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We investigate very weak solutions to the instationary Navier-Stokes sys-
tem being contained in Lr(0, T ;Lq(Ω)) where Ω ⊆ Rn is a bounded domain
and 2

r + n
q ≤ 1. The chosen space of data is small enough to guarantee unique-

ness of solutions and existence in case of small data or short time intervals.
On the other hand, the data space is large enough that every vector field in
Lr(0, T ;Lq

σ(Ω)) is a very weak solution for appropriate data. The solutions
and the data depend continuously on each other.
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1 Introduction and Main Results

We consider the Navier-Stokes equations with inhomogeneous data

∂tu−∆u+ u∇u+∇p = F in (0, T )× Ω
div u = 0 in (0, T )× Ω

u = 0 on (0, T )× ∂Ω
u(0) = u0 in Ω

(1)

on a bounded C2-domain Ω ⊂ Rn, n ≥ 2, and a time interval [0, T ) with T ∈ (0,∞]. For
simplicity we assume without loss of generality that the coefficient of viscosity is equal
to 1.

According to the fundamental paper [15] by Serrin a large class, where uniqueness and
regularity of solutions to (1) can be guaranteed, is the so-called Serrin’s class

Lr(0, T ;Lq(Ω)) with
2
r

+
n

q
≤ 1. (2)
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Thus, we aim at constructing a class of solutions to (1) that is contained in Serrin’s class
(2) but that fulfills no further restrictions. In particular, solutions in this class need
not fulfill any differentiability assumptions. Consequently the notion of weak solutions
is no longer suitable in this context. Hence an appropriate formulation of the problem
is needed, the so-called very weak solutions to the Navier-Stokes equations. To come
to this formulation one multiplies (1) with a sufficiently smooth test function φ with
φ(t)|∂Ω = 0 and div φ(t) = 0 for every t and with suppφ ⊂ [0, T )× Ω. Then one applies
formal integration by parts and obtains

−〈u, φt〉Ω,T − 〈u,∆φ〉Ω,T = 〈F, φ〉Ω,T + 〈u0, φ(0)〉Ω + 〈uu,∇φ〉Ω,T (3)

using the identity u · ∇u = div(uu) − (div u)u. Applying the same procedure to the
second equation in (1) with a test function ψ, which does not necessarily vanish on the
boundary, we get

−〈u(t),∇ψ〉Ω = 0 (4)

for almost every t. Now, u is called a very weak solution to the Navier-Stokes equations
if (3) and (4) are fulfilled for all test functions φ and ψ. Note that the information
about the boundary values is preserved because ∇φ and ψ do not necessarily vanish on
the boundary. This or similar formulations have been introduced by Amann in [3], by
Amrouche and Girault in [4] and by Galdi, Simader and Sohr in [11]. In these articles
as well as by Farwig, Galdi and Sohr in [7], [8], [9] and by Giga in [12] solvability with
low-regularity data has been shown.

However, the notion of very weak solutions that is used in this paper is even more
general then the ones used in the aforementioned papers. More precisely, the space that is
used for the data is much larger, so that, for example, we do not even distinguish between
initial data and external forces. In fact, we even allow data which cannot be decomposed
in any reasonable way into two parts corresponding to an external force and an initial
datum, respectively. As a consequence of the generality of the data class the resulting
space of solutions is so large that every u ∈ Lr(0, T ;Lq

σ(Ω)), cf. (15), can be understood
as a very weak solution with respect to appropriate data, cf. Theorem 5.2. This makes
it the largest possible class of data for our notion of very weak solutions to the Navier-
Stokes equations. However, the space of data is small enough to guarantee uniqueness
of solutions. It is obvious that in such a general context the boundary conditions u|∂Ω

are not well-defined in the usual sense, see [14] or [10] for further discussions about the
boundary values of very weak solutions.

It turns out that the space of data that belongs to solutions in Serrin’s class (2), cf.
(14), consists of functionals that in general cannot be understood as distributions on the
space-time cylinder Ω × (0, T ). However, this space is the natural one in this context
since it is shown in Theorem 5.2 that there exist neighborhoods of zero in this space of
data and in Serrin’s class such that the (nonlinear) solution operator of the Navier-Stokes
equations is continuous and one-to-one.

To be more precise we now give the definition of a very weak solution and state the
main results:
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Definition 1.1. Let Ω be a bounded C2-domain, 0 < T ≤ ∞ and 1 < r, q < ∞.
Furthermore let f ∈

(
W1,r′,q′

0 ([0, T ); Ω)
)′

. Then a function u ∈ Lr(0, T ;Lq(Ω)) is called
very weak solution to the Navier Stokes system with data f , if

−〈u, φt〉T,Ω − 〈u,∆φ〉T,Ω = 〈f, φ〉+ 〈uu,∇φ〉T,Ω and (5)
〈u(t),∇ψ〉Ω = 0 (6)

for all φ ∈ W1,r′,q′

0,σ ([0, T ),Ω), all ψ ∈W 1,q′(Ω) and almost all t with 0 ≤ t ≤ T .

Here the spaces W1,r′,q′

0 ([0, T ); Ω) and W1,r′,q′

0,σ ([0, T ),Ω) are those which are defined in
(11), (12) and (13) below. Now our main theorem on existence reads as follows:

Theorem 1.2. Let Ω be a bounded C2-domain in Rn and 0 < T ≤ ∞. Furthermore
assume that r and q satisfy the Serrin conditions 2

r + n
q ≤ 1, 2 < r <∞, n < q <∞.

Then there is a number δ > 0 not depending on T such that for every functional

f ∈
(
W1,r′,q′

0 ([0, T ),Ω)
)′

with
‖f‖“

W1,r′,q′
0 ([0,T ),Ω)

”′ ≤ δ (7)

there exists a very weak solution u ∈ Lr(0, T ;Lq(Ω)) to the instationary Navier-Stokes
system with data f . The estimate

‖u‖Lr(0,T ;Lq(Ω)) ≤ C · ‖f‖“
W1,r′,q′

0 ([0,T ),Ω)
”′ (8)

holds with a constant C > 0 depending only on n, Ω, r and q but not on T .

By Proposition 5.1 the smallness condition (7) can be guaranteed by choosing a suf-
ficiently short time interval. Moreover, we have a result concerning uniqueness of very
weak solutions, where no smallness condition on the data is needed:

Theorem 1.3. Let Ω be a bounded C2-domain in Rn and 0 < T ≤ ∞. Furthermore
assume that r and q satisfy the Serrin conditions 2 < r <∞, n < q <∞, 2

r + n
q ≤ 1 and

let f ∈
(
W1,r′,q′

0 ([0, T ),Ω)
)′

.
Then there is at most one very weak solution to the instationary Navier-Stokes system

with data f .

In Theorem 5.2 a reformulation of the main results is given, emphasizing that the class
of data considered here is actually the largest one.
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2 Preliminaries and General Notation

For a Banach space X, 1 ≤ q ≤ ∞ and a domain Ω we will denote by Lq(Ω;X) or
Lq(X) the usual Bochner space of all equivalence classes of strongly measurable functions
f : Ω → X such that

‖f‖q := ‖f‖Lq(Ω,X) :=
(∫

Ω
‖f(x)‖q

Xdx

) 1
q

<∞

if q <∞ and
‖f‖∞ := ‖f‖L∞(Ω,X) := ess sup

x∈Ω
‖f(x)‖X <∞

if q = ∞. In case X = R3 we only write Lq(Ω) or Lq and in case Ω = (0, T ) is a
subinterval of R we abbreviate Lq((0, T );X) to Lq(0, T ;X). As an important special
case we will deal with spaces of the form Lr(0, T ;Lq(Ω)), where 0 < T ≤ ∞, Ω is a
subdomain of Rn and 1 ≤ r, q ≤ ∞. Note that in this case we write

‖f‖r,q := ‖f‖Lr(0,T ;Lq(Ω)).

If additionally k ∈ N we denote by W k,q(Ω, X) or W k,q(X) the space of equivalence
classes of strongly measurable functions f : Ω → X such that all distributional partial
derivatives Dαf with order |α| ≤ k are contained in Lq(Ω, X). It is normed by

‖f‖W k,q(Ω,X) :=
∑
|α|≤k

‖Dαf‖Lq(Ω,X) <∞

which makes it a Banach space. We refer to theses spaces as Sobolev spaces. Again we
write W k,q(Ω) for W k,q(Ω,R3) and W k,q(0, T ;X) for W k,q((0, T ), X).

It is well-known that for reflexive spaces X and 1 ≤ q <∞ we have the duality relation

(Lq(Ω;X))′ = Lq′(Ω;X ′)

where q′ is the conjugate exponent defined by the relation 1
q + 1

q′ = 1, where 1
∞ := 0. In

particular,
(Lr(0, T ;Lq(Ω)))′ = Lr′(0, T ;Lq′(Ω)) (9)

for 0 < T ≤ ∞, 1 ≤ r <∞ and 1 < q <∞. If f ·g ∈ L1(0, T ;L1(Ω)) we use the notation

〈f, g〉T,Ω :=
∫ T

0

∫
Ω
f(t)(x) · g(t)(x)dxdt.

We also have a duality result for Sobolev spaces with values in reflexive spaces.

Lemma 2.1. Let 1 ≤ q < ∞, let k ∈ N0 and 0 < T ≤ ∞. Furthermore let X be
a reflexive space. Then for every functional f ∈

(
W k,q(0, T ;X)

)′ there are functions
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gj ∈ Lq′(0, T ;X ′), j ∈ {0, . . . , k}, such that for all φ ∈W k,q(0, T ;X)

〈f, φ〉 =
k∑

j=0

∫ T

0
〈gj(t), φ(j)(t)〉X′,Xdt,

‖f‖(W k,q(0,T ;X))′ ≤
k∑

j=0

‖gj‖Lq′ (0,T ;X′).

Proof. The space W k,q(0, T ;X) is isometrically isomorphic to a closed subspace of the
product (Lq(0, T ;X))k+1. Now a Hahn-Banach argument and the fact that the dual of
(Lq(0, T ;X))k+1 is (Lq′(0, T ;X ′))k+1 yields the result.

3 The Concept of Very Weak Solutions

3.1 Definitions

Since we intend to construct solutions in the large class Lr(0, T ;Lq(Ω)) where neither the
derivatives nor the evaluations in (1) are well-defined, we need to define some appropriate
test function and data spaces to be able to formulate what we mean by a solution.

Let 1 < r, q <∞ and 0 < T ≤ ∞. Furthermore let Ω ⊆ Rn be a bounded C1-domain
and E0 and E1 be Banach spaces. We set

W1,r′(0, T ;E0, E1) := W 1,r′(0, T ;E0) ∩ Lr′(0, T ;E1).

The space W1,r′(0, T ;E0, E1) is normed by

‖φ‖W1,r′ (0,T ;E0,E1) = ‖φ‖W 1,r′ (0,T ;E0) + ‖φ‖Lr′ (0,T ;E1) (10)

which makes it a Banach space. As a special case we define

W1,r′,q′(0, T ; Ω) := W1,r′(0, T ;Lq′(Ω),W 2,q′(Ω)).

We also set for 0 < T <∞

W1,r′,q′

0 ([0, T ); Ω) := {φ ∈ W1,r′,q′(0, T ; Ω) : φ(t)|∂Ω = 0 for almost all t ∈ [0, T ]
and φ(T ) = 0}

(11)

and, for T = ∞,

W1,r′,q′

0 ([0,∞); Ω) := {φ ∈ W1,r′,q′(0,∞; Ω) : φ(t)|∂Ω = 0 for almost all t ∈ [0,∞)
and suppφ is compact in [0,∞)}.

(12)

For the latter spaces we will also need the divergence free variant

W1,r′,q′

0,σ ([0, T ),Ω) := {φ ∈ W1,r′,q′

0 ([0, T ); Ω) : div φ(t) = 0 for almost all t ∈ [0, T ]}.
(13)
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All these spaces defined in (11), (12) and (13) are equipped with the subspace norms,
i.e. they all have the norm ‖ · ‖W1,r′,q′ (0,T ;Ω) as in (10). We will refer to W1,r′,q′

0,σ ([0, T ); Ω)
as the space of test functions and to the dual space(

W1,r′,q′

0 ([0, T ); Ω)
)′

(14)

as space of data.
Finally we will need the space Lq

σ(Ω), 1 < q < ∞ of solenoidal Lq-vector fields on Ω
defined by

Lq
σ(Ω) :=

{
u ∈ Lq(Ω): 〈u,∇ψ〉Ω = 0 for all ψ ∈W 1,q′(Ω)

}
, (15)

which is a closed subspace of Lq(Ω). Its dual (Lq
σ(Ω))′ equals Lq′

σ (Ω).
Again, if Ω or T is fixed and confusion seems to be unlikely we will omit the do-

mains and write W1,r′,q′

0 ([0, T )), W1,r′,q′

0 (Ω) or simply W1,r′,q′

0 for W1,r′,q′

0 ([0, T ); Ω). Sim-
ilarly, for the divergence free variants, W1,r′,q′

0,σ ([0, T )), W1,r′,q′

0,σ (Ω) or W1,r′,q′

0,σ stands for
W1,r′,q′

0,σ ([0, T ); Ω) if Ω and T are clear from the context. Of course, Lq
σ abbreviates Lq

σ(Ω).
Some basic facts, which will we be frequently used in the sequel, are summarized in

the following Lemma, which follows easily from the definitions.

Lemma 3.1. Let 0 < T ≤ ∞, let Ω ⊆ Rn be a bounded C1-domain and let 1 < r, q <∞.
Then

1. W1,r′,q′

0 is a closed subspace of W1,r′,q′ if T <∞.

2. if 0 < T1 ≤ T2 ≤ ∞ every φ ∈ W1,r′,q′

0 ([0, T1)) can be extended to a function
φ̃ ∈ W1,r′,q′

0 ([0, T2)) by just setting φ̃(t) := φ(t) if 0 ≤ t < T1, and φ̃(t) := 0 if
T1 ≤ t < T2. Moreover, ‖φ̃‖W1,r′,q′

0 ([0,T2))
= ‖φ‖W1,r′,q′

0 ([0,T1))
.

Note that by Lemma 3.1 (2) a very weak solution to the Navier-Stokes system with
data f on the time interval [0, T ) is also a very weak solution to the Navier-Stokes system
with data f |W1,r′,q′

0 ([0,T ′))
on the shorter time interval [0, T ′), 0 < T ′ ≤ T . This is not

only a reasonable property for a solution but will also be important for some estimates
later on.

We focus now again on the definition of a very weak solution to the Navier-Stokes
system, cf. 1.1. While the first and the last equation in (1) and the tangential part of
the third equation of the formal system (1) have been replaced by the first equation (5)
in Definition 1.1, the second equation (6) represents the second equation of (1) and the
normal part of the third equation in (1). Indeed, if an external force F and an initial
velocity u0 are given in reasonable spaces, then any classical solution u of (1) satisfies
(5) with f being the functional

f := [φ 7→ 〈F, φ〉+ 〈u0, φ(0)〉Ω] . (16)
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Both the external force and the initial condition are hence included in the functional f .
Moreover, the classical solution u also satisfies (6). This justifies the name "very weak
solution" for functions satisfying (5) and (6).

We want to emphasize that the space of data is so large that we do not distinguish
between external force and initial data, but we consider them as only one functional
on the space of test functions in the sense just described. We even allow data, which
cannot be decomposed as in (16) so that it is, in that case, senseless to talk about
external force or initial data. The data space we use has the advantage that it guarantees
uniqueness of very weak solutions as well as existence in case of small data, see Theorems
1.2 and 1.3; furthermore, every vector field in Lr(0, T ;Lq

σ) is a very weak solution to
some appropriately chosen data in the data space, cf. Theorem 5.2. This has important
consequences. Note for example that we cannot, in general, expect a very weak solution
u to attain zero boundary values, apart from the fact that u(t) ∈ Lq

σ for almost all
0 ≤ t ≤ T . However, if the data are more regular, one obtains more regular solutions,
which do respect boundary values, see [14] and [10] for more details.

3.2 The Linearized Case - Very Weak Solutions to the Stokes System

Our analysis of very weak solutions of the Navier-Stokes system is very essentially based
on the following result on very weak solutions for the Stokes system, cf. [13, Theorem
4.3]. Because of the importance of this Theorem to our work, we will sketch its proof
here as well, which uses duality techniques.

Theorem 3.2. Let Ω ⊆ Rn be a bounded C2-domain, 0 < T ≤ ∞ and 1 < r, q < ∞.
Furthermore let f ∈

(
W1,r′,q′

0 ([0, T ),Ω)
)′

. Then there exists a unique function u ∈
Lr(0, T ;Lq(Ω)) such that

−〈u, φt〉T,Ω − 〈u,∆φ〉T,Ω = 〈f, φ〉 and
〈u(t),∇ψ〉Ω = 0

(17)

for all φ ∈ W1,r′,q′

0,σ ([0, T ),Ω), all ψ ∈ W 1,q′(Ω) and almost all t with 0 ≤ t ≤ T . The
function u satisfies the a priori estimate

‖u‖Lr(0,T ;Lq(Ω)) ≤ C‖f‖“
W1,r′,q′

0 ([0,T ),Ω)
”′

where C > 0 is a constant depending on n, r, q and Ω but not on T .

A function u satisfying (17) is called a very weak solution to the Stokes system with
data f .

Proof. Assume first that T < ∞. For v ∈ Lr′(0, T ;Lq′
σ (Ω)) we find functions φv ∈

W1,r′,q′

0,σ ([0, T ); Ω) and ψv ∈ Lr′(W 1,q′(Ω) with
∫
Ω ψv(t)dx = 0 for almost all t ∈ (0, T )

being the unique solution pair to

−(φv)t −∆φv +∇ψv = v

7



3 The Concept of Very Weak Solutions

and satisfying the estimate

‖φv‖W1,r′,q′
0,σ

+ ‖∇ψv‖r′,q′ ≤ C‖v‖r′,q′ ,

where C does not depend on T . This is possible by the following considerations.
We define ṽ := v(T − ·) and find by [10, Lemma 1.12] unique functions φ̃v ∈ W1,r,q

and ψ̃v ∈ Lr′(W 1,q′) with
∫
Ω ψ̃vdx = 0 satisfying

(φ̃v)t −∆φ̃v +∇ψ̃v = ṽ, φ̃v|∂Ω = 0, φ̃v(0) = 0, div φ̃v(t) = 0

for almost all 0 ≤ t ≤ T and the estimate

‖φ̃v‖W1,r,q + ‖∇ψ̃v‖r′,q′ ≤ C‖ṽ‖r,q,

where C does not depend on T . The functions φ̃v and ψ̃v depend linearly on ṽ. Now the
functions φv := φ̃v(T − ·) and ψv := ψ̃v(T − ·) are the functions we were looking for.

To find a very weak solution to the Stokes system with data f define u ∈ Lr(0, T ;Lq
σ)

via the duality Lr(0, T ;Lq
σ) = (Lr′(0;T ;Lq′

σ ))′ by

〈u, v〉 := 〈f, φv〉

for every v ∈ Lr′(Lq′). The right hand side is well defined by existence and uniqueness
of φv as just discussed.

The estimate

〈u, v〉 = 〈f, φv〉 ≤ ‖f‖“
W1,r′,q′

0

”′‖φv‖W1,r′,q′
0,σ

≤ C‖f‖“
W1,r′,q′

0

”′‖v‖r′,q′

where the constant C is the constant from above and hence independent of T , shows that
indeed u ∈ Lr(0, T ;Lq). It also implies the asserted a priori estimate.

To prove that u is a very weak solution to the Stokes system with data f let φ ∈ W1,r′,q′

0,σ

be an arbitrary test function and find a function ψ ∈ Lr′(W 1,q′), using the Helmholtz
decomposition, cf. [16], such that

v := −φt −∆φ+∇ψ ∈ Lr′(0, T ;Lq′
σ ).

Then

−〈u, φt〉T,Ω − 〈u,∆φ〉T,Ω = −〈u, φt〉T,Ω − 〈u,∆φ〉T,Ω + 〈u,∇ψ〉T,Ω = 〈u, v〉T,Ω = 〈f, φ〉

by the definition of u and hence u is indeed a very weak solution.
To show uniqueness assume that u is a very weak solution to the Stokes system with

data f = 0. Let furthermore v ∈ Lr′(Lq′
σ ) be arbitrary. Then, as above, we find a solution

pair φv ∈ W1,r′,q′

0,σ and ψv ∈ Lr′(W 1,q′) satisfying v = −(φv)t −∆φv +∇ψv. We thus get

〈u, v〉T,Ω = −〈u, (φv)t〉T,Ω − 〈u,∆φv〉T,Ω = 〈f, φv〉 = 0

8



4 An Embedding Theorem

and this proves uniqueness of very weak solutions to the Stokes system.
For the proof of the case T = ∞ consider the restriction fN := f |W1,r′,q′

0 ([0,N))
, N ∈ N,

of f to functions being zero on [N,∞) in the sense of Lemma 3.1. Then, by the above,
there is a very weak solution uN ∈ Lr(0, N ;Lq) to the Stokes system with data fN on
the bounded interval [0, N) which can be estimated by

‖uN‖Lr(0,N ;Lq) ≤ C‖fN‖W1,r′,q′
0 ([0,N))

≤ C‖f‖
W 1,r′,q′

0 ([0,∞))
. (18)

Note that C does not depend on time and hence the last quantity is independent of N .
Note that furthermore uN2 |[0,N1) = uN1 , for 0 < N1 ≤ N2 < ∞ using again Lemma 3.1.
This allows us to construct a function u on the whole interval [0,∞) with the property
u|[0,N) = uN . The uniform estimate (18) shows that u ∈ Lr(0,∞;Lq

σ). Now clearly u is
a very weak solution to the Stokes system with data f , the a priori estimate holds true
and u is unique.

4 An Embedding Theorem

4.1 Tools

We need the theory of Bessel potential spaces, see e.g. Bergh and Löfström, [5, Chapter
6] for Bessel potential spaces of complex valued functions. Here we will need results for
Rn-valued Bessel potential spaces, but standard complexification arguments and compo-
nentwise application of the results will allow us to pass over to the desired context.

Let S = S(Rn,Rn) denote the Schwartz space of rapidly decreasing functions and let
S ′ denote its dual, the space of Rn-valued tempered distributions on Rn. Furthermore
let F be the Fourier transform on S or on S ′.

For β ∈ R and 1 ≤ q ≤ ∞ the spaces Hβ,q(Rn), consisting of all f ∈ S ′ such that

‖f‖Hβ,q(Rn) :=
∥∥∥F−1

[
(1 + | · |2)

β
2Ff(·)

]∥∥∥
q
<∞,

are called Bessel potential spaces. The Bessel potential spaces Hβ,q(Rn) are Banach
spaces and for k ∈ N0 it holds that

Hk,q(Rn) = W k,q(Rn) (19)

for 1 < q < ∞ with equivalent norms. Moreover, for 0 < θ < 1, β1, β2 ∈ R and
1 < q1, q2 <∞ one has the interpolation property[

Hβ1,q1(Rn),Hβ2,q2(Rn)
]
θ

= Hβ,q(Rn) (20)

with β = (1− θ)β1 + θβ2 and 1
q = 1−θ

q1
+ θ

q2
, where the norms are equivalent. Here [·, ·]θ

denotes the complex interpolation functor, cf. [5, Chapter 4].
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4 An Embedding Theorem

Theorem 4.1. Let β1, β2 ∈ R and 1 < q1 ≤ q2 <∞ satisfy β1 − n
q1

= β2 − n
q2

. Then

Hβ1,q1(Rn) ↪→ Hβ2,q2(Rn).

Before we finally come to the proof of the embedding we are heading for, we need
another tool, which is a special case of [3, Theorem 1.3].

Theorem 4.2. Let 1 < q < ∞, 2 < r < ∞ and 0 < T ≤ ∞. Then the following
embedding holds:

W1,r′,q′(0, T ; Rn) ↪→ L( r
2)

′
(0, T ;H

2
r′ ,q

′
(Rn)).

Proof. In [3, Theorem 1.3] take I = [0, T ), A := 1−∆, E0 := Lq′(Rn), E1 := W 2,q′(Rn),
r := r′, p :=

(
r
2

)′ and α := 1
r′ . We note that Lq′(Rn) is a UMD space, see H. Amann, [2,

Theorem III.4.5.2], and the operator 1 − ∆ in Lq′(Rn) has bounded imaginary powers,
cf. R. Denk, M. Hieber and J. Prüss, [6, Theorem 5.5]. Furthermore, it is well-known
that 1−∆ generates an analytic semigroup. This shows that

W1,r′,q′(0, T ; Rn) ↪→ L( r
2)

′
(0, T ; [Lq′ ,W 2,q′ ] 1

r′
).

Now (19) and (20) show that

[Lq′ ,W 2,q′ ] 1
r′

= H
2
r′ ,q

′
,

which finishes the proof.

4.2 The embedding theorem

Finally we have collected all tools to be able to prove the embedding which will give us
bounds for the nonlinear term of the Navier-Stokes system.

Theorem 4.3. If Ω ⊂ Rn is a bounded C2-domain and 0 < T ≤ ∞, then

W1,r′,q′

0 ([0, T ),Ω) ↪→ L( r
2)

′
(0, T ;W 1,( q

2)
′
(Ω)), (21)

2 < r <∞, n < q <∞,
2
r

+
n

q
≤ 1. (22)

Moreover, one can choose a constant C, depending only on n, Ω, r and q but not on T ,
which bounds the embedding (21) for any T .

Proof. Let E be an extension operator for Ω satisfying E ∈ L(W k,q′(Ω),W k,q′(Rn)) for
all k ∈ {0, 1, 2} and (Eψ)|Ω = ψ for all ψ ∈ Lq′(Ω). Such an operator exists by e.g.
Adams and Fournier, [1, Theorem 5.22].

Let φ ∈ W1,r′,q′

0 ([0, T ),Ω) and let φ̃ := Eφ ∈ W1,r′,q′([0, T ),Rn) be the spatial extension
of φ. Moreover, let s be defined by

2
r′
− n

q′
= 1− n

s
or equivalently

1
(q/2)′

− 1
s

=
1
n

(
1−

(
2
r

+
n

q

))
.

10



4 An Embedding Theorem

It is exactly the condition 2
r + n

q ≤ 1 which then gives
( q

2

)′ ≤ s and hence

‖φ‖
L( r

2 )′ (W 1,( q
2 )′ (Ω))

≤ C1‖φ‖
L( r

2 )′ (W 1,s(Ω))
, (23)

since Ω is bounded. Furthermore we have

‖φ‖
L( r

2 )′ (W 1,s(Ω))
≤ ‖φ̃‖

L( r
2 )′ (W 1,s(Rn))

.

By Theorem 4.1 and (19) we get H
2
r′ ,q

′
(Rn) ↪→ H1,s(Rn) = W 1,s(Rn) by definition of s

and hence
‖φ̃‖

L( r
2 )′ (W 1,s(Rn))

≤ C2‖φ̃‖
L( r

2 )′ (H
2
r′ ,q′

(Rn))
.

Now Theorem 4.2 yields

‖φ̃‖
L( r

2 )′ (H
2
r′ ,q′

(Rn))
≤ C3‖φ̃‖W1,r′,q′ (0,T ;Rn) (24)

for 2 < r <∞ and 1 < q <∞. Finally the inequality

‖φ̃‖W1,r′,q′ (0,T ;Rn) ≤ C4‖φ‖W1,r′,q′ (0,T ;Ω) = C4 ‖φ‖W1,r′,q′
0 ([0,T );Ω)

implies the embedding (21) for all T , since neither of the positive constants C1, C2, C3

and C4 depends on φ.
We still need to show that the constant C, which bounds the above embedding, can be

chosen independently of T . To this end let C∞ denote the minimal constant for which
the estimate

‖φ‖
L( r

2 )′ (0,∞;W 1,( q
2 )′ (Ω))

≤ C∞‖φ‖W1,r′,q′
0 ([0,∞),Ω)

holds for all φ ∈ W1,r′,q′

0 ([0,∞)) and let 0 < T ≤ ∞ be arbitrary. Then we have for
φ ∈ W1,r′,q′

0 ([0, T ))

‖φ‖
L( r

2 )′ (0,T ;W 1,( q
2 )′ (Ω))

= ‖φ‖
L( r

2 )′ (0,∞;W 1,( q
2 )′ (Ω))

≤ C∞‖φ‖W1,r′,q′
0 ([0,∞),Ω)

= C∞‖φ‖W1,r′,q′
0 ([0,T ),Ω)

using that φ can be extended by zero to a function in W1,r′,q′

0 ([0,∞)) by Lemma 3.1.
Hence with C∞, depending on n, Ω, r and q, we have indeed found a constant which
bounds the embedding (21) for all T . This finishes the proof.

This embedding result allows us to consider the mapping φ 7→ 〈uu,∇φ〉 as a bounded
linear functional on W1,r′,q′

0 ([0, T ),Ω) if the Serrin conditions are satisfied. The next
corollary makes this more precise.

Corollary 4.4. Let r and q satisfy the Serrin conditions 2
r + n

q ≤ 1, 2 < r < ∞,
n < q < ∞, let Ω ⊆ Rn be a bounded C2-domain and 0 < T ≤ ∞. If u and v are

11



5 Proofs and Reformulation of the Main Results

elements of Lr(0, T ;Lq(Ω)) then W (u, v) := [φ 7→ 〈uv,∇φ〉] is a bounded linear functional
on W1,r′,q′

0 ([0, T ); Ω) with norm

‖W (u, v)‖“
W1,r′,q′

0 ([0,T ),Ω)
”′ ≤ C‖uv‖

L
r
2 (0,T ;L

q
2 (Ω))

≤ C‖u‖Lr(0,T ;Lq(Ω))‖v‖Lr(0,T ;Lq(Ω)).

Moreover, we have the estimate

‖W (u, u)−W (v, v)‖“
W1,r′,q′

0

”′ ≤ C (‖u‖r,q + ‖v‖r,q) ‖u− v‖r,q.

In both inequalities C > 0 is the constant from Theorem 4.3 and can hence be chosen
independently of T .

Proof. To prove well-definedness and continuity of W (u, v) let φ ∈ W1,r′,q′

0 . Then, by
Theorem 4.3, φ ∈ L( r

2)
′
(W 1,( q

2)
′
) and hence ∇φ ∈ L( r

2)
′
(L( q

2)
′
). On the other hand

Hölder’s inequality implies that uv ∈ L
r
2 (L

q
2 ) with ‖uv‖ r

2
, q
2
≤ ‖u‖r,q‖v‖r,q. We thus get

〈uv,∇φ〉 ≤ ‖uv‖ r
2
, q
2
‖φ‖

L( r
2 )′ (W 1,( q

2 )′ )
≤ ‖uv‖ r

2
, q
2
C‖φ‖W1,r′,q′

0

≤ C‖u‖r,q‖v‖r,q‖φ‖W1,r′,q′
0

.

by Theorem 4.3. This proves the well-definedness of W (u, v), its continuity and the
estimate of its norm.

For the second assertion observe that W (u, u)−W (v, v) = W (u− v, v) +W (u, u− v).
Hence, by what we just proved,

‖W (u, u)−W (v, v)‖“
W1,r′,q′

0

”′ ≤ ‖W (u− v, v)‖“
W1,r′,q′

0

”′ + ‖W (u, u− v)‖“
W1,r′,q′

0

”′
≤ C (‖u‖r,q + ‖v‖r,q) ‖u− v‖r,q.

This finishes the proof.

5 Proofs and Reformulation of the Main Results

Proof of Theorem 1.2. Let C1 = C1(n,Ω, r, q) > 0 denote the constant from the estimate
on the solution of the instationary Stokes system from Theorem 3.2. Moreover, let
C2 = C2(n,Ω, r, q) > 0 be the constant from Theorem 4.3 bounding the embedding

W1,r′,q′

0 ([0, T ),Ω) ↪→ L( r
2)

′
(0, T ;W 1,( q

2)
′
(Ω)).

Furthermore, assume that

‖f‖“
W1,r′,q′

0

”′ ≤ δ :=
3

16C2
1C2

. (25)

Indeed the number δ is positive and independent of T since both C1 and C2 are.

12



5 Proofs and Reformulation of the Main Results

For v ∈ Lr(Lq) let Sv ∈ Lr(Lq) be the solution of

−〈Sv, φt〉T,Ω − 〈Sv,∆φ〉T,Ω = 〈f, φ〉+ 〈vv,∇φ〉T,Ω (26)

〈Sv(t),∇ψ〉Ω = 0 (27)

for all φ ∈ W1,r′,q′

0,σ , all ψ ∈ W 1,q′(Ω) and almost all t ∈ [0, T ]. Since the right hand side
of (26) is a linear functional on W1,r′,q′

0 by Corollary 4.4, the solution Sv is well defined
by Theorem 3.2 and can be estimated by

‖Sv‖r,q ≤ C1‖f‖“
W1,r′,q′

0

”′ + C1‖W (v, v)‖“
W1,r′,q′

0

”′
≤ C1‖f‖“

W1,r′,q′
0

”′ + C1C2‖v‖2
r,q

(28)

using again the notation W (u, v) := [φ 7→ 〈uv,∇φ〉].
Since obviously the fixed points of the mapping S : Lr(Lq) → Lr(Lq) defined by v 7→ Sv

correspond exactly to the very weak solutions of the Navier-Stokes system with data f ,
the strategy will be to use Banach’s Fixed Point Theorem.

Assume that ‖v‖r,q ≤ ρ := 1
4C1C2

. Then

‖Sv‖r,q ≤ C1‖f‖“
W1,r′,q′

0

”′ + C1C2‖v‖2
r,q ≤ C1

3
16C2

1C2
+ C1C2

(
1

4C1C2

)2

= ρ

by (25) and (28). This proves that S is a self-map of the closed ball Bρ(0). We still have
to show, that S is a contraction on Bρ(0). So let u,v ∈ Bρ(0). Then clearly Su − Sv
solves the equations

−〈Su− Sv, φt〉T,Ω − 〈Su− Sv,∆φ〉T,Ω = 〈W (u, u)−W (v, v), φ〉T,Ω

〈(Sv − Su) (t),∇ψ〉Ω = 0

for all φ ∈ W1,r′,q′

0,σ , all ψ ∈ W 1,q′ and almost all 0 ≤ t ≤ T . By the a priori estimate of
Theorem 3.2, Corollary 4.4 and the definition of ρ it follows that

‖Su− Sv‖r,q ≤ C1‖W (u, u)−W (v, v)‖“
W1,r′,q′

0

”′ ≤ C1C22ρ‖u− v‖r,q =
1
2
‖u− v‖r,q.

Consequently, S is a contraction on Bρ(0) with constant of contraction 1
2 .

Banach’s Fixed Point Theorem now yields a fixed point u of S which is a very weak
solution to the instationary Navier-Stokes system. This fixed point u lies in the ball
Bρ(0) and hence C1C2‖u‖2

r,q ≤ 1
4‖u‖r,q. Using this, the a priori estimate (8) follows from

‖u‖r,q = ‖Su‖r,q ≤ C1‖f‖“
W1,r′,q′

0

”′ + C1C2‖u‖2
r,q ≤ C1‖f‖“

W1,r′,q′
0

”′ +
1
4
‖u‖r,q.

The choice C := 4
3C1 implies that C is independent of T , since C1 already was.

13



5 Proofs and Reformulation of the Main Results

Given a functional f in the data space, the smallness condition (7) can be achieved
by restricting f to functions which are zero outside a small time interval [0, T ′) where
0 < T ′ ≤ T . This is specified in the next proposition.

Proposition 5.1. Let 1 < r, q < ∞ and 0 < T ≤ ∞ as well as Ω ⊂ Rn be a bounded
C1-domain. Given a functional f ∈

(
W1,r′,q′

0 ([0, T ); Ω)
)′

and a number ε > 0, there
exists a number T ′ with 0 < T ′ ≤ T such that

‖f‖“
W1,r′,q′

0 ([0,T ′),Ω)
”′ ≤ ε.

Proof. First consider the case T < ∞. Since in this case W1,r′,q′

0 ([0, T )) is a closed
subspace of

W1,r′,q′([0, T ),Ω) = Lr′(0, T ;W 2,q′(Ω)) ∩W 1,r′(0, T ;Lq′(Ω))

by Lemma 3.1, the functional f is the restriction of a functional

F ∈
(
Lr′(0, T ;W 2,q′) ∩W 1,r′(0, T ;Lq′)

)′
= Lr(0, T ; (W 2,q′)′) + (W 1,r′(0, T ;Lq′))′

with
‖f‖“

W1,r′,q′
0 ([0,T )

”′ = ‖F‖(W1,r′,q′ ([0,T )))′

by the Hahn-Banach theorem. Consider a typical decomposition F = F1 + F2 where
F1 ∈ Lr(0, T ; (W 2,q′)′) and F2 ∈

(
W 1,r′(0, T ;Lq′)

)′
and let 0 < T̃ ≤ T . Then we have

‖F‖(W1,r′,q′ ([0,T̃ )))′ ≤ ‖F1‖Lr(0;T̃ ;(W 2,q′ )′) + ‖F2‖(W 1,r′ (0,T̃ ;Lq′ ))′ .

Now we find by Lemma 2.1 functions g0, g1 ∈ Lr(0, T ;Lq) with

〈F2, φ〉 = 〈g0, φ〉T,Ω + 〈g1, φt〉T,Ω

for all φ ∈ W1,r′,q′([0, T )) and

‖F2‖(W 1,r′ (0,T̃ ;Lq′ ))′ ≤ ‖g0‖Lr(0,T̃ ;Lq) + ‖g1‖Lr(0,T̃ ;Lq) .

Consequently,

‖f‖“
W1,r′,q′

0 ([0,T̃ ))
”′ = ‖F‖(W1,r′,q′ ([0,T̃ )))′

≤ ‖F1‖Lr(0;T̃ ;(W 2,q′ )′) + ‖g0‖Lr(0,T̃ ;Lq) + ‖g1‖Lr(0,T̃ ;Lq) .

By Lebesgue’s Theorem on Dominated Convergence we can find a T ′, 0 < T ′ ≤ T , with
‖F1‖Lr(0,T ′;(W 2,q′ )′) + ‖g0‖Lr(0,T ′;Lq) + ‖g1‖Lr(0,T ′;Lq) ≤ ε which implies the assertion for
T <∞.

Now consider the case T = ∞. Restricting the functional f to W1,r′,q′

0 ([0, 1)), which is
possible by Lemma 3.1, we are in the situation from above.
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5 Proofs and Reformulation of the Main Results

This Proposition allows us to replace the smallness condition (7) by a condition on the
length of the time interval. We now prove uniqueness of very weak solutions, which – in
contrast to the problem of existence – does not need any assumption on the smallness of
the data.

Proof of Theorem 1.3. As in the proof of Theorem 1.2 let C1 be the constant from the
a priori estimate of Theorem 3.2 and C2 be the constant bounding the embedding from
Theorem 4.3. They can both be chosen independently of T . Assume that u and v ∈
Lr(0, T ;Lq) are both very weak solutions to the Navier-Stokes system with data f and let
[0, Tmax) be the maximal half-open interval on which u and v coincide almost everywhere.
If no such interval exists, which is a priori possible, let Tmax be zero. Suppose Tmax < T .

Let T̃ satisfy Tmax < T̃ ≤ T and note that, by Lemma 3.1, we can consider every
φ ∈ W1,r′,q′

0,σ ([0, T̃ )) also as an element of W1,r′,q′

0,σ ([0, T )) by just extending it by zero.
Thus u and v also satisfy

−〈u− v, φt〉T̃ ,Ω − 〈u− v,∆φ〉T̃ ,Ω = 〈(uu− vv,∇φ〉T̃ ,Ω

〈(u− v)(t),∇ψ〉Ω = 0

for all φ ∈ W1,r′,q′

0,σ ([0, T̃ )), all ψ ∈ W 1,q′ and almost all 0 < t < T̃ . By Theorem 3.2 and
Theorem 4.3 we then get with ũ := u|[0,T̃ ) and ṽ := v|[0,T̃ )

‖u− v‖Lr(0,T̃ ;Lq) ≤ C1 ‖W (ũ, ũ)−W (ṽ, ṽ)‖“
W1,r′,q′

0 ([0,T̃ ))
”′

≤ C1 ‖W (ũ, ũ− ṽ)‖“
W1,r′,q′

0 ([0,T̃ ))
”′ + C1 ‖W (ũ− ṽ, ṽ)‖“

W1,r′,q′
0 ([0,T̃ ))

”′
≤ C1C2

(
‖u(u− v)‖

L
r
2 (0,T̃ ;L

q
2 )

+ ‖(u− v)v‖
L

r
2 (0,T̃ ;L

q
2 )

)
= C1C2

(
‖u(u− v)‖

L
r
2 (Tmax,T̃ ;L

q
2 )

+ ‖(u− v)v‖
L

r
2 (Tmax,T̃ ;L

q
2 )

)
≤ C1C2

(
‖u‖Lr(Tmax,T̃ ;Lq) + ‖v‖Lr(Tmax,T̃ ;Lq)

)
‖u− v‖Lr(Tmax,T̃ ;Lq)

= C1C2

(
‖u‖Lr(Tmax,T̃ ;Lq) + ‖v‖Lr(Tmax,T̃ ;Lq)

)
‖u− v‖Lr(0,T̃ ;Lq).

for all Tmax < T̃ ≤ T since u− v = 0 almost everywhere on [0, Tmax). Since C1 and C2

were independent of T or T̃ , by Lebesgue’s Theorem on Dominated Convergence there
exists a T ′, Tmax < T ′ ≤ T such that

C1C2

(
‖u‖Lr(Tmax,T ′;Lq) + ‖v‖Lr(Tmax,T ′;Lq)

)
< 1,

which leads to
‖u− v‖Lr(0,T ′;Lq(Ω)) = 0.

and hence u = v almost everywhere on [0, T ′). This contradicts the maximality of the
interval [0, Tmax). Thus Tmax = T – in particular the case Tmax = 0 is impossible –
which proves that u and v coincide almost everywhere on the whole interval [0, T ).
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Finally we will show that every function u ∈ Lr(0, T ;Lq
σ(Ω)) is a very weak solution

to some data. This is a consequence of our choice of a large data space. In the next
theorem this is formulated more precisely and the main results as presented in Theorem
1.2 and Theorem 1.3 are reformulated. Furthermore it is proved that solutions and data
depend continuously on each other at least for the small data ball from Theorem 1.2.

Theorem 5.2. Let Ω be a bounded C2-domain and 0 < T ≤ ∞ and let r and q satisfy
the Serrin conditions 2 < r <∞, n < q <∞ and 2

r + n
q ≤ 1. Let

G : Lr(0, T ;Lq
σ(Ω)) →

(
W1,r′,q′

0,σ ([0, T ),Ω)
)′

be defined by
〈G(u), φ〉 := −〈u, φt〉 − 〈u,∆φ〉 − 〈uu,∇φ〉

for all φ ∈ W1,r′,q′

0,σ ([0, T ),Ω).
Then G is injective and continuous. Moreover, there exist open neighborhoods of zero

U ⊆ Lr(0, T ;Lq
σ(Ω)) and V ⊆

(
W1,r′,q′

0,σ ([0, T ),Ω)
)′

such that G̃ := G|VU : U → V is bijective and continuous and its inverse map L :=
G̃−1 : V → U is continuous as well.

Proof. The mapping G is well defined by Corollary 4.4. Let C1, C2, ρ and δ be chosen
as in the proof of Theorem 1.2.

The uniqueness theorem 1.3 yields the injectivity of the mapping G. Indeed, we can
extend a functional f on W1,r′,q′

0,σ to a functional F on W1,r′,q′

0 preserving its norm by
the Hahn-Banach theorem. Then, by the uniqueness of very weak solutions, there can
at most be one function u ∈ Lr(0, T ;Lq

σ(Ω)) such that 〈G(u), φ〉 = 〈F, φ〉 = 〈f, φ〉 for all
φ ∈ W1,r′,q′

0,σ ([0, T ),Ω) and this proves the injectivity of G.
Furthermore, G is continuous: For u, v ∈ Lr(0, T ;Lq

σ(Ω)) and φ ∈ W1,r′,q′

0,σ ([0, T ),Ω) it
holds that

〈G(u)− G(v), φ〉 = 〈v − u, φt〉T,Ω + 〈v − u,∆φ〉T,Ω + 〈vv − uu,∇φ〉T,Ω

≤ 2‖u− v‖r,q‖φ‖W1,r′,q′
0,σ

+ C2 (‖u‖r,q + ‖v‖r,q) ‖u− v‖r,q‖φ‖W1,r′,q′
0,σ

and hence

‖G(u)− G(v)‖“
W1,r′,q′

0,σ

”′ ≤ [2 + C2 (‖u‖r,q + ‖v‖r,q)] ‖u− v‖r,q.

This implies the continuity of G.
Now we choose V := Bδ(0) to be the open ball in

(
W1,r′,q′

0,σ

)′
around 0 with radius δ.

Furthermore we let U := G−1(V ) ⊆ Lr(0, T ;Lq
σ(Ω)) be the inverse image of V under G.

Then, by continuity of G, U is open and it contains 0 since G(0) = 0 ∈ V . It is contained
in Bρ(0) by Theorem 1.2.
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Now G̃ := G|VU is continuous and injective. To see that it is surjective let f ∈ V . By the
Hahn-Banach Theorem we can extend f to a functional F on W1,r′,q′

0 with the same norm.
Then, by Theorem 1.2, there is a function u ∈ Lr(Lq

σ) with 〈G(u), φ〉 = 〈F, φ〉 = 〈f, φ〉
for all φ ∈ W1,r′,q′

0,σ . This implies that G̃ is surjective. Consequently, G̃ is bijective and
continuous.

Finally we show that L := G̃−1 is continuous. This is proved as follows. Let f, g ∈ V
and u = L(f), v = L(g). Then we have

−〈u− v, φt〉T,Ω − 〈u− v,∆φ〉T,Ω = 〈f − g, φ〉+ 〈uu− vv,∇φ〉T,Ω

for all φ ∈ W1,r′,q′

0,σ and u − v ∈ Lr(Lq
σ). This implies by the a priori estimate from

Theorem 3.2 – using that f − g can be extended to a functional on W1,r′,q′

0 again by the
Hahn-Banach theorem – that

‖L(f)− L(g)‖r,q = ‖u− v‖r,q ≤ C1‖f − g‖“
W1,r′,q′

0,σ

”′ + C1‖W (u, u)−W (v, v)‖“
W1,r′,q′

0

”′
≤ C1‖f − g‖“

W1,r′,q′
0,σ

”′ + C1C2 (‖u‖r,q + ‖v‖r,q) ‖u− v‖r,q

≤ C1‖f − g‖“
W1,r′,q′

0,σ

”′ +
1
2
‖L(f)− L(g)‖r,q,

using that ‖u‖r,q + ‖v‖r,q ≤ 2ρ = 1
2C1C2

and Corollary 4.4. This estimate yields

‖L(f)− L(g)‖r,q ≤ 2C1‖f − g‖“
W1,r′,q′

0,σ

”′
which finally implies the continuity of L.
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