·g
is in Aut(G) for all ω ∈ Ω.
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Corollary 3.5. Let G be a connected semisimple pro-Lie group and Ω a compact
group acting automorphically on G. Then there is a maximal compactly embedded
connected subgroup K of G with Ω·K ⊆ K.

Proof The compact group Ω acts linearly and automorphically on g via

expG(ω·X) = ω· expGX for all X ∈ g.

Then, by Proposition 2.14, there is a maximal compactly embedded subalgebra
k of g that is Ω-invariant. Then K

def= exp k is a maximal compactly embedded
closed subgroup, and it is Ω-invariant. (See [5], Proposition 12.52, p. 524.) ut

4. Topological Groups with Pro-Lie Identity Component

In this and the next section we apply our results about the structure of the auto-
morphism groups of semisimple pro-Lie algebras and pro-Lie groups to the struc-
ture theory of pro-Lie groups in general.
First we consider an arbitrary topological groupG about we assume nothing except
that the identity component G0 is a pro-Lie group. We recall from [5], Definition
10.23ff., notably, Theorem 10.25, that we have a unique largest connected pro-
solvable characteristic subgroup R(G). Let G0 denote the identity component of
G, also a characteristic subgroup of G. We know that G0/R(G) is a connected
semisimple pro-Lie group (See [5], Theorem 10.28ff.) Let R(G) be that subgroup
of G0 containing R(G) for which R(G)/R(G) is the prodiscrete center of G0/R(G).
That is, R(G) is the largest prosolvable normal subgroup of G0, another charac-
teristic subgroup of G0. We define S def= G0/R(G) and denote the Lie algebra of
S by s. Then S is a centerfree semisimple pro-Lie group.

The group G acts on S via inner automorphisms:

γ:G→ AutS, γ(g)(g0R(G)) = gg0g
−1R(G).

By Lemma 3.3(iii), γ is a morphism of topological groups. An element g ∈ G is in
the kernel of γ iff γ(g) = id iff [g, x] = gxg−1x−1 ∈ R(G) for all x ∈ G0, and so

ker γ = {g ∈ G : [g, x] ∈ R(G) for all x ∈ G0},

the centralizer of G0 mod R(G). Obviously, R(G) ⊆ ker γ.
The key link to the previous discussion is now provided by the morphism

LS : AutS → Aut s

of topological groups implemented by the Lie algebra functor L (see Proposition
3.1), which is an embedding of topological groups by Theorem 3.4(ii).

Definition 4.1. Let G be a topological group whose identity component G0 is
a pro-Lie group. The composition LS ◦ γ is called the standard representation
ΦG:G→ Aut s.
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The standard representation is a morphism of topological groups.

Proposition 4.2. The standard representation Φ maps the identity component
G0 openly onto Inn g, implementing an isomorphism of topological groups S def=
G0/R(G) → Inn s. The kernel of Φ satisfies G0 ∩ ker Φ = R(G)

Proof By Theorem 2.20, the group Inn s is the identity component of Aut s.
By Theorem 3.4(i) it is an isomorphic image of S implemented by Φ since S is
centerfree.
It follows, among other things, that G0 ∩ ker Φ ⊆ R(G); on the other hand we
noticed above that R(G) ⊆ ker γ ⊆ kerΦ. Hence G0 ∩ ker Φ = R(G). ut

Almost Connectedly Prosolvable Groups

Recall that a topological group G is called almost connected if G/G0 is compact.
Examples we have encountered here include the groups∏

j∈J Aut sj . In the end, we want to show that in any almost connected pro-Lie
group G there are maximal compact subgroups C, that two of them are conjugate
and, notably, that G = G0C; these results hold for connected pro-Lie groups
according to [5]. Let us first record that in [5] we have also provided these pieces
of information for a special classes of almost connected pro-Lie groups which we
introduce now:

Definition 4.3. A topological group G is called almost connectedly prosolvable
if G/R(G) is compact for the radical R(G), the largest connected pro-solvable
normal subgroup (see [5], Proposition 7.45 and Definition 7.46 on p. 291 and
Theorem 7.53 on p. 295).

Clearly, every almost connectedly prosolvable pro-Lie group is almost connected.

We have rather good structural information on almost pro-slovable groups through
[5], Theorem 11.28.B on p. 486 and Remark 11.33 on p. 490 (holding for almost
prosolvable pro-Lie groups). We summarize the information we have in the fol-
lowing

Proposition 4.4. Let G be an almost connectedly prosolvable pro-Lie group.
Then G has a maximal compact subgroup C and all compact subgroups have a
conjugate inside C. Moreover, G = G0C. ut

Now the following result is an outgrowth of our preceding discussions.

Theorem 4.5. Let G be a topological group whose identity component G0

is a pro-Lie group, and let C be any compact subgroup of G. Then G0C is an
almost connected subgroup of G and C is contained in a closed subgroup A with
the following properties:

(i) A = A0C and A0 contains R(G).
(ii) A is almost connectedly prosolvable.
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(iii) The factor group A/R(G) is compact and A0/R(G) is maximal compact in
G0/R(G), and

(iv) A0 contains a maximal compact subgroup of G0.
(v) A/R(G) is a maximal compact subgroup of G0C/R(G).

Proof. The group C it acts automorphically on G under inner automorphisms
and hence it acts automorphically on on the semisimple pro-Lie group G0/R(G),
and so by Corollary 3.5, there is a subgroup K of G0 containing R(G) such that
K/R(G) is a maximal compactly embedded connected subgroup of G0/R(G) so
that K is normalized by C. Hence A def= KC is a closed subgroup of G.
(i) The group K/R(G), being maximally compactly embedded in G0/R(G) is
connected, and since R(G) is likewise connected, K is connected and so K ⊆ A0,
whence A = KC ⊆ A0C. Moreover, K/R(G) contains the center Z

(
G/Z(G)

)
,

and so R(G) ⊆ K ⊆ A0 by the definition of R(G).
(ii) Next we show that A is almost connectedly prosolvable. A compactly em-
bedded subgroup like K/R(G) is potentially compact (see [5], Definition 12.46
on p. 521). Let B be that closed subgroup of K containing R(G) for which
B/R(G) = R

(
K/R(G)

)
= Z

(
K/R(G)

)
0

(see [5], Theorem 12.48 on p. 522). Then,
firstly, B is connected and prosolvable, for instance by [5], Theorem 10.18, pp. 427,
428, since L(B) does not contain a finite dimensional simple Lie algebra by its def-
inition. Hence B ⊆ R(K). Moreover, K/B ∼=

(
K/R(G)

)
/R

(
K/R(G)

)
is compact

by Theorem 12.48 of [5]. Then A/B = KC/B is compact. This shows that A is
almost connectedly prosolvable.
(iii) Since the group K/R(G) is a maximal compactly embedded connected sub-
group of G0/R(G), the factor group K/R(G) =

(
K/R(G)

)
/Z

(
K/R(G)

)
is com-

pact. Since A/K = KC/K is compact, the compactness of A/R(G) follows.
(iv) LetM be a maximal compact subgroup ofG0. ThenK ′R(G)/R(G) is compact
and thus is contained in a compact subgroup of G0/R(G) and, in particular, a
compactly embedded connected subgroup of G0/R(G). It follows that a conjugate
is contained in the maximal compactly embedded connected subgroup K/R(G) of
G0/R(G) (see [5], Theorem 12.53, p. 525). Therefore a conjugate ofM is contained
in A0.
(v) Note G0C = G0A and so G0C/R(G) = (G0/R(G))(A/R(G)).
Then by Lemma Max in the proof of Lemma 2.13, A/R(G) is maximal compact
in G/R(G). ut

Before we secure the existence of a compact subgroup C such that G = G0C we
temporarily return to the general case of a topological group G where we merely
assume that G0 is a pro-Lie group.
We consider the standard representation ΦG:G → Aut s. From Theorem 3.4 and
Proposition 4.2 we know that Φ implements an isomorphism of topological groups
G0/R(G) → Inn s and that Aut s = Inn s • D for a subgroup D of the totally
disconnected subgroup E×PS(J).
We consider the following hypothesis on Aut s:
(H) There is a subgroup H of Aut s such that Aut s = Inn s •H.
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This means that Aut s is a product to which Lemma FIT preceding 2.11 applies.
Specifically, this says that
there is an idempotent self-map P : ΦG(G) → ΦG(G) with image Inn s and

P−1(θ) = θP−1(1) ⊆ θD forθ ∈ Inn s.

One example for the subgroup H is the group H = D of Theorem 3.4. Another
important example will arise in the next section where H is a compact subgroup.

We define G1 = Φ−1
G (D) = Φ−1

G (E×PS(J)).

Theorem 4.6. Let G be a topological group whose identity component G0 is a
pro-Lie group and for which Aut s satisfies Hypothesis (H). Then there is a closed
subgroup G1 containing R(G) with the following properties:

(i) G0 ∩G1 ⊇ R(G), and G0∩G1
R(G)

∼= (Inn s) ∩H.
(ii) G = G0 •G1.
(iii) G1/(G0 ∩G1) ∼= G/G0

(iv) If Inn s ∩H is totally disconnected, then (G1)0 = R(G).

Proof.
(i) By 4.2, R(G) = G0 ∩ ker ΦG ⊆ G0 ∩G1. Since G0/R(G) is mapped isomorphi-
cally onto Inn s and G−1 = Φ−1

G (H), assertion (i) follows.
(ii) Let g ∈ G. Then ΦG(g) = θδ for an inner automorphism θ and an element
δ ∈ H. Hence we find a g0 ∈ G0 mapped onto θ and an element g1 ∈ G1 mapped
onto δ. Then k

def= g−1
1 g−1

0 g is in the kernel of ΦG which is contained in G1 =
Φ−1

G (H). Hence g = g0(g1k) ∈ G0G1. Thus G = G0G1. Let φ:G/R(G) → Aut s
be the morphism induced by ΦG, and let P : Aut s → Aut s be the idempotent map
with image Inn s and P=1(θ) = θP−1(1) for θ ∈ Inn(s) which we have according
to Theorem 3.4. Recall that f def= (φ|G0/R(G)):G0/R(G) → Inn s is an isomor-
phism of topological groups. Let j:G0/R(G) → G/R(G) be the inclusion and
P ′: Aut s → Inn s the corestriction of P .
Now define Q:G → G as the map given by Q = j ◦ f−1 ◦ P ′ ◦ φ. The image
of Q is G0/R(G). Let g0 ∈ G0 and set g = g0R(G). Then one computes readily
that Q(g) = g. Thus Q is idempotent. Moreover, Q−1(g) = φ−1(P−1(φ(g))) =
φ−1(φ(g)P−1(1)) = gQ−1(1). Thus Q satisfies Condition (iii) of Lemma FIT
(preceding 2.11). This shows that G = G0 •G1.
(iii) is a consequence of (ii) in view of Lemma FIT.
(vi) (G1/(G0 ∩G1) is totally disconnected by (iii), and (G0 ∩G1)/R(G) is totally
disconnected by (i) and the assumption that Inn s ∩ H is totally disconnected.
Hence G1/R(G) is totally disconnected while R(G) is connected. Thus (G1)0 =
R(G). ut

This Theorem is a by-product of the structure theory of Aut s and will not be used
in the special case that G is almost connected below. One of the conclusions at
this point is the fact that for a pro-Lie group G, the quotient G/G0 is isomorphic
to a quotient G1/(G0∩G1) where G1 is likely to have more special properties than
G: For instance if H = D then G1 is a pro-Lie group whose identity component
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is prosolvable. Since we do not know in general whether G/G0 is complete and
therefore is a pro-Lie group (i.e., prodiscrete in this case), this may be a useful
piece of information which we do not pursue at this point.

5. Almost Connected Pro-Lie Groups

We apply the Theorem 4.5 above to the situation of Corollary 2.12.(d).

Proposition 5.1. Assume that G is an almost connected closed subgroup of the
group Aut s for a semisimple pro-Lie algebra s and assume that G0 = (Aut s)0 =
Inn s. Then there is a compact subgroup C of G such that G = G0C, and there
is a maximal compact subgroup M of G containing C such that M0 = G0 ∩M is
maximal compact in G0.
Moreover, Aut s = Inn s •M that is, Aut s satisfies Hypothesis (H) preceding The-
orem 4.6.

Proof. We obtain C from 2.12(d) and then apply Theorem 4.5, noting that
R(G) = {1} in the present situation and calling here the subgroup A of 4.5 rather
M , for “maximal compact.”
In order to verify Hypothesis (H) we observe that condition (i) of Lemma FIT
preceding 2.11 is satisfied for N = Inn s and H = M : Firstly M 7→ M/(Inn s ∩
M) = M/M0 has a cross-section (see [4] , Corollary 10.38) and α:M/(Inn s∩M) →
G is an isomorphism of topological groups, since M is compact. The assertion
follows. ut

Theorem 5.2. Let G be an almost connected pro-Lie group. Then there is a
compact subgroup C such that G = G0C.

Proof. Let again S = G0/R(G) and consider the standard representation
ΦG:G → Aut s. By Proposition 4.2 we have S ∼= Inn s = (Aut s)0 = ΦG(G0),
whence ΦG(G) is an almost connected subgroup of Aut s. From Proposition 5.1
we derive ΦG(G) = ΦG(G0) •M for a maximal compact subgroup M of ΦG(G)
such that M0 = M ∩ ΦG(G0) is a maximal compact subgroup of ΦG(G0).
Now we set A def= Φ−1

G (M) and apply of Theorem 4.6. Thus
(i) G0 ∩ A contains R(G) and (G0 ∩ A)/R(G) ∼= Inn s ∩M = M0 is a compact
connected group,
(ii) G = G0 •A,
(iii) A/(G0 ∩A) ∼= G/G0 is compact totally disconnected.

If g0 ∈ G0 ∩A, then ΦG(g0) ∈M ∩ΦG(G0) = M0 and so G0 ∩A = G0 ∩Φ−1
G (M0).

Now

(G0 ∩A)
R(G)

/
Z

( G0

R(G)
)

=
(G0 ∩A)
R(G)

/
R(G)
R(G)

∼= (G0 ∩A)/R(G) ∼= M0

is a maximal compact subgroup of the semisimple centerfree pro-Lie group
G0/R(G) ∼= Inn(s). Then (G0 ∩ A)/R(G) is a maximally compactly embedded
subgroup of the semisimple pro-Lie group G0/R(G).
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Lemma. Assume that H is a connected, semisimple pro-Lie group and K a
closed subgroup containing the center Z(H) such that K/Z(H) is a maximally
compact subgroup of H/Z(H). Then K is connected.

Proof. By [5], Theorem 10.29, p.439 there is a family {Sj : j ∈ J} of simply
connected simple real Lie groups and morphisms∏

j∈J

Sj
α−−−−→H

β−−−−→H/Z(H) ∼=
∏
j∈J

Sj/Z(Sj)

inducing isomorphisms on the pro-Lie algebra level such that for each j ∈ J there
is a maximally compactly embedded subgroup Kj of Sj containing Z(Sj) such
that α and β induce the sequence∏

j∈J

Kj
α′−−−−→K

β′−−−−→K/Z(H) ∼=
∏
j∈J

Kj/Z(Sj).

Now all Kj are connected and thus

K = α(
∏
j∈J

Kj)

is connected. ut

The Lemma shows that G0 ∩A is connected, and thus

A0 = G0 ∩A.

Now A0/R(G) is compactly embedded into G0/R(G) and is therefore potentially
compact and thus almost connectedly prosolvable. The group R(G) is prosolvable,
and so A0 is connectedly almost prosolvable. Since G = G0 •A by (ii) above, the
continuous bijection A/A0 = A/(A ∩G0) → G0A/G0 = G/G0 is an isomorphism.
Therefore A/A0 is compact. Hence the group A is connectedly almost prosolvable,
and thus there is a compact group such that A = A0C by Theorem 4.5. Then
G = G0A = G0A0C = G0C. ut

6. Maximal compact subgroups

We have touched maximal compact subgroups in preceding articles and in [5] they
play an important role. In this section we collect some general and systematic
remarks.
A partially ordered set (P,≤) is called inductive, if every totally ordered subset
has an upper bound. Let G be a topological group and C(G) the collection of its
compact subgroups. Then C(G) is a partially ordered set with respect to inclusion
⊆. The set (C(G),⊆) may or may not be inductive.
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Definition 6.1. (a) If a subgroup M of a topological group G is a maximal
element of C(G) then it is called a maximal compact subgroup of G. The set of
maximal subgroups of G will be written max C(G).
(b) A topological group G is said to be compactly inductive if C(G) is inductive.
The full subcategory of compactly inductive groups in the category TOPGR of
topological groups is denoted ICG. ut

The group G acts on C(G) by conjugation:

(g, C) 7→ gCg−1 : G× C(G) → C(G).

Since this action preserves partial order, it leaves max C(G) invariant. In [5] it is
shown that G acts transitively on max C(G) if G is a connected pro-Lie group (see
[5], Theorem 12.77, p. 547). If G is locally compact and almost connected then
G does act transitively on max C(G) (see [7]). One of our goals here is that this
holds also for almost connected pro-Lie groups.

Remark 6.2. In a compactly inductive topological group G, every compact
subgroup is contained in a maximal one.

Proof. Zorn’s Lemma. ut

The category ICG was investigated in [7]. If G is locally compact and almost
connected, then G is compactly inductive and thus every compact subgroup is
contained in a maximal one (see [7]); indeed more generally, a locally compact
group is compactly inductive if G/G0 is compactly inductive. In [7] a discrete
(hence locally compact) example of a group D was presented, in which every
finite subgroup is contained in a member of max C(D) but which is not compactly
inductive.
In a connected pro-Lie group G every compact subgroup is contained in a maximal
compact subgroup. The group Qp of p-adic rationals is locally compact but fails
to have this property (see e.g. [5], Example 14.2, p. 588). In the light of the
development of pro-Lie groups in the meantime, the following is relevant:

Proposition 6.3. (i) The category ICG is complete.
(ii) An almost connected pro-Lie group is an ICG-group.

Proof (i) Clearly, if G is an ICG-group, then every closed subgroup of G is an
ICG-group as well. By [5], Theorem 1.11(ii), p. 72, it suffices, therefore, to verify
that ICG is closed under the formation of arbitrary products. Let {Gj : j ∈ J} a
family of compactly inductive groups. Now let T be a tower of compact subgroups
of P def=

∏
j∈J Gj . Now prj({C : C ∈ T }) = {prj(C) : C ∈ T } is a tower of

compact subgroups of Gj . Since Gj is compactly inductive, there is a compact

subgroup Cj ⊆ Gj containing all prj(C), C ∈ T . Then K def=
∏

j∈J Cj is compact
by the Theorem of Tychonov. Now C ⊂ K for all C ∈ T . Then

⋃
T is compact

and this completes the proof of (i).
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(ii) Let G be an almost connected pro-Lie group. As in [5], let N (G) denote
the filterbasis of normal subgroups N of G such that G/N is a Lie group. Then
G = limN∈N (G)G/N and all G/N are almost connected (see [5]). Then all G/N
are compactly inductive by [7], and so G is compactly inductive by (i) above. ut

From 6.2 and 6.3 we have as immediate consequence:

Corollary 6.4. A compact subgroup of an almost connected pro-Lie group is
contained in a maximal compact subgroup. ut

For the purposes of our present discussion it will be convenient to have some
technical notation. First we notice that for a maximal compact subgroup M of an
almost connected pro-Lie group it is not clear that G0 ∩M is maximal compact
in G0.

Definition 6.5. A compact subgroup K ∈ C(G) of a topological group G is
called standard if K ∩G0 ∈ max C(G0).

Notice that K0 ⊆ K∩G0 and that therefore K0 ∈ max C(G0) implies K0 = K∩G0.

Generalities

Lemma 6.6. (i) If K is a compact subgroup of G then K is standard iff K0 is
maximal compact in G0.
(ii) Every ICG-group (and in particular, every almost connected pro-Lie group)
has standard maximal compact subgroups.
(iii) If K is a standard compact subgroup such that G = G0K, then K is maximal
compact in G.
(iv) In an ICG-group in which all maximal compact subgroups are conjugate, all
maximal compact subgroups are standard.

Proof. (i) Let K ∈ C(G) be standard. Since K ∩ G0 ∈ max C(G0), the group
K ∩G0 is connected by [5], Theorem 12.77 on p. 547. (In the formulation of that
theorem, the word “connected” is erroneously missing in the hypotheses for G.)
Thus K ∩ G0 ⊆ K0 ⊆ K ∩ G0. So K ∩ G0 = K0 and thus K0 ∈ max C(G0).
Conversely, assume that K0 ∈ max C(G0). We noticed already that this implies
the equality K0 = K ∩G0, whence K is standard.
(ii) We consider a maximal compact subgroup C ofG0; then C is connected (see [5],
Theorem 12.77, p. 547). By Corollary 6.4, C is contained in some M ∈ max C(G).
Since C is connected, C ⊆M0. Clearly M0 is compact and contained in G0, then
by the maximality of C we conclude C = M0. Since C ⊆ M ∩G0 and M ∩G0 is
compact, by maximality of C once more, C = M ∩G0.
(iii) By 6.6(i) this is Lemma Max above.
(iv) In any ICG-group G there exist standard maximal compact subgroups by (ii)
above. If all maximal compact subgroups are conjugate the assertion follows. ut
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Theorem 6.7. An almost connected pro-Lie algebra has standard maximal
compact subgroups satisfying G = G0C.

Proof. By Theorem 5.2 we find a maximal compact group C such that
G = G0C. Now by Theorem 4.5 we find an almost prosolvable closed subgroup
containing C and R(G). We have A = A0C and if M is a maximal compact con-
nected normal abelian subgroup of A, then M ⊆ C and there is a connected closed
subgroup V uch that A/M = (V/M)×(C/M) and V/M is simply connected and
compact free by Theorem 11.28.B of [5] on p. 486. It follows that (C/M)0 = C0/M
is maximal compact in A0/M and therefore C0 is maximal compact in A0. Since
A0 contains maximal compact subgroups of G0 by 4.10(v) and since maximal com-
pact subgroups of A0 are conjugate (see [5], Theorem 12.77, p. 547), C0 is maximal
compact in G0. Thus C is standard. ut

At this stage it is not obvious that, in general, an almost connected pro-Lie group
cannot contain nonstandard maximal compact subgroups.

7. The conjugacy of maximal compact subgroups
in almost connected pro-Lie groups

We have information on maximal compact subgroups in an almost connected Lie
group G. Firstly, they exist by 6.4. Secondly, standard maximal compact sub-
groups exist by 6.6(ii). Most importantly, there are standard maximal subgroups
C such that G = G0C by Theorem 6.7.

Theorem 7.1. The maximal compact subgroups of an almost connected Lie
group are conjugate.

Proof. By Theorem 6.7 there exists a standard maximal compact subgroup C
such that G = G0C and that C is contained in an almost prosolvable closed
subgroup A which contains R(G) (see 4.5). Since A is a prosolvable pro-Lie
group, every compact subgroup of A has a conjugate in A that is contained in
C by Remark 11.33 of [5] on p. 490. (We should remark that Remark 11.33 is
formulated for prosolvable pro-Lie groups, but is valid for almost prosolvable pro-
Lie groups as it is based on [5], Corollary 11.32 on p. 489, dealing with almost
prosolvable pro-Lie groups.)
It follows that we must show that every compact subgroup K of G has a conjugate
in A. From Theorem 4.10 we know that K is contained in an almost prosolvable
subgroup B containing R(G). In order to show that a conjugate of B is contained
in A, it suffices to prove that B/R(G) has a conjugate in A/R(G). Instead of
considering G we are allowed to consider G/R(G). It is therefore no loss of gen-
erality to assume that G0 is centerfree semisimple, that is, we have G0 =

∏
j∈J Sj

for a family of centerfree semisimple connected Lie groups Sj . Then A = C
and C0

∼=
∏

j∈J Kj for maximal compact subgroups Kj of Sj . Since Kj is its
own normalizer as we have observed in the proof of 2.13, we have C ⊆ N(C0, G)
and N(C0, G) ∩ G0 = N(C0, G0) = C0. and G = G0N(C0, G). It follows that
C = N(C0, G). Similarly, K1 is a maximal compact subgroup of G0. By 4.10(iii)
the group B contains a maximal compact subgroup of G0, that is, B0 ∈ max C(G0).
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Hence by [5], Theorem 12.77, p. 547, C0 and B0 are conjugate. We may assume
that B0 = C0. But then B ⊆ N(B0, G) = N(C0, G) = C which is what we had to
show. ut

8. The structure of almost connected pro-Lie groups

First we summarize what we have achieved

Main Theorem 8.1. Let G be an almost connected pro-Lie group. Then G
has maximal compact subgroups and all of these are conjugate. If M is one of
them, then
(1) G = G0M .
(2) M0 = G0 ∩M , and this subgroup is maximal compact in G0. ut

We also record that
N(M0, G) = N(M0, G0)M and N(M0, G)/N(M0, G0) ∼= G/G0.
We recall from [4], Theorems 9.41, p. 479 and Corollary 10.38, p. 559:

Facts 8.2. Let G be a compact group. Then
(1) there is a profinite subgroup D of G such that G = G0D, G0 ∩D is normal

in G and central in G0;
(2) there is a compact zero-dimensional subset ∆ ⊆ G such that m:∆×G0 → G,

m(δ, g) = δg, is a homeomorphism. In particular, δ 7→ δG0 : ∆ → G/G0 is a
homeomorphism, and the groups G and G/G0×G0 are are homeomorphic. ut

From Fact 8.2(1) we obtain:

Corollary 8.3. Let G be an almost connected pro-Lie group. Then there is a
profinite subgroup D such that G = G0D and that N(G0 ∩D,G) contains at least
one maximal compact subgroup.

Proof. Let M be a maximal compact subgroup according to Theorem 8.1 and
apply Fact 8.2(1) in order to obtain a profinite subgroup D such that M = M0D
and M0 = G0 ∩M . Then G = G0M = G0(G0 ∩M)D = G0D. Further, G0 ∩D =
G0 ∩M ∩D = M0 ∩D, whence N(G0 ∩D,G) = N(M0 ∩D, ) ⊇M . ut

With Facts 8.2 (2) we prove the following topological splitting theorem for almost
connected pro-Lie groups.

Theorem 8.4. Let G be an almost connected pro-Lie group and let M be a
maximal compact group subgroup. Then for some p ≤ 4 there are vector subspaces
vk ⊆ g, k ≤ p such that the function

(m,X1, . . . , Xp) 7→ m expGX1 · · · expGXp : M × v1 × · · · × vp → G

is a homeomorphism.
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Proof. Let C = M0; then C is a maximal compact subgroup of G0 by Theorem
8.1 Thus [5], Theorem 12.81, p. 551 secures the existence of the vj , 1 ≤ j ≤ p such
that the function

(c,X1, . . . , Xp) 7→ c expGX1 · · · expGXp : C × v1 × · · · × vp → G0

is a homeomorphism. Now let ∆ ⊆M be as in Fact 8.3 (2). Then

∆C expG v1 · · · expG vp = ∆G0 = MG0 = G

and the function

(δ,m,X1, . . . , Xp) 7→ δm : expGX1 · · · expGXp : M × v1 × · · · × vp → G

is a homeomorphism. ut

Corollary 8.5. In an almost connected connected pro-Lie group G there is a
closed subset E ⊆ G which is homeomorphic to RJ for a set J and a maximal
compact subgroup M of G such that (m, e) 7→ me : M × E → G is a homeomor-
phism.

Proof. In Theorem 8.4 we set E = expG v1 · · · expG vp. By Theorem 8.4, this
set is homeomorphic to v1 × · · · × vp, that is, to a weakly complete vector space
and thus is homeomorphic to RJ (see [5], Corollary A2.9, p. 638). The assertion
now follows from Theorem 8.4. ut

Theorem 8.6. Let G be an almost connected pro-Lie group. Then there is a
set J such that G is homeomorphic to RJ ×C for a maximal compact subgroup C,
and to RJ × C0 × C/C0.

Proof. From Theorem 8.5 we know that there is a set J and a maximal compact
subgroup C such that G is homeomorphic to C × RJ . Since C is homeomorphic
to ∆× C0 Fact 8.1 (2)) which in turn is homeomorphic (C/C0)× C0. ut

Corollary 8.7. Any almost connected pro-Lie group is homotopy equivalent to
a compact group.

Proof. By Theorem 8.6, an almost connected pro-Lie group is homeomorphic
to RJ × C for some set J and a compact group C. Since the topological vector
space RJ is homotopy equivalent to a point, the assertion follows. ut

For more detailed information we recall the following facts on compact groups

Facts 8.8. (i) Let G be a compact connected group. Then G is the semidirect
product of the commutator group G′ which is a compact connected semisimple
group and a connected compact abelian subgroup A ∼= G/G′.
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(ii) Let G be a compact totally disconnected group. Then there is a set J such that
G and {0, 1}J are homeomorphic.

Proof. See [4], for (i): Theorem 9.39, and for (ii) 10.40. ut

Corollary 8.9. Let G be an almost connected pro-Lie group. Then there are
sets I and J , a compact connected semisimple group S, and a connected compact
abelian group A such that G and RI × (Z/2Z)J × S ×A are homeomorphic.

Proof. This is now an immediate consequence of Theorem 8.6 and Facts 8.8.
ut

Corollary 8.10. The underlying space of an almost connected pro-Lie group
is a Baire space.

Proof. Again the assertion follows from the fact that an almost connected
pro-Lie group is homeomorphic to a product of a product of lines and a compact
space. (See [11], Theorem 6.) ut
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